FLIPSTRESS: Noise Injection Defenses Against
CPU-cache-based Web Attacks

Tapan Basak', Hai Phan', Yossi Oren?, and Reza Curtmolal

! New Jersey Institute of Technology, Newark NJ 07102, USA
2 Ben Gurion University, Israel
{tb358, reza.curtmola, phan}@njit.edu, yos@bgu.ac.il

Abstract. Side-channel attacks via the CPU-cache can leak sensitive
information about web browsing users. Two prominent forms of such
attacks are targeted deanonymization, which reveals a user’s identity,
and website fingerprinting, which exposes which websites a user visits.
In this paper, we present FLIPSTRESS, a defense that mitigates these
attacks by injecting artificial noise to obfuscate the cache patterns and
render the side-channel information ineffective. FLIPSTRESS is designed
to withstand strong attacks that leverage machine learning models to
interpret the cache readings. Towards this goal, we start by develop-
ing several stressor programs that create artificial noise by performing
continuous read or write operations on cache-sized data structures. We
then consider progressively stronger attackers who incorporate increas-
ingly more information about the defense mechanism into their machine
learning pipeline. Conversely, we enhance gradually the defense strategy
and converge on FLIPSTRESs, which injects artificial noise by switch-
ing a randomly picked stressor at regular time intervals. We implement
FLIPSTRESS in JavaScript as a browser extension meant for selective
activation when users visit high-risk or sensitive websites where protec-
tion against cache-based attacks is critical. FLIPSTRESS reduces targeted
deanonymization accuracy to 57.5% (base rate 50%) and website finger-
printing accuracy to 6.3% (base rate 1%), with tunable performance
overhead between 31%-226%.

Keywords: side-channel attacks - noise-based defenses - web privacy.

1 Introduction

Side-channel attacks are a class of attacks that exploits indirect information
leaked through the physical behavior of hardware to infer sensitive data. Rather
than directly attacking cryptographic protocols or network communications,
these attacks gather unintended signals — such as timing information, power
consumption, or cache usage patterns — revealing insights into the system’s ac-
tivities. CPU-cache-based side-channel attacks, a specific subset, take advantage
of the CPU’s cache behavior to expose private information such as user activ-
ity or sensitive data. These attacks can be particularly dangerous because they
exploit fundamental hardware characteristics, making them difficult to patch or
fully defend against at the software level.

2 T. Basak et al.

We focus on two prominent such attacks that pose a serious privacy threat
to web browsing users: targeted deanonymization and website fingerprinting.

Targeted deanonymization (TD) attacks [28,29,32,33] allow an at-
tacker who controls a website to learn whether a specific target user is browsing
the website. The attacker only needs to know the target through a public identi-
fier, such as an email address, a LinkedIn user identifier, or an Instagram handle.
The attack leverages state-dependent URLs (SD-URLs), which return different
responses depending on a user’s identity. An example of such SD-URLs are leaky
resources [28,32] such as images or videos, which are stored at resource-sharing
services such as YouTube, Google Drive or Dropbox, and shared only with a
specific target user. The attacker privately shares the resource with the target
and then embeds this shared resource into the attack website. If a user visiting
the attack website can access the embedded resource, this indicates that the
current visitor is the intended target. These attacks are practical, scalable, and
can be used as a stepping stone for executing more sophisticated attacks [33].

There are two main approaches to execute the attack. The first one uses cross-
site leaks (XS leaks) [29], which are a family of mechanisms that exploit behaviors
that bypass the same origin policy to enable the attack, such as status code leaks,
page content leaks, and header leaks [14]. The second one uses browser-based
side channels, such as the CPU cache side channel, which allow a (JavaScript-
based) spy process to infer whether the visiting user is able to access the leaky
resource.

This work focuses on the second approach, which uses side channels to exploit
fundamental hardware characteristics and is thus harder to defend against [1,
2]. In particular, CPU side channel attacks work even if the resource-sharing
service does not allow the embedding of its resources, or when browsers disable
third-party cookies for embedded resources.

Website fingerprinting (WF) attacks enable an adversary to infer which
websites a user is visiting by analyzing the side-channel data generated as dif-
ferent sites are loaded [12]|. Prior work has shown that CPU cache usage is an
effective source of side-channel data for this attack [27, 16, 25]. Unlike traditional
website fingerprinting, which relies on network traffic analysis, cache-based fin-
gerprinting focuses on how the computer’s cache behaves during the loading
and rendering of web pages. This attack typically involves injecting malicious
JavaScript into a webpage, which then monitors cache access times. Each web-
site interacts with the cache in a distinctive way, creating identifiable patterns
based on the resources (like images, scripts, or stylesheets) the website loads. By
measuring cache occupancy or latency through these patterns, the attacker can
“fingerprint” the websites being visited by the user.

Both targeted deanonymization and cache-based website fingerprinting ex-
ploit the lack of process isolation in the cache at the micro-architectural level,
allowing an attacker to undermine user anonymity and expose browsing activity.

Priorly proposed defenses: Two fundamental approaches can be used to
defend against side-channel attacks. The first is prevention, which aims at mak-
ing attacks theoretically impossible by removing correlations with the side chan-

FLIPSTRESS 3

nel trace. In the context of targeted deanonymization attacks, Zaheri et al [33]
proposed LEAKUIDATOR, a browser extension which ensures that cross-site web
requests are stripped of cookies and also eliminates a timing side-channel. How-
ever, this solution requires users to decide whether certain requests are legitimate
(such as authentication requests) and mark them as such. This requirement may
negatively impact user experience and privacy, as the user needs to spend addi-
tional effort and may not always be able to ascertain the legitimacy of requests.

The second defensive approach is mitigation, which tries to make attacks
impractical by reducing the signal-to-noise ratio of the side-channel trace. Noise
injection is a key tactic in this strategy, effectively obfuscating the measurement
of the side-channel signals that attackers rely on.

Several works [22,34,9,30,10,17,20] utilize cache flush instructions to dis-
rupt side-channel attacks, strategically clearing cache contents to thwart infor-
mation leakage. While mitigation defenses have been thoroughly explored in the
context of cryptanalysis side-channel attacks, they have not been as widely stud-
ied in web-based side-channel attacks. In the context of targeted deanonymiza-
tion attacks, Zaheri et al. [33] considered a noise-based approach against CPU
cache side channels: the user runs CPU stress tests outside the browser. Al-
though they found this approach ineffective, we note that their conclusion only
applies to the specific type of noise that was used and cannot be generalized.

Noise-based defenses have been more rigorously studied in the context of
cache-based website fingerprinting (WF) attacks. DefWeb [25], for instance,
leverages self-modifying code with precomputed noise templates during website
rendering to mask actual cache usage. However, this approach lacks scalabil-
ity and is difficult to maintain, as the noise templates are highly dependent on
specific micro-architectures, operating systems, and the rendered websites them-
selves. Cache Shaping [16] obfuscates cache patterns through parallel read /write
operations outside the browser involving dummy files on the disk. Whereas both
DefWeb and Cache Shaping were designed to mitigate WF attacks, we show that
they are ineffective against targeted deanonymization attacks.

This work takes on the challenge of developing FLIPSTRESS, a practical,
portable, and tunable noise-based defense that is generalizable across diverse
cache-based attack types. To build this defense, we investigate noise-based ap-
proaches to mitigate targeted deanonymization attacks. Our initial exploration
focused on the stress-ng [6] stress test suite, which includes over 270 CPU
stress tests. This investigation shows that different stressors in the suite vary in
their effectiveness at mitigating attacks. Some stressors can significantly reduce
attack accuracy, both when the attacker is unaware of the defense and when the
attacker trains a machine learning model while the stressor is active. Based on
this analysis, we identify three high-performing “quality” stressors from the suite
and analyze their source code. Additionally, we develop four custom “quality”
stressors that perform continuous read and write operations on cache-sized data
structures. We implement these seven stressors in JavaScript and package them
into a browser extension, enabling users to activate the defense seamlessly within
the browser whenever they require protection.

4 T. Basak et al.

Next, we consider progressively stronger attacks that incorporate more infor-
mation about the defense mechanism into the machine learning pipeline used for
the attack, and also extend the duration of the attack to capture more informa-
tion about the target. In complement, we enhance gradually the defense strategy
to mitigate the stronger attacks. Notably, we show that a strategy that adds ar-
tificial noise by switching to a randomly picked stressor at regular time intervals
provides an adequate defense over time, even against the strongest adversaries.

In summary, we make the following contributions in this work:

— We develop seven “quality” CPU stress programs (i.e., stressors) in JavaScript,
which provide resilience against cache-based web attacks and form the basis
of our noise-based defense. We independently develop four of these stressors.
For the remaining three, we analyze the source code of stress-ng stres-
sors to understand which kind of read and write operations provide effective
artificial noise, and subsequently re-implement them in JavaScript.

— We extensively explore the targeted deanonymization attack and defense
space. On the attack side, we consider progressively stronger adversarial
strategies that feed the cache measurements collected through the side-
channel into machine learning models to achieve attack accuracies close to
100%. On the defense side, we enhance gradually the defense strategy by in-
creasing the amount of noise added, incorporating randomness into the gen-
erated noise, and periodically changing the type of stressor used to generate
noise. Our key findings are synthesized into FLIPSTRESS, a defense strategy
that adds artificial noise by activating a randomly-selected “quality” stres-
sor at regular time intervals. FLIPSTRESS provides sustained protection over
time, even against powerful adversaries, by reducing the attack’s success rate
to 57.5%. This holds across multiple computer architectures (ARM and Intel
x86), operating systems (Linux, Windows, MacOS), and browsers (Chrome,
Firefox, Tor). In contrast, we show that existing noise-based defenses [25, 16,
33| are ineffective against the sophisticated adversaries we considered.

— We also demonstrate that FLIPSTRESS is effective against cache-based web-
site fingerprinting attacks. Specifically, in a closed-world scenario, FLIP-
STRESS reduces the attack’s success rate to as low as 6.3%.

— We implement FLIPSTRESS as a browser extension for Chrome, Firefox, and
Tor, and make it publicly available [5] so that it can be used immediately by
users needing protection. As it adds overhead, FLIPSTRESS is recommended
for selective activation when users visit high-risk or sensitive websites where
protection against cache-based attacks is critical. As such, users can activate
or de-activate the defense on demand with just a button click without leaving
the browser. In addition, the defense allows users to control the intensity of
the generated noise by controlling the number of stressor instances.

To our knowledge, this is the first noise-based defense available directly in
the browser, offering a convenient solution for protecting user privacy.

Our work suggests that noise-based defenses can provide protection against
CPU cache-based side-channel attacks. The rest of this paper is organized as

FLIPSTRESS 5

follows: Section 2 reviews related work, Section 3 provides necessary background,
and Section 4 outlines the threat model. Section 5 explores the TD attack and
defense space, detailing our iterative process to develop our proposed defense.
Sections 6 and 7 present results for TD and WF attacks, respectively. Section 8
evaluates performance overhead, and Section 9 discusses the results and future
directions. We conclude in Section 10.

2 Related Work

Lyu and Mishra [19] survey recent cache-based side-channel attacks and counter-
measures. In cache-based website fingerprinting, noise injection has been recently
explored as a countermeasure. Cache masking [27] introduces noise by allocating
an LLC-sized buffer and repeatedly accessing each cache line in a loop to evict
and mask browser activities. Cook et al. [7] proposed generating interrupts by
scheduling thousands of activity bursts and network pings at random intervals.
However, these approaches prove ineffective when attacker retrain their model
using the same type of noise used by the defense [27,16, 25].

DefWeb [25] takes a more advanced approach, using variational autoencoders
(VAEs) to generate minimal noise templates and injecting precise noise into
cache-based website fingerprints. Although effective in simulations, its reliance on
precomputed templates tailored to specific microarchitectures makes it unscal-
able and challenging to adapt to diverse hardware or evolving website structures.
DefWeb also struggles to obfuscate cache patterns of high-activity websites.

CacheShaping [16] adopts a different methodology by running multiple par-
allel processes to simulate browser rendering operations. It repeatedly reads data
from dummy files into the LLC, evicts existing data, and writes the evicted data
back to the files, masking real cache activities. While effective against website
fingerprinting (WF) attacks, CacheShaping and the other website fingerprinting
defenses have not been tested against targeted deanonymization, leaving their
efficacy in such scenarios unverified.

For targeted deanonymization, Zaheri et al. [33] explored noise-based de-
fenses by introducing cache noise through CPU stress tests [6] web browsing
activities. However, they found this method to be ineffective when the attacker
retrains their model using the same type of noise used by the defense. In addi-
tion, they only considered short-lived attacks, which only use a relatively small
observation window. We note that their conclusion only applies to the specific
type of noise that was used in that work and cannot be generalized.

3 Background

3.1 CPU-Cache side channels

A cache is a high-speed memory bank that bridges the performance gap between
the processor’s speed and the slower main memory. Modern processors usually
employ a multi-level cache hierarchy, with the L3 or Last-Level Cache (LLC)
being shared across all CPU cores. A cache hit leads to quick data retrieval; if
the data is not found in the cache, a cache miss occurs and the data is retrieved
from the slower RAM memory.

6 T. Basak et al.

The very nature of cache sharing introduces unintended communication chan-
nels, side channels, which can be exploited to leak sensitive information. Side-
channel attacks (SCAs) have been remarkably effective in undermining the secu-
rity of hardware and software implementations in various cryptosystems [18, 30,
11]. Cache-based SCAs are particularly alarming because they exploit minute
variations in cache access times to reveal memory access patterns, potentially
exposing critical information such as encryption keys [31].

3.2 The Cache Occupancy Attack

The Prime+Probe attack [18] is a prominent cache side-channel technique that
exploits contention in specific cache sets to infer sensitive information. In this
attack, the adversary first “primes” the cache by loading their own data into
targeted cache sets. After allowing the victim process to execute, the attacker
“probes” these sets to detect whether their data has been evicted, indicating
that the victim accessed memory mapped to the same sets. By repeating this
process, the attacker can discern the victim’s memory access patterns, potentially
revealing sensitive information such as encryption keys.

The success of this attack heavily relies on high-resolution timers to distin-
guish between cache hits and misses. Since the timing differences between ac-
cessing data in the cache and in main memory are extremely small — typically
around 20 nanoseconds — accurate measurements are crucial. To defend against
such timing-based attacks, modern browsers have reduced the resolution of the
timers they provide, hindering the effectiveness of attacks like Prime+Probe.

To overcome this limitation, Shusterman et al. [27] proposed the cache oc-
cupancy attack, which assesses contention across the entire Last-Level Cache
(LLC) rather than targeting specific cache sets. This technique involves allocat-
ing an LLC-sized buffer and measuring the time required to access the entire
buffer (i.e., the buffer access time). Cache contention caused by victim pro-
cesses evicting the attacker’s buffer introduces measurable delays when reading
this buffer, allowing the attacker to detect victim activity. Unlike Prime+Probe,
the cache occupancy attack is robust to reduced timer resolution such as those
available in web browsers.

A variant of the cache occupancy attack, known as sweep counting, counts
the number of times the buffer can be accessed within a fixed time interval, en-
abling attacks for even coarser-grained timers, e.g. 100ms, such as those available
in the highly-secure Tor Browser.

3.3 The Targeted Deanonymization Attack

Targeted deanonymization attacks are an important class of attacks which threaten
user anonymity. An attacker who has complete or partial control over a website
seeks to learn the identity of specific target users who are browsing that website.
The attacker knows a target only through a public identifier, such as an email
address or social media handle.

To mount the attack, the attacker first uses a resource-sharing service like
YouTube or Dropbox to privately share a resource (e.g., a YouTube video) with

FLIPSTRESS 7

the target, using the target’s public identifier. The attacker then embeds this re-
source into the website under their control. When a visitor accesses the attacker-
controlled website, the attacker observes whether the resource successfully loads.
For example, if an embedded YouTube video — shared privately only with the
target — loads, it indicates that the visitor is the intended target.

Zaheri et al. [33] demonstrate that this attack can be executed in less than
one second and remains effective even when resource-sharing platforms restrict
embedding and when browsers block third-party cookies. To determine if the
resource was loaded, the attacker uses the cache occupancy attack and measures
the time needed to access the attack buffer while the attack page is loaded by
the visitor. A long access time indicates the shared resource was loaded, since by
doing so the visitor has evicted the attacker’s buffer from the cache. To analyze
the collected cache timings and make an accurate determination, the attacker
employs a machine learning classifier.

3.4 The Website Fingerprinting Attack

Website fingerprinting attacks seek to compromise user privacy by using observ-
able activity patterns to identify the websites a user visits. The original website
fingerprinting attack assumes an on-path adversary, who leverages statistical
analysis of encrypted network traffic metadata — such as packet sizes, timing,
and direction — to infer the websites being accessed [12].

Shusterman et al. [27] proposed an alternative attack model which leverages
cache-based side channels to bypass network-level defenses. This model assumes
that the victim runs a web browser on a target machine and simultaneously
accesses both an attacker-controlled site and a sensitive site, each loaded in a
separate browser tab. The attacker needs the ability to run JavaScript code in
the victim’s browser, thus exploiting the cache occupancy attack channel. By
observing cache occupancy patterns, the attacker generates a “fingerprint” — a
trace of cache activity over time — which reflects the victim’s visited website.

The attack proceeds in two phases: In the training phase, the attacker visits a
set, of target websites and collects fingerprints corresponding to their cache activ-
ity. These traces are labeled and used to train a machine learning classifier, which
learns to recognize the unique cache signatures associated with different websites.
Next, in the online phase, when the victim accesses the attacker-controlled web-
site, the malicious JavaScript code collects the fingerprint of the victim’s cache
activity. These traces are then fed into the trained classifier, which identifies the
sensitive website the victim is visiting based on its unique cache signature.

4 Threat Model

The threat model for targeted deanonymization and website fingerprinting at-
tacks involves two parties: a user/victim and an attacker. The user browses the
internet using a web browser, which may or may not employ anonymity networks
such as VPNs or Tor. The attacker is remote and cannot eavesdrop on the user’s
network traffic. The user visits an attacker-controlled website containing mali-
cious JavaScript code, which profiles the shared Last-Level Cache (LLC) using
the cache occupancy channel [27].

8 T. Basak et al.

For both attacks, the attacker formulates the problem as a supervised learn-
ing task consisting of two phases: a training phase involving offline data collection
and model training, and an online phase involving classification of the user’s data
using the trained model. We assume that the used data for training the model is
collected under settings similar to those of the user, including the same operat-
ing system, web browser, and LLC size. The attacker can use known techniques
to infer this information about the user [24, 26].

For targeted deanonymization, we assume the adversary has some public
information about the victim, such as their Twitter handle or email address. We
note the adversary does not need to control the resource-sharing service exploited
in the attack; they only need to be a registered user of the service. The adversary
faces a binary classification problem: distinguishing between traces belonging to
the “target” and those from “non-target” users. During the training phase, the
attacker collects cache traces labeled as a “target” or “non-target” user. In the
online phase, the attacker gathers an unlabeled cache trace from the user and
uses the trained model to predict the labels of this trace, classifying the user as
a target or a non-target.

For website fingerprinting, the attacker faces a multiclass classification prob-
lem. In the training phase, the attacker collects a set of traces corresponding to
sensitive websites on a device identical to the victim’s. The attacker then trains
a multi-class classification model using this dataset. In the online phase, the at-
tacker collects a single trace while the victim’s browser renders a website, and
this trace is classified using the trained model to identify the website.

5 Targeted Deanonymization: Attacks and Defenses
5.1 Approach Overview

In this section, we perform a systematic investigation of noise-based defenses
against cache-based targeted deanonymization attacks. The main research ques-
tion is whether we can devise a noise-based defense that is resilient against strong
attacks. We consider progressively stronger attack strategies and devise defense
strategies to mitigate them. This allows us to answer the research question in the
positive, and develop a noise-based defense that combines the lessons learned.
At the core of our proposed defense are stress programs, referred to as stres-
sors. Each stressor performs read/write operations on memory buffers that are
as large as the last-level cache (LLC). Our defense runs while the user is brows-
ing the web, and aims to make cache traces indistinguishable between target
and non-target users. We develop seven stressors, which are incorporated into
the defense strategies. Section 5.2 provides a description of these stressors. In
all defense strategies, we use p to denote the number of stressor instances that
are running in parallel, where each stressor instance is typically running on a
separate CPU core. Having multiple instances introduces non-determinism into
cache access patterns, preventing optimizations like prefetching from affecting
the CPU’s cache replacement policy. The increased randomness reduces the at-
tacker’s ability to accurately classify the cache traces, lowering its effectiveness.

FLIPSTRESS 9

We use the term scenario to denote the capabilities used by the attacker and
the defender (i.e., a pairing of an attack strategy with a defense strategy). As
we move through scenarios, we consider progressively stronger attack strategies
by incorporating more information about the defense mechanism into the at-
tacker’s machine learning pipeline, by extending the attack duration to capture
more information about the target, and by assuming a more advanced threat
model. Conversely, we progressively enhance the defense strategy by increasing
the amount of added noise (e.g., by increasing the stress intensity), by incor-
porating randomness into the generated noise, and by periodically switching
between stressors.

AS1: DS1: AS1: DS1: AS1: DS3:
Train without Fixed N Train without Fixed Train Flipping
noise stressor noise stressor > without noise stressor
Scenario 1 Scenario 4 Scenario 7
e —
AS2: DS1: As2: DSH: SN DS3:
Train with fixed Fixed Train with fixed Fixed rj'” w " Flipping
noise stressor noise stressor super/ensemble stressor
i L model |
Scenario 2 _ Scenario 5 Scenario 8
v
AS3: AS3:
Train with R;:f:lf).m Train with R::Zi'm T AS4.'th FI|:_)S3_.
super/ensemble ! super/ensemble rain witt IPPINg
—— stressor —— stressor flipping noise stressor
Scenario 3 _ Scenario 6 Scenario 9

v

«——1s Attack < 10s Attack >

Fig. 1. Flow diagram of the nine scenarios considered, based on four Attack Strategies
(AS1-AS4) and three Defense Strategies (DS1-DS3).

Fig. 1 outlines the progression of the nine scenarios considered. Previous
work [33] demonstrated that targeted deanonymization attacks could succeed
in as little as one second. Thus, we first examine whether noise-based defense
strategies can effectively counter such short-duration attacks. The initial “Is At-
tack” scenarios 1-3 present foundational approaches, starting with basic attacks
like training without stress, countered by defenses such as fixed stressors. As the
scenarios progress, attack strategies evolve to include methods like training with
known fixed stressors or ensemble models, while defense strategies incorporate
techniques like randomness to improve resilience. We then evaluate attacks last-
ing up to 10 seconds in the “10s Attack” scenarios 4-6, which mirror the methods
in scenarios 1-3 but allow for an extended cache trace collection. This introduces
new challenges for the defenses to remain effective over time.

Finally, scenarios 7-9 introduce our main defense, FLIPSTRESS, which dis-
rupts more sophisticated attack strategies by switching to a randomly-picked
stressor at regular intervals.

10 T. Basak et al.

5.2 Attack and Defense Methodologies

Attack Methodology We follow the attack methodology used by Zaheri et
al. [33], which we summarize next. The attack begins with the sharing of a leaky
resource. The attacker uploads a YouTube (YT) video to the YouTube sharing
service and privately shares the video with the target using the victim’s email
address. The attacker then embeds the URL of the YT video into a webpage they
control. When the target visits this webpage, their browser loads the embedded
resource. The attack proceeds in two main phases:

Training Phase: The attacker collects cache activity traces for when the
YT video is loaded and when it is not. These traces are used to train a machine
learning classifier to identify the cache signature associated with successfully
loading the YT video.

Online Phase: The victim visits the attacker-controlled webpage that loads
the YT video. As the video is loaded and rendered, the attack script continuously
takes cache measurements on the victim’s computer. These measurements are
then fed into the trained classifier to determine whether the user is the target.
The attack’s effectiveness is determined both by its accuracy and by the attack
duration parameter, which represents the time for which the attacker collects
cache traces. Our cache occupancy code is based on the PPO0 repository [21].

The Attack Variant: We consider the basic attack variant that embeds a
shared YouTube video using an <iframe> in the Chrome browser. Compared to
other leaky resources, such as images, we opt for a video since it results in a
higher attack accuracy [33].

Later, in Sec. 6, we show that our defense remains effective on a variety of
system configurations (i.e., combination of OS, browser, and resource-sharing
service).

Defense Methodology: Stressors The defense is implemented as a browser
extension that can be activated by the user to run stressor programs during a
browsing session The stressors are implemented as JavaScript web workers. In
a browser environment, web workers provide a means to run concurrent scripts
in background threads, independent of the main execution thread. Each web
worker operates with its own memory space, much like how forked processes
do in a native environment. The number of web workers corresponds to the
parameter p, representing the degree of parallelism. This parallelism is crucial
for generating significant cache contention to disrupt the attacker’s ability to
analyze the cache patterns.

We designed and implemented seven stressors to create different types of
memory access patterns, each tailored to stress the system in unique ways.
For the first three stressors, we turned our attention to the stress-ng stress
suite [6]. In prior work, Zaheri et. al. [33] attempted to add artificial noise by
using stress-ng stressors, but the stressors they considered were found to be
ineffective. We re-examined Zaheri et. al.’s claims regarding stress-ng as a
source of noise. By broadening the pool of considered stressors, we were able to
identify three stress-ng stressors which provide resilience. We examined their

FLIPSTRESS 11

source code, and re-implemented them in JavaScript as part of our defense. We
developed the other four stressors independently. The seven stressors are: Read
Buffer, Write Buffer, Read Linked List, Write Linked List, Stream, VM, and
Memcpy. These are described in more detail in Appendix B and their source
code is provided in the FLIPSTRESS code repository [5].

Experimental Setup We conducted most of the experiments using the Chrome
browser, on a Lenovo ThinkPad P14s laptop with an Intel Core i7-1260P CPU
running Ubuntu 22.04.1 LTS. To demonstrate the universality of our defense, in
Sec. 6 we considered additional system configurations that include the Firefox
and Tor browsers, and Windows and MacOS (Sec. 6 and Appendix A).

The attack page contains a YouTube (YT) video that is privately shared
with the target. The page also contains a JavaScript script that takes CPU
cache measurements. We automated the cache measurements collection using
Selenium. We use supervised machine learning to analyze the cache measure-
ment data. To build our data sets, we collect 200 cache occupancy samples while
the attack page is loaded — 100 for the target and 100 for the non-target. We
used logistic regression for the exploratory portion of the experiments. For each
attack setting, we use 90% of the samples for training and 10% for testing. To
prevent overfitting the classifier, we used a 10-fold cross validation, and the per-
fold accuracies are then combined to produce a single estimate for the mean
and standard deviation of the attack accuracy. We also validated the effective-
ness of FLIPSTRESS using a convolutional (CNN) and a long short-term memory
(LSTM) neural network model. The parameters used for these classifiers are pro-
vided in Appendix A. Data analysis was performed using Scikit-Learn v1.5.2 [3]
and Tensorflow v2.17.1 [4] with Python v3.10.12 on Google Colab [23].

5.3 Exploring the Space of Attack and Defense Strategies

In this section, we aim to systematically evaluate the effectiveness of different
defensive measures against a range of potential attacks. To do so, we explore
9 specific scenarios based on 4 attack strategies (AS) and 8 defense strategies
(DS), as illustrated in Fig. 1.

Guided by the findings of Zaheri et al. [33], we initially set the attack du-
ration to 1 second, which was previously identified as sufficient for mounting a
successful attack. An effective defense can theoretically reduce attack accuracy
to approximately 50%, equivalent to a random guess by the attacker. Higher ac-
curacy values suggest that the attacker can still extract meaningful information
and perform deanonymization to some extent.

Scenario 1: AS14+ DS1 (1s): AS! — Train without noise: The initial at-
tack strategy evaluates an attacker using a model trained on clean cache traces,
without defensive noise.

DS1 — Fized stressor: The defender employs a single, consistent stressor
that injects continuous noise into the cache. This strategy aims to disrupt the
attacker’s model by masking cache traces with persistent noise, challenging the
model’s classification capabilities. The interplay between AS1 and DSI1 is quanti-
fied in Table 1. We observe that not all stressors demonstrate equal effectiveness.

12 T. Basak et al.
Table 1. Attack accuracy for Scenario 1 (AS1 + DS1, 1s).

No.|Stressor p=1p=2p=4
1 |Read Buffer 99.00% 98.00%]90.50%
2 |Write Buffer 50.00%|50.00%50.00%
3 |Read Linked List [50.00%50.00%|50.00%
4 |Write Linked List|50.00%50.00%|50.00%
5 |[vm 50.00%150.00% |50.00%
6 |Stream 50.00%150.00%150.00%
7 |Memcpy 99.50% |82.50%)]50.00%

Average 64.07%61.50%|55.79%
Table 2. Attack accuracy for Scenario 2 (AS2 + DS1, 1s).

No.|Stressor p=1lp=2|p=4
1 |Read Buffer 95.00%/99.00%]94.50%
2 |Write Buffer 91.50%|55.00%]52.50%
3 |Read Linked List [99.50%92.00%|57.50%
4 |Write Linked List|86.00%(69.00%|64.50%
5 |vm 94.50% 46.00%]52.00%
6 |Stream 59.00%]61.50%64.50%
7 |Memcpy 99.50%99.00% |82.00%

Average 89.29%(74.50%|66.79%

Specifically, stressors 2 through 6 stand out in their capacity to disrupt the attack
and consistently reduce attack accuracy to 50% across all levels of p.

This is because the added noise causes all predictions to pick the target class,
despite the fact that only half of the samples are for the target user. The average
accuracy over all seven stressors indicates a clear trend: as the number of stressor
instances, p, increases, the effectiveness of the defense also improves.

Scenario 2: AS2 4 DS1 (1s): In Scenario 2, we introduce a more advanced
threat model by assuming that the attacker possesses full knowledge of the de-
fensive measures in place via DS1.

AS2 — Train with fized noise: The attacker has precise knowledge of the fixed
stressor used by the defender. Leveraging this information, the attacker trains a
model using cache traces collected in the presence of this specific stressor.

The results in Table 2 show that AS2 proves to be a superior attack strategy
compared to AS1. For p=1 and p=2, the defense is ineffective for most stressors.
However, as the value of p increases to 4, there is a notable decline in the attack
accuracy. This scenario starkly contrasts with the simpler attack model in AS1,
where lower values of p might still offer substantial protection.

Scenario 3: AS3 + DS2 (1s): DS2 — Random stressor: The defender deploys
a stressor selected at random from the set of available stressors, which operates
continuously. The randomness introduces uncertainty for the attacker, as they
can no longer predict which specific noise will be present in the cache traces.
AS3 — Train with super/ensemble model: To counter the unpredictability
introduced by DS2, the attacker adopts more advanced techniques that aggregate
traces from multiple stressors, divided into two approaches - AS3a and AS3b.

FLIPSTRESS 13

Table 3. Attack accuracies for Scenario 3 (AS3 + DS2, 1s).

Attack Strategy|p =1|p =2|p =4
AS3a + DS2 75.29%169.43%|58.29%
AS3b + DS2 85.71%|77.14%|62.14%

— AS3a — Super model: The attacker aggregates cache traces from all stres-
sor types and trains a single “super model”. This model aims to increase
predictive accuracy and robustness by pooling data from various stressor-
influenced cache traces. This approach allows the attacker to detect patterns
across different noise conditions, attempting to classify effectively even under
a random environment imposed by DS2.

— AS8b — Ensemble model: The attacker builds separate models for each stres-
sor’s cache traces. This strategy leverages the strengths of multiple models,
each assessing individual stressor-influenced data independently, which col-
lectively contribute to the final decision based on a majority vote.

The results presented in Table 3 show that both the super model (AS3a) and
the ensemble model (AS3b) achieve higher attack accuracies at lower values of p,
even without knowledge of the specific stressor used by the defender. However,
as the number of stressor instances p increases to 4, we see a noticeable decline in
attack accuracy. This indicates that increasing the number of stressor instances
remains an effective way to mitigate even these stronger attacks.

5.4 Extending the Attack Duration

So far, we have explored attack and defense strategies within a constrained attack
duration of 1 second. Our results show that DS2 is effective against all attack
strategies when the number of stressor instances (p) is sufficiently high. How-
ever, in real-world scenarios, an attacker could extend the observation period,
collecting cache traces over a longer duration, thereby increasing the likelihood
of a successful attack.

In this section, we examine the implications of extending the attack duration
from 1 second to 10 seconds. We revisit the three scenarios discussed earlier —
now referred to as Scenarios 4-6 — with the only difference being the extended
attack duration. This allows us to assess how a longer observation window im-
pacts the effectiveness of both the attack and defense strategies.

Scenario 4: AS1 + DS1 (10s): Table 4 indicates that, in this particular
scenario, the longer attack duration does not significantly benefit the attacker.
Specifically, the consistent attack accuracy of 50% for stressors 2 through 6 re-
mains unchanged compared to the 1-second scenario, implying that these stres-
sors are highly effective against AS1, regardless of the attack duration.

Scenario 5: AS2 + DS1 (10s): The results presented in Table 5 show that
extending the attack duration increases the attack accuracy. This suggests that
a more extended observation period allows the attacker to gather more data,

14 T. Basak et al.

Table 4. Attack accuracy for Scenario 4 (AS1 + DS1, 10s).

No.|Stressor p=1|p=2|p=4
1 |Read Buffer 100.00%100.00%|57.00%
2 |Write Buffer 50.00% | 50.00% [50.00%
3 |Read Linked List | 50.00% | 50.00% [50.00%
4 |Write Linked List| 50.00% | 50.00% [50.00%
5 |vm 50.00% | 50.00% [50.00%
6 |Stream 50.00% | 50.00% |50.00%
7 |Memcpy 98.00% | 58.00% [50.00%

Average 64.00% | 58.29% |51.00%

Table 5. Attack accuracy for Scenario 5 (AS2 + DS1, 10s).

No.|Stressor p=1|p=2|p=4
1 |Read Buffer 100.00%{100.00%|97.00%
2 |Write Buffer 98.00% | 84.50% |65.50%
3 |Read Linked List | 99.50% | 99.00% [83.00%
4 |Write Linked List| 98.00% | 96.00% |73.50%
5 |[vm 100.00%| 67.00% |70.00%
6 [Stream 63.50% | 61.50% [57.00%
7 |[Memcpy 100.00%| 99.00% {85.00%

Average 94.14% | 86.71% |75.86%

thereby effectively countering the fixed stressor defense (DS1). As p increases,
the attack accuracy generally decreases, but to a lesser extent Scenario 2. This
suggests that while increasing p introduces more noise, the extended time lets
the attacker refine their model, mitigating some of the defense’s effectiveness.
The results indicate that while DS1 can disrupt shorter attacks, it may not be
robust enough for a longer duration.

Scenario 6: AS3 + DS2 (10s): The results presented in Table 6 indicate that
in Scenario 6, the attack accuracy consistently improves compared to Scenario
3. This improvement aligns with the trend observed in the preceding scenario,
suggesting that the super and ensemble models in AS3 significantly benefit from
the extended attack duration.

The findings from Scenarios 4 through 6 imply that both DS1 and DS2 are
inadequate in defending against sophisticated attack strategies such as AS3 when
the attack duration is extended. This underscores the necessity for a more robust
defense mechanism to counter advanced attacks over more extended periods.

Table 6. Attack accuracies for Scenario 6 (AS3 + DS2, 10s).

Attack Strategy|p = 1|p=2|p=4
AS3a + DS2 82.29%|77.14%|70.50%
AS3b + DS2 92.85%/93.57%|75.00%

FLIPSTRESS 15

Table 7. Attack accuracy for Scenario 7 (AS1 + DS3, 10s).

p=1p=2p=4
50.00%150.00%|50.00%
Table 8. Attack accuracy for Scenario 8 (AS3a-b + DS3, 10s).
Attack Strategy| p=1|p=2|p=14
AS3a + DS3 64.00%|55.50%|63.50%
AS3b + DS3 50.00%|50.00%50.00%

5.5 The Flipping Stressor Defense (FLIPSTRESS)

This section introduces our primary defense strategy: the Flipping Stressor De-
fense, or FLIPSTRESS, which mitigates extended attack durations by dynamically
altering the noise patterns throughout the attack window. FLIPSTRESS period-
ically changes the active stressor, aiming to disrupt the attacker’s ability to
collect consistent cache traces over more extended periods, thereby mitigating
the increased risk of extended observation times.

Scenario 7: AS1 + DS3 (10s): DS3 — Flipping stressor: In this defense
strategy, we introduce a more unpredictable countermeasure, in which all stressor
instances synchronously switch to a randomly-picked stressor at regular intervals
of 0.5 seconds®. This unpredictable change in the stressor environment makes
extracting meaningful patterns from the cache traces significantly harder.
Table 7 shows that in Scenario 7, which combines AS1 with DS3, the defense
consistently scores 50% accuracy. This suggests that the random and frequent
switching of stressors can mitigate the attack, reducing it to a random guess.

Scenario 8: AS3 + DS3 (10s): In this scenario, we evaluate the effectiveness
of the flipping stressor defense (DS3) against AS3a (super model) and AS3b
(ensemble model) over a 10-second attack duration. Table 8 shows that DS3 is
successful against this strong attack, maintaining low accuracy levels.

Scenario 9: AS4 + DS3 (10s): AS4 — Train with flipping noise: In this
attack strategy, the attacker adjusts their strategy to match the defender’s ap-
proach, where the active stressor is flipped randomly at regular intervals. There-
fore, the attacker trains the model in the presence of flipping noise.

Table 9 shows that AS4 represents the best attack considered so far against
DS3. However, despite the attack’s effectiveness at lower values of p, the DS3
flipping defense remains robust, significantly reducing the attack’s success as p
increases to 2 and 4. Given the results across Scenarios 7-9, DS3 consistently
demonstrates its strength in mitigating attacks, even against the most effective

3 We selected a 0.5 second switching interval based on experimental observations. In
earlier scenarios, we observed that attack accuracies remained relatively low with
shorter attack durations, such as 1 second, in Scenarios 1-3. This suggests that brief
time frames effectively maintain the defensive advantage — the shorter interval means
the attacker has less time to gather consistent data before the stressor changes.

16 T. Basak et al.

strategies like AS4. The ability of DS3 to maintain low attack accuracies, partic-
ularly as stress intensity increases, confirms that it is the most effective defense
strategy among those tested.

Table 9. Attack accuracy for scenario 9 (AS4 + DS3, 10s).
P=1p=2p=4
79.00%69.00%[64.00%

6 Results: Targeted Deanonymization

In the previous section, we laid the groundwork for understanding the effective-
ness of our defense by focusing exclusively on an attack pipeline that uses Logistic
Regression (LR). This initial exploration aimed to demonstrate the iterative pro-
cess that led to the development of FLIPSTRESS. Building on these insights, this
section seeks to rigorously evaluate FLIPSTRESS. We first shift the focus to using
more advanced machine learning models. We then assess the defense’s resilience
against prolonged attacks, compare its effectiveness with existing defenses, and
demonstrate its universality across different system configurations.

Advanced Machine Learning Models. We test the effectiveness of FLIP-
STRESS against deep learning models, specifically Convolutional Neural Net-
works (CNN) [15] and Long Short-Term Memory networks (LSTM) [13]. These
models, known for capturing complex patterns in data, present a more rigorous
evaluation of our defense under adversarial conditions.

Table 10 shows the attack accuracy when using different machine learning
models, as the number of stressor instances, p, increases. Appendix A details
the hyperparameters used for these models. CNN and LSTM outperform LR
across all p values. While p=4 was a strong starting point against LR, achieving
meaningful reductions in the performance of advanced models like CNN and
LSTM required increasing p up to 12 instances. Appendix C provides additional
insights about the impact of FLIPSTRESS on the attacker’s buffer access times.

Resilience Against Prolonged Attacks. In practical attack scenarios, the
attacker is not constrained to short durations such as 10 seconds. To evaluate the
sustainability of FLIPSTRESS, we tested its performance over a prolonged attack
duration of 60 seconds. Table 11 shows that FLIPSTRESS continues to disrupt
adversarial classification even during extended attacks effectively. Figure 2 shows
that the attack accuracy remains relatively constant after an initial rise and
some fluctuations. This empirically reinforces FLIPSTRESS as a reliable long-
term defense mechanism.

Table 10. Attack accuracy for FLIPSTRESS (p is the number of stressor instances).

p LR CNN LSTM

1(79.0 + 10.91%| 99.0 £+ 2.0% | 88.0 £+ 7.48%
2] 69.0+ 4.90% | 94.0 + 5.39% | 86.5 £ 7.43%
4164.0 + 8.60% | 81.5 £ 8.08% | 79.5 + 9.07%
6150.5 £ 10.83%| 82.0 £+ 8.72% | 89.0 &+ 7.00%
8152.5 £ 11.67%|74.5 + 10.59%|76.0 + 11.58%
10| 57.0 &+ 7.14% |57.5 £+ 11.46%| 62.5 £+ 8.14%
12| 49.0 £+ 7.68% |56.0 + 10.68%|57.5 + 11.01%

FLIPSTRESS 17

Table 11. FLIPSTRESS attack accuracy for attacks with a duration of 60 seconds.
p LR CNN LSTM
12165.5% =+ 11.06%|57.5% + 7.83%163.5% + 9.23%

80 —e— Mean Accuracy
Std Dev

[o ~
o =} o

Attack Accuracy (%)

N
o

30

Q NQ ,1/0 ,,)Q Dp (,’Q Q)Q
Time (seconds)

Fig. 2. FLIPSTRESS attack accuracy over time (using LR).

Comparison with existing defenses. Most prior research into noise-based
countermeasures against cache-based attacks on the web has been done in the
context of website fingerprinting (WF). However, the underlying principle of
these defenses, introducing noise to disrupt the attacker’s ability to extract mean-
ingful patterns in cache timings, can be extended to targeted deanonymization.

Table 12 compares FLIPSTRESS with two existing defenses, adjusted for the
targeted deanonymization attack. As the defender does not know the attacker’s
website, we use the practical variant of DefWeb [25] that generates noise with
random templates across all 12 physical cores, similar to their open-world evalua-
tion. We adjust CacheShaping [16] to match our system configurations and mod-
ify its code to utilize all 12 physical cores in our machine, performing read /write
operations on 128 files. FLIPSTRESS outperforms these defenses.

Defense Universality Across Diverse System Configurations. To assess
the universality of FLIPSTRESS, we tested it across different operating systems
(Linux, Windows, MacOS) and browsers (Chrome, Firefox, Tor) under the setups
described in Appendix A. Notably, this includes both Intel x86 (Linux, Windows)
and ARM (MacOS) which feature distinct cache designs, replacement policies
and cache architectures. Table 13 shows that our proposed defense FLIPSTRESS
weakens the attack across these diverse system configurations.

7 Results: Website Fingerprinting

To evaluate the effectiveness of FLIPSTRESS against the website fingerprinting
attack, we conduct a closed-world evaluation, a widely accepted methodology for

Table 12. Targeted Deanonymization attack accuracy against various defenses
(FLipSTRESS, DefWeb, CacheShaping), under various models (LR, CNN, LSTM) (num-
ber of stressor instances p=12).

Defense LR CNN LSTM
DefWeb [25]|85.5% + 6.5%| 95% + 4.15% | 95% + 4.15%
Cache 62.5% + 6.8%| 99% + 1.5% | 100% + 0%
Shaping [16]
FLIPSTRESS|49.0 + 7.68% |56.0 £ 10.68%|57.5 + 11.01%

18 T. Basak et al.

Table 13. FLIPSTRESs Attack Accuracy Across Different System Configurations (sys-
tem details provided in Appendix A).

oS Browser Resource LR(%) CNN(%) LSTM(%)

Chrome YouTube video 49 + 7.68 56 + 10.68 57.5 £ 11.01
Chrome Google Drive video 49 +£5.25 554 10.50 68.5+ 8.90

Linux - piefox YouTube video 45+ 5.55 544981 65+ 9.81
Firefox LinkedIn video 51.54+5.50 65+ 12.00 68 4 11.00
Tor YouTube video 524+5.69 51411.42 55.93+£7.80
. Chrome YouTube video 48 £7.88 56 +5.11 73+ 7.76
Windows

Firefox YouTube video 514+5.45 55.78 £5.65 704 8.90
MacOS Chrome YouTube video 62+ 5.57 70.5£11.06 63.5 £ 7.43

Table 14. Comparison of defenses against the Website Fingerprinting attack, using
the CNN model (p is the number of cores/stressor instances).

Defense p (Utilization)|CNIN
DefWeb [25] 6 (100%) |28.8%
CacheShaping [16] 8 (100%) 10.9%
FLIPSTRESS 12 (100%) 6.3%

assessing fingerprinting defenses. Similar to Son et al. [25], our evaluation uses
100 websites from Alexa’s most visited websites list [8] and collects 100 traces
from each website. We use a standard attack duration of 30s for each website,
with cache measurements at a sampling period of 2ms.

Table 14 compares FLIPSTRESS with DefWeb [25] and CacheShaping [16] as a
defense against website fingerprinting attacks. The results for DefWeb (variant
using practical noise generation) and CacheShaping are sourced directly from
their respective studies. The second column of the table specifies the number of
CPU cores utilized in each study. In particular, the reported accuracies for De-
fWeb and CacheShaping are based on scenarios in which the systems used 100%
of their available physical cores. To ensure a fair comparison, we also evaluate
FLIPSTRESS under 100% core utilization, specifically using p = 12 instances,
corresponding to the maximum number of physical cores available on the test
machine.

FLIPSTRESS outperforms DefWeb and CacheShaping by achieving a signifi-
cantly lower attack accuracy of 6.3%, compared to 28.8% for DefWeb and 10.9%
for CacheShaping with Chrome and Linux.

8 Performance Overhead

As FLIPSTRESS is designed to mitigate browser-based side-channel attacks, we
now evaluate its performance overhead in the context of web browsing. We
adopt the methodology proposed by Son et al. [25], which focuses on assess-
ing the impact of the defense on website loading times. More precisely, we ac-
tivate the defense and monitor the beginning and completion of the website
rendering process by recording the difference in timestamps from the perfor-
mance.timing.navigationStart and performance.timing.loadEventEnd functions.
Whereas Son et al. [25] evaluated overhead using 30 websites, we extend this

FLIPSTRESS 19

Table 15. Performance overhead of FLIPSTRESS with a varying number of stressor
instances, averaged over 3 runs (p is the number of stressor instances).

p |Average Loading Time (ms)|Overhead Percentage
0 1,848 0%

1 2,425 31%

2 2,435 32%

4 3,351 81%

6 3,537 91%

8 4,393 138%

10 5,015 171%

12 6,035 226%

assessment to 100 websites based on the Alexa most visited website list [8] to
obtain a more robust measurement of performance impact, ensuring our results
capture a wider range of website behaviors and variations in load times.

As observed from Table 15, the baseline average loading time without the
defense is approximately 1,848 ms. The overhead increases with the number of
cores utilized, reaching up to 6,035 ms, or 226%, when all physical cores are used.
We measured the overhead of two previously proposed defenses when using all
12 physical cores in our system, and obtained 63% for DefWeb [25] and 119% for
CacheShaping [16]. For DefWeb, we use a random noise template while rendering
each of the 100 websites.

We note that, while imposing a high overhead when all cores are used, FLIP-
STRESS can reduce significantly the attack effectiveness. A mitigating factor is
that FLIPSTRESS is meant to be enabled only when visiting sensitive or high-
risk websites where cache-based attacks are a concern. As such, its performance
impact is limited to when it is actively running.

9 Discussion

Targeted deanonymization shares conceptual similarities with website finger-
printing, as both attacks exploit cache-based side channels to classify browsing
activity. However, due to its binary classification nature, targeted deanonymiza-
tion presents a unique challenge for defenses. In website fingerprinting, the at-
tacker typically faces a multi-class problem involving distinguishing among 100
or more websites, where the complexity lies in differentiating among numerous
classes. In contrast, targeted deanonymization simplifies the attacker’s objec-
tive to distinguishing between two classes — whether the user is the target or
not — significantly reducing the complexity of the classification problem. This
presents a more significant challenge for defenders because even slight variations
in cache patterns can enable successful classification in targeted deanonymiza-
tion, making it more difficult to thwart. The difficulty of defending against
targeted deanonymization is further amplified by the attackers’ flexibility in
creating the attack page. In contrast with website fingerprinting, where the at-
tackers aim to identify public websites whose form and content are known to
the defender ahead of time, in the targeted deanonymization scenario, attackers
can use different leaky resources, dynamically load these resources at varying
times, or alter their website’s structure to generate diverse cache traces. This

20 T. Basak et al.

adaptability allows attackers to bypass deterministic defenses, such as DefWeb
or CacheShaping, which rely on predefined templates or predictable patterns to
obfuscate cache behavior. Our experiments show that modifying the attack page
by increasing the number of leaky resources or delaying the leaky resource load
time leads to only a marginal increase in attack accuracy when FLIPSTRESS is
active.

The stressors used in FLIPSTRESS are effective because each stressor is de-
signed to obfuscate the LLC by leveraging diverse and distinct memory access
patterns. These patterns interact differently with cache replacement policies and
hardware prefetchers ensuring that no single consistent cache behavior emerges.
The effectiveness of FLIPSTRESS stems from two key factors. First, it generates
random and diverse noise by switching randomly and rapidly among seven dis-
tinct stressors. This randomness introduces significant variability in cache access
patterns, making it challenging for attackers to identify consistent features for
classification. Second, FLIPSTRESS generates higher noise levels, as reflected in
its average buffer access time of 25.12 ms, compared to 3.04 ms for DefWeb
and 10.03 ms for CacheShaping while using the same number of instances or
physical cores. This additional noise is necessary to dominate the attacker’s
measurements, ensuring that their data is influenced more by the defense mech-
anisms than the target’s actual cache behavior. Together, these factors prevent
accurate classification by machine learning models, reducing the effectiveness of
targeted deanonymization and website fingerprinting attacks. Moreover, FLIP-
STRESS’s adaptability makes it more scalable across diverse attack scenarios,
as it does not rely on specific assumptions about the attacker’s behavior, the
websites being visited, or the micro-architectural details of the victim’s system.

As anoise-based defense, FLIPSTRESS still shares the fundamental limitations
of other noise-based defenses: it only reduces the signal-to-noise ratio rather than
completely eliminating the side-channel leakage. Thus, as our results show, the
accuracy of the more advanced attack strategies we evaluated remains higher
than the base rate, even though the application of FLIPSTRESS significantly re-
duces it. FLIPSTRESS also incurs computational overhead, particularly at higher
intensity levels (e.g., p = 12), which could impact the user experience in resource-
constrained environments. As such, FlipStress is recommended for selective ac-
tivation when users visit high-risk or sensitive websites. Future work could focus
on optimizing the balance between noise generation and system overhead.

10 Conclusion

In this paper, we introduced FLIPSTRESS, a novel defense mechanism against
CPU cache-based side-channel attacks on the web, specifically targeted deanonymiza-
tion and website fingerprinting. By introducing noise injection through random-
ized stressors, FLIPSTRESS significantly reduces attack success rates, even in
scenarios involving advanced adversarial strategies and machine learning mod-

els. Its implementation as a browser extension ensures ease of deployment across
systems and user accessibility while offering tunable system overhead to balance
security with performance.

FLIPSTRESS 21

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

XSLeaks Summit 2022. https://tinyurl.com/xsleakssummit2022 (October
2022)

XSLeaks Summit 2023. https://tinyurl.com/xsleakssummit2023 (September
2023)

Scikit-learn: Machine learning in python (2024), https://scikit-learn.org/
Tensorflow: An end-to-end open source machine learning platform (2024), https:
//wuw.tensorflow.org

Flipstress artifact repository (2025), https://github.com/tapanbasakl2/
FlipStress

Colin King: stress-ng. https://wiki.ubuntu.com/Kernel/Reference/stress-ng
Cook, J., Drean, J., Behrens, J., Yan, M.: There’s always a bigger fish: a clarify-
ing analysis of a machine-learning-assisted side-channel attack. In: Proceedings of
the 49th Annual International Symposium on Computer Architecture. p. 204-217.
ISCA 722, Association for Computing Machinery, New York, NY, USA (2022)
ExpiredDomains.net: Alexa top websites. https://www.expireddomains.net/
alexa-top-websites/, accessed: 2022-10-10

Godfrey, M., Zulkernine, M.: A server-side solution to cache-based side-channel
attacks in the cloud. In: 2013 IEEE Sixth International Conference on Cloud Com-
puting. pp. 163-170 (2013)

Godfrey, M., Zulkernine, M.: Preventing cache-based side-channel attacks in a
cloud environment. IEEE Transactions on Cloud Computing 2(4), 395-408 (2014)
Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+flush: A fast and stealthy
cache attack. In: Proceedings of the 13th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment - Volume 9721. p. 279-299.
DIMVA 2016, Springer-Verlag, Berlin, Heidelberg (2016)

Hintz, A.: Fingerprinting websites using traffic analysis. In: International workshop
on privacy enhancing technologies. pp. 171-178. Springer (2002)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (Nov 1997)

Knittel, L., Mainka, C., Niemietz, M., Nof, D.T., Schwenk, J.: Xsinator.com: From
a formal model to the automatic evaluation of cross-site leaks in web browsers. In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security. p. 1771-1788. Association for Computing Machinery (2021)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436-444
(2015)

Li, H., Niu, N., Wang, B.: Cache Shaping: An Effective Defense Against Cache-
Based Website Fingerprinting. In: CODASPY 2022 - Proceedings of the 12th ACM
Conference on Data and Application Security and Privacy (2022)

Li, T., Parameswaran, S.: FaSe: Fast Selective Flushing to Mitigate Contention-
based Cache Timing Attacks. In: Proceedings - Design Automation Conference
(2022)

Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Proceedings - IEEE Symposium on Security and Privacy.
vol. 2015-July (2015)

Lyu, Y., Mishra, P.: A Survey of Side-Channel Attacks on Caches and Counter-
measures. Journal of Hardware and Systems Security 2(1) (2018)

Mukhtar, M.A., Mushtaq, M., Bhatti, M.K., Lapotre, V., Gogniat, G.: FLUSH
+ PREFETCH: A countermeasure against access-driven cache-based side-channel
attacks. Journal of Systems Architecture 104 (2020)

22

21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

T. Basak et al.

Oren, Y.: PP0 GitHub Repository. https://github.com/Yossioren/pp0 (2021)
Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of aes. In: Proceedings of the 2006 The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology. p. 1-20. CT-RSA’06, Springer-Verlag, Berlin,
Heidelberg (2006)

Research, G.: Google colaboratory (2024), https://colab.research.google.com/
Schwarz, M., Lackner, F., Gruss, D.: Javascript template attacks: Automatically
inferring host information for targeted exploits. In: NDSS. The Internet Society
2019

(Seong)hun, S., Debopriya Roy, D., Berk, G.: Defweb: Defending user privacy against
cache-based website fingerprinting attacks with intelligent noise injection. In:
Proceedings of the 39th Annual Computer Security Applications Conference. p.
379-393. ACSAC ’23, Association for Computing Machinery, New York, NY, USA
2023

éhustzerman, A., Avraham, Z., Croitoru, E., Haskal, Y., Kang, L., Levi, D., Meltser,
Y., Mittal, P., Oren, Y., Yarom, Y.: Website fingerprinting through the cache
occupancy channel and its real world practicality. IEEE Trans. Dependable Secur.
Comput. 18(5), 2042-2060 (2021)

Shusterman, A., Kang, L., Haskal, Y., Meltser, Y., Mittal, P., Oren, Y., Yarom,
Y.: Robust website fingerprinting through the cache occupancy channel. In: 28th
USENIX Security Symposium (USENIX Security 19). pp. 639-656. USENIX As-
sociation, Santa Clara, CA (Aug 2019)

Staicu, C.A., Pradel, M.: Leaky images: Targeted privacy attacks in the web. In:
Proceedings of the 28th USENIX Security Symposium (2019)

Sudhodanan, A., Khodayari, S., Caballero, J.: Cross-Origin State Inference (COSI)
Attacks: Leaking Web Site States through XS-Leaks. In: Network and Distributed
Systems Security (NDSS) Symposium (2020)

Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Security Symposium
2014

%’ong%in Zhou and DengGuo Feng: Side-Channel Attacks: Ten Years After Its
Publication and the Impacts on Cryptographic Module Security Testing (2005),
https://eprint.iacr.org/2005/388

Zaheri, M., Curtmola, R.: Leakuidator: Leaky resource attacks and countermea-
sures. In: Proc. of the 17th EAI International Conference, SecureComm 2021.
vol. 399, pp. 143-163. Springer (2021)

Zaheri, M., Oren, Y., Curtmola, R.: Targeted Deanonymization via the Cache
Side Channel: Attacks and Defenses. In: Proceedings of the 31st USENIX Security
Symposium, Security 2022 (2022)

Zhang, Y., Reiter, M.K.: Diippel: Retrofitting commodity operating systems to
mitigate cache side channels in the cloud. In: Proceedings of the ACM Conference
on Computer and Communications Security (2013)

A Additional Experimental Details

System Information. Table 16 provides information on the hardware, browsers,
and operating systems used in the experimental evaluation.

Machine Learning Classifier Parameters. The CNN and LSTM neural net-
work model was used with the hyperparameters described in Table 17. The Lo-
gistic Regression classifier was used with 1000 max iterations.

B

Table 16. System Information FLIPSTRESS 23

Property [Details
Windows/Linux System
Device Model |Lenovo ThinkPad P14s Gen 3

Processor 12th Gen Intel(R) Core(TM) i7-1260P, 12 Cores
L1 Cache 448 KB L1i, 640 KB L1i

L2 Cache 9 MB

L3 Cache 18 MB

(O Ubuntu 22.04.1 LTS / Windows 11 Pro

macOS System
Device Model [Apple M3 Max

Processor 16-cores (12 P-cores, 4 E-cores)

L1 Cache 192 KB L1i, 128 KB L1d (P-cores)
128 KB L1i, 64 KB L1d (E-cores)

L2 Cache 32 MB (P-cores), 4 MB (E-Cores)

0S macOS Sonoma 14.5

Browsers

Google Chrome|124.0.6367.91

Firefox 132.0

Tor 14.0.3

Table 17. Hyperparameters for CNN and LSTM models

Hyperparameters CNN LSTM

Optimizer Adam Adam
Learning rate 0.001 0.001

Batch size 32 32
Activation function relu relu
Dropout 0.3 0.7

Pool size 3 4

Epoch 40 40

Kernel 32, 64, 128 32, 256, 256

Description of Stressor Programs

The seven stressors implemented as part of the FLIPSTRESS defense are:

1.

Read Buffer: This stressor repeatedly reads values from two large buffers,
which are the size of the LLC buffer, filled with random data.

Write Buffer: Similar to the Read Buffer, this stressor writes incremented
values to two large buffers.

Read Linked List: This stressor uses two large linked lists and traverses them
to read data into a global variable.

Write Linked List: This stressor also uses linked lists but writes incremented
values to each node.

Stream: This stressor implements a simplified version of the STREAM bench-
mark, performing a series of operations like copying, scaling, and adding
values across large arrays, each the size of the LLC.

VM : This stressor allocates a LLC-sized buffer and performs bitwise oper-
ations that systematically clear bits. The continuous manipulation of bits
within the memory region places stress on the cache and memory.

24 T. Basak et al.

7. Memcpy: This stressor tests memory copying operations by implementing
naive versions of memcpy and memmove. It continuously copies and moves
data between large buffers, stressing the cache and memory.

C Additional Results for the FLIPSTRESS Defense
Against the TD Attack

To illustrate the effectiveness of FLIPSTRESS in mitigating the TD attack, we
examine the impact of FLIPSTRESS on the attacker’s buffer access times. With-
out noise introduced by FLIPSTRESS, as seen in Figure 3, the buffer access times
for the target and non-target scenarios are easily distinguishable. In contrast,
the application of FLIPSTRESS, as illustrated in Figure 4, introduces an unpre-
dictable pattern in the buffer access times measured by the attacker. By rapidly
switching and altering cache usage, FLIPSTRESS disrupts the attacker’s cache
readings, making them highly irregular. As a result, the buffer access times be-
come randomized, with the target exhibiting higher readings at some times and
the non-target at other times. This obfuscation effectively conceals the underly-
ing patterns, rendering them much more challenging for machine learning models
to classify accurately.

8

—— Target
Non-Target

Buffer access time
& @

N

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Fig. 3. Buffer access time for target and non-target with no noise.

—— Target
Non-Target

501

40

304

20

Buffer access time

10+

0 1 2 3 a 5 6 7 8 9 10
Time (seconds)

Fig. 4. Buffer access time for target and non-target with FLIPSTRESS (p=12).

