
The Moitree Middleware for Distributed Mobile-Cloud
Computing

Hillol Debnath, Mohammad A. Khan, Nafize R. Paiker, Xiaoning Ding, Narain
Gehani, Reza Curtmola, Cristian Borcea

Abstract

Commonly, mobile cloud computing assumes that each mobile device of a user
is paired with a user-controlled surrogate in the cloud to overcome resource
limitations on mobiles. Our Avatar platform leverages this model to support
efficient distributed computing over mobile devices. An avatar is a per-user,
always-on software entity that resides in the cloud and acts as the surrogate of
the mobile. Mobile-avatar pairs participate in distributed computing as a unified
computing entity in such a way that the workload and the demand for resources
on the mobiles remain low. This paper presents Moitree, the middleware of
the Avatar platform, which provides a common programming and execution
framework for mobile distributed apps. Moitree allows the components of a
distributed app to execute seamlessly over a set of mobile-avatar pairs, with
the provision of offloading computation and communication to the cloud. The
programming framework has two key features: user collaborations are modeled
using context-aware group semantics - groups are created dynamically based on
context; data communication among group members is offloaded to the cloud
through high-level communication channels. A prototype of Moitree, along with
several apps, has been implemented and evaluated on Android devices and on
a cloud running Android x86 avatars.

Keywords: Mobile Cloud Computing, Mobile Apps, Middleware, Distributed
Systems.

1. Introduction

Execution and communication offloading from mobile devices to their soft-
ware surrogates in the cloud has proven to improve app response latency, reduce
wireless communication overhead and energy consumption on mobiles, and im-
prove the availability of mobile apps [1, 2, 3, 4, 5]. These surrogates can be5

1The authors are with the Department of Computer Science, New Jersey Institute of
Technology, Newark, NJ 07102-1982 USA. E-mail: { hd43, mak43, nrp48, xiaoning.ding,
narain.gehani, reza.curtmola, borcea } @njit.edu

Preprint submitted to Journal of Systems and Software July 23, 2019

instantiated as virtual machines (VMs), containers, or even processes. Micro-
processor manufacturers have recently started providing shielded application
execution over untrusted cloud platforms [6], thus offering privacy guarantees
that the surrogates are truly personal and protected from the cloud providers [7].
Therefore, a converging model for mobile cloud computing assumes that each10

mobile device of a user is paired with a user-owned and controlled surrogate in
the cloud. The computation can be executed on the mobiles or in their surro-
gates in the cloud, based on performance or privacy requirements. Let us note
that such a model is in line with new privacy laws, such as the European Union’s
General Data Protection Regulation (GDPR) [8], which allow users control over15

their personal data.
Our Avatar platform [9] leverages this model to support efficient mobile

distributed computing apps executed over sets of mobile/surrogate pairs.
Each mobile device is augmented by an avatar, a per-user always-on software
entity that resides in the cloud and acts as the surrogate of the mobile device.20

Mobile/avatar pairs participate in distributed computing as unified computing
entities in such a way that the workload and the demand for storage, bandwidth,
and energy on the mobiles remain low. Apps supported by Avatar allow people
to collaborate within groups defined by friendship, common interests, geography,
etc. Examples of distributed apps include finding people of interest in a crowd25

using face recognition techniques (e.g., a lost child), real-time dating based on
learned facial preferences [10], and mobile multi-player gaming. Other areas for
applications are mobile health, public safety, vehicular traffic management, and
collaborative sensing.

This paper presents Moitree2, the middleware of the Avatar platform. Moitree30

provides a set of APIs and libraries for developing cloud-assisted mobile dis-
tributed apps, as well as runtime support to execute these apps. Moitree fo-
cuses on managing the distributed computation, the communication, and the
mobile/avatar set that represents the group of users collaborating within the
distributed app. For other functionality, the apps can use the programming35

support provided by the local OS.
Programming apps over mobile/avatar pairs is different from traditional dis-

tributed programming. The first difference is that the end points in the compu-
tation are mobile/avatar pairs with different capabilities - mobiles have multiple
types of sensors and user interaction capabilities; avatars have more powerful40

computation, storage, “unlimited” energy, etc. Developers need an intuitive
and common programming interface to transparently use these computing end
points. Apps need to read sensor/user inputs on the mobiles, but should of-
fload most of the communication/computation to the avatars, without affecting
negatively the user experience. Moitree’s main novelty is that it allows the com-45

ponents of a distributed app to execute seamlessly over a set of mobile/avatar
pairs representing a group of collaborative users, with the provision of offloading

2This article extends the work presented in the conference paper [11] published in IEEE
Mobile Cloud 2016

2

computation and communication to the cloud.
The second difference with traditional distributed computing is that the apps

require user collaboration based on natural context, such as location, time, so-50

cial relationships, etc. Therefore, managing the dynamic set of participating
users (i.e., mobile/avatar pairs) in real time is important. Moitree facilitates
the collaboration among participating users through two key features. First,
user collaborations are modeled using context-aware group semantics; groups
are created dynamically based on context and are hierarchical. Moitree up-55

dates group membership based on the current context of users (e.g., a group for
“visitors of the Statue of Liberty” changes dynamically over time). The group
hierarchy allows programmers to naturally organize users into groups/subgroups
and manage their collaborations within different scopes. Second, data commu-
nication among group members is offloaded to the cloud through high-level60

communication channels. This avoids communication problems due to mobility
and the dual nature of a user end-point (i.e., mobile and/or avatar). In addition,
it can reduce the bandwidth and energy consumption on the mobiles.

We implemented a prototype of Moitree on Android devices and an OpenStack-
based cloud running Android x86 avatars. We have developed two proof-of-65

concept apps in order to evaluate the programming effort minimized by Moitree.
One of the apps finds a lost child at a crowded event by performing face recog-
nition on the photos taken by people attending the event; the other is a dating
app based on users’ preferences about partners’ faces. Although both apps use
face recognition to achieve their goals, the work-flow and their use of Moitree70

API is different from each other. The number of lines of code of Moitree-based
app implementations is significantly lower when compared to their implemen-
tations done without Moitree. In addition, experimental results demonstrate
that Moitree helps these apps improve the overall response time through the
use of cloud support. We also performed experiments with micro-benchmarks75

on top of our prototype to evaluate the efficiency, scalability, and overhead of
the middleware. The results show that Moitree scales well with a large number
of concurrent API calls, while consuming small amounts of resources (CPU,
memory, and energy).

To the best of our knowledge, Moitree is the first middleware for distributed80

mobile cloud computing. To summarize, its main contributions are: (1) Com-
mon app execution environment on mobiles and avatars that allows seamless
offloading of app components; (2) High-level distributed programming model
for mobile cloud apps, which uses context-aware group-based abstractions to
manage user collaboration; and (3) Transparent management of communica-85

tion, including end-point mapping to mobiles or avatars.
Compared with our preliminary description of Moitree [11], this paper presents

the updated design of Moitree, with a focus on the novel programming and sys-
tem challenges and their solutions. In addition, it includes a new and detailed
app usage case to illustrate the main features of the middleware. Furthermore,90

the paper describes the novel aspects of our prototype, which include app exe-
cution, offloading, and scalability. Finally, the evaluation presents new results,
e.g., offloading, stress test, resource overhead, and benefits of reusing groups.

3

The rest of the article is organized as follows. Section 2 presents an overview
of the Avatar platform and Moitree. Section 3 presents the key ideas of the95

Moitree high-level programming model. Section 4 presents the Moitree API and
sample code snippets of the API usage. The design of the Moitree middleware is
discussed in Section 5, and the implementation of the middleware is presented in
section 6. Section 7 validates the programming model with two proof-of-concept
applications and shows macro & micro-benchmark results for the middleware.100

Related work is discussed in Section 8, and the paper concludes in Section 9.

2. Overview

2.1. Background: Avatar Platform

In Avatar, a mobile user is represented by one mobile device and an asso-
ciated “avatar” hosted in the cloud. An avatar is a per-user software entity105

which acts as a surrogate for the user’s mobile device. Avatars save energy on
the mobiles and improve the response time for many apps by executing certain
tasks on behalf of the mobiles. Avatars are always available, even when their
associated mobile devices are offline because of poor network connectivity or
simply turned off. Each avatar coordinates with its mobile device to synchro-110

nize data and schedule the computation of apps on the avatar and/or mobile
device. A mobile device does not interact directly with the avatars of other mo-
bile users. All user-to-user communication is offloaded to the cloud (i.e., always
goes through the avatars) in order to reduce wireless bandwidth usage at mobile
devices.115

Although containers can be used to host avatars, our prototype is imple-
mented using virtual machines (Android x86) for flexibility and ease of proto-
typing. The OS and the runtime (Dalvik or ART) are the same in avatars and
mobiles. Thus, the same app or app components (e.g., functions, threads, etc.)
can run on both of them. For each user, the platform maintains a mobile-avatar120

pair. When a user installs an app running over the Avatar platform, the same
app gets installed on both mobile and avatar. Users can install as many Avatar
apps as they want on their devices. Standard Android apps can co-exist with
Avatar apps on the mobiles without conflicts.

2.2. Moitree Motivation and Challenges125

Programmers have to devote a substantial effort to develop distributed ap-
plications over mobile-cloud platforms such as Avatar if they use standard pro-
gramming frameworks (e.g., developing apps directly in Android). For example,
they have to write code for discovering potential participants for a collabora-
tive app, managing participating users, distributing the computation and data130

among users and mobile/avatar pairs, and managing communication among the
set of mobile-avatar pairs. All these tedious tasks are not directly related to the
app logic. Therefore, designing a middleware that provides high-level abstrac-
tions and a programming model for collaborating users will help programmers
to reduce the programming effort significantly.135

4

Figure 1: Execution of distributed apps facilitated by Moitree

Such a middleware has two types of challenges: programming/API chal-
lenges and system challenges. The programming challenges are: P1) How to
provide a high level abstraction (i.e., hiding low-level system details) of the
distributed computation model provided by Avatar? P2) How to model a col-
laboration among various participants? P3) How to model the dynamic context140

of a distributed computation (e.g., compute only on participants present at a
specific location during a specific time range)? P4) How to offload user-to-user
communication to the cloud and how to design an API to facilitate easy data
communication among participating users?

In order to support such a high-level API, the middleware runtime system145

needs to overcome the following system challenges: S1) How to run on hetero-
geneous resource constrained devices (e.g., smart phones, smart watches)? S2)
How to model and handle the expected asynchronous behavior of user-to-user
communication? S3) How to support applications that need fast/real-time data
communication? S4) How to maintain good scalability to ensure the middleware150

remains responsive at high loads?

2.3. Moitree at a Glance

While Avatar provides a specification for running mobile collaborative apps
on a cloud-assisted distributed computing platform, Moitree provides an API
set and a runtime system to develop and execute these apps. The API set155

is designed to addresses the programming challenges (P1-P4) described in Sec-
tion 2.2. A context-aware group abstraction models the set of collaborating users
in a distributed computation. The API employs dynamic group membership to
support context changes for the group participants. Several abstract communi-
cation channels are designed to handle communication offloading and simplify160

data communication among participants. These communication channels are
oriented toward group communication and abstract the low-level networking
details.

Moitree is also designed to overcome the system challenges (S1-S4) described
in Section 2.2. To increase responsiveness and scalability of the middleware,165

all the system components are kept loosely-coupled. The middleware is de-

5

signed as a Message-Oriented Middleware (MOM)[12] which uses events and
messages between components to perform a system-wide task. Both loosely-
coupled and MOM design help the middleware to support heterogeneity and
asynchronous behavior. Callback-based communication is employed to cope170

with asynchronous behavior. To make the middleware lightweight and data
communication fast, the middleware is designed to i) use lightweight and effi-
cient data structures for events/messages, ii) reduce the time for data serial-
ization, iii) reduce the amount of processing needed for making event/message
routing decisions.175

Figure 1 shows an overview of Moitree, where two users’ mobile-avatar pairs
are running a distributed app. The app uses the Moitree API for perform-
ing collaborative computation on top of the Avatar platform. The middleware
translates the API calls and executes them on the platform. Instances of Moitree
middleware run on mobiles and avatars. Moitree also has a few cloud services,180

which facilitate the distributed execution environment.

2.4. CASINO: Collaborative Offloading Framework

Moitree aims at solving the programming and system challenges to enable
the development and execution of mobile-cloud distributed apps. However, the
execution environment of a mobile-cloud distributed app consists of multiple185

mobile devices and multiple avatars, and thus it is substantially more complex
than that of a conventional mobile app or a non-distributed mobile app with
cloud assistance. Therefore, the combination of offloading tasks to the avatars
and scheduling the tasks on a set of mobiles and avatars becomes a major
challenge, particularly when trying to minimize the overall app completion time.190

A few challenges that must be addressed include how to resolve the depen-
dencies between different components of code (i.e., tasks), how to schedule them
in a way that can optimize the total completion time (i.e., when and where each
task should be executed), and how to orchestrate the execution of the scheduled
tasks.195

To address these challenges, we have designed CASINO [13] to collabo-
ratively offload and schedule the tasks in each mobile-cloud distributed app.
CASINO supplements and work synergistically with Moitree. How program-
mers can utilize CASINO’s API and how CASINO collaborates with Moitree
are described in Section 5.3. The evaluation of CASINO and the findings are200

described in Section 7.5.

3. Programming Model

In a Moitree application, a set of users collaborate with each other to finish
a global task. Each user willing to participate in such a task installs the app;
the installation results in app instances on both the user’s mobile and the user’s205

avatar. During the collaboration, participating users may play different roles
and need to communicate with each other. When developing a Moitree pro-
gram, in addition to implementing the core operations that fulfill app-specific

6

functionality (e.g., face recognition), programmers must effectively manage col-
laborations, such that core operations can be orchestrated and conducted effi-210

ciently on sets of mobile/avatar pairs of the participating users. Moitree provides
two key concepts for a program to manage collaborations: user collaborations
are modeled using group semantics - groups are created dynamically based on
context and are hierarchical; data communication among group members is of-
floaded to the cloud through high-level communication channels. To explain215

these concepts, we start by introducing a few app examples.

3.1. App Examples

With Moitree’s dynamic group management and easy communication mech-
anism, developers can build different types of distributed apps in a simpler and
more effective way. For example, finding people of interest in a crowd can be220

very useful in certain scenarios. But, this can be very challenging to implement
in a distributed app without infrastructure support due to the difficulties in
organizing and coordinating the work done by the participating users. This sec-
tion will present three apps that demand and receive very different capabilities
from Moitree.225

3.1.1. LostChild

One app example is to find a lost child by checking if the child happens to
appear in photos taken by nearby people. Using the location and time associated
with the photos in which the child appears could help a parent locate the child
or at least to narrow down the area where the child is. The likelihood of finding230

such photos is high in crowded/touristic places. The feasibility of such an app is
further demonstrated by real-life situations in which police have caught criminals
with the help of tourists’ photos [14].

Let us consider that Alice is visiting Times Square in New York with her
mother Mary, and she gets lost. Mary would immediately use this app, called235

LostChild, to try to find Alice. We also assume that many other people in
Times Square have this app installed. Specifically, Mary broadcasts a set of
photos of Alice’s face through the app, which are received by the LostChild app
instances of other visitors and are compared to faces extracted from photos they
have taken recently. If a match is found, the location and time information of240

the photo is sent back to the LostChild instance on Mary’s phone, where the
information can be summarized to form a trajectory of Alice’s movement on a
map in order to find her.

The LostChild app can run only on mobile devices, only on avatars, or
on a set of mobile devices and avatars. For example, the app runs on mobile245

devices when they have photos not backed up to the cloud yet or when the users
choose not to share photos with the cloud due to privacy concerns. However,
running instances of the app on avatars and processing the photos there can
reduce the response time and the energy consumption of mobile devices. More
importantly, this can increase the chance of finding matching photos in cases250

when mobile devices are not online, but the photos have been synchronized with

7

their associated avatars (i.e., the synchronization happens in the background
when wireless bandwidth and power are plentiful at mobiles). Let us note that
privacy-preserving techniques can be used to store the photos in the cloud, as
well as to perform face matching computations [15].255

3.1.2. FaceDate

FaceDate is another example to run face recognition and utilize Moitree’s
dynamic group management feature [10]. With the app, each user uploads a
few photos of herself as her profile photos, and trains the app with some other
photos of faces she likes. Upon user request, FaceDate examines the photos of260

the users currently located in the proximity of the requester, and performs face
matching in real-time to match the profile photos with the photos liked by users.
If a mutual match between the requester and another user is found, these two
users are notified and given the option to start communication.

This app uses the location of the requester as a context to find nearby users265

and form a dynamic group. It then runs mutual face recognition on the requester
and other users in the proximity. Although both LostChild and FaceDate use
face recognition to find people of interest, the pair-wise communication pattern
used by FaceDate makes it more challenging to build.

3.1.3. Divert270

Divert [16] is a distributed vehicular rerouting system for congestion avoid-
ance, which consists of instances of a mobile app on the drivers’ smart phones
and a server in the cloud for app coordination. By diverting a number of drivers
to new routes (i.e., rerouting), it can avoid traffic congestion and save valuable
time for the drivers. DIVERT offloads a large part of the rerouting computation275

at the vehicles (i.e., smart phones in the vehicles) to improve driver privacy and
overall system scalability. The vehicles exchange messages with each other to
make collaborative rerouting decisions. The server is used just to determine an
accurate global view of the traffic and distribute it to individual vehicles.

With Moitree, the problem can be modeled as follows. All cars in a city280

form a global group, and cars on each road segment form a local, dynamic
group. The cars in each local group compute an average speed of that segment
(in a distributed way). The global group periodically collects these data from
the local groups and creates an up-to-date global map of the traffic. This map
is represented as a directed, weighted graph, where the weights are the travel285

time for each segment, computed based on the reported average speeds on the
segments. The global map is distributed to all vehicles, which then communicate
within their local groups to make collaborative rerouting decisions.

3.2. Dynamic and Hierarchical Groups

A context-aware group represents the fundamental unit of computation and290

communication for apps developed over Moitree. Such a group is a set of users
selected and organized based on app-specified context properties (e.g., location,
time, social context, etc.). For example, in the LostChild app, a group will be

8

formed with the users present in Times Square and surrounding areas during the
time Alice was lost. Operations performed by the group members are similar295

(e.g., searching for Alice’s face in the photos), and communication is conducted
within the group (e.g., broadcasting Alice’s photos). Groups are app-specific,
and an app can create as many groups as it needs. Thus, a user can be a
member of multiple groups within the same app or across different apps at the
same time.300

Members in a group may change dynamically due to context changes of par-
ticipating users. The group concept and its dynamic group membership support
in Moitree shield programmers from handling context changes. Moitree selects
and maintains group members automatically based on properties specified by
the programmers. For example, in LostChild, a group is formed for a geographic305

region around Time Square and for a one hour time interval. The middleware
will add and remove group members dynamically based on the users entering
or leaving the region during this time.

Groups in the same app can form a hierarchical tree structure with the
groups at lower levels being subgroups of the ones at upper levels; the root is310

the group of all the participating users. Subgroups are created within a group
since there are tasks to be finished collaboratively by only some of the users in
the group. For example, subgroups can be recursively created in divide-and-
conquer strategies when the problem space is partitioned, and each subgroup
is in charge of the tasks in a partition. Specifically, Mary’s phone may be315

overwhelmed by a large number of responses from participants in LostChild. To
avoid this performance bottleneck, a more scalable design is to geographically
partition the task as well as participating users (i.e., assign a subgroup for each
sub-region). When each member in a subgroup finishes examining its photos
taken in the region, it sends the matching information to the leading member in320

the subgroup (Section 4 defines the group leader concept), where the information
is summarized and the summary is sent back to Mary. It’s worth noting that
the leading member can be chosen following different policies (e.g., based on
resource condition, etc). Since summarizing the information is comparatively
less expensive than doing facial recognition, there is no significant overhead325

on the leading member. Subgroups may overlap since a visitor may appear in
different regions, but this does not affect the tree structure of the groups.

3.3. Communication Channels

A communication channel is created by Moitree to support collaboration
between the members in a group. It provides high-level messaging support to330

simplify programming and leverages the avatars in the cloud to deliver messages
so as to minimize the resource usage on mobiles. Moitree supports four types of
communication channels: (i) broadcast for sending messages to all members of
the group; (ii) scatterGather for sending messages to all members of the group
and then receiving answers from some group members as a function of their335

computation results; (iii) anycast for sending messages to a random member
of the group; (iv) pointToPoint for sending messages to a specific member of
the group. The broadcast channel is unidirectional, and the other three are

9

bidirectional. As an example, the LostChild app can use the scatterGather
channel to distribute the child’s photos and get back the result.340

Messages can be designated as persistent by the programmers. Persistent
messages are particularly useful for forwarding data to the members joining
the group after the group has been established. For example, in LostChild,
if Alice’s photos were broadcasted using persistent messages, persons who en-
tered the Times Square after Mary broadcasted Alice’s photos could still obtain345

these photos. In Moitree, persistent messages are stored in the cloud and are
distributed to new members when they join the group.

4. Moitree API

The Moitree API is designed to be asynchronous and event-driven. This
design is compatible with the loosely-coupled, distributed, and message-oriented350

middleware design. At the same time, since Android SDK and Java Swing GUI
toolkit also follow similar design principles, the Moitree API helps maintain a
familiar programming style for Java/Android programmers.

4.1. API Overview

As summarized in Table 1, the API can be broadly divided into three cat-355

egories: (1) creating and managing groups and group hierarchies, (2) manag-
ing group membership, and (3) supporting communication within each group.
The API methods are organized and exposed to programmers using three main
classes. The Avatar class provides methods for group creation and joining. The
AvatarGroup class offers methods for group management (e.g., leave/delete the360

group, create subgroups) and group communication. The MembershipProperties
class has methods for specifying the group properties.

To use the Moitree API, an app needs to first instantiate an Avatar object,
which is a singleton representing the mobile-avatar pair. This object is used to
invoke any subsequent Moitree API. To get the instance of the Avatar object,365

the programmer needs to call an API with two parameters: (i) the fully qualified
name of the app’s main class (e.g. “edu.njit.lostchild.MainActivity”), which is
used by the middleware to connect to the app instance; (ii) the context object
of the application (defined by Android), which is used by the middleware for
communication with other app instances.370

4.2. Group Creation and Group Hierarchy

Group creation is done through the createGroup API, which takes four pa-
rameters. The parent parameter specifies the parent group and is used for
forming the group hierarchy. The prop parameter is an instance of the Member-
shipProperties class. It specifies the context properties that must be satisfied375

by group members (i.e., region and time interval), as explained in Section 4.3.
Some groups may need leaders to implement functions such as consensus or
scheduling among their members. If the enableLeader parameter is set to true,
then the user who creates the group becomes the leader. If the leader leaves the

10

Table 1: Moitree API

Group Management API - Avatar and AvatarGroup Class
Method Description
createGroup(Avatar-
Group parent, Mem-
bershipProperties prop,
boolean enableLeader,
double grpLifetime)

Creates a group with members selected based on member-
ship properties prop; if enableLeader is true, the group has
a special member with leader role. grpLifetime specifies how
long the group should exist without receiving any messages
from the members.

changeParentGroup(
AvatarGroup newParent)

This method is used to re-organize the group tree.

onCreateGroup(Avatar-
Group grp)

Callback method registered to Moitree for delivering newly
created AvatarGroup object. Moitree pushes this group pa-
rameter to callbacks registered by initiator’s and participants’
apps.

joinGroup(AvatarUser u,
AvatarGroup g, Creden-
tial c)

Joins an already existing group. The credential ensures
that the user has appropriate permissions to join the group.
Credentials are generated when a group is created and dis-
tributed to the members as part of group creation.

removeFromGroup(
AvatarUser u)

Removes user u from a group.

deleteGroup(Credential
c)

Deletes an existing group. Credentials are used to ensure
that the callee has permission to delete the group.

getMembers() Returns the list of group members.
getLeader() Returns the group leader.
getRoot() Returns a reference to the root of the group.
getParent() Returns a reference to the parent of the group.
getChildGroups() Returns the list of children groups of the group.

Group Membership API - MembershipProperties Class
Method Description
setTimeBound(Time
from, Time to)

Used to set the time property for identifying users active in
the given time interval (typically used in conjunction with
the location property).

setLocationBound(
LatLng center, dou-
ble radius)

Used to specify a circular region where a user is/has been/will
be (typically used in conjunction with the time property).

setLocationBound(LatL-
ngBounds rectRegion)

Used to specify a rectangular region where a user is/has
been/will be (typically used in conjunction with the time
property).

setSocialNetwork(Social-
Network network, Activ-
ity a)

Used to identify group members who are part of the user’s
social network based on activities such as friendship, work,
sports, etc.

setList(List〈Users〉 users) Used to add specific users to a group.
Group Communication API - AvatarGroup Class

Method Description
setReadCallBack(Read-
CallBack callBack)

Registers callback methods for incoming messages. ReadCall-
Back is an interface with four callback methods correspond-
ing to broadcast, anycast, scatter-gather, and point2point.

broadcast(byte[] msg) Used to broadcast messages to a group.
anycast(byte[] msg) Used to send a message to a random member of the group.
scatterGather(Chan-
nelID cid, byte[] msg)

Used to broadcast messages to a group and get responses
from group members back to the broadcaster. An app can use
as many scatterGather channels as required by using different
ChannelID for different channels

pointToPoint(byte[] msg,
AvatarUser to)

Used for user-to-user communication.

sendToLeader(byte[]
msg)

Used for sending a message to the group leader.

11

group, the middleware selects a new leader. The method sendToLeader allows380

any user to send messages to the leader without knowing the ID of the leader.
This simplifies programming and improves execution reliability. To run leader-
specific functionality, an app instance needs to know whether it is the leader.
This can be achieved by calling the method getLeader. The grpLifetime param-
eter specifies that a group has to be deleted by the middleware in the absence385

of any group communication for the grpLifetime duration. In this way, when a
group is inactive, it allows Moitree to remove it and de-allocate its resources.
The app receives an exception when one of its groups is removed.

To respond to group creation and receive group information, a program can
register a callback function as shown below:390

1 avatar.setGroupCallback(new GroupCallback(){
2 @Override
3 public void onCreateGroup(AvatarGroup g) {
4 //use group ‘g’ to communicate with members395

5 }
6 });

When a group is created, the callback function is invoked in the instances of
the group members and an AvatarGroup object ‘g’ is pushed to each instance400

by the middleware. The AvatarGroup object is used to communicate with app
instances belonging to the group members. Different members in the group may
receive group objects with different content, such as the ID and channel infor-
mation. When a new member is added to a group at a later time (i.e., dynamic
group membership), the callback function is also invoked on the instance of this405

member.
In group hierarchy, a user in a subgroup can get a reference to the parent

group using the getParent method or to the root group using getRoot. Similarly,
a user in a group can receive references to its subgroups (i.e., one level down in
the hierarchy) using the getChildGroups method.410

4.3. Group Membership

In addition to the method that populates members in a group automatically
based on the MembershipProperties specified at group creation, Moitree allows
users to join a specific group by calling the joinGroup method. For example, a
new user is invited to a multi-player mobile game and is provided the group ID415

and the credentials; then the new user can invoke joinGroup to join the group.
A user can leave a group by calling removeFromGroup.

4.4. Group Communication

Moitree supports four types of communication channels, as described in Sec-
tion 3.3. A channel is instantiated by Moitree upon its first invocation in the420

app. The communication on all channels is asynchronous. Programs can send
messages by calling the corresponding API methods and receive responses later
through callback methods. Thus, each sending communication channel is paired
with a receiving callback method (except for broadcast, which is unidirectional).

12

We use the scatterGather channel to illustrate how channels are used in425

apps. The scatterGather channel combines OneToMany and ManyToOne com-
munication topologies. The initiator sends data to all group members, and then,
based on their computations, some group members will send back results to the
initiator. To send data through a scatterGather channel, an app can invoke
the following method: group.scatterGather(data, true, MessageType.DATA);430

the data is of type byte[], and the the message is marked as persistent (i.e.,
the second parameter is set to true). The scatterGather API also allows the
app to deliver data through a particular channel identified with its channelID
(refer to Table 1). To send back results, the API can be called with results
tagged with MessageType.RESULT .435

To receive data sent through the channel, a program needs to implement
and register callbacks as follows:

1 group.setCallBack(new ReadCallBack() {
2 @Override440

3 public void broadcast(AvatarMessage msg) {}
4

5 @Override
6 public void anycast(AvatarMessage msg) {}
7445

8 @Override
9 public void pointToPoint(AvatarMessage msg) {}

10

11 @Override
12 public void scatterGather(AvatarMessage msg) {450

13 if (msg.getMessageType() == MessageType.DATA) {
14 //run computation on msg.getData(), send back the result
15 group.scatterGather(result, MessageType.RESULT);
16 } else if (msg.getMessageType() == MessageType.RESULT) {
17 //This is a result received by the initiator455

18 }
19 }
20

21 @Override
22 public void getPersistentData(AvatarMessage msg) {}460

23 });

In addition to communication channels between group members, Moitree
provides a sync API for synchronizing data between the mobile and the avatar of
the same user. Developers can use this API to add any specific directory for syn-465

chronization. For example, the developer could invoke avatar.addSyncableDir(DIR)
to synchronize the directory ‘DIR’ on the storage of the mobile device and with
the avatar. Once a file is created or modified in the directory, the Sync Service
of the middleware (to be introduced in Section 5) starts to transfer the new file.
Note that we also developed an advanced file system [17] for achieving more470

sophisticated synchronization features on top of Avatar.

4.5. API Usage Example

In this section, we use Divert, the traffic congestion avoidance app described
in Section 3.1, to illustrate how Moitree can significantly simplify distributed
app development.475

Since this app needs a server in the cloud for coordination, we use a dedicated
avatar that works as the leader of the main group for the city (i.e., the group

13

that contain all the current vehicles in the city). This avatar does not need to
be paired with any mobile device. Under the main group, there are subgroups
representing each road segments of the city. The first car entering an empty480

road segment (i.e., without vehicular traffic) creates the group and becomes its
leader. Any subsequent cars entering that segment become part of that group.
It is worth noting that both the leader and the participants in a subgroup can
leave the road segment quickly. In such a case, Moitree removes them from
that subgroup and adds them to the subgroup associated with their new road485

segment. When a leader leaves a subgroup, Moitree elects a new leader from
among the remaining subgroup members.

The following pseudo-code demonstrates how the dedicated, main avatar
operates. First, it creates a group for the whole city (line 7). Then, it sets
up the sendToLeader callback function (lines 8-12), which is invoked when the490

main avatar receives updates of the travel times for each road segment from
subgroup leaders. The main avatar uses these messages to update the global
city map (line 10). Periodically, it broadcasts the up-to-date city map to all
vehicles in the city (line 16).

495
1 //Runs at a dedicated global avatar, not tied with a mobile device
2 initialize() {
3 // create the mainGroup that covers the entire city
4 MembershipProperties prop = new MembershipProperties();
5 // "map" is the whole city’s map with each street as one segment500

6 prop.SetLocationBound(map);
7 Group mainGroup = Avatar.CreateGroup(null, prop, true, LIFETIME);
8 mainGroup.setReadCallback(new ReadCallback() {
9 public void sendToLeader(Message msg) {

10 cityAverageMap = updateCityAverageMap(msg.segmentAverageTime);505

11 }
12 });
13

14 //periodically broadcast cityAverageMap
15 while(true) {510

16 mainGroup.broadcast(cityAverageMap);
17 sleep(X);
18 }
19 }515

Next, we show the code segments that run at every user/vehicle. The code
segments prepare hierarchical group structures, manage communication, and
compute new routes.

The following pseudo-code shows the hierarchical group construction. There
are two types of onCreateGroup callbacks received by cars. One is for the main520

group creation. Every car becomes part of the main group (line 5). When a car
enters a road segment, it tries to create a subgroup for that segment (with the
main group as parent) and becomes the leader of that group. Moitree decides
whether there is already an existing group with a leader for the corresponding
segment (lines 8-13). If there is, the createGroup request is ignored, and the525

car is joined to the existing group by Moitree. The sendToLeader callback for
this group is also configured in lines 16-21. The callback is invoked at the
subgroup leader when subgroup participants update the subgroup leader with
their current average speed (line 19).

14

530
1 onCreateGroup(Group group){
2 //check if this call is for the mainGroup
3 if(group.getRoot() == NULL) {
4 //this onCreateGroup() is a join group notification for the main groups
5 mainGroup = group535

6

7 // create a new local/segment group and become its leader
8 isLeader = True;
9 MembershipProperties prop = new MembershipProperties();

10 currentSegment = getCurrentSegment(map, getLocation());540

11 Prop.SetLocationBound(currentSegment);
12 //set the mainGroup as the parent of the local group
13 Group localGroup = Avatar.CreateGroup(mainGroup, prop, true, LIFETIME);
14

15 //set callbacks to receive averageSpeed updates from local group members545

(e.g., cars on the local segment)
16 localGroup.setReadCallback(new ReadCallback() {
17 Public void sendToLeader(Message msg) {
18 // userId is the sender, which is a member of the local group
19 AvgSpeed[msg.userId] = msg.userSpeed;550

20 }
21 });
22 }
23 // else, the current onCreateGroup() is just a join group notification for a

local group555

24 }

The next pseudo-code shows how the members of a subgroup report speeds to
the subgroup leader (line 10) and how the leader sends travel time updates to the
main group leader (lines 5-7). This code is executed as long as the vehicles are560

still on the same road segment (i.e., members of the same subgroup). If they are
not, Moitree removes them from the subgroup and the current onCreateGroup
ends. A new onCreateGroup will be invoked once a vehicle enters the next road
segment and Moitree joins it to that segment.

565
1 previousSegment = currentSegment;
2 while (currentSegment == previousSegment) {
3 if (isLeader == True) {
4 // compute the average travel time for the street segment, as the leaderr,

based on data received from members of the local group570

5 segmentAverage = computeAverage(avgSpeed);
6 // send the average travel time on the segment to the global avatar
7 mainGroup.sendToLeader(segmentAverage);
8 } else {
9 //send the current car speed to the leader of the local group575

10 localGroup.sendToLeader(new Message(userID, userSpeed));
11 }
12

13 //periodically check if the car is still on the same segment or not
14 sleep(X);580

15 currentSegment = getCurrentSegment(map, GetLocation());
16 }

The following pseudo-code, executed by all members of a subgroup, sets up
the callback functions for receiving the broadcast from the main group leader585

(lines 2-8), compute the new paths and perform rerouting (lines 5-6). For the
sake of brevity, this pseudo-code assumes that the new path is selected locally
based only on information from the global map. In reality, there is one more step
(not shown) that includes coordination with other members of the subgroup in
selecting the new path to avoid congesting nearby segments.590

15

1 //setup broadcast callback for the mainGroup. Each update from the global
avatar will be received here

2 mainGroup.setReadCallback(new ReadCallback() {
3 public void broadcast(Message cityGlobalTrafficMap) {595

4 //A new rerouting path is computed according to AR* algorithm; the driver
will be guided to follow this path

5 newPath = computeARStarPath(getLocation(), destination,
cityGlobalTrafficMap))

6 guideDriver(newPath);600

7 }
8 });

5. Moitree Middleware Design

The design of the Moitree middleware has several important objectives,605

which are crucial for keeping the Avatar platform usable and efficient. First, it
must maintain a stable and seamless mobile-avatar pair for each user. Second,
the design must hide low level details of the underlying system. Third, it must
effectively translate high-level Moitree API calls to low level instructions (i.e.,
provide execution environment). Fourth, it must manage provisioning for com-610

putation offloading. Finally, it must glue all the participating entities together
by taking care of the communications among them.

5.1. Structure and Components

Moitree is designed as a Message-Oriented Middleware (MOM) [12] to keep
the system loosely coupled. With this design, operations and system state615

changes are driven by asynchronous messages and events3. An RPC-based de-
sign is not selected since RPC uses blocking calls and different system compo-
nents are expected to be strongly coupled.

As shown in Figure 2, the Moitree middleware runs on mobile-avatar pairs.
In each mobile-avatar pair, the mobile device runs the Moitree Mobile Mid-620

dleware (MMM), and the avatar runs the Moitree Avatar Middleware (MAM).
The two components work collaboratively to efficiently handle events and mes-
sages, manage data synchronization, and route network communications, mak-
ing mobile-avatar pairs a stable, efficient, and unified environment for apps to
run. Both MMM and MAM expose the same API for applications. The sub-625

components of MMM and MAM are introduced below.

5.2. App Execution

The API Support Library (ASL) is embedded in each app. It translates
API calls to corresponding events/messages and then sends these events/mes-
sages to MMM or MAM, depending on where the API calls are made. Since630

3In a MOM design, the term message refers to both events and messages. However, the
paper uses events and messages to refer to two different types of messages, with events mainly
for delivering Moitree control information or commands (e.g., creating a group or deleting
a group member) and messages mainly for delivering app data (e.g., Alice’s photos in the
LostChild app).

16

Figure 2: Components of the Moitree Middleware

Moitree APIs are asynchronous and based on callbacks, ASL is also used to
register and keep track of callbacks. For example, when an app makes a cre-
ateGroup() API call from the mobile, the ASL translates it to an event named
CREATE GROUP and sends it to the MMM. When a response to the call
arrives, ASL uses the registered callback to deliver the response to the app.635

With the message-oriented middleware structure of Moitree, the state changes
in an app are driven by messages and events, as illustrated in Figure 3. The
state transitions are managed by ASL.

When a user launches an Avatar app on her mobile, the app enters its initial
state – “Started”, which is equivalent to Android’s onStart life-cycle state. Once640

the instance of the app on avatar gets initialized and callbacks are successfully
registered on both the mobile device and the avatar, the app enters the “Initial-
ized” state. In this state, the app can react to events and messages. When the
app receives and handles an “onCreateGroup” event through its group callback
method, it becomes a participant in a distributed computation and enters a645

“Ready” state. In this state, an app can participate in multiple computations
(and thus its user is a member of multiple groups). All groups are maintained
in separate threads with separate data structures for improved reliability and
isolation.

The transition from the “Ready” state depends on whether the app runs650

at a group initiator or at a group participant. When group initiators start the
first communication within the group, the app enters the “Coordinating” state.
Once it receives all the results from participants, it goes back to the “Ready”
state. When an app in “Ready” state at a participant receives data in its com-

17

Startedstart Initia-
lized

Ready

Partici-
pating

Coordi-
nating

Stopped

init
avatar

onDataSync

onCreateGroup

onCreateGroup

onDataRcvd
send(Data)

send(Result)
onResultRcvd

App killed

by OSMiddleware
starts App

Figure 3: App State Diagram Figure 4: Group Management Service

munication channel callbacks for the first time, it will enter the “Participating”655

state. After a participating app finishes the computation and sends the results
back to the initiator, it goes back to the “Ready” state. Note that an app can
have multiple active groups and those groups can be in “Coordinating” and
“Participating” states. In this sense, “Coordinating” and “Participating” can
be called group states rather than app states.660

Android can kill the app if the mobile is short of memory. In that case,
the app enters the “Stopped” state. The middleware can start the app again if
necessary. These state transitions are shown with dashed lines in the figure.

5.3. App Offloading

In the initial version of Moitree [11], apps used static partitioning to tell the665

middleware which parts are to be executed in the mobile and the avatar, respec-
tively. In the current version of Moitree, we use the CASINO framework [13],
introduced in Section 2.4, to perform distributed computation offloading and
scheduling. With this framework, programmers can mark any function or class
with the @Offloadable annotation. During the execution, the CASINO uses670

mobile devices’ profiling information (e.g., CPU, network, battery status, etc.)
to decide whether an ‘offloadable’ component should be executed in the mobile
or offloaded to the avatar.

CASINO provides a simple, but customizable way for synchronizing compu-
tational states between mobile and avatar. This is done by using distributed675

shared variables. Using CASINO’s annotations, programmers can mark a vari-
able with @SyncrhonizedField. This variable will be available in both mobile
and avatar. The value is synchronized depending on how the programmer con-
figures the synchronization policy, which can be either lazy or eager. The eager
synchronization immediately makes the shared variable consistent in both mo-680

bile and avatar, but this naturally incurs more overhead. On the other hand,
the lazy policy updates the value when it is requested/read. This has less
overhead, but the latency is higher. Programmers can configure the nature of
synchronization based on the use case and latency tolerance of the app.

18

We designed a scheduling algorithm to execute offloadable tasks in a se-685

quence so that the overall completion time of the distributed computation is
minimized. The offloading framework interacts with Moitree through the Of-
floading Manager in Figure 2. This middleware component provides dedicated
communication support to offload tasks as necessary.

5.4. App Communication and Data Synchronization690

The apps, including the embedded ASLs, run in different processes from the
mobile middleware/MMM or the avatar middleware/MAM. Therefore, inter-
process communication (in the form of messages and events) is needed between
apps and the middleware. The IPC manager (see Figure 2) serves as the gateway
that takes care of this communication.695

The Event Manager (EM) and the Message Handler (MH) are in charge of
handling events and messages, respectively. Each of them consists of a queue
and a dispatcher. The queue is for organizing events/messages. The dispatcher
watches the queue for incoming events/messages and dispatches them based on
the meta-data embedded in their headers. EM and MH are designed following700

the observer pattern for a loosely coupled structure.
The Network Manager (NM) (see Figure 2) is in charge of inter-device rout-

ing (i.e., route to an avatar or to a mobile device). NM performs object serializa-
tion/deserialization as necessary. The header fields used for inter-device routing
are: source and channelType. Once the event/message is routed to the correct705

device, EM and MH are in charge of intra-device routing using the header fields
appId, groupId, channelId.

The Sync Manager (SM) (see Figure 2) takes care of data synchronization
between the mobile and the avatar. Specifically, the apps specify the directo-
ries containing the data sets that are needed on both the mobile device and710

the avatar. These directories and files are synchronized by our overlay file sys-
tem [18] that allows Moitree apps to access files concurrently at mobiles and
avatars in a manner that is efficient, consistent, and transparent to locations
(i.e., mobile or avatar).

5.5. Moitree Cloud Services715

Moitree uses three cloud services, as shown in Figure 2: Group Management
Service (GMS), Storage Service (SS), and Directory Service (DS).

GMS is the most important, and it is designed to handle group operations,
events, and communication. It runs as a cloud service on a group of dedicated
servers, named GMS servers. As shown in Figure 4, GMS consists of a group720

manager for maintaining the hierarchical structures of groups and a membership
manager for maintaining the list of current members in each group. To support
communication within a group, for each group, there is an event broker in
charge of delivering events and a group communication manager for maintaining
communication channels and forwarding messages to recipient avatars. The725

handling of events and messages is separated, since this helps preventing a large
number of messages from delaying a few important events. GMS gives higher

19

priority to event handling when allocating network resources because events are
associated with important group/system state changes that must be reflected
in real-time in apps.730

To avoid a potential bottleneck in the system, GMS is designed to scale ac-
cording to the load. When the number of groups managed by a GMS instance
reaches a threshold, a new GMS instance is created. The middleware directs any
new group creation requests to the new instance. All GMS instances can work
independent of each other. For example, if the cloud consists of geographically735

isolated clusters, one GMS instance is instantiated in each cluster for serving
group related requests for that region. If the load increases in any cluster after-
ward, multiple instances can be instantiated to serve the new requests.

There are alternative GMS designs that may help reducing the workload on
GMS servers. For example, event/message forwarding can be offloaded to group740

leader avatars. However, this requires that group and channel information be
duplicated to these avatars, leading to privacy concerns and additional overhead
to maintain the information consistent. Another design is to save large messages
in a shared key-value store. Instead of forwarding complete messages, the GMS
servers just forward the keys of the messages. When an avatar receives a message745

key, it reads out the message from the shared storage. However, this method
increases the workload of the storage service. Thus, we have not adopted these
designs. It is worth noting that privacy preserving operations [19, 20, 21] can be
used to hide users’ location and context information from the cloud providers.

The Storage Service (SS) provides a shared and permanent storage space for750

the middleware and is implemented as a key-value store. SS maintains an app
registry, which serves the purpose of finding which app is installed on which
user’s device and avatar. Other information about users (e.g., the locations
where they have appeared and the corresponding time) is also stored in SS to
assist the DS component. Finally, SS could be used for sharing large messages755

among participants in an optimized way. Note that each avatar has a virtual
disk directly attached to it as its private and primary storage for the apps, which
is not part of SS.

The Directory Service (DS) is used by GMS to select appropriate candidates
for joining a group. It provides answers to queries such as “which users have the760

LostChild app installed and were present in Times Square between 5PM and
6PM today?”. The mobile carriers can provide user location and time data to
serve such queries. The directory service uses SS as its data repository.

5.6. Moitree App Security Model

Moitree apps use the same security model enforced by the Android platform.765

Moitree is designed to work at the application level, and it does not need any
special system level permission. Moitree and all apps developed on top of it use
the same permission model that regular Android apps use. In this way, Moitree
ensures that all Android-enforced security and permission models are followed
by Moitree apps.770

Users install Moitree apps from the Moitree App Store. Although this type
of app side-loading is permitted in Android, it skips the Google Play Store’s

20

security checking (e.g., malware checking). There are two approaches Moitree
can take to overcome this limitation: (i) introducing a similar security check for
malware in Moitree App Store, (ii) distribute Moitree and its apps via Google775

Play Store. Either of them can be used in the future.

6. Moitree Implementation

We have implemented a prototype of Moitree based on Java and Android.
Various implementation techniques are used in different components. For ex-
ample, the IPC manager is implemented based on the Binder mechanism of780

Android with each Avatar app working as a Binder client and the IPC manager
as a Binder service. Compared to alternative implementation techniques, e.g.,
Android’s BroadcastReceiver mechanism, the Binder mechanism offers faster
communication. The network manager and GMS use a TCP library named
Kryonet [22] in their implementations. The Storage Service is implemented785

based on the Redis [23] key-value database. In the rest of this section, we fo-
cus on implementation techniques that are general and can be applied to other
programming languages and platforms.

Moitree runs on devices with different capabilities (e.g., smart watches, smart
phones, tablets, and x86 virtual machines). The available main memory and790

maximum heap size are very different in such a wide variety of devices. For
example, a Pixel smart phone has 4 GB of memory, whereas the Samsung Gear
Live smart watch has only 512 MB of memory. Therefore, the footprint of
Moitree has to be as small as possible, especially for supporting devices with
small RAM size. To achive this goal, we made the following implementation795

decisions.
First, all the middleware components (except the networking module) are de-

signed and implemented from scratch. We avoided using alternative open-source
libraries due to their large footprints. Second, there is only one middleware in-
stance per device. Only the API Support Library (ASL) is embedded in each800

app on the device. Furthermore, ASL contains only simple and lightweight parts
(e.g., data definition, APIs, etc.), whereas the middleware instance contains the
major functionalities. Finally, to further save memory, we implemented a dif-
ferent lower-footprint networking module for the Moitree instances running on
smart watches.805

7. Performance Evaluation

To validate Moitree, we built and evaluated two apps: LostChild, already
described in the paper, and FaceDate [10], which will be briefly discussed in
this section. We also evaluated Moitree with micro-benchmarks. The evalua-
tion has four goals: (1) verifying the effectiveness of the programming model in810

reducing programming complexity and effort by implementing two apps; (2) val-
idating the app performance benefits when using avatars vs. using only mobiles
by showing the improvements in running-time and resource usage; (3) testing

21

Figure 5: End-to-end response time of LostChild app when major computation workload is at
the mobile and avatar, respectively

the efficiency of the API support library; and (4) measuring the scalability,
efficiency, and overhead of the middleware.815

7.1. Experiment Settings

We deployed the Moitree prototype in our OpenStack-based private cloud
comprised of 8 servers with Intel Xeon E5-2620 CPU and 80GB of RAM. The
avatars hosted in this cloud run Android x86 VMs, specifically Android Marsh-
mallow version 6.0. Each VM is configured with 6 virtual CPU cores and 3GB of820

RAM. We deployed GMS as a cloud service on a few servers, with one instance
on each server. The number of servers running GMS is adjusted dynamically
with the workload, and GMS requests are evenly distributed to these servers
for load balancing. We used several types of Andoid mobile devices: Nexus 5,
Nexus 6, Nexus 5X, and Moto X Pure. The API Support Library is distributed825

via our private maven repository; the apps import it with a single line of code
in their Android build script (gradle).

7.2. App Performance and Programming Benefits

We evaluated the performance of two apps built using Moitree: LostChild
and FaceDate [10]. FaceDate is a mobile, location-based app that matches peo-830

ple based on their face preferences in real-time. Each FaceDate user uploads
their profile face photo and trains the app with photos of faces they like. Upon
user request, FaceDate detects other users located in the proximity of the re-
quester and performs face matching in real-time. If a mutual match is found,
the two users are notified and given the option to start communicating.835

7.2.1. Running Time Improvement

We first measured the response time of the LostChild app in two scenarios:
(1) the major computation workload in the app, including face detection and
recognition, is handled on the mobiles, and (2) the major workload is executed
at the avatars. Note that, in both scenarios, mobile to mobile communication840

is mediated by the Moitree services in the cloud.

22

Figure 6: End-to-end response time of LostChild app with an increasing number of partici-
pants. The curves marked with “single-serv” are obtained with all participant avatars running
on the same server; and the curves marked with “multi-serv” are obtained with each partici-
pant avatar running on a different server.

In the experiments, we used one mobile device as the initiator of LostChild
request and three other mobile devices as participants. Their avatars were
instantiated on the same server. Each participant has a database of 47 images
containing 60 faces stored in her avatar (i.e., some photos contain more than845

one face). Each participant returns a result because all participants have photos
of the lost child. The training process for face recognition is done before the
app starts.

Figure 5 shows the end-to-end response time from submitting the initial re-
quest until receiving the final results, as well as the time spent on the major850

computation workload and the time spent on network and middleware opera-
tions. The results demonstrate that avatars help reduce the end-to-end response
time by 51%, compared to the scenario in which the mobiles handle the major
workload. A substantial part of the improvement is achieved by offloading the
major computation workload to the avatars. We also observe that the time855

spent on Moitree and networking is reduced by more than 40% after offloading
the major computation workload to avatars. This is because the network com-
munications associated with the major computation workload move along with
the workload and are conducted in the cloud.

We also varied the number of participants from 2 to 7, and varied the number860

of servers used to host the participant avatars in LostChild. It is worth noting
that we wanted to study how the response time varies when multiple avatars
are instantiated in the same server and in multiple servers. Due to our cluster
setup with 8 servers, we varied the number of participants from 2 to 7. Figure 6
shows the response time when face detection and recognition were executed on865

avatars. The curves marked with “single-serv” are obtained with all participant
avatars running on the same server; and the curves marked with “multi-serv”

23

Figure 7: End-to-end response time of FaceDate app with an increasing number of partici-
pants.

are obtained with each participant avatar running on a different server. Since
the initiator receives multiple responses, one from each participant, the figure
shows both the median response time and the longest response time. In a real-870

life situation, most participants are not expected to send responses. Therefore,
the curves for the longest response time represent the worst case scenarios.

As the figure shows, the response times range generally between 450ms and
700ms, which are reasonable values. At the same time, the application scales
well with the number of participants for this experiment. Increasing the number875

of participants only slightly lengthens the median response times. However, it
has more impact on the longest response times. There are two reasons. First,
our current Moitree implementation sequentializes the communication among
the members and adds a few of milliseconds to every message transmission.
Second, participant avatars do not send responses back to the initiator at the880

same time; for most requests, we noticed one or two straggler responses with
extra-long turn-around times. We are currently optimizing the message delivery
part of the middleware.

We also notice that, as expected, running one avatar per server reduces
response times, especially when the number of participants is high, because885

running all avatars on one server may cause the avatars to compete for the
computational and network resources on the server.

We have also done the same experiment with FaceDate. The result is shown
in Figure 7. The difference with the LostChild experiment is that, in this case,
each user has fewer photos (6 images per user) to run face recognition on. As a890

result, the time needed for face detection is significantly lower. However, it has
one extra hop of network communication between the mobile-avatar pair (for
FaceDate’s pair-wise matching), which is part of the app design and cannot be
further minimized.

24

7.2.2. Benefits of Reusing Groups895

Figure 8: End-to-end response time for FaceDate app with an increasing number of queriers
and one positive responder

When multiple users initiate the creation of different groups described by the
same properties (e.g., location, time), Moitree can verify if a group with the same
properties already exists and simply return a reference to this group. Thus, the
overhead associated with group creation and management is drastically reduced.
This optimization is evaluated with the FaceDate app. For this experiment,900

there is only one participant who responds positively and there are a varied
number of initiators/queriers. The participant is a member of all the groups
initiated by the queriers. Figure 8 shows the average end-to-end latency for the
queriers. The results for the “No Group Reuse” case show a significant increase
in latency for each addition of a querier because a new group is created for each905

new query. However, the latency for the “Group Reuse” case is substantially
lower.

7.2.3. Programming Effort Comparison

We used the LostChild app to quantify the benefits of the Moitree program-
ming model. The app can act as a good test for Moitree for two reasons. It910

represents typical mobile distributed apps that may involve a large number of
mobile users. At the same time, its implementation must deal with the com-
mon issues, which are faced in developing other mobile distributed apps, such
as, identifying and coordinating groups of participants.

We implemented two version of the app, one with Java and JXTA [24], and915

the other with Java and Moitree. JXTA is selected to compare to Moitree for
two reasons: (1) JXTA is designed for peer-to-peer systems, in which peers are
conceptually similar to sets of autonomous avatar/mobile pairs, and (2) it also
has group concepts, which are different from those used in Moitree.

We compared the sizes of the source code of these two implementations. In920

this comparison, we only counted the lines written by our programmers. The
code in other libraries (e.g., OpenCV [25] for face recognition and Kryonet [22]

25

(a) Varied packet size (b) Varied packet numbers

Figure 9: IPC latency of BroadcastReceiver-based mechanism and Binder-based mechanism

for network communication) is not counted toward the effort to develop the
app. The app implementations include mostly group management and group
communication features; the rest is done through library function invocations.925

The implementation with Moitree has 85 lines, whereas the implementation
with JXTA has 178 lines. Moitree decreases LOC by a factor of more than
2. Similarly, FaceDate implementation with Moitree has 109 lines, whereas
the version without Moitree needs 231 lines. This is a promising result that
illustrates how Moitree can simplify the programming of mobile distributed930

apps.

7.3. Stress Tests on Key Operations

While Moitree shows good overall performance when tested with the two
apps, we also wanted to understand if any of the Moitree components are po-
tential performance bottlenecks when the middleware is under heavy workload.935

To investigate this issue, we tested Moitree with a few micro-benchmarks. The
tests cover the major operations in Moitree for handling the interactions be-
tween the participants in an app, including inter-process communication, data
serialization and de-serialization, and API calls.

7.3.1. IPC Performance940

For every event/message communication, several IPC calls take place through-
out the system (e.g., between ASL and the middleware). This can potentially
be a major bottleneck for real-time apps and apps that need a large amount of
data communication. Thus, we tested the IPC performance in Moitree first.

In the Moitree prototype implementation, we tried two Android mechanisms945

for IPC. One is a lightweight Android mechanism named BroadcastReceiver
(BR), which was used in an early version of the prototype. The other is a
stable and efficient IPC mechanism named Binder, which is used in the current
prototype. The experiments evaluated both IPC mechanisms to justify the use
of Binder in Moitree.950

26

We performed two different experiments using a test app, with one experi-
ment testing latency and the other testing throughput. Specifically, to test the
latency of IPC communication, we used the app to send a data packet to the
mobile/MMM component of the middleware. Once the data packet is received
by the MMM, it is sent back immediately. Using the round-trip latency, the955

app can get the latency of one way IPC. Figure 9a shows the one way latency
for both the BR-based and Binder-based mechanisms when the packet size is
varied from 0.5KB to 500KB. Generally, when the packet size is small (<5KB),
the effect of meta-data is noticeable. Thus, the end-to-end latency does not
increase significantly with packet size. However, when the packet size keeps960

increasing, the end-to-end latency starts to increase linearly, indicating that the
IPC mechanism in Moitree is scalable to data size variations. The figure also
shows that the IPC mechanism based on Binder incurs much lower latency than
that using BroadcastReceiver.

To test the throughput of IPC communication, we used the app to send a965

batch of packets with the same size (1KB) to the middleware, one after the
other, which were then bounced back by the middleware. We varied the batch
size from 1 to 100, and for each batch size, we measured the time from sending
out the first packet to receiving the last packet. Figure 9b shows that the
time increases linearly with the batch size, indicating that the cost of Moitree970

handling each packet does not increase, and Moitree is capable to scale under
heavy workload.

7.3.2. Serialization and Deserialization Performance

Through its high level API, Moitree receives and returns high level objects
(e.g., Java objects). When these objects are exchanged through IPC and net-975

work communication, Moitree has to perform serialization and deserialization.
These operations can be a potential bottleneck, particularly when objects are
frequently exchanged.

In our implementation, objects exchanged between different Moitree com-
ponents are written using the Parcelable [26] interface for serialization/deserial-980

ization. For the objects exchanged through network across different devices, we
used the Kryo serializer [27] in the Kryonet communication library. Both Parce-
lable and Kryo serializers are much faster than the standard Java Serializable
interface [28].

We used an app to test the performance of Moitree’s serialization and de-985

serialization. We ran an instance of the app on a mobile and another instance
on an avatar. The instance on the mobile sends data packets of different sizes
to the instance on the avatar. We measured the serialization time in the Net-
work Manager of the mobile middleware and the deserialization time in the
Network Manager of avatar middleware. Figure 10 shows the time taken to990

serialize or deserialize each packet for packet size varied from 50 bytes to 800
kilobytes. Even for a packet as large as 800KB, the serialization time is only a
few milliseconds and deserialization time is under 1 millisecond, suggesting that
Moitree can perform serialization/deserialization efficiently.

27

Figure 10: Network serialization and deserialization delay

Figure 11: Average end-to-end latency for
concurrent API calls in Moitree (including
network communication)

Figure 12: Average processing time for API
calls in Moitree on mobile and avatar (no net-
work communication)

7.3.3. Performance of API Support Library995

To test the performance of Moitree’s handling of API calls, we used an app
to issue a batch of API calls back-to-back from a mobile, and measured the end-
to-end latencies of these calls. The APIs called in each batch were randomly
chosen, and the batch size was increased from 10 to 100. The processing of
each API call may involve many steps. Starting from the app layer, messages1000

and events are generated and passed through the software layers in mobile and
avatar as well as the GMS service layer before the results are returned. Thus, the
experiment can assess the overall performance exhibited by various components
in the middleware during the processing of the API calls.

Figure 11 shows the average latency for each batch size. The average latency1005

increases with batch sizes, since larger batches incur more network communi-
cation. When the batch size is 100, the average latency reaches 2.4ms. Most
of the time is spent on network communication (i.e., queuing and data trans-
ferring). To exclude the time on network communication, we instrumented the

28

Table 2: Moitree’s energy consumption on phones

Component Energy Con-
sumed

Comment

Initializing MMM 0.16 mAh 16,875 times with a fully charged battery
MMM in idle state 5.5 mJ/sec Middleware could run for two and half month before

draining the battery
Moitree API calls 2.3 mJ/call One and half million API calls with a full battery
Data transfer by mid-
dleware & Plain TCP

0.5 mJ/KB &
0.15 mJ/KB

Energy consumed in addition to WiFi being ON for
the transfer

middleware to measure the network communication time. Figure 12 shows the1010

time incurred only by the middleware components without the part incurred
by network communication. Processing an API call takes approximately 320µs,
and the time does not change much with batch sizes. The average time per API
call is computed for each batch. This demonstrates that Moitree can efficiently
handle API calls at a high speed.1015

7.4. Resource Overhead Incurred by Moitree

We want to understand how much resource Moitree consumes on mobile
devices to ensure that Moitree does not affect user experience or other func-
tionalities on mobile devices. We measured the resource overhead of Moitree
during all its different phases, specifically (1) how much CPU resource and en-1020

ergy is consumed by launching and initializing the Moitree middleware, (2) after
Moitree is initialized, how much memory resource, CPU resource, and energy
Moitree middleware consumes, (3) when loading an app, whether using Moitree
may introduce significant delay, and (4) during the exeucution of an app, how
much memory, CPU, and energy Moitree middleware consumes.1025

Resource Usage for Initializing Moitree. When Moitree is launched
on a mobile device, resources are needed to start various background services
in the mobile middleware instance. This incurs little resource consumption,
only 6% CPU usage and 0.16 mAh of energy. The energy consumption was
measured using Qualcomm’s Trepn profiler [29] on a Nexus 5X device with a1030

battery capacity of 2700 mAh.
Resource Usage for Maintaining Moitree Services. After Moitree has

been launched and initialized, memory is needed by the services in the mobile
middleware (MMM) to maintain the data structures. At the same time, the
services must wake up periodically to check data synchronization and commu-1035

nication requests and to maintain the mobile-avatar pairing. The MMM compo-
nent consumes 22.60 MB of memory, which is very low when comparing to the
DRAM capacities in popular Android phones (1GB-3GB). The CPU usage is
minimal (about 1%) without requests from apps. As shown in Table 2, the en-
ergy consumption during this phase is also negligible (5.5mJ/sec, or 2.5-month1040

of usage to drain a fully charged battery).
Application Loading Time. An app running over Moitree must register

with the IPC mechanism and initialize an Avatar object and other necessary
data structures before it can call any Moitree API. This may increase the time

29

Table 3: App initialization time

Android Framework Initial-
ization (ms)

Moitree Initialization
(ms)

Android App UI Initial-
ization (ms)

Average 228.1 4.1 41.9
St Dev 23.6 0.5 5.0

(a) Sending packets (b) Receiving packets

Figure 13: Power consumption overhead caused by sending and receiving data with a Moitree-
based app compared to an app without Moitree support. The packet size is 50KB.

used for loading an app. To measure the potential increase of loading time, we1045

implemented an Android test app in two ways. First, we implemented it into
a standard Android app without Moitree initialization, and measured the time
taken to fully load the app with Android ActivityManager’s log. The time was
mainly spent on loading standard Android support framework and initializing
and making the user interface visible. Then, we re-implemented the app with1050

Moitree and measured the loading time spent on Moitree initialization.
As shown in Table 3, initializing Android’s support framework and initializ-

ing user interface take 228.1ms and 41.9ms, respectively. Moitree-related initial-
ization takes only 4.1ms, which is less 2% of total app loading time, indicating
that using Moitree only minimally affects the app loading time.1055

App Execution Energy Consumption. As shown in Table 2, the energy
consumed per average API call is very low. With a 2.3 mJ energy consumption
for each call, a full battery charge allows one and a half million calls. When
serving API calls, most energy is consumed on data transmission. As shown in
Table 2, Moitree introduces a relatively high overhead (3.3x) on network com-1060

munication when compared to using only plain TCP (0.5 mJ/KB with Moitree
and 0.15 mJ/KB for plain TCP). This is mainly because Moitree uses the Kryo-
net [22] communication library to simplify programming at the cost of increased
energy consumption. The other reason is that MMM supports high level data
communication channels, which introduce overhead, and makes routing deci-1065

sions, which incur additional energy consumption on tasks such as queuing,
dispatching, and routing.

Since conventional apps may also use Kryonet for data communication, we

30

Table 4: Overhead Introduced by CASINO’s Execution Manager

State Size
(Kb)

Execution
Time In-
cluding
Offloading
(ms)

Overhead - In-
terception and
State Initializa-
tion (ms)

Overhead -
State Sync
(ms)

Overhead
Percentage

237.31 3212 2.11 0.06 0.06%
61.36 664 2.75 0.07 0.40%
36.44 490 2.93 0.08 0.61%
6.70 145 2.79 0.06 1.97%

wanted to know how much energy consumption is actually incurred by Moitree.
For this purpose, we developed two apps, which send and receive packets using1070

Moitree APIs and Kryonet library, respectively. We run the two apps separately
on a mobile device and measure the energy consumption incurred by the data
communication in the apps using the Trepn profiler. The packet size is 50KB.
Figure 13 compares the energy consumption incurred by the two apps sending
and receiving packets, when the number of packets is varied from 100 to 800.1075

Compared to the gap between Moitree communication and TCP communica-
tion (3.3x), the energy consumption gap between Moitree communication and
Kryonet library communication is much narrower (50% ∼100%).

7.5. Computation Offloading Performance

Moitree uses CASINO [13] for collaborative computation offloading and1080

scheduling. CASINO works in two steps. First, it computes a near-optimal
solution for the distributed scheduling problem, which can be shown as a
Qm|prec|

∑n
j=1 Cj class problem. The schedule decides where the tasks of a dis-

tributed mobile-cloud app execute (i.e., at the avatars or the mobiles) and when
they execute based on dependency constraints. Second, the tasks are offloaded1085

as decided by the schedule and executed. The scheduling problem is NP-hard.
By employing a greedy algorithm, CASINO can generate a good schedule in
polynomial time: O(mn2logm), where n is the number of jobs and m is the
number of devices (i.e., mobiles and avatars). Although it cannot generate an
optimal solution, CASINO achieves reasonably near-optimal results in a realistic1090

time frame, which is essential for a dynamic offloading scheduler. Our evalua-
tion of the scheduler in CASINO [13] shows that using a greedy algorithm is a
reasonable compromise between schedule optimality and execution overhead.

Table 4 shows the overhead introduced by CASINO’s execution manager.
For different state sizes (shown in column 1), the time needed to execute the1095

offloaded computation varies dramatically (column 2). However, the overhead
incurred by code interception and state initialization is minimal and kept almost
stable (column 3). Code interception is needed to make the annotation-based
API work (i.e., @Offloadable). The overhead needed to transfer the states locally
(column 4) is even lower than the overhead of interception and state initializa-1100

tion. Across all the state sizes, the overhead is less than 2% of the execution
time. This indicates that the runtime overhead of CASINO is very low.

31

8. Related Work

Although assisting mobile devices with cloud resources is a very active re-
search area [1, 2, 3, 4, 5], Moitree is the first middleware for cloud-assisted mo-1105

bile distributed apps. Recently, a few works have investigated cloud support for
mobile distributed computing [4, 5]. Clone2Clone [4] offloads peer-to-peer net-
working to the cloud, thus enabling more efficient communication among mobile
users. Moitree, on the other hand, provides full system support for the execution
of mobile distributed apps and a high-level API for programming distributed1110

apps over mobile/avatar pairs. Sapphire [5] is a distributed programming plat-
form for mobile cloud applications that separates the application logic from
the deployment logic. Thus, programmers can modify distributed application
deployments without changing the application code (e.g., change the caching
behavior). This work is complementary to Moitree and could be leveraged by1115

the Avatar platform to allow for dynamic management of non-functional app
features. It should be noted that Moitree is not used just for offloading of com-
putation and communication to the cloud; rather, it is a programming model to
build mobile distributed apps based on dynamic context such as social groups,
time, and location, while providing computation and communication offloading1120

to improve efficiency.
Moitree has clear advantages in terms of latency, energy-efficiency, and avail-

ability over middleware platforms for programming distributed apps designed
for purely mobile environments [30, 31, 32, 33]. Among the middleware for
distributed programming over mobile ad hoc networks (MANET), LIME [33]1125

and TMACS [30] propose group abstractions similar to Moitree. LIME [33]
provides a framework in which mobile agents can form groups based on context-
awareness. Moitree’s programming model has two main advantages over LIME:
it provides more flexible communication abstractions, and its supporting middle-
ware performs transparent dynamic group management. TMACS [30] proposes1130

an object-oriented distributed middleware framework for MANET. In Moitree,
groups are defined based on users and their activities rather than the types and
scopes of objects as in TMACS. This makes mobile distributed programming
simpler and more natural. MELON [34] is a general purpose coordination lan-
guage for MANET that supports asynchronous exchange of persistent messages.1135

Although MELON provides an API similar to Moitree, it does not support group
management or different types of communication between group members.

Pogo [35] and MobiSoC [36] are closer to Moitree because they use server-side
resources to provide middleware platforms for specific areas of mobile comput-
ing. Pogo [35] proposes a middleware for distributed mobile phone sensing.1140

Unlike Pogo which focuses on sensing, Moitree provides a general programming
model for mobile distributed computing. Furthermore, Pogo does not explicitly
use group abstractions such as Moitree. Also, the assignment of mobile sensing
devices to a particular researcher is done by an administrator in Pogo, while
Moitree groups are handled dynamically by the middleware. MobiSoC [36] sup-1145

ports mobile social computing and provides a high-level API based on people
and places, similar in nature with the one provided by Moitree. Both platforms

32

use groups as main abstractions. But unlike MobiSoC which maintains global
state about communities at the server-side, Moitree provides a distributed ar-
chitecture in which apps work in peer-to-peer fashion. Furthermore, MobiSoC1150

focuses on mobile social apps, while Moitree enables general-purpose mobile
distributed apps.

CAMCS [37] presents a mobile-cloud middleware which uses a software en-
tity called CPA (similar to avatars) in the cloud. CPAs represent mobile users
within the mobile-cloud platform and use cloud-based services to complete tasks1155

assigned to them in a disconnected, asynchronous fashion. Although CAMCS is
similar with Moitree in using CPAs, it does not provide a programming frame-
work for collaborative computating among a group of users.

Other mobile-cloud middlewares and frameworks have been proposed to se-
cure resource discovery [38], allocate response resources during disaster scenar-1160

ios [39], support mobile crowdsensing [40], provide hierarchical trust manage-
ment protocols [41], and use IoT sensors in the cloud [42]. Moitree differs from
all of them in one important aspect: it provides programming and execution
support for mobile distributed apps assisted by the cloud.

9. Conclusion and Future Work1165

To the best of our knowledge, Moitree is the first middleware for mobile
distributed apps assisted by the cloud. Even though the concepts of Moitree
are general and applicable to any distributed mobile cloud platform, we have
designed and implemented it for our Avatar platform. The results of our evalu-
ation are promising. Moitree is able to reduce the number of lines of code to less1170

than half when compared to an existing solution. In addition, Moitree scales
well when multiple APIs are invoked concurrently and helps users with faster
response times and lower energy consumption on mobile devices at the cost of
a reasonable latency overhead.

As future work, we plan to merge Moitree with our other systems that sup-1175

port the Avatar architecture: the CASINO [13] framework for dynamic offload-
ing of Moitree apps, the OFS [18] file system that allows Moitree apps to con-
sistently and concurrently access and share files at mobiles and avatars, and the
P2F2 [15] system for privacy-preserving face finding in mobile cloud apps.

10. Acknowledgment1180

This research was supported by the NSF under Grants No. CNS 1409523,
SHF 1617749, and DGE 1565478, and by DARPA/AFRL under Contract No.
A8650-15-C-7521. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of NSF, DARPA, and AFRL.1185

33

References

[1] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based
cloudlets in mobile computing, IEEE Pervasive Computing 8 (4) (2009)
14–23.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, CloneCloud: Elastic1190

execution between mobile device and cloud, in: Proceedings of the 6th
Conference on Computer Systems, EuroSys ’11, 2011, pp. 301–314.

[3] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R. Chan-
dra, P. Bahl, MAUI: Making smartphones last longer with code offload, in:
Proceedings of the 8th International Conference on Mobile Systems, Ap-1195

plications, and Services, MobiSys ’10, 2010, pp. 49–62.

[4] S. Kosta, V. C. Perta, J. Stefa, P. Hui, A. Mei, Clone2Clone (C2C): Peer-
to-peer networking of smartphones on the cloud, in: Proceedings of the
5th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud ’13,
USENIX, 2013.1200

[5] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Gribble, A. Krish-
namurthy, H. M. Levy, Customizable and extensible deployment for mo-
bile/cloud applications, in: Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, 2014, pp. 97–
112.1205

[6] SGXenabled, http://www.intel.com/content/www/us/en/processors/

core/6th-gen-core-family-desktop-brief.html, online, accessed:
May 28, 2019.

[7] A. Baumann, M. Peinado, G. Hunt, Shielding applications from an un-
trusted cloud with Haven, in: Proceedings of the 11th USENIX conference1210

on Operating Systems Design and Implementation, OSDI ’14, 2014, pp.
267–283.

[8] European Union’s General Data Protection Regularion, https:

//ec.europa.eu/commission/priorities/justice-and-fundamental-

rights/data-protection/2018-reform-eu-data-protection-1215

rules_en, online, accessed May 28, 2019.

[9] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. Khan, H. Debnath,
Avatar: Mobile distributed computing in the cloud, in: Proceedings of the
3rd IEEE International Conference onMobile Cloud Computing, Services,
and Engineering (MobileCloud), MobileCloud ’15, 2015, pp. 151–156.1220

[10] P. Neog, H. Debnath, J. Shan, N. R. Paiker, N. Gehani, R. Curtmola,
X. Ding, C. Borcea, Facedate: A mobile cloud computing app for people
matching, in: Proceedings of the 11th EAI International Conference on
Body Area Networks, BodyNets ’16, 2016, pp. 184–190.

34

http://www.intel.com/content/www/us/en/processors/core/6th-gen-core-family-desktop-brief.html
http://www.intel.com/content/www/us/en/processors/core/6th-gen-core-family-desktop-brief.html
http://www.intel.com/content/www/us/en/processors/core/6th-gen-core-family-desktop-brief.html
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en

[11] M. A. Khan, H. Debnath, N. R. Paiker, N. Gehani, X. Ding, R. Curtmola,1225

C. Borcea, Moitree: A middleware for cloud-assisted mobile distributed
apps, in: Proceedings of the 4th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering, MobileCloud ’16, 2016, pp.
21–30.

[12] E. Curry, Message-oriented middleware, Middleware for communications1230

(2004) 1–28.

[13] H. Debnath, G. Gezzi, A. Corradi, N. Gehani, X. Ding, R. Curtmola,
C. Borcea, Collaborative offloading for distributed mobile-cloud apps, in:
Proceedings of the 6th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, MobileCloud ’18, 2018, pp. 87–94.1235

[14] C. News, Police caught murder suspect with the help of tourist photos,
http://www.cbsnews.com/news/police-tourists-took-photos-of-

san-francisco-pier-murder-suspect/, online, accessed May 28, 2019.

[15] N. Almalki, R. Curtmola, X. Ding, N. H. Gehani, C. Borcea, P2F2: privacy-
preserving face finder, in: Proceedings of the 37th IEEE Sarnoff Sympo-1240

sium, 2016, pp. 214–219.

[16] J. Pan, I. S. Popa, C. Borcea, Divert: A distributed vehicular traffic re-
routing system for congestion avoidance, IEEE Transactions on Mobile
Computing 16 (1) (2017) 58–72.

[17] N. R. Paiker, J. Shan, C. Borcea, N. Gehani, R. Curtmola, X. Ding, Design1245

and implementation of an overlay file system for cloud-assisted mobile apps,
IEEE Transactions on Cloud Computingdoi:10.1109/TCC.2017.2763158.

[18] J. Shan, N. R. Paiker, X. Ding, N. Gehani, R. Curtmola, C. Borcea, An
overlay file system for cloud-assisted mobile applications, MSST 2016, 2016,
pp. 1–14.1250

[19] C. Borcea, M. Talasila, R. Curtmola, Mobile Crowdsensing, Chapman and
Hall/CRC, 2016.

[20] G. Ghinita, P. Kalnis, S. Skiadopoulos, PRIVE: Anonymous location-based
queries in distributed mobile systems, in: Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW ’07, 2007, pp. 371–380.1255

[21] M. F. Mokbel, C.-Y. Chow, W. G. Aref, The new casper: Query processing
for location services without compromising privacy, in: Proceedings of the
32Nd International Conference on Very Large Data Bases, VLDB ’06, 2006,
pp. 763–774.

[22] Kryonet, https://github.com/EsotericSoftware/kryonet, online, ac-1260

cessed May 28, 2019.

[23] Redis, http://redis.io/, online, accessed May 28, 2019.

35

http://www.cbsnews.com/news/police-tourists-took-photos-of-san-francisco-pier-murder-suspect/
http://www.cbsnews.com/news/police-tourists-took-photos-of-san-francisco-pier-murder-suspect/
http://www.cbsnews.com/news/police-tourists-took-photos-of-san-francisco-pier-murder-suspect/
http://dx.doi.org/10.1109/TCC.2017.2763158
https://github.com/EsotericSoftware/kryonet
http://redis.io/

[24] L. Gong, JXTA: A network programming environment, IEEE Internet
Computing 5 (3) (2001) 88–95.

[25] OpenCV, http://opencv.org/, online, accessed May 28, 2019.1265

[26] Android parcelable interface, https://developer.android.com\

/reference/android/os/Parcelable.html, online, accessed May
28, 2019.

[27] Kryo Serializer, https://github.com/EsotericSoftware/kryo, online,
accessed May 28, 2019.1270

[28] Serialization performance evaluation, https://github.com/eishay/jvm-
serializers/wiki, online, accessed May 28, 2019.

[29] Qualcomm, Trepn power profiler, https://developer.qualcomm.com/

software/trepn-power-profiler, online, accessed May 28, 2019.

[30] J. Lin, E. Shing, W.-K. Chan, R. Bagrodia, TMACS: Type-based dis-1275

tributed middleware for mobile ad-hoc networks, in: Proceedings of the
5th Annual International Conference on Mobile and Ubiquitous Systems:
Computing, Networking, and Services, Mobiquitous ’08, 2008, pp. 21:1–
21:12.

[31] J. Liu, D. Sacchetti, F. Sailhan, V. Issarny, Group management for mobile1280

ad hoc networks: Design, implementation and experiment, in: Proceedings
of the 6th International Conference on Mobile Data Management, MDM
’05, 2005, pp. 192–199.

[32] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing
applications with the TOTA middleware, in: Proceedings of the 2nd IEEE1285

Annual Conference on Pervasive Computing and Communications, PER-
COM ’04, 2004, pp. 263–273.

[33] A. L. Murphy, G. P. Picco, G.-C. Roman, LIME: A coordination model
and middleware supporting mobility of hosts and agents, ACM Transaction
Software Engineering Methodology 15 (3) (2006) 279–328.1290

[34] J. Collins, R. Bagrodia, Mobile application development with MELON, in:
Proceedings of the 13th International Conference on Ad-hoc, Mobile, and
Wireless Networks, Vol. 8487 of ADHOC-NOW 2014, 2014, pp. 265–278.

[35] N. Brouwers, K. Langendoen, Pogo, a middleware for mobile phone sensing,
in: Proceedings of the 13th International Middleware Conference, Middle-1295

ware ’12, 2012, pp. 21–40.

[36] A. Gupta, A. Kalra, D. Boston, C. Borcea, MobiSoC: A middleware for
mobile social computing applications, Mobile Networks and Applications
14 (1) (2009) 35–52.

36

http://opencv.org/
https://developer.android.com\/reference/android/os/Parcelable.html
https://developer.android.com\/reference/android/os/Parcelable.html
https://developer.android.com\/reference/android/os/Parcelable.html
https://github.com/EsotericSoftware/kryo
https://github.com/eishay/jvm-serializers/wiki
https://github.com/eishay/jvm-serializers/wiki
https://github.com/eishay/jvm-serializers/wiki
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler

[37] M. J. OSullivan, D. Grigoras, Context aware mobile cloud services: A user1300

experience oriented middleware for mobile cloud computing, in: Proceed-
ings of the 4th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, MobileCloud ’16, IEEE, 2016, pp. 67–72.

[38] A. Reiter, T. Zefferer, Flexible and Secure Resource Sharing for Mobile
Augmentation Systems, in: Proceedings of the 4th IEEE International1305

Conference on Mobile Cloud Computing, Services, and Engineering, Mo-
bileCloud ’16, IEEE, 2016, pp. 31–40.

[39] L. Guerdan, O. Apperson, P. Calyam, Augmented resource allocation
framework for disaster response coordination in mobile cloud environments,
in: Proceedings of the 5th IEEE International Conference on Mobile Cloud1310

Computing, Services, and Engineering, MobileCloud ’17, 2017, pp. 45–52.

[40] M. Girolami, S. Chessa, G. Adami, M. Dragone, L. Foschini, Sensing in-
terpolation strategies for a mobile crowdsensing platform, in: Proceedings
of the 5th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, MobileCloud ’17, IEEE, 2017, pp. 102–108.1315

[41] J. Guo, I.-R. Chen, J. J. P. Tsai, A mobile cloud hierarchical trust man-
agement protocol for iot systems, in: Proceedings of the 5th IEEE Interna-
tional Conference on Mobile Cloud Computing, Services, and Engineering,
MobileCloud ’17, IEEE, 2017, pp. 125–130.

[42] R. B. Das, N. V. Bozdog, H. Bal, Cowbird: A flexible cloud-based frame-1320

work for combining smartphone sensors and iot, in: Proceedings of the 5th
IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering, MobileCloud ’17, IEEE, 2017, pp. 1–8.

37

	Introduction
	Overview
	Background: Avatar Platform
	Moitree Motivation and Challenges
	Moitree at a Glance
	CASINO: Collaborative Offloading Framework

	Programming Model
	App Examples
	LostChild
	FaceDate
	Divert

	Dynamic and Hierarchical Groups
	Communication Channels

	Moitree API
	API Overview
	Group Creation and Group Hierarchy
	Group Membership
	Group Communication
	API Usage Example

	Moitree Middleware Design
	Structure and Components
	App Execution
	App Offloading
	App Communication and Data Synchronization
	Moitree Cloud Services
	Moitree App Security Model

	Moitree Implementation
	Performance Evaluation
	Experiment Settings
	App Performance and Programming Benefits
	Running Time Improvement
	Benefits of Reusing Groups
	Programming Effort Comparison

	Stress Tests on Key Operations
	IPC Performance
	Serialization and Deserialization Performance
	Performance of API Support Library

	Resource Overhead Incurred by Moitree
	Computation Offloading Performance

	Related Work
	Conclusion and Future Work
	Acknowledgment

