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Abstract. Web-based Git hosting services such as GitHub and GitLab are popular choices to manage and interact with Git
repositories. However, they lack an important security feature – the ability to sign Git commits. Users instruct the server to
perform repository operations on their behalf and have to trust that the server will execute their requests faithfully. Such trust
may be unwarranted though because a malicious or a compromised server may execute the requested actions in an incorrect
manner, leading to a different state of the repository than what the user intended.

In this paper, we show a range of high-impact attacks that can be executed stealthily when developers use the web UI of
a Git hosting service to perform common actions such as editing files or merging branches. We then propose le-git-imate, a
defense against these attacks, which enables users to protect their commits using Git’s standard commit signing mechanism.
We implement le-git-imate as a Chrome browser extension. le-git-imate does not require changes on the server side and can
thus be used immediately. It also preserves current workflows used in Github/GitLab and does not require the user to leave
the browser, and it allows anyone to verify that the server’s actions faithfully follow the user’s requested actions. Moreover,
experimental evaluation using the browser extension shows that le-git-imate has comparable performance with Git’s standard
commit signature mechanism. With our solution in place, users can take advantage of GitHub/GitLab’s web-based features
without sacrificing security, thus paving the way towards verifiable web-based Git repositories.

Keywords: GitHub, commit signature, verification record, signed commit, browser extension

1. Introduction

Web-based Git repository hosting services such as GitHub [1], GitLab [2], Bitbucket [3], Source-

forge [4], Assembla [5], RhodeCode [6], and many others, have become some of the most used platforms

to interact with Git repositories due to their ease of use and their rich feature-set such as bug tracking,

code review, task management, feature requests, wikis, and integration with continuous integration and

continuous delivery systems. Indeed, GitHub hosts over 96 million repositories [7] which represents a

growth of more than 900% since 2013 [8]. These platforms allow users to make changes to a remote

Git repository through a web-based UI, i.e., by using a web browser, and they comprise a substantial

percentage of the changes made to Git repositories: 48 of the top 50 most starred GitHub projects in-

clude web UI commits and an average of 32.1% of all commits per project are done through the web UI.

For some of these highly popular projects, web UI commits are actually used more often than using the
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traditional Git command line interface (CLI) tool (e.g., 71.8% of merge commits are done via the web

UI).1

Unfortunately, this ease of use comes at the cost of relinquishing the ability to perform Git operations

using local, trusted software, including Git commit signing. Instead, a remote party (the hosting server)

is instructed to perform actions for the client. Given that the server performs most of the operations on

behalf of the user, it cannot cryptographically sign information without requiring users to share their

private keys. Effectively, since GitHub does not support user commit signing, those who use the web UI

give up the ability to sign their own commits, and must rely completely on the server.

However, trusting a web-based Git hosting service to faithfully perform those actions may be unwar-

ranted. A malicious or compromised server can instead execute the requested actions in an incorrect

manner and change the contents of the repository. Since Git repositories and other version control sys-

tem repositories represent increasingly appealing targets, they have been subjected historically to such

attacks [9–16], with varying consequences such as the introduction of backdoors in code or the removal

of security patches. Similar attacks are likely to occur again in the future, since vulnerabilities may

remain undiscovered for a prolonged amount of time and websites may be slow in patching them [17].

For example, a user interacting with a GitHub web UI to create a file in the repository can trigger a

post-commit hook that adds backdoored code on the same file on the server-side. To introduce such a

backdoor, an unscrupulous server manipulates the submitted file and adds it to the newly-created commit

object. As a result, from that moment on, the Git repository will contain malicious backdoor code that

could propagate to future releases.

To counter this, we propose le-git-imate, a defense that incorporates the security guarantees offered

by Git’s standard commit signature into Git repositories that are managed via web UI-based services

such as GitHub or GitLab. le-git-imate is implemented as a browser extension and allows tools to cryp-

tographically verify that a user’s web UI actions are accurately reflected in the remote Git repository.

To achieve this, we present two designs. In the first one, which we refer to as the lightweight design,

le-git-imate computes a verification record on the user side and then embeds it into the commit object

created by the server. The verification record captures what the user expects to be included in the commit

object. Subsequently, anyone who clones the repository can traverse the object tree and check if the

server correctly performed the requested actions by comparing the user-embedded record to the actual

commit object created by the server. The first design is used as a stepping stone for the second design,

which we refer to as the main design. In the main design, le-git-imate pioneers the ability to sign a web

UI commit and create a standard GPG-signed Git commit object in the browser. As a result, there is no

difference between signed commits created using le-git-imate and those created by Git client tools. This

allows users to validate the integrity of web UI commits using standard Git tools. With le-git-imate in

place, users can take advantage of GitHub/GitLab’s web-based features without sacrificing security.

After exploring several strategies to compute the information necessary for the two designs, we settled

on solutions that we implemented exclusively in the browser using JavaScript, i.e., as a Chrome browser

extension. This covers the large majority of software development platforms (i.e., laptops and desktops).

Despite the tedious task of re-implementing significant functionality of a Git client in JavaScript, this

approach achieves the best portability and does not require the presence of a local Git client. It also

features optimizations that leverage the GitHub/GitLab API to download the minimum set of Git objects

needed to compute the verification record (for the lightweight design) or the commit signature (for the

1These statistics refer to commits after June 1, 2016, when GitHub started to use the noreply@github.com committer
email for web UI commits, thus providing us with the ability to differentiate between web UI commits and other commits.
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main design). The browser extension based on the lightweight design contains 15,838 lines of JavaScript

code, whereas the one based on the main design has 25,611 lines of code (numbers include several

third-party libraries needed to create the necessary Git objects and to push these objects to the server).

Excluding HTML/CSS templates, JSON manifests and libraries, the extension consists of a total of 4,095

and 4,467 lines of Javascript code for the two designs, respectively.

In addition to the cryptographic protections suitable for automatic verification, le-git-imate also pro-

vides UI validation to prevent an attacker from deceiving a user into performing an unintended action.

To do this, the user is presented with information about their commit that makes it easy to see its impact.

This limits a malicious server’s ability to trick a user into performing actions they did not intend.

While this paper focuses specifically on le-git-imate’s use with GitHub and GitLab, our work is appli-

cable to all web-based Git repository hosting services [1–6]. Our techniques are also general enough to

be used on web-based code management tools that can be integrated with a Git repository (such as Ger-

rit [18] for code reviews, Jira [19] for project management, or Phabricator [20] for web-based software

development).

In this paper, we make the following contributions:

• We identify new attacks associated with common actions when using the web UI of a web-based

Git hosting service. In these attacks, the server creates a commit object that reflects a different

repository state than the state intended by the user. The attacks are stealthy in nature and can have

a significant practical impact, such as removing a security patch or introducing a backdoor in the

code.

• We propose le-git-imate, a client-side defense for Git repositories that are managed via the web

UI, to mitigate the aforementioned attacks. le-git-imate pioneers creating standard GPG-signed Git

commits in the browser. Hence, it provides the exact security guarantees offered by Git’s standard

commit signing mechanism. le-git-imate offers both manual and automated key management.

• We implement le-git-imate as a Chrome browser extension for both GitHub and GitLab, and have

released it as free and open-source software [21]. Our implementation has several desirable features

that are paramount for practical adoption: (1) it does not require any changes on the server side and

can be used today, (2) it preserves current workflows used in GitHub/GitLab and does not require

the user to leave the browser, (3) commits generated by le-git-imate can be checked by standard

client tools (such as the Git CLI), without any modifications. le-git-imate also provides the first

implementation of Git’s merge commit functionality in JavaScript, which is of independent interest.

Last, but not least, unlike other existing libraries [22], le-git-imate provides an implementation of

Git commands (i.e. “git commit”, “git merge”, “git push”) without needing access to

the entire repository and without creating a working directory on the client side.

• We perform a security analysis of le-git-imate, which shows its effectiveness in mitigating attacks

that may occur when developers use the web UI of web-based Git hosting services.

• We evaluate experimentally the efficiency of our implementation. Our findings show that, when

used with a wide range of repository sizes, le-git-imate adds minimal overhead and has comparable

performance with Git’s standard commit signature mechanism.

• We perform a user study that validates the stealthiness of our attacks against a GitLab server. The

study also provides insights into the usability of our le-git-imate defense.

Together, our contributions enable users to take advantage of GitHub/GitLab’s web-based features

without sacrificing security. For ease of exposition, we will use GitHub as a representative web-based
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Git hosting service throughout the paper, but our attacks and defenses (including the le-git-imate browser
extension) have been developed and implemented for both GitHub and GitLab.

2. Background on Git and GitHub

GitHub is a web-based hosting service for Git repositories, and its core functionality relies on a Git
implementation. In this section, we describe several Git and GitHub concepts as background for the
attacks introduced in Section 4 and the defenses proposed in Section 5. Readers familiar with Git/GitHub
internals may skip this section.

2.1. Git repository internals

Git records a project’s version history into a data structure called a repository. Git uses branches to
provide conceptual separation of different histories. Figure 1 shows a repository with two branches:
master and feature. As a convention, the master branch contains production code that has been
verified and tested, whereas the feature branch is used to develop a new feature.

A branch can be merged into another branch to integrate its changes into the target branch. When a
new feature is fully implemented in the feature branch, it may be integrated into the production code
by merging the feature branch into the master branch. For GitHub, this is often achieved via the
pull request mechanism, in which a developer sends a request to merge a code update from her branch
into another branch of the project, and the appropriate party (e.g., the project maintainer) does the merge.

To work as depicted above, a Git repository uses three types of objects: commit objects, tree objects,
and blob objects. From the filesystem point of view, each Git object is stored in a file whose name is a
SHA-1 cryptographic hash over the zlib-compressed contents of the file. This hash is also used to denote
the Git object (i.e, it is the object’s name).

A blob object is the lowest-level representation of data stored in a Git repository. At the filesystem
level, each blob object corresponds to a file. A tree object is similar to a filesystem directory: It has
“blob” entries that point to blob objects (similar to a filesystem directory having filesystem files) and
“tree” entries that point to other tree objects (similar to a filesystem directory having subdirectories).

2.2. Git signed commits

Git provides the ability to sign commits: The user who creates a commit object can include a field
that represents a GPG digital signature over the entire commit object. Later, upon pulling or merging,
Git can be instructed to verify the signed commit objects using the signer’s public key. This prevents

Fig. 1. A Git repo with two branches, master and feature.
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commit <commit object size> tree <hash of tree object>

parent <hash of 1st parent commit object>

[parent <hash of 2nd parent commit object>]

author <author name> <author e-mail> <timestamp> <time zone>

committer <committer name> <committer e-mail> <timestamp> <time zone>

<commit message>

Fig. 2. The format of a Git commit object. Bold font denotes pre-defined keywords, and angle brackets (i.e., < >) denote actual
values for those fields. Regular and squash-and-merge commits have only one parent, whereas merge commits have two (or
more) parents depending on how many branches were merged – we show the case with two parents, the 2nd parent is enclosed
between square brackets.

Fig. 3. A regular commit on the feature branch.

tampering with the commit object and provides non-repudiation (i.e., a user cannot claim she did not

sign the commit).

However, with a service like GitHub, the server creates a commit object that is not signed by the user,

as the server lacks the cryptographic key material needed for such a signature.

2.3. Commiting via the GitHub web UI

For every code revision, a new commit object is created reflecting the state of the repository at that

time. This is achieved by including the name of the tree object that represents the project’s files and

directories at the moment when the commit was done. Each commit object also contains the names of

one (or more) parent commit objects, which reflect the previous state of the repository. The exact format

of a commit object is described in Fig. 2.

Performing a code revision using GitHub’s web UI will result in one of three possible types of Git

commit objects: regular commit, merge commit, or squash-and-merge commit objects:

Regular Commit Object. GitHub’s web UI provides the option to make changes directly into the repos-

itory, such as adding new files, deleting existing files, or modifying existing files. These changes can then

be committed to a branch, which results in a new regular commit object being added to that branch of

the repository. A new root tree is computed by modifying/adding/deleting the blob entries relevant to

the changeset in the corresponding trees and propagating these changes up to the root tree. Then, a new

commit is added with the new root tree.

For example, consider the repository shown in Fig. 1. Using GitHub’s web UI in her browser, a user

edits a file under the feature branch and then commits this change. As a result, the GitHub server will

create a new regular commit object C5 that captures the current state of the feature branch, as shown

in Fig. 3.
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Fig. 4. Merge commit from merging two branches.

Attacks against regular commit objects are described in Section 4.1.

Merge Commit Object. Consider a GitHub project in which an owner is responsible for maintaining a

branch called “master” and contributors work on their own branches to make updates to the code. When

a contributor completes the changes she is working on, she will send a “pull request” to the project

owner to merge the changes from her branch into the master branch. The project owner will review

the suggested changes in the pull request and will merge them into the master branch. This results in a

new merge commit object as the new head of the master branch. This new merge commit will contain

changes computed using the trees of the parent of both commits and the tree of the common ancestor(s)

(i.e., the commit from which both branches diverged originally).

For example, in Fig. 4, C5 is the merge commit object obtained by merging the feature branch

into the master branch. In this case, C5 has two parents, C2 and C4.2 The C5 object is created by the

GitHub server as a result of the project owner’s action to merge the pull request via GitHub’s web UI.

We note that the objects C3 and C4 from the pull request branch become part of the master branch

after the merge.

Attacks against merge commit objects are described in Section 4.2.

Squash-and-Merge Commit Object. When a pull request contains multiple commits, GitHub provides

the squash-and-merge option: The commits in the pull request are first “squashed” into a new commit

object that retains all the changes (commits) but omits the individual commits from its history. This new

squash-and-merge commit object is then added to the repository.

For example, consider the repository shown in Fig. 1, in which the project owner receives a pull request

for the feature branch and decides to use the squash-and-merge option. As a result, the GitHub server

first creates a new commit object by combining all the changes (commits) mentioned in the pull request,

as shown in Fig. 5(a). The server then adds the newly created commit object C5 on top of the current

head of the master branch C2, as shown in Fig. 5(b). The squash-and-merge option for merging a pull

request is preferred when work-in-progress changes (e.g., updates to address reviewer comments) that

are important in the feature branch are not necessarily important to retain when looking at the history

of the master branch. Indeed, objects C3 and C4 are not included in the master branch, and C5 will

have only one parent, which is C2. The new commit object (and tree object) will be computed in the

same way as the procedure for the regular commit described above.

Attacks against squash-and-merge commit objects are described in Section 4.2.3.

Rebase-and-merge Commit Object. A pull request may also be merged using the rebase-and-merge

option: all the new commits from the pull request are placed on top of all the commits in the master

2We note that, in general, Git allows to merge n branches (with n > 2), and the resulting merge commit object will have n

parents. However, at the moment, GitHub’s web UI does not allow merging more than two branches.
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Fig. 5. Repository state for squash-and-merge operations.

Fig. 6. Repository state for rebase-and-merge operations.

branch. However, instead of using a merge commit, for each commit in the pull request, a new commit

is created in the master branch. This option is preferred when it is important not to pollute the history

of the repository with a new merge commit object that makes it difficult to follow the evolution of the

repository.

For example, consider the repository shown in Fig. 6(a), in which the feature branch is about to be

merged into the master branch using the rebase-and-merge option. The server creates objects C3’ and

C4’ on top of C2, as shown in Fig. 6(b). Note that objects C3’ and C4’ are equivalent to objects C3 and

C4 in the feature branch (i.e., they point to the same tree object).

Attacks against rebase-and-merge commit objects are described in Section 4.2.4.

3. Threat model

We assume a threat model in which the attacker’s goal is to remove code (e.g., a security patch)

or introduce malicious code (e.g., a backdoor) from a software repository that is managed via a web

interface. We assume the attacker is able to tamper with the repository (e.g., modify data stored on

the Git repository), including any aspect of the webpages served to clients. This scenario may happen

either directly (e.g., a compromised or malicious Git server), or indirectly (e.g., through MITM attacks,

such as government attacks against GitHub [23,24]). There is evidence that, despite the use of HTTPS,

MITM attacks are still possible due to powerful nation-state adversaries [24] or due to various protocol

flaws [25–27]. Such an attacker will continue to violate the repository’s integrity as long as these attacks

[research-article] p. 7/32
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remain undetected. Since commit objects created by the server as a result of user’s web UI actions are

not signed by the user, the attacker may go undetected for a long amount of time. Thus, rather than

relying exclusively on the ability of web services to remain secure, client-side mechanisms such as the

one proposed in this work can provide an additional layer of protection.

The attacker can read and write any files on a repository that may contain a mix of signed commits

(e.g., created via Git’s CLI tool) and unsigned commits (e.g., created via the web UI). The integrity of

commits not created via the web UI can be guaranteed only if these commits are signed by users using

Git’s standard commit signing mechanism. Our solution is independent of whether commits not created

via the web UI are signed or not. We assume the attacker does not have a developer’s signing key they

are willing to use (such as insiders that do not want to reveal their identity). As such, the attacker cannot

tamper with signed commit objects without being detected. However, commit objects that are not signed

can be tampered with by the attacker. Since all commits created via the web UI are not user signed (as

is the case with GitHub and GitLab today3), the attacker can tamper with these objects when they are

created, or directly in the repository after they have been created.

Although the attacker can create arbitrary commits even when users are not interacting with the repos-

itory, these commits are not user-signed and will be detected upon verification. Removing an existing

commit from the end of the commit chain, or entirely discarding a commit submitted via the web UI

are actions that have a high probability of being noticed by developers. Otherwise, our solutions can-

not detect such attacks, and a more comprehensive solution should be used, such as a reference state

log [28].

We focus on attacks that tamper with commits performed by the user via the web UI (specific attacks

are described in Section 4). Such attacks: (1) are stealthy in nature since subtle changes bundled together

with a developer’s actions are hard to detect, (2) can be framed as if the user did something wrong, (3) can

be executed either by attackers than control the Git server, or by MITM attackers in conjunction with a

user’s web UI actions, and (4) may be performed by an unscrupulous developer who later denies having

done it and blames it on the web UI’s lack of security. Thus, we are mainly concerned with two attack

avenues:

• Direct manipulation of the commit fields, so that the commit does not reflect the user’s actions

through the web UI.

• Tricking the user into committing incorrect data by manipulating the information presented to the

user via the web UI. If not handled appropriately, this attack approach can even circumvent a defense

that performs user commit signatures, because the user can be deceived into signing incorrect data.

We assume attackers cannot get access to developer keys. Alternatively, a malicious developer in control

of a developer key may not want to have an attack attributed to herself and would thus be unwilling to

use this key to sign data they have tampered with.

3.1. Security guarantees

Answering to this threat model, the goal of a successful defensive system should be to enforce the

following:

3In late October 2017, GitHub started to sign commits made using the GitHub web interface (as an undocumented feature).
However, this only provides a false sense of security and does not prevent any of the attacks we describe in this paper because
GitHub uses its own private key to sign the commits.
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• SG1: Prevent web UI attacks. Developers should not be tricked into committing incorrect informa-

tion based on what is displayed in the web UI.

• SG2: Ensure accurate web UI commits. The commits performed by users via the web UI should

be accurately reflected in the repository. After each commit, the repository should be in a state that

reflects the developer’s actions.

• SG3: Prevent modification of committed data. An attacker should not be able to modify data that

has been committed to the repository without being detected.

4. Attacks

A benign server will faithfully execute at the Git repository layer the operation requested by the user

at the web UI layer. However, the user’s web UI actions can be transformed into damaging operations

at the repository layer. In this section, we identify new attacks that can result from some of the most

common actions that can be performed using GitHub’s web UI. Common to these attacks is the fact that

the server creates a commit object that reflects a different state of the repository than the state intended

by the user. In a project with multiple files, subtle changes in some of the files may go unnoticed by the

user performing the commit via the web UI. As a result, anyone cloning or updating the repository will

be unaware they have accessed a repository that was negatively altered.

4.1. Attacks against regular commits

Commit Manipulation Attacks. GitHub’s web UI allows users to manipulate repository data. The user

can add, delete, or modify files and directories. The user then pushes a “Commit” button to commit

the changes to the repository. As a result, the GitHub server creates a new commit object that should

reflect the current state of the project’s files. However, the server can instead create a commit object that

corresponds to a different project state, in which files have been added, deleted, or modified in addition

to or instead of those requested by the user.

The attack is easy to execute, as the server simply has to create the blob, tree and commit objects

that correspond to the incorrect state of the repository. Nevertheless, the attack’s impact can be sig-

nificant. Since the server can arbitrarily manipulate the project’s files, it can, for example, introduce a

vulnerability by making a subtle modification in one of the project’s files.

4.2. Attacks against merge commits

The server can manipulate the various fields of a merge commit object that it creates. Based on this

approach, the following attacks can be executed.

4.2.1. Incorrect merge commit attacks

The server can create an incorrect repository state by manipulating the “tree” field of the merge commit

object. The server generates an incorrect list of blob objects by adding/deleting/modifying project files,

then a tree object that corresponds to this incorrect blob list of blobs, and finally a merge commit object

whose “tree” field refers to the incorrect tree object. A project owner or developer will not detect the

attack when they clone/update the repository from the server.

For example, in Fig. 4 the feature branch is being merged into the master branch. Under benign

circumstances, the tree object pointed to by the merge commit C5 object should refer to a set of blob
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Fig. 7. Incorrect history merge attack.

objects that is the union of the sets of blobs referred to by the trees in C2 and C4. However, the server

can manipulate the contents of the tree object in C5 to include a different set of blobs. The server can

introduce malicious content by adding a new blob that does not exist in the trees in C2 or C4. Or, the

server can remove a vulnerability patch by keeping the blob from the master over the modified blob

in the feature branch that contained the patch. Or it can simply not include blobs that contained the

patch.

By manipulating the set of blobs pointed to by the tree object, the server can make arbitrary changes

to the state of the repository pointed to by the merge commit.

4.2.2. Incorrect history merge attacks

The server can also create an incorrect repository state by manipulating the “parent” fields of the

merge commit object. Instead of using the heads of the two branches to perform the merge commit, the

server can use other commits as parents of the merge commit.

Consider the initial repository shown in Fig. 1. As shown in Fig. 4, a correct merging of the “mas-

ter” and “feature” branches should result in a merge commit of C2 and C4 (i.e., the heads of the two

branches). However, the server can create the repository shown in Fig. 7 by merging the head of the

master branch with C3 instead of C4. This means only the changes introduced in C3 are merged. The

“parent” fields of C5 are set to point to C2 and C3.

The impact of this attack can be severe. If C3 contained a security vulnerability, which was fixed by

the developer in C4 before submitting the pull request, the fix will be omitted from the master branch

after the incorrect merge operation. In a different flavor of this attack, the malicious server merges the

head of the feature branch (C4) with C1, which is not the head of the master branch, thus omitting

potentially important changes contained in C2.

Unlike the previous attack described in Section 4.2.1, the server does not have to manipulate blob and

tree objects, but instead uses incorrect parents when creating the new merge commit object.

4.2.3. Incorrect squash-and-merge attacks

Consider the same scenario described in Fig. 1, except that the project owner chooses the squash-

and-merge option instead of the default recursive merge strategy to merge changes from the feature

branch into the master branch.

As shown in Fig. 5, the server should first create a new commit object by combining all the changes

(commits) mentioned in the pull request, and then should add the newly created commit object C5 on

top of C2, which is the current head of the master branch.

During the creation of C5, a malicious server can add any malicious changes or delete/modify any of

the existing changes mentioned in the pull request, and this action may go undetected.
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4.2.4. Incorrect rebase-and-merge attacks

The server can also manipulate a client’s request to use the rebase-and-merge option to merge changes
from a pull request. Consider the merge scenario described in Fig. 6, in which the rebase-and-merge

option is used to merge the feature branch into the master branch. As shown in Fig. 6(b), the
server should duplicate the two commits from the pull request on top of C2, the head of the master

branch. However, a malicious server can add two commits that are not equivalent to the commits in the
feature branch, and this action may go undetected.

4.2.5. Incorrect merge strategy attacks

Git can use one of five different merge strategies when merging branches: recursive, resolve, octopus,

ours and subtree. Each strategy may in turn have various options. The choice of merge strategy and
options influences what changes from the merged branches will be included in the merged commit and

how to resolve conflicts automatically (e.g., “favoring” changes in one branch over other branches, or
completely disregarding changes in other branches).

We note that web-based Git hosting services such as GitHub and GitLab allow a user to merge two
branches using the web UI only when there are no merge conflicts. Currently, such services support only

the recursive merge strategy with no options. However, given their track record of constantly adding new
features [29,30], we adopt a forward-looking strategy and consider a scenario in which they might add

support for a richer set of Git’s merging strategies.
The merge strategy introduces an additional attack avenue, as an untrusted server may choose to

complete the merge operation using a merge strategy different than the one chosen by the user. For
example, the server can use a different diff algorithm to determine the changes between the merged

branches than the one intended by the developer. Or, the server may choose a different automatic conflict
resolution than the one preferred by the developer. This can result in removing security patches, or

merging experimental code into a production branch. The defenses we propose in Section 5 are based
on a future-proof design that can also protect against incorrect merge strategy attacks.

4.3. Web UI-based attacks

The server could display incorrect information in the web UI in order to trick the user into committing

incorrect or malicious data. Web UI attacks are dangerous because even if a mechanism was in place to
allow the user to sign her commits via the web UI, these signatures would only legitimize the incorrect

data.
Incorrect list of changes. Before doing a merge commit, the user is presented with a list of changes

made in one branch that are about to be merged into the other branch. The user reviews these changes
and then decides whether or not to perform the merge. The server may present a list of changes that

is incomplete or different than the real changes. For example, the server may omit code changes that
introduced a vulnerability. Thus, the user may decide to perform the merge commit based on an incorrect

perception of the changes.
Inconsistent repository views. GitHub may provide inconsistent views of the repository by displaying

certain information in the web UI and then providing different data when the user queries the GitHub
API to retrieve individual Git objects. This might defeat defense mechanisms that rely exclusively either

on data retrieved from the GitHub API or on data retrieved from the web UI.
Hidden HTML tags. A web UI-based mechanism to sign the user’s commits may rely on the infor-

mation displayed on the merge commit webpage to capture the user’s perception of the operation. For
example, the head commits of the branches being merged may be extracted based on a syntactic check
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that looks for HTML tags with specific identifiers in the webpage source code. Yet, the server may serve

two HTML tags with the same identifier, one of which has the correct commit value and will be rendered

in the user’s browser, and the other one referring to an incorrect commit that will not be displayed (i.e., it

is a hidden HTML tag). The signing mechanism will not know which of the two tags should be used, and

may end up merging and signing the incorrect commit – while providing the user with the perception

that the correct commit has been merged.

Malicious scripts. The webpage served by the server in a file edit operation for a regular commit may

contain a malicious JavaScript script that changes the file content unbeknownst to the user (e.g., silently

removes a line of code). As a result, the user may unknowingly commit an incorrect version of the file.

5. le-git-imate: Adding verifiability to web-based git repositories

In this section, we present le-git-imate, our defense to address misbehavior by an untrustworthy server.

The fundamental reason behind these attacks is that the server is fully trusted to compute correctly the

Git repository objects. Git’s standard commit signature mechanism provides a solution to this problem

by having the client compute a digital signature over the commit object and include this signature in the

commit object that it creates.

We adopt a similar strategy and present first a solution based on a lightweight design, namely to embed

a verification record in the commit object, even when the client does not generate the commit object. We

then present an improved solution, our main design, in which the user is able to generate Git standard

commit signatures in the browser and therefore can sign web UI commits.

5.1. Design goals

We identify a set of design goals that should be satisfied by any solution that seeks to add verifiability

to web-based Git repositories:

(1) The solution should embed enough information into the commit object so that anyone can ver-

ify that the server’s actions faithfully follow the user’s requested actions. More specifically, the

solution should offer the same (or similar) security guarantees as do regular Git signed commits.

(2) For ease of adoption and to ensure that it can be used immediately, the solution should not require

server-side changes.

(3) The solution should not require the user to leave the browser. This will minimize the impact on the

user’s current experience with using GitHub.

(4) The solution should preserve as much as possible the current workflows used in GitHub: to per-

form a commit operation, the user prepares the commit and then pushes one button to commit. In

particular, the solution should preserve the ease of use of GitHub’s web UI and must not increase

the complexity of performing a commit, as this may hurt usability.

(5) The solution must be efficient and must not burden the user unnecessarily. In particular, the solution

should not add significant delay, as this will degrade the user experience and it may hurt usability.

(6) The solution should not break existing workflows for Git CLI clients: Regular signed commits can

still be performed and verified by Git CLI clients.

[research-article] p. 12/32



H. Afzali et al. / Towards adding verifiability to web-based Git repositories 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

5.2. A Strawman solution

A simple solution can mitigate one of the attacks described in Section 4.2.1, the basic attack against

merge operations. By default, Git uses the recursive strategy with no options for merging branches. The

tree and blob objects corresponding to the merge commit object are computed using a deterministic

algorithm based on the tree and blob objects of the parents of the merge commit object.

As a result, the correctness of the merge operations performed by the Git server can be verified. After a

user clones/pulls a Git repository, the user parses the branch of interest, and computes the expected out-

come of all merge operations based on the parents of the merge commit objects. The user then compares

this expected outcome with the merge operation performed by the server.

This solution is insufficient because it can only mitigate the simplest attack against a merge commit

operation – only when the recursive merge strategy with no options is used, and the server includes an

incorrect list of blob objects in the merge commit object by adding/deleting/modifying project files. In

particular, this solution cannot handle any of the other attacks we presented, including attacks against

regular commits, against merge commits based on incorrect parents or incorrect merge strategy, against

squash and merge operations, or web UI-based attacks. Instead, we need a solution that provides a com-

prehensive defense against all these attacks. In addition, we need to address design and implementation

challenges related to the aforementioned design goals.

5.3. le-git-imate design

We propose two designs for le-git-imate. The lightweight design computes a verification record on

the client side and embeds it into the commit object created by the server. The main design gives the

user the ability to sign the web UI commits, i.e. the user creates standard Git signed commits. Both

designs use information from GitHub’s commit webpage as it is rendered in the user’s browser, and thus

capture what the user expects to be included in the commit object. Subsequently, anyone who clones

the repository can check whether the server tampered with the commit objects by traversing the object

tree and validating the verification record or the commit signatures. We compare the two designs later in

Section 7.4.

5.3.1. Lightweight design

To achieve design goal #1, we are faced with two challenges. First, the user cannot compute the same

exact commit object computed by the server, because a commit object contains a field, timestamp, that

is non-deterministic in nature, as it is the exact time when the object was created by the server. The

lightweight design takes advantage that, at the moment when the commit object is being created by the

server, most of the fields in the commit object are deterministic and can be computed independently by

the user. Second, we need to find a way to embed the verification record created by the user in the commit

object that is created by the server. We add verifiability to the Git repository by leveraging the fact that

GitHub (as well as any other web-based Git hosting service) allows the user to supply the commit

message for the commit object. The user creates the verification record and embeds the verification

record into the commit message of the commit object. The verification record contains information that

can later be used to attest whether the server performed correctly each of the actions requested by the

user through the web UI. By including the verification record in the commit message, our solution also

meets design goal #2 – no changes are needed on the server.

We include the deterministic fields of the commit object into the verification record, as shown in

Fig. 8. For merge commit objects, we also include the merge commit strategy chosen by the user. All
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<original commit message>

[<merge commit strategy>]

<commit size>

<tree hash (hash of tree object)>

<hash of 1st parent commit>

[<hash of 2nd parent commit>]

<author name> <author e-mail>

<committer name> <committer e-mail>

<signature over entire verification record>

Fig. 8. The format of the signed verification record, used in our lightweight design. Fields in between square brackets ([ ]) are
included only for merge commit objects (merge strategy and hash of 2nd parent commit).

commit <commit object content size>

tree <tree hash (hash of tree object)>

parent <hash of 1st parent commit>

[<hash of 2nd parent commit>]

author <author name> <author e-mail> <author timestamp>

committer <committer name> <committer e-mail> <committer timestamp>

<commit message>

<signature over all commit fields>

Fig. 9. The format of the signed commit object, used in our main design. Fields in between square brackets ([ ]) are included
only for merge commit objects (hash of 2nd parent commit).

these fields, except the “tree hash”, are extracted from the GitHub page where the user performs the

commit. The “tree hash” field is computed independently by the user (as described in Section 5.4.2).

The user may describe her commit by providing a message in the GitHub commit webpage. However,

our solution overwrites the user’s message with the verification record. To preserve the original user’s

message, we include it in the verification record as the “original commit message” field.

5.3.2. Main design

The main challenge that prevents the lightweight design from computing a standard Git commit sig-

nature for web UI commits is that the commit timestamp is determined by the server and, thus, is not

known by the user when it initiates the commit via the web UI. To address this issue, our main design

creates the commit objects on the user side and pushes them to the server. The user chooses the commit

timestamp and creates a standard signed commit object by computing a signature over all the fields of a

commit, as shown in Fig. 9.

When computing the signed commit object on the client side, our main design is faced with the

challenge to meet design goal #3: creating a signed commit object without requiring the user to leave

the browser. We pioneer the ability to create a standard GPG-signed Git commit object in the browser by

re-implementing the functionality of the git commit and git send-pack commands exclusively

in the browser. That allows the user to create a signed commit object locally and push it to the server (as

described in Section 5.4.3). The commit signature can later be used to attest whether the server tampered

with the web UI commits. By creating a signed commit in the browser, our solution also satisfies design

goal #2.
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PROCEDURE: Verify_Commits

Input: RepositoryName

Output: success/fail

1: commits← Get_Commits(RepositoryName)

2: for (each commit in commits) do

3: // Check if the commit is signed

4: if Validate_Signed_Commit(commit) == false then

5: commit_msg← Extract_Commit_Msg(commit)

6: verif_record← Extract_Verif_Record(commit_msg)
7: // Validate the verification record

8: if Validate_Verif_Record(verif_record) == false then

9: return fail

10: return success

Just like in the lightweight design, all the fields of a commit, except the “tree hash” and the commit
timestamp, are extracted from the GitHub page. The “tree hash” field is computed independently by the
user (as described in Section 5.4.2). As explained later in Section 6, both designs of le-git-imate provide
automated and manual checks to mitigate web UI attacks that attempt to confuse the user by displaying
incorrect information on the commit webpage.

5.3.3. Verification procedure

When a developer retrieves the repository for the first time (e.g., git clone or git checkout),
or when she pulls changes from the repository (e.g., git pull), she will check the validity of the
retrieved commits as follows:

• for the lightweight design: execute the Verify_Commits procedure. We implemented this verifica-
tion procedure as a new Git command. Alternatively, it can be implemented as a client-side Git
hook executed after a git clone or after a git pull command;
• for the main design: run the standard git verify-commit command.

Based on this verification strategy, le-git-imate achieves design goal #6.
Verify Commits Procedure. The developer expects each commit to have either a valid standard com-

mit signature (line 4) or a valid verification record (line 8). If there is at least one commit that does
not meet either one of these conditions, the verification fails, since the developer cannot get strong
guarantees about that commit. The function that validates a verification record (Validate_Verif_Record,
line 8) returns success only if the following two conditions are true: (a) the verification record contains
a valid digital signature over the verification record; (b) the information recorded in the verification
record matches the information in the commit object. Specifically, we check that the following fields
match: commit size, tree hash, first parent commit hash, author name, author email, committer name,
and committer email. For merge commit objects, we also check the merge commit strategy and hashes
of additional commit parents.

5.4. le-git-imate implementation

With the aim of meeting design goals #2, #3 and #4, we implemented our solution as a client-side
Chrome browser extension [31]. After preparing the commit, instead of using GitHub’s “commit” button
to commit the change, the user activates the extension via a “pageAction” button that is active only when
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visiting GitHub. The extension is intended to help the user create a verification record (for the lightweight

design) or a standard signed commit (for the main design). To do so, our extension parses the GitHub web

UI, obtains the relevant information regarding the current head of the repository (for regular commits)

or a pull-request (for merge commits and squash-and-merge), and computes the “tree hash” of the new

commit. Then, the following steps take place depending on which design is implemented:

• for the lightweight design:

∗ compute the signed verification record;

∗ include the signed verification record into the GitHub commit message, and push the commit to

the server;

• for the main design:

∗ compute the signed commit object;

∗ push the commit object to the server.

In the following, we first give an overview of the implementation of each design. Then, we outline

computing the “tree hash” field, which is a core component of both designs. We then describe creating a

signed commit object in the browser, as the main improvement in the main design over the lightweight

design. Finally, we present the key management component of le-git-imate.

5.4.1. Implementation overview

The extension consists of two JavaScript scripts that communicate with each other via the browser’s

messaging API as follows:

(1) The content script [32] runs in the user’s browser and can read and modify the content of the

GitHub webpages using the standard DOM APIs. The content script collects information about the

commit operation from the GitHub commit webpage and passes this information to the background

script.

(2) The background script [33] cannot access the content of GitHub webpages, but computes the “tree

hash” (as described in Section 5.4.2). This script then performs automatic and manual checks to

prevent web UI-based attacks (as described in Section 6). In short, the automatic checks ensure

that GitHub is providing consistent repository views between the web UI and the GitHub API (or

any other API used by the Git hosting provider). For the manual checks, the background script

allows the user to check the accuracy of the commit fields by displaying it inside a seperated pop-

up window. If the user is satisfied, she hits a button called “finalize commit”. Upon pushing the

button, the following steps are performed.

• for the lightweight design:

∗ the background script transfers the signed verification record to the content script;

∗ the content script includes the signed verification record into the GitHub commit message and

triggers the commit button on the GitHub webpage. As a result, the signed verification record

is embedded into the GitHub repository as part of the commit message;

• for the main design:

∗ the background script creates a signed commit object and pushes it to the server (as described

in Section 5.4.3);
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∗ the content script triggers the commit button on the GitHub webpage to reload the page and

notify the user about the changes.

Performing a commit using GitHub’s web UI requires the user to push one button. With le-git-imate in

place, the user can commit with two clicks while browsing GitHub’s commit webpage (one to activate

the extension, and one to transfer the signed commit to the server and reload the GitHub’s web page).

Based on this design, we argue that le-git-imate achieves design goal #4.

The extension consists of a total of 4,095 and 4,467 lines of Javascript code for the two designs, re-

spectively, excluding HTML/CSS templates, JSON manifests and third-party libraries. All operations to

compute commits, signing and verification are done in pure browser-capable Javascript, which required

the re-implementation of some fundamental Git functions (such as git commit, git merge-file

and git push) in JavaScript-only versions. The code to fetch arbitrary information and objects from

the repository uses the GitHub API [34], but it could use Git’s pack protocol [35] to work with other

hosting providers just as well.

At the time of developing the le-git-imate extension, previous attempts to implement various Git func-

tions in JavaScript did not offer all the needed functionalities [22,36–39]. le-git-imate provides the first

implementation of Git’s merge commit in JavaScript, which is of independent interest.4 In addition, it

implements the git commit and git push commands without needing access to the entire repos-

itory and without creating a working directory on the client side, which is not possible in the standard

Git. Although we implemented le-git-imate as an extension for the Chrome browser, it relies purely on

JavaScript and can be instantiated in other browsers with minimal effort. We have released le-git-imate

as free and open-source software [21].

5.4.2. Computing the “tree hash” field

The extension can populate most of the fields of the new commit by extracting them from the GitHub

commit webpage, except for the “tree hash” field which needs to be computed independently. We now

describe how to compute this field, which is expected to have the same value as the “tree” field of the

commit object (i.e., the hash of the contents of the tree object associated with the commit object that is

about to be created).

To compute the tree hash, the background script needs the following information, which is collected

by the content script and passed to the background script:

• for regular commits: branch name on which the commit is performed, and the following

file/directory information depending on the user’s operation that is being committed:

∗ add: the name and content of added file(s);

∗ edit: the name and updated content of edited file(s);

∗ delete: the name of deleted file(s).

The background script also needs the name of the directory(es) that might have been affected by

the file operation;

• for merge commits and squash-and-merge commits: branch names of the branches that are being

merged.

Basic approach 1. The background script can delegate the computation of the tree hash field to a script

that runs on the user’s local system (outside the browser). The local script runs a local Git client that

4We note that isomorphic-git [22] released its first implementation of the git merge command based on the diff3 algorithm
on September 4, 2019 [40].

[research-article] p. 17/32



18 H. Afzali et al. / Towards adding verifiability to web-based Git repositories

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 10. An example object tree.

clones the branch(es) involved in the commit from the GitHub repository into a local repository. The Git

client simulates locally the user’s operation and performs the commit in a local repository, from where

the needed tree hash is then extracted.

Basic approach 2. The previous approach is inefficient for large repositories, as cloning the entire

branch can be time consuming. To address this drawback, the client could cache the local repository in

between commits. That helps the local Git client to retrieve only new objects that were created since the

previous commit.

Optimized approach for regular commits. Delegating the computation of the tree hash field to a local

script is convenient since a local Git client will be responsible to compute the necessary Git objects.

However, whenever GitHub’s web UI is preferred for commits, this usually implies that the user does

not have a local Git client. Moreover, assuming that the repository is cached in between commits is a

rather strong assumption.

We explore an approach in which the tree hash is computed exclusively using JavaScript in the

browser. For this, we have re-implemented in JavaScript the regular and the merge commit function-

ality of a Git client. As such, both designs are implemented exclusively in the browser, without the need

to rely on any software outside of the browser, and without assuming any locally-cached repository data.

Design goal #3 is thus achieved.

Instead of cloning entire branches, we propose an optimized approach. An analysis of the top 50 most

starred GitHub projects reveals that for a regular commit performed using GitHub’s web UI, only one

file is edited on average and the median size of the changes is 76.5 bytes. For merge commits, the median

number of changed files in the pull request branch is 2. The median number of commits in the master

branch and in the pull request branch after the common ancestor of these branches are 10.2 and 3.7,

respectively. This raises the possibility to compute the tree object without retrieving the entire branch.

Instead, we only retrieve a small number of objects and recompute some of the objects in order to obtain

the needed tree object.

Our optimized algorithm leverages the fact that GitHub provides an API to retrieve individual Git

objects (blob, tree, or commit). We illustrate the optimized algorithm with an example for the object

tree shown in Fig. 10. Assume the user performs an operation on a file under Dir2 and then commits.

To compute the tree object for the commit, the background script first retrieves the tree object TDir2

corresponding to Dir2, followed by the following steps which depend on the performed operation:

• add a file under Dir2: compute a blob entry for the newly added file; re-compute TDir2 by adding

the blob entry to the list of entries in TDir2;

• edit a file under Dir2: compute a blob entry for the edited file; re-compute TDir2 by replacing the

blob entry corresponding to the edited file with the newly computed blob entry;
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• delete a file under Dir2: re-compute TDir2 by removing the blob entry corresponding to the deleted

file.

The change in the TDir2 tree object needs to be propagated to its parent tree object TDir1 (i.e., the

tree object corresponding to Dir1). To do this, the background script retrieves the TDir1 tree object using

GitHub’s API, and then updates it by changing the tree entry for TDir2 to reflect the new value of TDir2.

In general, the propagation of changes to the parent tree object continues up until we update the “root”

tree object which corresponds to the commit object that will be created by the server. This “root” tree

object is the tree object that we need to compute.

Unlike the basic approach 1 presented earlier, this optimized approach proves to be much faster (as

shown by our evaluation in Section 7) and does not require a Git client installed on the user’s local

system. We note that all Git objects retrieved through the API are verified for correctness before being

used (they need to either have a valid le-git-imate verification record or a valid standard Git commit

signature).

Optimized approach for merge and squash-and-merge commits. We now describe our optimized al-

gorithm to compute the tree object for merge commits and squash-and-merge commits. The algorithm

is described for the case of merging two branches: the pull request branch feature is merged into

the master branch. However, it can be extended in a straightforward manner to handle the merging of

multiple branches.

Just like in the optimization for regular commits, we leverage the GitHub API for retrieving a minimal

set of repository objects that are needed to compute the tree object for the merge commit.

The merge commit is a complex procedure that reconciles the changes in the two branches into a

merge commit object. At a high level, the tree of the merge commit (i.e. the merge tree) is obtained by

merging the trees of the head commits of the two branches. We do by initializing the merge tree with

the tree of the master branch, and then add/update/remove its entries to reflect the fact that blobs were

added, modified, or deleted in the feature branch.

To determine the lists of added, modified, and deleted blobs in the feature branch, we use the

following algorithm:

(1) Retrieve the tree of the head commit of the feature branch. Let L1 be the list of all the blob

entries in this tree.

(2) Retrieve the tree of the commit that is the common ancestor of the two branches. Let L2 be the list

of all the blob entries in this tree.

(3) Given lists L1 and L2:

• if a blob entry exists in both lists (i.e., same blob path), but the blob has different contents (i.e.,

different SHA1 hash), then add the blob entry to the list of modified blobs;

• if a blob entry exists in L1 and does not exist in L2, then add it to the list of added blobs;

• if a blob entry exists in L2 and does not exist in L1, then add it to the list of deleted blobs.

Since the entries in the trees retrieved from the GitHub API are already ordered lexicographically

based on the paths of the blobs, this algorithm can be executed efficiently (execution time is linear in the

number of tree entries).

Having obtained the lists of blobs that were added, modified and deleted in the feature branch, we

add to the merge tree the entries for the blobs that were added, and remove the entries for the blobs that

were deleted. For modified blobs, we update the corresponding entries as follows: We use the GitHub
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API to retrieve the corresponding blobs from the two branches and then compute the modified blob via

a three-way merge.

We note that changes in the tree of a subdirectory have to be propagated up to the tree of the subdirec-

tory’s parent directory. Similarly to our optimization for regular commits, the propagation of changes to

the parent tree object continues up until we update the “root” tree object which corresponds to the merge

commit object that will be created by the server. This “root” tree object is the tree object that we need to

compute.

5.4.3. Creating and sending the commit object to the server

le-git-imate’s main design gives the user the ability to sign the web UI commits in the browser. To do

so, the extension creates the signed commit object and pushes it to the server by reimplementing the

functionality of the git commit command and git send-pack command, respectively. We note

that, unlike other existing libraries [22], we implement this functionality without needing access to the

entire repository and without creating a working directory on the client side.

Create the signed commit object. Once the deterministic fields of the new commit are extracted from

the GitHub page, le-git-imate simulates the git commit command to create the commit object as

follows.

(1) determine the commit timestamp locally;

(2) compute the “tree hash” field, as detailed in Section 5.4.2;

(3) compute a Git standard commit signature over the commit’s fields;

(4) create the commit object and insert the commit signature into it;

(5) create all new blob and tree objects related to the new commit.

Push the commit object. Git provides transferring data between repositories using two types of pro-

tocols: the “dump” protocol and the “smart” protocol [41]. The first one only allows to read data from

the server (i.e., no writing data to the server). The “smart” protocol, however, supports both reading and

writing data from/to the server. This protocol uses two sets of processes for transferring data: a pair for

pushing data from the client to the server, and a pair for fetching data from the server. To push data to

a remote server, Git uses the “send-pack” and “receive-pack” processes. The send-pack process runs on

the client and connects to a receive-pack process on the server. These processes help the client to find

what is the server’s state, and then to negotiate the smallest amount of data that should be sent to the

server. As a result, the client can publish what is being updated locally to a remote repository on the

server.

The transferred data between client and server is sent over a custom file called “Packfile”, which is

a file used to store Git objects in a highly compressed format. Git objects are normally stored in the

“Loose” format, in which each version of a file is stored in its entirety. Unlike the Loose format, the

Packfile stores a single version of a file, and maintains different patches to derive the other versions of

the file.

When the user wants to update a remote repository, Git runs the send-pack process to initiate a connec-

tion to the server. The receive-pack process on the server immediately responds with the server’s state,

specifying the head of each branch. Using the server’s response, the client determines what commits it

has that the server does not. Then the send-pack process tells the server which branches are going to

be updated. For each branch, the client sends the old head and the new head. Next, the client sends a

packfile of all the objects the server does not have. Finally, the server replies with a success (or failure)

message.
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To run the protocol depicted above, le-git-imate could simply invoke the CLI git push command.
However, design goal #3 prevents us from leaving the browser. le-git-imate tackles this challenge by
simulating the entire protocol in the browser. Essentially, le-git-imate re-implements the following func-
tionalities of a Git client in the browser, using Javascript:

(1) execute the git send-pack functionality to contact the server and get the state of the remote
repository;

(2) create the packfile of all the objects (i.e, commit, blob, tree) that the server does not have;
(3) send the packfile to the server;
(4) get the server’s response (success or failure).

5.4.4. Key management

Key management can be either performed manually or in an automated fashion. le-git-imate provides
users with both options to manage the private key that is used to sign their commits.

• Automatic (Private key store): le-git-imate asks the user to log into a third-party private key store.
Upon successful login, the user’s private key is retrieved from the third-party server. Then the key
is stored locally to avoid asking it every time that the user wants to perform a commit. However, if
the user prefers not to cache the private key locally, she must authenticate to the third-party server
once per commit.
• Manual (Import local keys): The extension supports manual key management for those users who

dislike storing even a passphrase-protected private key on a third-party server. Such users have
options to either load an existing private key or generate a new one.

Out of several key management systems ([42–44]), we leverage Keybase [42] as a private key store
based on its relatively high popularity (over 300,000 active users) and on its rich set of APIs. It al-
lows users to store passphrase-protected private keys on Keybase servers, without trusting the Keybase
servers. This system simplifies the private key management by allowing users to retrieve their private
key from a server anywhere anytime, and even use one private key across different devices. We note that
Keybase puts the private keys at risk if the passphrase is compromised.

We note that GitHub has recently introduced a feature to verify GPG signed commits using the public
key of the signer [45], which is stored and managed by GitHub. However, relying on an untrusted server
to manage user keys does not fit our threat model, and so le-git-imate does not leverage this feature.

6. Security analysis

In this section, we analyze the security guarantees provided by le-git-imate.

6.1. Prevent web UI attacks

le-git-imate relies in part on extracting information from the commit webpage in order to compute the
verification record (for the lightweight design) or the signed commit object (for the main design). To
prevent the web UI attacks described in Section 4.3, le-git-imate has additional checks that retrieve Git
objects via the API, and verify their correctness before use based on either a le-git-imate verification
record or a standard Git commit signature.

To defend against a server that presents an incorrect list of changes before a merge commit, we use
the API to compute independently the list of changes based on the heads of the branches that are being
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merged. We then compare it with the list of changes presented in the webpage, and alert the user of any
inconsistencies. Since the “hash tree” field is computed based on Git objects retrieved via the API, the
GitHub server has to create commit objects that are consistent with the commit signature. Otherwise,
any inconsistencies will be detected when the verification procedure is run.

To defend against the hidden HTML tags attack, we leverage the fact that a benign GitHub merge
commit webpage should present only one HTML tag describing the number of commits present in the
branches being merged. If more than one such tag is detected, we notify the user. We also inform the
user about the number of commits that should be visible in the rendered webpage, and the user can
visually check this information. Assuming there are n commits, we then check that there are n HTML
tags describing a commit and report any discrepancy to the user as well.

Before pushing the commit to the server, le-git-imate displays in a pop-up window three text areas as
follows:

(1) information about parent commit (author, committer, and creation date), retrieved via the API. This
helps the user to detect if the new commit is added on top of a commit other than the head of the
branch;

(2) for regular commits, the differences between the parent commit (retrieved via the API) and the
commit that is about to be created. This allows the user to detect any inconspicuous changes made
by malicious scripts in the commit webpage;

(3) the fields of the new commit object. This allows the user to check if the fields of the new commit
match the information displayed on GitHub’s commit webpage.

Whereas these checks may not be 100% effective since they are done manually by the user, they
provide important clues to the user about potential ongoing attacks. le-git-imate forces the server to
provide consistent repository information between what is displayed in the user’s browser and what is
provided in response to API queries. For example, in the incorrect history merge attack of Fig. 7, if C4
is hidden from both browser UI and API queries, the user doing the merge would notice the attack, for
instance, because the latest displayed commit, C3, may not have a satisfactory commit message (e.g.,
ready to be merged, or feature/patch is finished). If the server displays C4 on the webpage, but hides it
in API queries, the manual checks would help to detect the inconsistency.

It is notable that the pop-up window could be integrated with the original GitHub webpage. However,
the content of the GitHub page may be manipulated by malicious scripts originating from the untrusted
server. To mitigate this threat, le-git-imate uses an isolated pop-up window to display the signed infor-
mation. Since this pop-up window is created locally by le-git-imate, the browser enforces that data in
this window can only be written by scripts associated with the le-git-imate extension. A similar approach
is used by other security-conscious browser extensions such as Mailvelope [46] and FlowCrypt [47].
Based on the above discussion, we argue that le-git-imate achieves security guarantee SG1.

6.2. Ensure accurate web UI commits

To create a signed verification record or a standard Git commit signature, le-git-imate uses information
about the user (i.e., author, committer), the state of the repository (i.e., the head of the branch), and the
user’s requested actions (i.e., the “tree hash” computed over the changes made by the user). To capture
such information, le-git-imate relies on the content of the GitHub webpage and a set of Git objects
retrieved from the server. Since all this information is verified before use (as described in Section 6.1),
le-git-imate cannot be tricked into using incorrect information. Thus the commits created by le-git-imate

reflect the user’s actions and our solution achieves security guarantee SG2.
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6.3. Prevent modification of committed data

Commits created by le-git-imate have either a signed verification record or a standard commit signa-

ture. In either case, the signature is calculated over a payload of information including the commit size,

the tree hash, the hash of parent(s) commit, and the commit’s author. This prevents attackers from chang-

ing the committed data without being detected. Indeed, any unauthorized modifications (e.g., delete a file

or change the author) in the committed data will be caught during the verification procedure (described

in Section 5.3.3). Therefore, we conclude that le-git-imate achieves security guarantee SG3.

7. Experimental evaluation

In this section, we study the performance of our browser extension prototype to see whether it meets

design goal #5. Specifically, we investigate whether the time to sign a web UI commit remains within

usable parameters for our different implementations. In addition, we consider the tradeoffs between

setup time and disk space required.

For this evaluation, we covered five variants of our tool:

• No-Cache: In this approach, a local Git CLI client clones an entire branch and computes the new

Git commit object, whereas the browser extension computes the verification record based on infor-

mation from the new commit. This is the “Basic approach 1” described in Section 5.4.2.

• Cache: This approach is the same as above, but it uses a local copy of the repository (as cache).

Thus, the client retrieves only new objects that were created since the previous commit. Based on

our findings about the top 50 most starred GitHub projects, we assume a cached local repository is

behind the remote repository by 4 commits (for a regular commit) and by 10 commits (for a merge

commit). This corresponds to the “Basic approach 2” described in Section 5.4.2.

• NativeSign: A baseline approach in which the local script of the extension performs a signed commit

locally using a Git client. This is the same as the Cache approach, however, it results in a standard

signed Git commit object.

• Optimized1: An optimized approach based on the lightweight design, that queries for Git objects

on demand to compute the verification record exclusively in the browser. This does not require a

local repository nor any additional tools outside of the browser.

• Optimized2: An optimized approach based on the main design, that queries for Git objects on

demand to create signed commit objects exclusively in the browser. Compared to the Optimized1

variant, it creates a standard signed Git commit object on the client side.

7.1. Experimental results

To test our implementations against a wide range of scenarios, we picked five repositories of different

history sizes, file counts, directory-tree depths and file sizes, as shown in Table 1. To simulate real-life

scenarios, they were chosen from the top 50 most popular GitHub repositories (popularity is based on

the “star” ranking used by GitHub, which reflects users’ level of interest in a project5).

The client was run on a system with Intel Core i7-6820HQ CPU at 2.70 GHz and 16 GB RAM.

The client software consisted of Linux 4.8.6-300.fc25.x86_64 with git 2.19 and the GnuPG gnupg2-2.7

5The statistics refer to the top 50 GitHub projects as of August 25, 2019.
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Table 1

Repositories chosen for the evaluation. We show the size of the master branch, the number of files, the average file size, and the
number of commits for each repository

Repo. Size (MB) File count File size (bytes) History size (# of commits)

gitignore 1.9 231 564 3,153

vue 15.2 549 10,880 3,035

youtube-dl 46.7 944 6,308 17,231

react 97.6 1,563 9,132 121,293

go 182.3 8,677 10,543 40,779

Table 2

Execution time for a regular commit (in seconds)

Repo. No-Cache Cache NativeSign Optimized1 Optimized2

gitignore 0.37 0.16 0.16 0.33 0.61

vue 0.85 0.22 0.22 0.35 0.62

youtube-dl 4.01 0.22 0.23 0.32 0.66

react 5.46 0.25 0.25 0.36 0.63

go 14.81 0.20 0.21 0.45 0.72

library for 2048-bit RSA signatures. Experimental data points in the tables of this section represent the

median over 30 independent runs. For all variants, the time to push the Git commit object to the server is

not included in the measurements. When running the five variants of our tool, we noticed that one CPU

core (out of 8 cores) was used.

We note that, compared to an earlier version of this article [48], the experimental numbers in this sec-

tion for the Optimized1 of le-git-imate are smaller. This is because we have improved the implementation

of that variant by reducing the number of GitHub API calls by two times for regular commits (from four

to two API calls) and by four times for merge commits (from twelve to three API calls).

Regular commits. Table 2 shows the execution time for regular commits for all variants of our tool.

A regular commit consists of editing a file that is two subdirectory levels below the root level and

committing the changed file (we also measured the time for commits in a subdirectory nested up to four

levels below the root level, but the difference is negligible – under a tenth of a second). The size of the

changes for the edited file was 1.2 kilobytes, which is the maximum size of the changes observed for the

top 50 most starred GitHub projects.

In the case of the No-Cache variant, the execution time is dominated by the time to clone the repository.

Notice that this only requires to retrieve one commit object with all its corresponding trees and blobs,

which leaves little space for optimization. In contrast, the Cache and NativeSign variants are barely

affected by network operations, since only new objects are retrieved from the remote Git repository.

The optimized variants fetch the minimum number of Git objects needed to compute the commit

object. As a result, they are influenced by two factors: (1) the number of changed files and (2) the location

of these files in the repository, which determines the number of tree objects needed to be retrieved. In

particular, repository size is not a major factor for the performance of the optimized variants.

It is important to point out that the execution time for the optimized variants is dominated by the time

to retrieve the Git objects from the remote server over the network. On average, Optimized1 is about

300 ms faster than Optimized2 due to the fact that Optimized2 needs to create a packfile of all new

objects the server does not have. That includes, as explained in Section 5.4.3, making additional network
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Table 3

Execution time for a merge commit (in seconds)

Repo. No-Cache Cache NativeSign Optimized1 Optimized2

gitignore 0.41 0.17 0.17 0.87 1.11

vue 0.92 0.36 0.36 0.90 1.19

youtube-dl 4.39 0.22 0.23 1.06 1.39

react 5.73 0.29 0.30 1.31 1.53

go 15.59 0.25 0.25 1.16 1.41

connections. Our experimental results show that, if we exclude time to create the packfile, Optimized2
has a similar performance with Optimized1.

Finally, we point out that optimized variants use the OpenPGP Javascript library [49] to compute in
the browser a digital signature for the verification record or for the commit object. As opposed to that,
computing signatures in the Cache and NativeSign variants is faster, because it is done by the Git client,

which is optimized for specific architectures. If we exclude the signature creation time, Optimized1
exhibits similar performance with NativeSign.

Merge commits. Table 3 shows the execution time for merge commits for all variants of our tool.
A merge commit is created by merging into the master branch an open pull request branch that

has no conflicts. Each number in the table is the median over merging the last open 30 pull requests for
each repository (at the time when the experiment was performed). As such, each pull request consists of
a number of commits ranging from 1 to 16, and a number of changed files ranging from 1 to 75.

None of our variants have complexity worse than linear. Similarly to the regular commit experiment,
the No-Cache variant exhibits a running time linear with the size of the repository. Likewise, the Cache
and NativeSign variants exhibit a slightly higher time for merge commits when compared to regular
commits due to the computation of the merge operation itself.

The optimized variants perform under 1.5 seconds for all cases – regardless of repository size, because
the time it takes to perform the operation depends on the number of changed files and directories in the
target branch and in the pull request branch. This explains why the time for the “react” pull request is

higher than for “go”, which is a bigger repository.
Similarly to regular commits, the Optimized2 variant is about 300 ms slower than Optimized1 on

average, because it creates the packfile of all new Git objects that are necessary.

7.2. User experience considerations

From the results above, we concluded that a No-Cache version is out of usable parameters due to its
high execution time. However, the Cache and Optimized versions perform well under website respon-

siveness metrics.
Work by Nielsen and Miller [50–52] suggests that a response under a second is the limit in which

the flow of thought stays uninterrupted, even though the user will notice the delay. From then on, and

up to 10 seconds, responsiveness is harmed, with 10 seconds being a hard limit for the time a user
is willing to spend waiting for on a website’s response. Further work [53,54] presents an “8 second
rule” as a hard limit in which websites should serve information. In addition, work by Nah [55] sets a
usable limit around two seconds if there is feedback presented to the user (e.g., a progress bar). Work

of Arapakis [56] argues that 1,000 ms of increased response time is still hard to notice by some users,
depending on the nature of the activity. Finally, further studies suggest that response times that range
from two seconds to seven seconds are associated with low user drops (and high conversion rates) given
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that users are engaging in activities understood to be complex [57]. Using GitHub’s web UI for actions

such as code commits and merge commits usually requires the user to review the code changes, which

can take from seconds to minutes.

Under these considerations, and in context of the above experiments, we conclude that the Cache,

NativeSign and Optimized versions fall under usable boundaries.

7.3. Disk usage and other considerations

Among the three implementations, NativeSign requires to store a local copy of the repository. In con-

trast, the Optimized versions run entirely on the browser, and with fairly minimal memory requirements.

Likewise, the Optimized versions do not require a local installation of a Git client, a shell interpreter,

and any other tools. The size of this Optimized implementation is much smaller than the official Git

binary (as of version 2.19). The disk space needed for the whole extension is 465 KB for the Optimized1

version and 735 KB for the Optimized2 version. If we also consider dependencies (which include other

JavaScript libraries that are needed), the storage grows to 1.2 MB and 1.67 MB, respectively.

Finally, we contrast the required configuration parameters, such as paths to executables, cache paths,

and private key settings. In this case, the Optimized versions also shine in contrast to the remaining

three. Since all operations are performed in-browser, the Optimized variants can almost work out of the

box, as they only require configuring the key for signing the verification record or the commit.

Due to the reasons outlined above, we consider our Optimized variants to fall under reasonable param-

eters for usability. We conclude that, with minimal disk and memory footprints, minimal configuration

parameters and reasonable delays, our optimized implementation meets design goal #5.

7.4. Comparison between the lightweight and main designs

In this section, we compare the two designs by summarizing their various advantages and drawbacks:

• Verifiability and Compatibility with Existing Workflows: The main design computes standard Git

signed commits which can be verified with the standard Git CLI tool. The lightweight design in-

troduces a verification record which requires adding a Git command to the Git CLI tool in order to

perform verification. This may require slight changes to existing workflows, as the verification now

relies on information that exists in the commit message.

• Security: The main design provides the exact security guarantees offered by Git’s standard commit

signing mechanism. The lightweight design provides security guarantees comparable and compati-

ble with Git’s standard commit signing mechanism

• Performance: Both designs have comparable performance with Git’s standard commit signature

mechanism. However, the lightweight design is slightly faster than the main design, because it does

not need to create a packfile of all new objects on the client side.

• Storage: The lightweight design has smaller storage and memory requirements (15,838 lines of

JavaScript code and 1.2 MB) compared to the main design (25,611 lines of JavaScript code and

1.67 MB).

• User interface: Both designs have the same user interface.

We conclude that the main design is preferable in general due to its full compatibility with existing

workflows, but the lightweight design may be preferable when performance and storage are critical and

even a slight improvement in these parameters would make a difference.
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8. User study

Having received IRB approval, we conducted a user study on 49 subjects with two primary goals
in mind. The first goal was to evaluate the stealthiness of our attacks against web-based Git hosting
services. The second goal was to evaluate the usability of our le-git-imate browser extension when used
by Git web UI users.

8.1. User study setup

In order to measure user’s interactions with the web-based Git UI, we hosted an instrumented GitLab
server using Flask [58] and the original GitLab source code [2]. For each participant, we assigned a copy
of the retrofit repository, which is among the top 5 most starred GitHub projects in Java. We chose
retrofit due to the participants’ familiarity with Java and the repository being representative for a
medium-to-large repository size (1503 commits, 265 files, and 4.5 KB average file size).

Our study used the le-git-imate implementation based on the lightweight design. We argue that the re-
sults are applicable to both designs because their implementations have the same graphical user interface
and have very similar performance (as shown in Section 7).

The subjects were recruited as volunteers from the student population at our institutions, with a ma-
jority of them receiving extra course credit as an incentive to participate. After a screening process to
ensure that participants had a basic understanding of Git and GitHub/GitLab services, 49 subjects took
part in the study. We also discarded six additional participants given that they were unable to complete
any or most of the tasks in the user study. Table 4 in Appendix A provides demographics about the
remaining 43 participants in the study.

8.2. User study description

The study consisted of two parts, each of which contained several tasks. Each task required participants
to interact with the GitLab web UI in order to perform either a branch merge, or to edit, add, or delete
one file in their copy of the retrofit repository.

During the first part, we collected a baseline usability data of the GitLab web UI usage, as well as the
participants’ ability to detect any of our GitLab web UI attacks. Participants had to perform 10 tasks, 4
were related to merge commits operations and 6 were related to regular commits using the web UI. To
test the attack-stealthiness aspect, the GitLab server would maliciously transform their actions using a
pre-commit hook on 5 out of the 10 tasks. During the second part of the user study, which consisted of
8 tasks (of which 4 were merge commits and 4 were regular commits), we tried to measure the usability
of our le-git-imate browser extension. Subjects were asked to perform the commits using the le-git-imate

browser extension (which subjects were asked to install during the study) and a newly-generated GPG
key.

To measure the stealthiness of the attacks, we asked the subjects if they think that the GitLab server
performed the tasks correctly after they were done with both parts. While answering this question, access
to the GitLab repository was disabled, to ensure the users only noticed the attacks before being asked
explicitly about them.

In order to assess the usability of the tool and the web UI usage, we recorded the time taken to perform
each task. We compared the time taken to perform similar tasks with and without the extension in order
to assess the burden our tool adds to the time users take to perform operations. In addition, the subjects
were then asked to rate the usability of the browser extension on a scale of 1 to 10 (1 = least usable, 10
= most usable).
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Finally, in order to gain additional insight into the users’ individual answers, they were required to
answer a few general questions about their experience level with using web-based Git hosting services
and demographic questions (age, gender, etc.).

8.3. User study results

While performing the study, a user could fail on performing a task by either performing a wrong type
of commit than the one required, or because the user did not perform any commit (i.e., a skipped task).
Tasks that were skipped in a time in which a user did not spend a realistic time to attempt the task (i.e.,
less than 4 seconds), were labeled as ignored tasks.

Attack stealthiness. During the first part of the study, we expected that a few participants would detect
some of the attacks, especially those that made widely-visible changes to the repository (such as those
that changed multiple files in the root-level). However, results indicate the opposite, as no participant
was able to detect any attacks. The reason behind it may be that most users are not expecting a Git web
UI to misbehave.

Extension usability. We evaluate the usability of our extension based on several metrics: percentage of
successful tasks and average completion time for tasks in Part 2 compared to tasks in Part 1, and direct
usability rating by participants.

In Part 1, subjects were able to successfully complete on average 97.6% of the tasks (9.76 out of 10).
The average time needed to perform a task was 63 seconds.

In Part 2, subjects were able to successfully complete on average 92.1% of the tasks (7.37 out of 8).
However, if we discard the ignored tasks (which subjects may have skipped due to a lack of interest), the
successful completion rate increases to 94.8%. It is worth nothing that 10 participants had to perform
the same task twice, as they performed it the first time without using the extension. However, once they
realized their mistake, they performed the rest of the tasks using the extension. In Part 2, the average time
needed to perform a task was 44 seconds. Interestingly, the tasks in Part 2, which are using our browser
extension, were completed faster than those in Part 1. This is likely because users familiar with GitHub,
but not with GitLab, initially needed some time to learn how to perform various types of commits in
GitLab.

The extension received a direct usability rating of 8.3 on average.

9. Related work

This work builds on previous work in three main areas: version control system (VCS) security, secu-
rity in VCS-hosting services and browser/HTML-based attacks. In this section, we review the primary
research in each of these areas.

VCS Security. Wheeler [59] provides an overview of security issues related to software configuration
management (SCM) tools. He puts forth a set of security requirements, presents several threat models
(including malicious developers and compromised repositories), and enumerates solutions to address
these threats. Gerwitz [60] provides a detailed description of creating and verifying Git signed commits.
Commit signatures were also proposed for other VCS systems, such as SVN [61]. This work focuses on
providing mechanisms to sign commit data remotely via a web UI on an untrusted server.

There have been proposals to protect sensitive data from hostile servers by incorporating secrecy into
both centralized and distributed version control systems [62,63]. Shirey et al. [64] analyze the perfor-
mance trade-offs of two open source Git encryption implementations. Secrecy from the server might be
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desirable in certain scenarios, but it is orthogonal to our goals in this work. Finally, work by Torres-Arias

et al. [28] covers similar attack vectors where a malicious server tampers with Git metadata to trick users

into performing unintended operations. These attacks have similar consequences to the ones presented

in this paper.

Security in SaaS. In parallel to the VCS-specific issues, Git hosting providers face the same challenges

as other Software-as-a-Service (SaaS) [65,66] systems. NIST outlines the issues of key management

on SaaS systems on NISTIR-7956 [67], such as blind signatures when a remote system is performing

operations on behalf of the user. This work is a specific instance of the challenges presented by NIST.

Further work explores usable systems for key management and cryptographic services on such plat-

forms. For example, work by Fahl et al. [43] presents a system that leverages Facebook for content

delivery and key management for encrypted communications between its users. The motivation behind

using Facebook, and other works of this nature [68,69] is the widespread adoption and the ease of usage

for entry-level users. Based on similar motivation, this work seeks to bring Git commit signing to the

web UI.

Web and HTML-based Attacks. In addition to the challenges SaaS systems face, web UI issues are of

particular interest. Substantial research was done in the field of automatic detection of web-based UI’s

vulnerabilities that can target the web application’s database (e.g., SQL Injection) or another user (e.g.,

Cross Site-Scripting). While automatic detection of these vectors is relevant to the overall security of

our scheme, we assume that a repository may be malicious or impersonated (e.g., via a MiTM attack).

Additional work in this area, a direct motivation for Section 4.3, explores ways that a UI can use

to force user behaviors [70]. While we do not consider phishing attacks to be part of the threat model

(besides a possible pathway for a MiTM attack), research into the detection of phishing schemes could

be used to identify and leverage compromised web UI’s that trick users into performing unintended

actions [71]. Specifically, we highlight the work by Kulkarni et al. [72] and Zhang et al. [73], which

attempt to identify known-good versions of a web UI and warn users of possible impersonations.

10. Conclusion

Web-based Git repository hosting services such as GitHub and GitLab allow users to manage their Git

repositories via a web UI using the browser. Even though the web UI provides usability benefits, users

have to sacrifice the ability to sign their Git commits.

In this paper, we revealed novel attacks that can be performed stealthily in conjunction with several

common web UI actions on GitHub. Common to all these attacks is the fact that commits created by the

server do not reflect the user’s actions. The impact can be significant, such as removing a security patch,

introducing a backdoor, or merging experimental code into a production branch.

To counter these attacks, we devised le-git-imate, a defense scheme that provides security guarantees

comparable and compatible with Git’s standard commit signing mechanism. With our solution in place,

users can take advantage of GitHub’s web-based features without sacrificing security. le-git-imate does

not require any changes on the server side and can be used today with existing web UI deployments. Our

experimental evaluation and user study show that le-git-imate incurs a reasonable performance overhead

and presents a minimal usability burden to Git web UI users.

le-git-imate’s current design provides limited protection against web UI attacks. As future work, we

plan to develop a more comprehensive defense mechanism against UI attacks, especially through a more

tight integration with the provider of the web-based Git repository hosting service. Adapting le-git-imate
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to other web-based repository hosting services will require a degree of manual work that depends on the
specifics of the service’s UI; however, we found that the same general principles used for GitHub/GitLab
are applicable to a wide variety of similar services.
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Appendix A. User study demographics

Table 4 provides demographics about the user study participants.

Table 4

Demographics for user study participants

Subjects 43

GENDER

Male 33

Female 10

AGE

20 to 25 years 34

25 to 35 years 8

35 years or older 1

GITHUB/GITLAB MEMBERSHIP

More than 2 years 13

Between 1–2 years 18

Less than 1 year 6

Less than 6 months 3

Not using a web-based Git repository 3

GITHUB/GITLAB USE

A few times per day 5

Once per day 4

A few times per week 17

A few times per month 15

Not using GitHub/GitLab 2

FAMILIARITY WITH GIT COMMIT SIGNING

Very familiar (use it on a daily basis) 6

Somewhat familiar (use it sometimes) 23

Not familiar (never use it) 14

FAMILIARITY WITH PUBLIC KEY CRYPTOGRAPHY

Very familiar 14

Somewhat familiar 27

Not familiar 2
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