
Entropy Attacks and Countermeasures in Wireless
Network Coding

Andrew Newell
Purdue University

newella@cs.purdue.edu

Reza Curtmola
New Jersey Institute of

Technology
crix@njit.edu

Cristina Nita-Rotaru
Purdue University

crisn@cs.purdue.edu

ABSTRACT
Multihop wireless networks gain higher performance by us-
ing network coding. However, using network coding also
introduces new attacks such as the well-studied pollution

attacks and less-studied entropy attacks. Unlike in pollu-
tion attacks where an attacker injects polluted packets (i.e.,
packets that are not linear combinations of the packets sent
by the source), in entropy attacks an attacker creates non-
innovative packets (i.e., packets that contain information al-
ready known by the system). In both cases the result is a
severe degradation of the system performance. In this pa-
per, we identify two variants of entropy attacks (local and
global) and show that while they share some characteris-
tics with pollution attacks and selective forwarding, none of
the techniques proposed to defend against such attacks are
applicable to entropy attacks because the packets look legit-
imate and the packet forwarding is stealthy in nature. We
propose and evaluate several defenses that vary in detection
capabilities and overhead.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.m
[Computer-Communication Networks]: Miscellaneous—
Security

General Terms
Security, Performance

Keywords
Network coding, Wireless, Security, Entropy attacks

1. INTRODUCTION
Traditional, wireless, multi-hop systems consist of for-

warders that are constrained to only store and forward pack-
ets. Wireless, network coding systems remove this con-
straint and allow forwarders to use an encoding scheme that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

creates new packets based on stored packets. Encoding at
the forwarders both maximizes the information carried by
each packet and reduces the coordination necessary to de-
liver packets. Theoretical results [4] have shown that net-
work coding can achieve higher network capacity than tra-
ditional networks with little coordination [15], and several
practical systems [7, 9, 22, 27, 37, 38] have demonstrated sig-
nificant performance increases due to network coding.

A node creates correct coded packets by computing a ran-
dom linear combination of packets stored in its coding buffer.
The coding buffer is the set of coded packets received cor-
rectly. A receiver is able to eventually recover the original
packets if it obtains n linearly-independent coded packets
generated based on original plain packets from the source.
A malicious node can deviate from the standard coding pro-
cedure and conduct two types of attacks that are specific
to network coding systems. The first, well-known attack is
called a pollution attack [11, 13] where a node creates an
invalid coded packet which is not a valid combination of
coded packets. The second, less studied attack is called an
entropy attack [13,20] where a node creates a non-innovative

coded packet which is a non-random linear combination of
coded packets such that the coded packet is linearly depen-

dent with the coded packets stored at a downstream node.
A linearly dependent coded packet wastes resources since it
adds no useful information to help the receivers decode the
original packets. We classify entropy attacks into two cate-
gories which require different capabilities from an attacker:
• A local entropy attack corresponds to an attacker that

produces coded packets that are non-innovative to lo-
cal neighboring nodes.
• A global entropy attack corresponds to a more capable

attacker that produces coded packets that are seem-
ingly innovative to local neighboring nodes but are
non-innovative to at least one distant downstream node.

Many defenses for pollution attacks were proposed [3,5,8,
10,13,14,19,23,25,26,28,29,33,39], and they are all designed
to defend against invalid coded packets but they provide no
defense against attacks that use valid, but non-innovative
coded packets. Cryptographic-based defenses [3, 5, 8, 10, 23,
26, 28, 29, 39] use homomorphic cryptography to detect and
drop coded packets that are not valid linear combinations of
the source data. Non-innovative packets will pass such verifi-
cations since they are valid combinations of the source data.
Information theoretic defenses [14, 19, 33] rely on sending
additional redundant information to correct invalid coded
packets at the receiver. This additional information does
not provide any benefit against an attacker that creates non-
innovative packets because the added redundancy will only

help recover the non-innovative packets. Lastly, existing
monitoring defenses for pollution attacks [24, 25] focus on
detecting invalid coded packets by comparing the packets
received and sent by a node. While such schemes can detect
simple types of entropy attacks in which the attacker for ex-
ample sends the same valid packet repeatedly, they can not
detect global entropy attacks.

Previous work [13, 20] showed that receivers waste re-
sources to process non-innovative packets. However, entropy
attacks cause more damage to a network than just occupy-
ing these resources. An entropy attack disrupts routing the
same way selective forwarding attacks [21] disrupt routing
in a network. In both cases, the routing algorithm chooses
an optimal route or multiple routes to send data on, but
the attacking node refuses to participate correctly in the
forwarding of packets which prevents information transfer
along one or more paths. While the effect of the entropy
and selective forwarding attacks are similar, defenses against
selective forwarding attacks [21, 30, 35] can not be directly
applied to entropy attacks because entropy attackers actu-
ally send packets and, in the case of global entropy attacks,
the attack can not be locally detected and global informa-
tion is needed. Multi-path defenses [21] rely on sending re-
dundant information along multiple paths. Network coding
routing inherently sends on multiple paths, but performance
can still significantly be degraded by entropy attacks since
a compromised node can still deny flow on a fraction of the
paths. ACK-based defenses [35] are not applicable for en-
tropy attacks since they require nodes to acknowledge that
they have received packets and do not provide mechanisms
to detect if those packets were innovative or not. Existing
monitoring defenses [30] require that watchdog nodes receive
a fraction of traffic in and out of a suspected node to make
an accurate decision of misbehavior. The approach will not
work for entropy attacks since the watchdog must receive all
packets that the watched node receives, otherwise it cannot
determine if the newly created packets are innovative.

In this paper we study entropy attacks and their impact
on wireless network coding systems. Specifically:

• We classify entropy attacks based on attacker’s capa-
bilities into local entropy attacks and global entropy

attacks. We introduce a new attack, the global entropy
attack in which the attacker generates coded packets
that seem to be innovative to immediate neighbors, but
are non-innovative for nodes that are further down-
stream. We demonstrate via simulation the negative
impact of entropy attacks on network performance.

• We propose a defense scheme against local entropy at-
tacks. The scheme, Non-innovative Link Adjustment
(NLA), routes around attackers by adjusting the link
quality for each link based on the percentage of non-
innovative packets they carry. We show that while
NLA works well for local entropy attacks, is not effec-
tive for global entropy attacks.

• We propose two defenses to address global entropy
attacks. In the first defense, Upstream Buffer Prop-
agation (UBP), downstream nodes share information
about received coded packets with upstream nodes such
that immediate downstream neighbors of an attacker
can detect the attack. In the second defense, Buffer
Monitoring (BM), watchdog nodes monitor forwarder
nodes to ensure that broadcast coded packets are ran-
dom linear combinations of all received coded pack-

ets, and the coefficients of this linear combination are
chosen according to a publicly known pseudo-random
function. BM is essentially different from typical mon-
itoring techniques since watchdogs need to know every
packet received by a forwarder. The defenses differ in
terms of detection efficacy and overhead cost.

• We analytically compare the security strength of the
UBP and BM defense schemes. We are able to quan-
tify the capabilities of an attacker under each global
entropy defense.

• We use a real network topology to analyze the ap-
plicability of the BM monitoring-based global entropy
defense since not every flow in a topology may have suf-
ficient wireless links to monitor traffic. We find that
for the real network topology we used the monitoring-
based defense can be applied to only 84.7% of flows
due to constraints of the topology.

2. RELATED WORK
Entropy attacks. Entropy attacks have been considered

for network coding systems, but defenses have been proposed
only to mitigate the overhead of transferring non-innovative
coded packets [13,20]. These works do not consider neither
the impact on routing nor the possibility of a global entropy
attack. In [13], the authors propose additional local coor-
dination in a peer-to-peer network coding system prior to
obtaining a coded packet to ensure it is innovative. The au-
thors of [20] are concerned with the additional computation
required at a node to determine whether a received coded
packet is innovative or not. Their solution is to probabilisti-
cally check the linear independence of a coded packet which
ensures that non-innovative coded packets are dropped im-
mediately using minor computation.

Selective forwarding attacks. Wireless mesh network
security have considered the effects of a Byzantine adversary
conducting a selective forwarding attack [21], where a mali-
cious node refuses to forward some packets it receives. Such
an attack can cause significant damage to network perfor-
mance. Monitoring is a suitable solution to detect selective
forwarding in a wireless network [30]. Nodes that neigh-
bor an attacker can detect when the attacker has received
a packet and not forwarded the packet. One of the defense
schemes we propose against global entropy attacks also re-
lies on monitoring. Unlike in defenses against selective for-
warding attacks, using monitoring to defend against entropy
attacks is more challenging because the attacker in an en-
tropy attack is still forwarding packets, but the neighboring
nodes need more information to determine that the attacker
is coding non-innovative coded packets.

Wormhole attacks. The global entropy attack that we
introduce in this paper may use an out-of-band communi-
cation channel between nodes just as in a wormhole attack
[16, 17, 34]: An upstream and downstream node collude by
using coded packets received at the downstream node to cre-
ate new coded packets at the upstream node. Existing de-
fenses against wormhole attacks focus on individual packets
which cannot be applied to network coding as packets are
combined by forwarders. In [17], temporal and geographi-
cal leashes are placed on packets to ensure they are correctly
forwarded through the network. Such a technique cannot be
applied to network coding since packets are coded together
and each forwarder creates new packets.

Pollution attacks. Many other works also consider se-
curity of network coding systems that contain Byzantine ad-
versaries conducting pollution attacks [3,5,8,19,26,28,33,36,
39]. In a pollution attack, a node creates coded packets that
are not valid linear combinations of the source’s data. All of
the defenses against pollution attacks rely on the fact that an
invalid coded packet is not a valid linear combination. Thus,
a pollution defense is not helpful against an entropy attack
because entropy attackers are still creating coded packets
that are valid linear combinations of the source’s data.

3. SYSTEM AND ADVERSARIAL MODEL
In this section, we describe intra-flow network coding based

on random linear network coding and specifically define en-
tropy attacks in such network coding systems.

3.1 Random Intra-flow Network Coding
A general intra-flow network coding system consists of a

source and multiple forwarders (destinations can be thought
of as a special case of a forwarder). The source represents
data to be sent as a matrix B of n linearly independent
rows. The matrix B is created such that any collection of
n linear combinations that are linearly independent can be
transformed into B with gaussian elimination. Such a cre-
ation of B is possible by appending coding headers to each
row. The source continuously broadcasts coded packets c(t)
that are random linear combinations of B:

c(t) = r(t) ∗B (1)

The vector r(t) is the random vector used to create c(t)
at time t at the source. The source aims to send n coded
packets to the destination such that the n coded packets are
linearly independent, and this is called a generation.

Each forwarder i has a coding buffer Bi(t) which is a
matrix such that the first rows are the set of all overheard
coded packets at node i that are linearly independent when
the forwarder i broadcasts a coded packet at time t, and the
rest of the rows are zero such that the total number of rows
is n. The t component is necessary because the number
of non-zero rows in the coding buffer typically grows over
time as more coded packets are received. Forwarders have
a condition that defines when to forward a packet. E.g.,
in MORE[7] a forwarder will forward when it has received
a sufficient (depending on the topology) number of coded
packets. When this condition is met at time t for forwarder
i, the forwarder generates broadcasts the coded packet ci(t):

ci(t) = ri(t) ∗Bi(t) (2)

The vector ri(t) is the random vector used to create the
coded packet ci(t) at time t at node i.

The destinations eventually receive n linearly indendent
coded packets. The destinations can decode by performing
gaussian elimination on their coding buffers which will result
in the original B matrix from the source.

3.2 Entropy Attacks
We define two classes of entropy attacks, local and global.

A global entropy attacker is capable of overhearing traffic
on a link that is located several hops downstream. Such
overhearing is possible if the attacker has a more advanced
antenna for reception or cooperates with another wireless de-
vice that is located near the link that must be eavesdropped.

A global entropy attacker requires a much more sophisti-
cated defense to deal with. We will motivate via simulation
in Section 6 the need to create sophisticated defenses for
detecting the most capable entropy attackers.

Local Entropy Attacks. A local entropy attacker cre-
ates coded packets that are non-innovative to neighboring
nodes. Such an attacker creates non-innovative coded pack-
ets by refusing to code optimally as the optimal is creating a
coded packets that is a random linear combinations of all re-
ceived coded packets. Specifically, we define a local entropy
attacker as a forwarder i that deviates from the protocol at
some time t by creating a coded packet c̄i(t):

c̄i(t) = r̄i(t) ∗Bi(t) (3)

The vector r̄i(t) is an arbitrary vector chosen by the at-
tacker. A random linear network coding protocol dictates
that coded packets are combined randomly, but the attacker
deviates by choosing a non-random vector r̄i(t). Specifically,
a non-random vector is a vector such that at least one el-
ement is not chosen randomly, while a random vector has
every element chosen randomly.

Global Entropy Attacks. A global entropy attacker
uses global information about what coded packets have been
sent in the network to create coded packets that are seem-
ingly innovative to local nodes but are non-innovative to
some distant downstream node. These coded packets are
also created by refusing to create random linear combina-
tions of received coded packets but also by including a com-
bination of coded packets from some other portion of the
network to deceptively cause local neighbors to believe the
coded packet is innovative. Specifically we define a global
entropy attacker as a forwarder i that deviates from the pro-
tocol at time t by creating coded packets c̄i(t):

c̄i(t) = r̄i(t) ∗Bi(t) + di(t) (4)

The vector r̄i(t) is not a random vector. The vector di(t) is
not an element of the row space of Bi(t) but is an element
of the row space of B. That is, di(t) is a linear combination
of some coded packets in the network, but it is not a linear
combination of the coded packets that have been received by
node i. The di(t) component of c̄i(t) is coded information
being replayed from some other portion of the network.

4. SIMULATION METHODOLOGY
We aim to motivate the need for defenses against entropy

attacks by showing the impact of entropy attacks through
simulations. We conduct simulation experiments to measure
the performance of a realistic system under various attack
and defense scenarios.

We select MORE [7] as our wireless intra-flow network
coding protocol that is based on random linear network cod-
ing. The source continuously broadcasts coded packets. A
node is selected as a forwarder if it lies on a path or multiple
paths from the source to destination, and these paths have
sufficient link qualities. Based on global link state informa-
tion, each forwarder is assigned a rebroadcast ratio which
determines the number of coded packets received before cre-
ating and broadcasting a new coded packet. These ratios
reflect how much each node contributes to a flow. Once the
destination has received a sufficient number of coded packets
for a generation, the destination sends an ACK back to the
source. Upon receiving the ACK, the source starts sending
a new generation.

Our experiments are conducted using the Glomosim [1]
simulator. We use a raw link bandwidth of 5.5 Mbps and
802.11 [18] as the MAC layer protocol. For a realistic net-
work topology and link qualities, we use the link quality
measurements from the Roofnet [2] network which is a 38-
node 802.11b/g mesh network deployed on MIT campus.

An experiment consists of 200 simulations that each have
a random flow. A random flow consists of a randomly cho-
sen source and destination pair. In a given simulation, the
source transfers data to the destination for 400 seconds. We
measure performance for a simulation and display all 200
simulations as a Cumulative Distribution Function (CDF).

For performance, we measure throughput of the system.
Throughput is the rate (in kbps) of data being decoded at
the destination. More specifically, throughput is the total
amount of data decoded at the destination (r bits) divided
by the transfer time (T seconds):

Throughput =
r

1000 ∗ T
(5)

We select the network coding parameters to match the
default settings for MORE as described in [7]. The number
of rows in the matrix B is n = 32, a symbol size of 1 byte
q = 28, and the size of a coded packet is 1500 bytes.

To simulate attackers, we define the specific coding behav-
ior of attackers. Random nodes from the set of forwarders
for a flow are selected as attackers, and those attackers fol-
low the specified attack behavior.

5. LOCAL ENTROPY ATTACKS
Using the methodology described in Section 4, we show

the impact of a local entropy attack on a typical network,
and then we present a defense strategy.

5.1 Threat
The damage caused by a local entropy attack is similar

to selective forwarding. A broadcast coded packet that is
non-innovative to all neighboring nodes is equivalent to a
node not broadcasting a coded packet at all. The local en-
tropy attack does cause some additional damage compared
to selective forwarding since bandwidth and computation of
neighboring nodes is wasted to receive the non-innovative
coded packets and determine that they are non-innovative.

A local entropy attack is effective because the system
trusts each node to utilize the link capacities fully to de-
liver innovative coded packets downstream. Thus, when a
local entropy attacker is located at an important position on
a path or multiple paths between the source and destination,
the system delivers many coded packets to the attacker un-
der the false assumption that new innovative coded packets
are delivered further downstream from this node.

To show the effectiveness of a local entropy attack, we con-
duct an experiment using the simulation methodology from
Section 4 with zero, one, and two entropy attackers. These
local entropy attackers choose r̄i(t) = 〈r1, ..., r16, 0, ..., 0〉, so
the first 16 symbols are random while the last 16 symbols are
zero. Thus, the attacker codes normally the first 16 received
coded packets, but any further coded packets received are
never used for coding.

Figure 1(a) shows the results of the local entropy attack.
Such a simple attack results in zero throughput for 43% and
70% of flows for one and two attackers, respectively. The
zero throughput flows are flows where the attackers hap-

pened to cut the topology consisting of the forwarders. Even
the throughput in non-zero flows for the attacking scenarios
degrade throughput significantly. Roughly 15% of the flows
in each case of attackers has non-zero throughput where the
throughput is less than the lowest throughput for MORE
without an attack. The non-zero flows are affected as well,
as the median throughputs are 900, 400, and 0 kbps for 0,
1, and 2 attackers respectively.

5.2 Defense
The ideal defense against a local entropy attacker is to de-

termine which nodes are performing the attack and remove
them from the system. This is not straightforward based
on local decisions since even honest nodes may unknowingly
send some non-innovative coded packets. The reason is be-
cause a node knows what it has already sent, but it does
not know what downstream nodes may have received from
another path, and a downstream node may receive the same
information along two upstream paths.

Figure 1(b) shows the proportion of received non-innovative
coded packets in each flow for MORE. There is an obvious
increase in non-innovative coded packet reception with at-
tackers present, but even for the benign case some flows
will contain a significant proportion of non-innovative coded
packets. In these benign flows, there are multiple paths to
the destination which have high packet reception probabili-
ties, thus there is little diversity in the coded packets down-
stream when these paths coverage which accounts for the
non-innovative coded packet receptions. For 30% of benign
flows 10% of received coded packets were non-innovative.
This is a total for all nodes in the network, so some links
in the flow potentially carry an even larger proportion of
non-innovative coded packets.

Non-innovative Link Adjustment (NLA). We pro-
pose NLA as a defense against local entropy attacks. Be-
cause honest nodes also create some non-innovative packets,
we do not adopt a strict node removal strategy. Instead,
we punish each link proportionally with the amount of non-
innovative coded packets sent on the link. The modified link
qualities are obtained by multiplying the original link quality
with the proportion of received innovative coded packets to
total coded packets on a link. A forwarder notifies the net-
work if it notices a significant change in the modified link
qualities. Thus, when a local entropy attacker sends non-
innovative coded packets, the routing layer is alerted that
specific links are not carrying innovative coded packets. For
MORE, nodes recalculate their rebroadcast ratios based on
the modified link states which will route data on paths that
avoid the attacker node. Performing this securely requires
mechanisms that limit the ability of an attacker to falsely
accuse other nodes. We assume that such mechanisms are
in place and they are out of the scope of this work.

Figure 1(c) demonstrates how the local entropy attack
is mitigated by NLA. As a baseline for the defense, we in-
clude an ideal defense where the entropy attacker is removed
from the network. We removed flows (31 of 200) where the
entropy attacker partitions the network from source to des-
tination as there does not exist any set of forwarders that
provides positive throughput. Without a defense, 30% of
flows result in zero throughput, and these are cases where
the entropy attacker partitions the set of forwarders chosen
by the routing logic. With NLA, only 5% of flows result in
zero throughput because in the majority of cases where the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
fl

o
w

s

Throughput (kbps)

MORE-1
MORE-0

MORE-2

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
 o

f
fl

o
w

s

Proportion of non-innovative packet reception

MORE-1
MORE-2

MORE-0

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
fl

o
w

s

Throughput (kbps)

MORE-1
NLA-MORE-1

IDEAL-MORE-1

(c)
Figure 1: MORE-x is the standard wireless network coding protocol with x local entropy attackers randomly selected

on each flow. NLA-MORE-x is MORE-x with the defense NLA. IDEAL-MORE-x is MORE-X with the x local entropy

attackers removed from the system which represents the ideal defense against an entropy attack. (a) Throughput CDF

of network coding with varying number of entropy attackers. (b) Proportion of non-innovative coded packet reception

(summed over all nodes) CDFs for varying numbers of local entropy attackers. (c) Throughput CDF of network coding

with one local entropy attacker for no defense, the NLA defense, and the ideal defense.

Table 1: Throughput
results of various at-
tack and defense sce-
narios with the topol-
ogy in Figure 2

Defense Throughput (kbps)

None 233
NLA 214
Ideal 345

entropy attacker partitions the initial set of forwarders the
NLA defense severely punishes the links outgoing from the
malicious node such that the routing logic chooses a new
set of forwarders which can route data around the malicious
node. With the exception of the lowest performing 20% of
flows, the NLA is capable of performing within 50 kbps of
the cases where the local entropy attacker is removed.

6. GLOBAL ENTROPY ATTACKS
In this section we first show how a global entropy attack

impacts performance and argue that the NLA defense can-
not mitigate such an attack. We then propose two defenses
that can defend against global entropy attacks.

6.1 Threat
We show in Figure 2 a specific global entropy attack exam-

ple. A malicious node A is able to perform a global entropy
attack that A’s downstream neighbor B cannot detect. The
malicious node A sets r̄A(t) = 0 and dA(t) = rA(t) ∗BY (t)
where BY (t) is a coded buffer created from packets that
have been overhead from the link between C and D. With
this setting, Equation 4 becomes:

c̄A(t) = r̄A(t) ∗BX(t) + dA(t) = rA(t) ∗BY (t)

Node A has access to coded packets sent by C to D via
some out-of-band channel as shown by the dashed line in
the figure, which allows A to create BY (t) (this can be done
as simple as overhearing, or by colluding with D). Coded
packets broadcast by A are linear combinations of coded
packets that are broadcast by C which include coded packets
that C received directly from S. B has no knowledge of
coded packets that S broadcasts, C receives, and B fails to
receive. So, B will receive coded packets that are innovative
to B’s coding buffer from A, but these coded packets are
not innovative to C’s coding buffer. Thus, when C receives
linearly dependent coded packets from B, C cannot be sure
if B or A is the entropy attacker given only local information.

The global entropy attack focuses mainly on being stealthy,
but it is still damaging and can reduce throughput signifi-

Figure 2: S is the source, D is
the destination, A is the global
entropy attacker. The solid lines
indicate standard wireless links,
while the dashed line indicates
that node A can overhear the
coded packets on the link be-
tween C and D.

cantly like the local entropy attack. We performed simu-
lations with the topology from Figure 2 and used high link
qualities for edges (S,A), (A,B), (B,C), (C,D), and we used
lower link qualities for edges (S,B) and (S,C). Thus, the
network assumes many packets are routed through the path
S,A,B,C,D. We measured a throughput of 769 kbps when
A is honest and 233 kbps when A is a global attacker by
replaying combinations of coded packets from link (C,D).
Thus, node A harms system performance, and the node still
sends coded packets that are innovative to local neighbors
but are not innovative to neighbors further downstream.

We apply NLA to the scenario in Figure 2 to show how it
fails to prevent the entropy attack. As summarized in Ta-
ble 1, the throughput is 214 kbps when NLA is applied and
345 kbps when the ideal defense is applied. The ideal defense
is the case where the global entropy attacker is removed from
the network. NLA actually has lower throughput compared
to the case of no defense which has 233 kbps because the
modified link quality of (B,C) is lowered to nearly zero and
thus the network only utilizes the path S, C,D while the
path S,B,C,D still provides some innovative coded packets
even under a global entropy attack. This topology illustrates
how a global entropy can reduce throughput by roughly 30%,
but in other topologies a global entropy attack has the po-
tential to cause greater damage. We conclude that NLA
cannot defend against the global entropy attack.

6.2 Global Entropy Defenses Overview
We present two global entropy defenses. In the Upstream

Buffer Propagation (UBP) defense, nodes propagate buffer
information upstream to pinpoint the origin of the global en-
tropy attack. In the Buffer Monitoring (BM) defense, nodes
monitor incoming and outgoing traffic of untrusted, neigh-
bor nodes to immediately detect any coded packets created
in a non-random fashion. To contrast these two techniques,
UBP is more reactive and thus has lower overhead while BM

is more proactive and requires higher overhead and places
constraints on the topology. These schemes require the fol-
lowing three wireless communication primitives:

• Broadcast. A message is broadcast once and neigh-
boring nodes will receive the message probabilistically.

• Reliable unicast. A specific neighboring node is
designated and the sender will repeatedly broadcast
a message until the receiving node acknowledges the
reception of the message. This primitive can be the
standard 802.11 unicast.

• Reliable multicast. A set of neighboring nodes are
designated and the sender will repeatedly broadcast a
message until all receiving nodes acknowledge the re-
ception of the message. This primitive does not exist
naturally in the 802.11 protocol, but it can be real-
ized efficiently by periodically broadcasting the mes-
sage until an acknowledgement is received from each
of the designated receivers. As this primitive is not
standard, we analyze its overhead in Appendix B.

Both defenses propose a mechanism for nodes to make an
accurate accusation that another node is a global entropy
attacker. A complete solution requires an appropriate re-
sponse to such an accusation which is not straightforward
since an accuser may be malicious. This is a general prob-
lem for many security protocols, and it is out of the scope of
this work as we can apply approaches from other work that
resolve this issue. One approach from a work on a secure
wireless multicast protocol [12] proposes to only remove ac-
cused nodes temporarily and limit the accusations of a node.
Thus, a malicious accusation is not permanently damaging,
and a malicious node cannot disrupt the network by accus-
ing many nodes. Another approach is to use a reputation
system [6,31] to lower the reputation of nodes that have been
accused or have made invalid accusations. With these rep-
utation values, a node with low reputation can be removed
from the network and its accusations can be ignored as well.

6.3 Upstream Buffer Propagation
The defense is initiated by the reception of non-innovative

coded packets which implies that a global entropy attack is
upstream. The entropy attacker may reside along any up-
stream path. We can determine the entropy attacker by
propagating buffer information upstream until it reaches
the source of the global entropy attacker. Thus, a legiti-
mate node i, in response to receiving non-innovative coded
packets, creates a packet containing its buffer information
and sends this packet upstream. When this buffer informa-
tion reaches the entropy attacker, the entropy attacker has a
choice to continue performing the entropy attack and be de-
tected, or to start sending innovative coded packets. Either
way, the entropy attack is mitigated.

There are two challenges to reducing the overhead of prop-
agating buffer information upstream to make it practical.
The buffer information consists of the coding headers at a
node, and as a node receives more coded packets the total
size of all coding headers at the node becomes large. Thus,
our first challenge is to send a small constant-sized message
that conveys to upstream nodes the contents of the buffer,
and we do this with a special type of checksum. Our second
challenge is to prevent flooding the message upstream and
instead choose based on local information at each hop the
upstream path that the attack is on.

6.3.1 Null Space Checksums
The buffer checksums utilize the null space of the vector

space spanned by coding headers which is the space of all
vectors that result in a zero when multiplied by a vector from
the vector space spanned by the coding headers. We provide
background on null spaces and then we explain how to use
null spaces to provide a checksum for coding headers which
is represented by a coding header matrix Vi(t) which is a
matrix of the nonzero coding headers of Bi(t). We denote
these checksums as null space checksums.

Consider a vector space A and a null space N(A) of A.
Given any two vectors x and y such that x ∈ A and y ∈
N(A), we have:

x ∗ yT = 0 (6)

The notation wT is the transpose of the matrix or vector w.
For our checksum, we consider A to be the row space

of Vi(t) which has R(Vi(t)) rows (we denote R(X) as a
function that returns the number of rows of the matrix X).
The vector of the null space is a vector si(t)

T such that:

Vi(t) ∗ si(t)
T = 0 (7)

This corresponds to a linear system of R(Vi(t)) equations
and n unknowns. To find a valid si(t)

T , we simply fill
in n − R(Vi(t)) symbols randomly, and we are left with
R(Vi(t)) equations and R(Vi(t)) unknowns which is solved
to fill in the remaining symbols. Thus, computing this vector
is computationally inexpensive.

Given si(t)
T and the coding header matrix of another

node j at a time t′, Vj(t
′), we have the following proba-

bility:

Pr
(

Vj(t
′) ∗ si(t)

T = 0
)

=

(

1

q

)d

(8)

The variable d is the number of rows of Vj(t
′) are linearly

independent with all rows of Vi(t), and the variable q is
the cardinality of the field that each symbols lies in (e.g.,
q = 256 for network coding over 1 byte symbols). Any row
of Vj(t

′) that is linearly dependent with all rows of Vi(t)
results in a zero if multiplied by the vector si(t)

T . Any row
of Vj(t

′) that is linearly independent with all rows of Vi(t)
results in a random symbol when multiplied by the vector
si(t)

T . Thus, d symbols are random, and the probability
that all d symbols are zero is (1

q
)d.

Thus, a node j that is upstream from node i knows that
if Vj(t

′) ∗ si(t) = 0 then node j at time t′ most likely has
no innovative packets with respect to node i’s coding buffer
at time t. Also, if node j finds that Vj(t

′) ∗ si(t) 6= 0 then j

can definitely create coded packets that are innovative with
respect to node i’s coding buffer. The null space check-
sums are encapsulated in a Buffer Checksum Packet (BCP)
which contains additional information required by the pro-
tocol. We show in Appendix A that computational overhead
is low to generate and check these BCPs.

6.3.2 Single Path Propagation
Instead of sending the buffer information on all possible

paths upstream, it only needs to be sent along one single
path. The path can be determined by local decisions while
ensuring with high probability that the global entropy at-
tacker will be part of the path. A node attaches a sequence
number to every coded packet it creates and forwards, and
nodes maintain some state that allows them to determine

which upstream neighbor sent the last coded packet that
triggered the broadcast of a new coded packet.

To determine a single upstream path for buffer propaga-
tion, each node maintains both a sequence number and a
Sequence Number Table (SNT). When a node j broadcasts
a coded packet, it appends its sequence number uj to the
coded packet and then increments uj by one. Upon receiv-
ing from upstream neighbor i a coded packet that has a
sequence number ui, node j adds an entry 〈ui, j, uj〉 to its
SNT and removes any old entries with the same ui.

A node j receives a BCP because it had broadcast a coded
packet that was globally non-innovative which triggered the
propagation of this BCP at a downstream node that may be
several hops downstream. Based on its SNT, node j knows
the upstream neighbor i that sent the last coded packet
which was used to create the globally non-innovative coded
packet at node j. Thus, the attacker is either node i or some
node upstream of node i which caused i to send this packet
that is globally non-innovative. The BCP is forwarded up-
stream to node i along with the sequence number of the
coded packet that i created so that, if node i is honest, it
can make an accurate decision about which upstream node
it should send the BCP on.

6.3.3 Protocol Description
We now describe in Algorithm 1 the UBP defense in detail.

These actions are all in addition to normal network coding
actions and they are triggered by timer expiration or by
packet reception. We assume each node has a public/private
key pair, such that any node i can sign a message with its
private key Ki which is denoted by SKi

(·) and any other
node in the network can verify this signature.

The protocol is initiated when a node receives a non-
innovative coded packet and starts the propagation of a BCP
upstream (lines 1-3 of receiving a coded packet). Then, an
entry is created for the Upstream Accusation Table (UAT),
and a timer is started for this entry (lines 4-5 of receiving
a coded packet). The purpose of the UAT is to keep track
of each usptream neighbor that should send an innovative
coded packet since a BCP was sent to that upstream neigh-
bor. The time that an upstream neighbor has to send an
innovative coded packet is the estimate of the time taken
for the BCP to propagate up to the source and then a coded
packet to propagate down to j. Upon UAT expiration, the
node accuses the upstream neighbor of being an entropy at-
tacker if the upstream neighbor did not manage to send an
innovative coded packet (lines 1-2 of UAT expiration).

A node that receives a BCP will first check the signature
and then check whether it has innovative packets with re-
spect to the null space checksum within the BCP (lines 1-2
of receiving a BCP). The actions taken by the node depend
on whether it has innovative coded packets. If the node does
have innovative coded packets with respect to the null space
checksum, then the node will broadcast a coded packet and
perform the appropriate updates to the SNT (lines 3-7 of
receiving a BCP). Note that these same updates are applied
to the SNT for every broadcast of coded packets despite it
not being explicitly mentioned. In the other case, the node
forwards the BCP upstream by selecting the most likely next
hop that sent globally non-innovative coded packets (lines
8-14 of receiving a BCP). The forwarded BCP is modified
to include the sequence number of the coded packet that
is expected to have been globally non-innovative. This se-

quence number is known since the SNT maintains the se-
quence number of the coded packet received from an up-
stream node just before each broadcast.

The propagation of BCPs upstream continues along a path
until either a malicious node refuses to keep forwarding it,
a node has innovative coded packets and sends them down-
stream, or the BCP reaches the source. If the BCP reaches
the source, then the source always has innovative coded
packets and will send an innovative coded packet down-
stream. Thus, each node has a chance to broadcast and
propagate innovative coded packets downstream before the
UAT of its downstream neighbor expires. The timers for
accusation should be set such that upstream nodes’ timers
expire first, and only the most upstream node that makes an
accusation will count. So, a malicious node will be accused
if it refuses to either forward the BCP upstream or forward
innovative coded packets downstream.

Algorithm 1 Reactive upstream buffer propagation proto-
col for node j in addition to normal network coding actions

BCP : packet with contents 〈originator, null space check-
sum, sequence number, originator signature〉
UAT : table with entries 〈upstream node, originator, null
space checksum〉
SNT : table with entries 〈local sequence number, upstream
node, upstream sequence number〉

Received coded packet c from upstream neighbor k with
sequence number uk at time t
1: if c is non-innovative then
2: BCP ← 〈j, sj(t), uk, SKj

(sj(t))〉
3: reliable unicast(k, BCP)
4: add entry to table(〈k, j, sj(t)〉, UAT)
5: start timer(〈k, j, sj(t)〉)
6: else
7: remove entry from table(〈uj , ∗, ∗〉, SNT)
8: add entry to table(〈uj, k, uk〉, SNT)
9: if ∃〈k′, i, si(t)〉 ∈ UAT s.t. k′ = k then
10: if c is innovative w.r.t. si(t) then
11: remove entry from table(〈k, ∗, ∗〉, UAT)

Received BCP 〈i, si(t
′), u′

j , SKi
(si(t

′))〉 at time t from node l

1: if SKi
(si(t

′)) is correct then
2: if Vj(t

′) has innovative coded packets w.r.t si(t
′)

then
3: c← create coded packet()
4: broadcast(〈c, uj〉)
5: 〈uj , k, uk〉 ← get entry from table(〈uj , ∗, ∗〉, SNT)
6: uj ← uj + 1
7: add entry to table(〈uj, k, uk〉, SNT)
8: else
9: 〈u′

j , k, uk〉 ← get entry from table(〈u′

j , ∗, ∗〉, SNT)
10: BCP ← 〈i, si(t

′), uk, SKi
(si(t

′))〉
11: reliable unicast(k, BCP)
12: if k is not source then
13: add entry to table(〈k, i, si(t)〉, UAT)
14: start timer(〈k, i, si(t)〉)

Expired timer 〈k, i, si(t)〉 s.t. 〈k, i, si(t)〉 ∈ UAT

1: if no recent accusations with same originator i then
2: accuse(k)

6.4 Buffer Monitoring (BM)
We now present a monitoring-based solution to defend

against entropy attacks. Each forwarder is assigned one or
more watchdogs. A larger number of watchdogs provides

resilience to watchdog failure or misbehavior. The watch-
dog nodes will ensure that coded packets broadcast by a
watched forwarder are random linear combinations of all re-
ceived coded packets, and the coefficients of this linear com-
bination are chosen according to a publicly known pseudo-
random function. This scheme is proactive in nature and
thus can immediately detect an attack. However, as any
proactive scheme, it has additional overhead for each coded
packet broadcast. In addition, there are some network topol-
ogy constraints that might prevent some flows from having
each forwarder assigned the desired number of watchdogs.

For a watchdog to determine whether a coded packet broad-
cast by a watched forwarder is random linear combinations
of all received coded packets by that forwarder, the watch-
dog must know about all coded packets received by that
forwarder for the generation. This poses two challenges.
First, the watchdogs must have wireless links to both the
watched node and every upstream neighbor of the watched
node, which may prohibit BM from being applied to certain
topologies. This challenge is a fundamental constraint im-
posed by the topology, and we analyze in Section 7.2 the
feasibility of selecting watchdogs in a realistic wireless net-
work. Second, once a valid set of watchdogs are chosen,
we need to send minimal amount of data to the watchdog
to ensure accurate detection while not hindering the oppor-
tunistic routing of the random network coding system.

6.4.1 Detection at a Watchdog
To determine whether a single coded packet ci(t) from a

node i at time t is consistent with traffic that entered node
i, the watchdog must determine the coefficients ri(t) used
to create the coded packet from the equation:

ri(t) ∗Bi(t) = ci(t) (9)

This is an overconstrained system of n + m equations and
n unknowns. Only n equations are needed to determine
the relevant elements of ri(t). There are some elements of
ri(t) that correspond to rows of zero vectors in Bi(t) which
cannot be determined, but these are irrelevant elements as
they do not affect the coded packet being broadcast.

The impact of this result is that a watchdog only requires
the coding headers of the coded packets sent and received
by a watched forwarder. A coded packet with typical net-
work coding system parameters has 32 bytes for the coding
header while the entire coded packet is 1500 bytes. It is
important to only reliably multicast a small portion of the
total traffic since random network coding systems gain many
advantages by forwarding data opportunistically instead of
sending the data reliably each hop. This fundamental char-
acteristic of random network coding systems is still retained
with the additional overhead of sending a small portion of
a coded packet, the coding header, with reliable multicast.
However, simply determining the value ri(t) does not com-
pletely defend against global entropy attacks as it is difficult
to determine whether the values are chosen randomly or to
cause a subtle entropy attack.

Instead of attempting to determine whether a ri(t) used
by a watched forwarder is truly random, we require all nodes
to generate the coding coefficients based on a Pseudo-Random
Function (PRF). The PRF is keyed with a key known to
all nodes in the network (to guarantee the coefficients are
pseudo-random, the key only needs to be picked at random
and does not need to be secret). The inputs to the PRF are

Figure 3: Scenario for monitor-
ing solution. X is the node be-
ing monitored, W is the watch-
dog node, and A,B,C are up-
stream neighbors of X. Solid
lines indicate wireless links of the
topology that are used for rout-
ing data. Dashed lines indicate
wireless links of the topology to
send data to the watchdog node.

the node’s ID along with a sequence number for the packet.
The usage of a PRF makes a watchdog’s job simple and
deterministic to check whether a set of coefficients used by
the watched forwarder is truly random. Also, the inputs to
the PRF cannot be controlled by the attacker as a sequence
number increases by one with each broadcast coded packet
and the node ID does not change. Due to this constraint,
the global entropy attacker has no opportunity to guess in-
puts to the PRF that may produce coefficients that result in
an entropy attack. The use of the PRF is computationally
inexpensive, and the random coefficients chosen by the PRF
are uniformly random which is optimal to satisfy the high
decoding probabilities in random network coding systems.

6.4.2 Protocol Description
Figure 3 shows an example of a node with one watchdog

and three upstream neighbors. The nodeX is being watched
by a watchdog W . The watchdog must receive all coding
headers from the upstream neighbors A,B, and C along the
wireless links indicated by the dashed lines. Also, the watch-
dog must receive the coding headers that are broadcast by
node X. With this information, along with knowledge of a
global PRF used by each node, the watchdog can determin-
istically check whether node X is correctly creating coded
packets or is performing an entropy attack.

Algorithm 2 describes the specific actions of a node j in a
monitoring defense. The node j is a forwarder, a watchdog,
or both. We use the notation of two sets that exist for each
node (these sets may be empty): W (i) are the watchdogs of
node i and D(i) are the downstream neighbors of node i.

To ensure that only a small portion of each coded packet is
sent reliably, the coding headers and coded data are sent sep-
arately in a Coding Header Packet (CHP) and Coded Data
Packet (CDP). The CDP is broadcast unreliably (lines 1-2 of
broadcasting a coded packet) and the CHP is reliably multi-
cast to the appropriate set of nodes (lines 3-5 of broadcasting
a coded packet). The appropriate set of nodes are the down-
stream nodes, watchdogs of the downstream nodes, and the
watchdog of the broadcasting node (line 4 of broadcasting
a coded packet). The watchdogs must receive the CHP to
ensure that it has been formed correctly. The downstream
nodes must receive the CHP to either reconstruct the coded
packet if the downstream node correctly received the CDP
(lines 1-2 of receiving CHP from upstream neighbor) or to
notify watchdogs that they lost the CDP with a Dropped
Data Packet (DDP) (lines 3-5 of receiving a CHP from up-
stream neighbor). Lastly, watchdogs of downstream neigh-
bors must receive the CHP so that they have a view of the
buffer information at the downstream neighbor.

When j is a watchdog and receives a CHP from a node i

where j ∈W (i), j must create the coding header matrix Vi

of node j (lines 1-3 of received CHP from a watched node),
and then check whether the CHP is consistent with Vi and
the random linear combination from the PRF (lines 4-5 of

Algorithm 2 Buffer monitoring protocol for node j in ad-
dition to normal network coding actions

CHP : packet with contents 〈source, sequence number,
coding header〉
CDP : packet with contents 〈source, sequence number,
coded data〉
DDP : packet with contents 〈node dropping packet, source
of packet, sequence number of packet 〉
WBT : table with entries 〈 watched node, source, sequence
number, coding header 〉
W (x) : set of watchdog nodes for node x
D(x) : set of downstream neighbors for node x

PRF (x, y) : pseudo-random function which maps Z
+ × Z

+

to F
n
q

Received CHP 〈i, ui,v〉 from upstream neighbor i
1: if Received CDP 〈i, ui,x〉 then
2: Reconstruct coded packet c = 〈v,x〉 and store in

buffer
3: else
4: DDP ← 〈j, i, ui〉
5: reliable multicast(W (j), DDP)

Broadcasting coded packet c = 〈v,x〉 created by a
random linear combination PRF (j, uj) of buffered pack-
ets
1: CDP ← 〈j, uj ,x〉
2: broadcast(CDP)

3: S ←W (j) ∪D(j) ∪
(

⋃

i∈D(j) W (i)
)

4: CHP ← 〈j, uj ,v〉
5: reliable multicast(S, CHP)

Received CHP 〈i, ui,v〉 from node i s.t. j ∈ W (i)
1: initialize empty coding header matrix(Vi)
2: for all 〈i, ∗, ∗, v〉 in WBT do
3: add coding header to matrix(v,Vi)
4: if Vi ∗ PRF (i, ui) 6= v then
5: accuse(i)

Received CHP 〈k, uk,v〉 from node k s.t. i ∈ D(k), j ∈ W (i)
1: add entry to table(〈i, k, uk,v〉,WBT)

Received DDP 〈i, k, uk〉 from node i s.t. i ∈ D(k), i ∈W (j)
1: if 〈i, k, uk, ∗〉 ∈WBT then
2: remove entry from table(〈i, k, uk, ∗〉,WBT)
3: else
4: drop future receptions(〈k, uk, ∗〉)

received CHP from a watched node). The information to
perform this check is stored in the Watchdog Buffer Table
(WBT) when upstream nodes send coded packets to node i

(line 1 of received CHP from upstream neighbor of watched
node). The WBT must be correctly modified when a node
does not receive a coded packet. This is the purpose of
broadcasting the DDP to watchdog nodes of j when j does
not receive the corresponding CDP to a CHP. The DDP
prompts the watchdogs to either remove the entry or drop a
future reception of a CHP that corresponds to the dropped
packet (lines 1-5 of receiving a DDP). If an attacker abuses
the use of DDPs and claims to drop more coded packets
than the the measured link qualities, then the watchdog can
inform the routing layer of the change in link qualities which
will route data around the attacker much like the modified
link qualities in our NLA defense.

7. SECURITY ANALYSIS
We analyze UBP in terms of attack strength which denotes

Table 2: Table summarizing notation, each row rep-
resents a random variable which include the nota-
tion and explanation for the random variable.
T c

i,j Avg. time of a coded packet to propagate down-
stream from node i to j

TB
i,j Avg. time of a BCP to propagate upstream from

node i to j

TS
i Avg. time between coded packet sends at node i

TE Exoneration time for a hybrid of UBP
PR
i,j Attack strength from node i to j under UBP

PH
i,j Attack strength from node i to j under a hybrid

of UBP with an exoneration phase
Ni,j Average number of coded packets that can be

sent by node i that are globally non-innovative
to downstream node j in UBP before i must send
an innovative coded packet

the proportion of time which a globally non-innovative coded
packet can be sent undetected. The buffer monitoring is
much stronger in terms of security since an attacker is not
capable of evading detection by a watchdog. However, BM
cannot be applied to an arbitrary flow of a topology and has
a higher network overhead. So, we analyze the proportion
of flows BM can be applied to in the Roofnet topology [2].

7.1 Attack Strength of UBP
We aim to describe the attack strength in terms of the

characteristics of the network. Specifically, attack strength
represents the proportion of time that coded packets can
be sent from an attacker that are globally non-innovative
with respect to a victim’s coding buffer and the attacker
will not be detected as an entropy attacker. In the remain-
der of the time, the attacker cannot send a globally non-
innovative coded packet without being detected. Also, since
the sending times of coded packets are fixed by the protocol,
the attack strength also represents the proportion of pack-
ets sent by the attacker that can be globally non-innovative
while not being detected. The attack strength will depend
on the network characteristics of the average time taken for
both a coded packet (or combinations of the coded packet)
to traverse downstream and a BCP to traverse upstream.
These averages differ since coded packets are larger and sent
opportunistically downstream, while BCPs are smaller and
sent reliably upstream immediately at each hop. For this
analysis, we use notation from Table 2.

Figure 4 shows the timeline of events that lead to points
where an attacker can attack in UBP without detection. The
scheme waits until an attack is detected downstream, and
then it reacts by sending a BCP upstream along the path
that contains the global entropy attacker. The attacker is
detected by a timer expiring at the entropy attacker’s im-
mediate downstream neighbor which is the time it takes for
the BCP to reach the source from the attacker and then
an innovative coded packet to traverse downstream to the
attacker. During this entire time, the attacker can consecu-
tively send globally non-innovative coded packets and send
an innovative coded packet when it knows the immediate
downstream neighbor’s UAT is about to expire.

We first determine the number of consecutive non-innovative
coded packets that can be sent by attacker node i that target
victim j without detection as:

N
R
i,j = 1 +

T c

i,j + TB
j,src + T c

src,i

TS
i

(10)

Figure 4: Example timeline for the source, attacker
and victim that shows when an attacker can at-
tack without facing detection with the UBP protocol
which is denoted by the grey region. Note that there
are most likely many hops from source to attacker
and attacker to victim, but we assume that we can
estimate the time it takes a BCP and coded packet
to traverse these hops.

In addition to the one initial attack packet, there are sev-
eral opportunities for the attacker to send globally non-
innovative coded packets. The average number of opportu-
nities is equal to the total time it takes before the attacker
must send an innovative coded packet over the average time
between coded packet sends of the attacker node.

We can then determine the attack strength from attacker
node i to victim node j as:

P
R
i,j =

NR
i,j

NR
i,j + 1

(11)

For each consecutive non-innovative coded packet that can
be sent by an entropy attacker, the entropy attacker must
send one innovative coded packet to remain undetected.

The attack strength PR
i,j is always at least 0.5 which means

that at least half of the coded packets can be globally non-
innovative. The attack strength increases as the values T c

src,j

and TB
j,src become larger compared to TS

i which happens in
larger networks and when the node i does more broadcast-
ing. The large attack strength is due to the exoneration of
the attacker given just one innovative coded packet. Thus,
the single upstream path found by UBP could enter an ex-
oneration phase for a period of time which requires more
overhead but detects a global entropy attack proactively.
This results in a hybrid scheme with an attack strength of:

P
H
i,j =

Ni,j

Ni,j + 1 + TE

TS
i

(12)

The exoneration period TE can be varied to obtain various
trade-offs between the additional overhead of the proactive
detection in the exoneration period and the attack strength
possible at the attacker.

An obvious way to enforce an exoneration period for a
path is to assign watchdogs as in the BM scheme to these
nodes. This would not impose the high overhead of BM
throughout the entire network at all times as UBP can re-
actively determine which path an entropy attacker is on.
Alternatively one could design alternate scheme that can
provide an accurate proactive defense which can be used in
conjunction with UBP in this same manner. We leave this
as future work.

0

15.3%

1

26.9%

2 13.8%

3

17.0%

4

11.6% >4

15.5%

Figure 5: Given flows in the
Roofnet topology we show
the maximum valid assign-
ment of n watchdogs per
forwarder.

7.2 Watchdog Selection Constraints of BM
The buffer monitoring defense has a much higher level

of security since it can ensure an attack strength of 0. The
watchdog(s) of a forwarder have complete information about
the coding headers of the forwarder, and the watchdog can
deterministically assess whether the forwarder created a ran-
dom combination using the entire coding buffer. This scheme
cannot be employed for each flow of any topology.

The constraint for using the buffer monitoring defense is:

∀f ∈ F,

∣

∣

∣

∣

∣

∣



L(f) ∩





⋂

u∈U(f)

L(u)







− f

∣

∣

∣

∣

∣

∣

≥ n (13)

F is the set of forwarders for a flow, L(x) is the set of nodes
that x has a wireless link to (this includes x itself), U(x)
is the set of upstream neighbors of node x, and n is the
minimum number of watchdogs assigned to each node. This
watchdog assignment allows both the nodes in the flow and
nodes outside the flow to act as watchdogs for a forwarder.
Furthermore, we allow a forwarders’ upstream neighbor to
act as its watchdog which will reduce the multicast overhead
when the upstream neighbor must reliably multicast coding
headers since the upstream neighbor does not need to spend
communication overhead sending this coding header to itself.

We use the Roofnet data to represent a typical wireless
network topology. There are 38 nodes in the network, so
we take all

(

38
2

)

= 1406 possible flows. Out of these flows
we discard 174 trivial flows that contain no forwarders and
present results based on the remaining 1232 flows.

We present information about the maximum watchdog as-
signment per flow in Figure 5. 15.3% of flows cannot employ
a buffer monitoring defense without changing the forwarder
nodes that were optimally selected by the routing algorithm.
These flows contain some forwarder that does not have a
wireless link to any node in the topology that also has a
wireless link to each upstream neighbor of the forwarder. At
least one watchdog per forwarder is a minimal constraint, a
network may aim to protect against an attacker that im-
poses false accusations. In this scenario, three watchdogs
can be assigned to each forwarder to vote on detection, and
only 44.1% of flows allow three watchdogs per forwarder.

8. CONCLUSION
We show via simulations the impact of entropy attacks

on the overall routing of a wireless network coding system.
We propose an effective defense against local entropy at-
tacks and show the difficulties in defending against a global
entropy attack. We propose two variations on a global en-
tropy defense which differ in their defense capabilities and
overhead. We provide analysis to quantify the defense ca-
pabilities of these global defense schemes.

9. REFERENCES

[1] Glomosim.
http://pcl.cs.ucla.edu/projects/glomosim/.

[2] MIT roofnet.
http://pdos.csail.mit.edu/roofnet/doku.php.

[3] S. Agrawal and D. Boneh. Homomorphic macs:
Mac-based integrity for network coding. In Proc. of

ACNS, 2009.

[4] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung. Network
information flow. Information Theory, IEEE

Transactions on, 46(4):1204–1216, 2000.

[5] D. Boneh, D. Freeman, J. Katz, and B. Waters.
Signing a linear subspace: Signature schemes for
network coding. In Proc. of PKC, 2009.

[6] S. Buchegger and J. Le Boudec. A robust reputation
system for mobile ad-hoc networks. In Proc. of

P2PEcon, 2004.

[7] S. Chachulski, M. Jennings, S. Katti, and D. Katabi.
Trading structure for randomness in wireless
opportunistic routing. In Proc. of SIGCOMM, 2007.

[8] D. Charles, K. Jain, and K. Lauter. Signatures for
network coding. Proc. of CISS, 2006.

[9] S. Das, Y. Wu, R. Chandra, and Y. C. Hu.
Context-based routing: Technique, applications, and
experience. In Proc. of NSDI, 2008.

[10] J. Dong, R. Curtmola, and C. Nita-Rotaru. Practical
defenses against pollution attacks in intra-flow
network coding for wireless mesh networks. In Proc. of

WiSec, 2009.

[11] J. Dong, R. Curtmola, and C. Nita-Rotaru. Secure
network coding for wireless mesh networks: Threats,
challenges, and directions. Computer Communications,
32(17):1790–1801, 2009.

[12] J. Dong, R. Curtmola, and C. Nita-Rotaru. Secure
high-throughput multicast routing in wireless mesh
networks. IEEE Transactions on Mobile Computing,
pages 653–668, 2010.

[13] C. Gkantsidis and P. Rodriguez Rodriguez.
Cooperative security for network coding file
distribution. 2006.

[14] T. Ho, B. Leong, R. Koetter, M. Medard, M. Eros,
and D. R. Karger. Byzantine modification detection in
multicast networks using randomized network coding.
In Proc. of ISIT, 2004.

[15] T. Ho, M. Médard, J. Shi, M. Effros, and D. Karger.
On randomized network coding. In Proc. of Allerton,
2003.

[16] L. Hu and D. Evans. Using directional antennas to
prevent wormhole attacks. In Proc. of NDSS, 2004.

[17] Y. Hu, A. Perrig, and D. Johnson. Packet leashes: a
defense against wormhole attacks in wireless networks.
In Proc. of INFOCOM, 2003.

[18] IEEE. IEEE Std 802.11, 1999 Edition. 1999.
http://standards.ieee.org/catalog/olis/lanman.html.

[19] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and
M. Medard. Resilient network coding in the presence
of byzantine adversaries. In Proc. of INFOCOM, 2007.

[20] Y. Jiang, Y. Fan, X. (Sherman) Shen, and C. Lin. A
self-adaptive probabilistic packet filtering scheme
against entropy attacks in network coding. Computer

Networks, 53:3089–3101, December 2009.

[21] C. Karlof and D. Wagner. Secure routing in wireless
sensor networks: attacks and countermeasures. Ad
Hoc Networks, 1(2-3):293 – 315, 2003.

[22] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard,
and J. Crowcroft. Xors in the air: practical wireless
network coding. In Proc. of SIGCOMM, 2006.

[23] E. Kehdi and B. Li. Null keys: Limiting malicious
attacks via null space properties of network coding. In
Proc. of INFOCOM, 2009.

[24] M. Kim, M. Médard, a. Barros, Jo and R. Kötter. An
algebraic watchdog for wireless network coding. In
Proc. of ISIT, 2009.

[25] M. Kim, M. Médard, and J. Barros. A multi-hop
multi-source algebraic watchdog. Proc. of CoRR, 2010.

[26] M. Krohn, M. Freedman, and D. Maziéres. On-the-fly
verification of rateless erasure codes for efficient
content distribution. In Proc. of S&P, 2004.

[27] J. Le, J. C. S. Lui, and D. M. Chiu. DCAR:
Distributed coding-aware routing in wireless networks.
In Proc. of ICDCS, 2008.

[28] Q. Li, D. Chiu, and J. Lui. On the practical and
security issues of batch content distribution via
network coding. In Proc. of ICNP, 2006.

[29] Y. Li, H. Yao, M. Chen, S. Jaggi, and A. Rosen.
Ripple authentication for network coding. In Proc. of

INFOCOM, 2010.

[30] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. In
Proc. of MobiCom, 2000.

[31] P. Resnick, K. Kuwabara, R. Zeckhauser, and
E. Friedman. Reputation systems. Communications of

the ACM, 43(12):45–48, 2000.

[32] L. Rizzo and L. Vicisano. A reliable multicast data
distribution protocol based on software fec techniques.
In Proc. of HPCS, 1997.

[33] D. Wang, D. Silva, and F. R. Kschischang.
Constricting the adversary: A broadcast
transformation for network coding. In Proc. of

Allerton, 2007.

[34] W. Wang, J. Kong, B. Bhargava, and M. Gerla.
Visualisation of wormholes in underwater sensor
networks: a distributed approach. International
Journal of Security and Networks, 3(1):10–23, 2008.

[35] B. Yu and B. Xiao. Detecting selective forwarding
attacks in wireless sensor networks. In Proc. of

IPDPS, 2006.

[36] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan. An
efficient signature-based scheme for securing network
coding against pollution attacks. In Proc. of

INFOCOM, 2008.

[37] X. Zhang and B. Li. DICE: a game theoretic
framework for wireless multipath network coding. In
Proc. of Mobihoc, 2008.

[38] X. Zhang and B. Li. Optimized multipath network
coding in lossy wireless networks. In Proc. of ICDCS,
2008.

[39] F. Zhao, T. Kalker, M. Médard, and K. Han.
Signatures of content distribution with network
coding. In Proc. of ISIT, 2007.

APPENDIX

A. COMPUTATION OVERHEAD
The originator of a BCP in UBP must compute a null

space checksum and a signature for the BCP. The following
benchmarked time values are performed on general com-
modity hardware1. As noted earlier in Section 6.3.1, cre-
ating a null space checksum requires the solution to a sys-
tem of R(Vi(t)) equations and R(Vi(t)) unknowns where
R(Vi(t)) < n. Solving an n by n system of equations re-
quires roughly 0.4 ms (where n = 32 and a symbol is 1 byte),
which is the largest system of equations that may have to
be solved. A single DSA sign requires roughly 1 ms of com-
putation. Thus, overall, the originator of a BCP requires
roughly 1.4 ms of computational overhead on general com-
modity hardware.

Nodes receiving a BCP in UBP must verify the signatures
attached to these packets. Verifying a signature requires
roughly 1.1 ms of computation. The reception of a BCP
message requires a check of the null space checksum that
was received which is simply a matrix multiplication. The
computational time of a matrix multiplication on the coding
headers of a coding buffer is negligible.

B. COMMUNICATION OVERHEAD
The communication overhead in UBP are the BCPs that

are sent using reliable unicast due to our strategy of finding
the single upstream path that the attacker is on. This com-
munication overhead is quite small as the BCPs are small
due to our use of checksums. Thus, we focus on the com-
munication overhead of BM as it relies heavily on reliable
multicasts to deliver header information reliably whenever a
coded packet broadcast occurs.

Ensuring reliability on the multicast requires overhead in
terms of resending the packet until each destination has re-
ceived the message. Previous work exists on sending large
messages with reliable multicast at the link-layer [32]. How-
ever, their key contribution is the use of forward error cor-
rection codes to break a large message into several small
messages. These small messages are easier to receive since
the probability of packet delivery is higher for smaller mes-
sages. Thus, the recipients just need to receive any number
of small messages to reconstruct the original large message.

We reliably multicast much smaller messages that can be
easily sent in one small packet (40 bytes). Thus, breaking
the small message into even smaller messages will negate any
performance improvements since each message has overhead
of sending link-layer headers as well as physical layer over-
head. Thus, we propose to send the small message multiple
times until all receivers obtain the message. We analyze the
number of times the message must be broadcast before each
receiver obtains the message given the packet delivery prob-
abilities on each link. We do not present analysis on the
ACKs that must be sent from each receiver to the sender
which would need to be sent in a way to avoid congestion.

We can analyze the number of times a message must be
sent given that it is sent to N nodes over links with packet
delivery probabilities of p1, p2, ..., pN . Let X be a random
variable that denotes the fewest number of times a message
must be sent such that all N receivers receive the message

12.4Ghz processor and OpenSSL library for DSA signature
computations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
fl

o
w

s

Average E[X] (over all forwarders)

1
2
3

Figure 6: Given flows in the Roofnet topology, we
show the communication overhead of reliable multi-
casts in BM varying the number of watchdogs per
node to 1, 2, and 3.

at least once. We aim to calculate Pr(X = k), so we can
consider each receiver as an independent geometric random
variable Yi which corresponds to the link state pi. We can
express Pr(X ≤ k) in terms of the independent geometric
random variables as follows:

Pr(X ≤ k) = Pr

(

N
⋂

i=1

Yi ≤ k

)

=

N
∏

i=1

Pr(Yi ≤ k)

=
N
∏

i=1

[

k
∑

j=1

Pr(Yi = j)

]

=
N
∏

i=1

[

k
∑

j=1

(1− pi)
j−1

pi

]

With Pr(X ≤ k) we can obtain Pr(X = k) by Pr(X = k) =
Pr(X ≤ k) − Pr(X ≤ k − 1). The function for Pr(X = k)
allows us to compute the expected number of broadcasts of a
message such that each receiver obtains the message, E[X].
The average overhead for reliably multicasting M bytes of
data will be M ∗ E[X].

We use a heuristic for summed link qualities to deter-
mine the best watchdog selection out of all possible watch-
dogs. Each forwarder has each downstream neighbor and
the watchdogs of each downstream neighbor as recipients of
a DHP. Given the link qualities from the topology and these
sets of recipients we can apply the formula for E[X] at each
forwarder to obtain an average for a flow.

We use the Roofnet data to show the expected commu-
nication overhead when sending DHPs in BM with various
number of watchdogs per forwarder. We consider the flows
in Roofnet where an assignment of at least 3 watchdogs per
nodes is possible (541 flows or 44.1% of non-trival flows).
Figure 6 presents a CDF (Cumulative Distribution Func-
tion) for E[X] of DHP reliable multicasts in BM. As ex-
pected, the overhead increases with more watchdogs being
assigned to each node due to more recipients in each wireless
multicast.

