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Abstract

Searchable symmetric encryption (SSE) allows a party to outsource the storage of his data to
another party in a private manner, while maintaining the ability to selectively search over it. This
problem has been the focus of active research and several security definitions and constructions
have been proposed. In this paper we begin by reviewing existing notions of security and propose
new and stronger security definitions. We then present two constructions that we show secure
under our new definitions. Interestingly, in addition to satisfying stronger security guarantees, our
constructions are more efficient than all previous constructions.

Further, prior work on SSE only considered the setting where only the owner of the data is
capable of submitting search queries. We consider the natural extension where an arbitrary group
of parties other than the owner can submit search queries. We formally define SSE in this multi-user
setting, and present an efficient construction.

1 Introduction

Private-key storage outsourcing [30, 4, 33] allows clients with either limited resources or limited exper-
tise to store and distribute large amounts of symmetrically encrypted data at low cost. Since regular
private-key encryption prevents one from searching over encrypted data, clients also lose the ability
to selectively retrieve segments of their data. To address this, several techniques have been proposed
for provisioning symmetric encryption with search capabilities [40, 23, 10, 18]; the resulting construct
is typically called searchable encryption. The area of searchable encryption has been identified by
DARPA as one of the technical advances that can be used to balance the need for both privacy and
national security in information aggregation systems [1].

One approach to provisioning symmetric encryption with search capabilities is with a so-called
secure index [23]. An index is a data structure that stores document collections while supporting
efficient keyword search, i.e., given a keyword, the index returns a pointer to the documents that
contain it. Informally, an index is “secure” if the search operation for a keyword w can only be
performed by users that possess a “trapdoor” for w and if the trapdoor can only be generated with
a secret key. Without knowledge of trapdoors, the index leaks no information about its contents.
As shown by Goh in [23], one can build a symmetric searchable encryption scheme from a secure
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index as follows: the client indexes and encrypts its document collection and sends the secure index
together with the encrypted data to the server. To search for a keyword w, the client generates and
sends a trapdoor for w which the server uses to run the search operation and recover pointers to the
appropriate (encrypted) documents.

Symmetric searchable encryption can be achieved in its full generality and with optimal security
using the work of Ostrovsky and Goldreich on oblivious RAMs [35, 25]. More precisely, using these
techniques any type of search query can be achieved (e.g., conjunctions or disjunctions of keywords)
without leaking any information to the server, not even the “access pattern” (i.e., which documents
contain the keyword). This strong privacy guarantee, however, comes at the cost of a logarithmic (in
the number of documents) number of rounds of interaction for each read and write. In the same paper,
the authors show a 2-round solution, but with considerably larger square-root overhead. Therefore,
the previously mentioned work on searchable encryption [40, 23, 10, 18] tries to achieve more efficient
solutions (typically in one or two rounds) by weakening the privacy guarantees.

1.1 Our contributions

We now give an overview of the contributions of this work.

Revisiting previous definitions. We review existing security definitions for secure indexes, includ-
ing indistinguishability against chosen-keyword attacks (IND2-CKA) [23] and the simulation-based
definition in [18], and highlight some of their limitations. Specifically, we recall that IND2-CKA does
not guarantee the privacy of user queries (and is therefore not an adequate notion of security for
constructing SSE schemes) and then highlight (and fix) technical issues with the simulation-based
definition of [18]. We address both these issues by proposing new game-based and simulation-based
definitions that provide security for both indexes and trapdoors.

New definitions. We introduce new adversarial models for SSE. The first, which we refer to as non-
adaptive, only considers adversaries that make their search queries without taking into account the
trapdoors and search outcomes of previous searches. The second—adaptive—considers adversaries
that choose their queries as a function of previously obtained trapdoors and search outcomes. All
previous work on SSE (with the exception of oblivious RAMs) falls within the non-adaptive setting.
The implication is that, contrary to the natural use of searchable encryption described in [40, 23, 18],
these definitions only guarantee security for users that perform all their searches at once. We address
this by introducing game-based and simulation-based definitions in the adaptive setting.

New constructions. We present two constructions which we prove secure under our new definitions.
Our first scheme is only secure in the non-adaptive setting, but is the most efficient SSE construction
to date. In fact, it achieves searches in one communication round, requires an amount of work from
the server that is linear in the number of documents that contain the keyword (which is optimal),
requires constant storage on the client, and linear (in the size of the document collection) storage on
the server. While the construction in [23] also performs searches in one round, it can induce false
positives, which is not the case for our construction. Additionally, all the constructions in [23, 18]
require the server to perform an amount of work that is linear in the total number of documents in
the collection.

Our second construction is secure against an adaptive adversary, but at the price of requiring
a higher communication overhead per query and more storage at the server (comparable with the
storage required in [23]). While our adaptive scheme is conceptually simple, we note that constructing
efficient and provably secure adaptive SSE schemes is a non-trivial task. The main challenge lies in
proving such constructions secure in the simulation paradigm, since the simulator requires the ability

2



Properties [35, 25] [35, 25]-light [40] [23] [18] SSE-1 SSE-2

hides access pattern yes yes no no no no no

server computation O(log3 n) O(
√
n) O(n) O(n) O(n) O(1) O(1)

server storage O(n · log n) O(n) O(n) O(n) O(n) O(n) O(n)

number of rounds log n 2 1 1 1 1 1

communication O(log3 n) O(
√
n) O(1) O(1) O(1) O(1) O(1)

adaptive adversaries yes yes no no no no yes

Table 1: Properties and performance (per query) of various SSE schemes. n denotes the number of documents
in the collection. For communication costs, we consider only the overhead and omit the size of the retrieved
documents, which is the same for all schemes. For server computation, we show the costs per returned document.
For simplicity, the security parameter is not included as a factor for the relevant costs.

to commit to a correct index before the adversary has even chosen its search queries—in other words,
the simulator needs to commit to an index and then be able to perform some form of equivocation.

Table 1 compares our constructions (SSE-1 and SSE-2) with the previous SSE schemes. To make
the comparison easier, we assume that each document in the collection has the same (constant) size
(otherwise, some of the costs have to be scaled by the document size). The server computation row
shows the costs per returned document for a query. Note that all previous work requires an amount
of server computation at least linear with the number of documents in the collection, even if only
one document matches a query. In contrast, in our constructions the server computation is constant
per each document that matches a query, and the overall computation per query is proportional to
the number of documents that match the query. In all the considered schemes, the computation and
storage at the user is O(1).

We remark that as an additional benefit, our constructions can also handle updates to the docu-
ment collection in the sense of [18]. We point out an optimization which lowers the communication
complexity per query from linear to logarithmic in the number of updates.

Multi-user SSE. Previous work on searchable encryption only considered the single-user setting.
We also consider a natural extension of this setting, namely, the multi-user setting, where a user owns
the data, but an arbitrary group of users can submit queries to search his document collection. The
owner can control the search access by granting and revoking searching privileges to other users. We
formally define searchable encryption in the multi-user setting, and present an efficient construction
that does not require authentication, thus achieving better performance than simply using access
control mechanisms.

Finally, we note that in most of the works mentioned above the server is assumed to be honest-
but-curious. However, using techniques for memory checking [14] and universal arguments [7] one can
make those solutions robust against malicious servers at the price of additional overhead. We restrict
our attention to honest-but-curious servers as well.

1.2 On different models for private search

Before providing a detailed comparison to existing work, we put our work in context by providing
a classification of the various models for privacy-preserving search. In recent years, there has been
some confusion regarding three distinct models: searching on private-key encrypted data (which is the
subject of this work); searching on public-key encrypted data; and single-database private information
retrieval (PIR).
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Common to all three models is a server (sometimes called the “database”) that stores data, and a
user that wishes to access, search, or modify the data while revealing as little as possible to the server.
There are, however, important differences between these three settings.

Private-key searchable encryption. In the setting of searching on private-key-encrypted data,
the user himself encrypts the data, so he can organize it in an arbitrary way (before encryption) and
include additional data structures to allow for efficient access of relevant data. The data and the
additional data structures can then be encrypted and stored on the server so that only someone with
the private key can access it. In this setting, the initial work for the user (i.e., for preprocessing the
data) is at least as large as the data, but subsequent work (i.e., for accessing the data) is very small
relative to the size of the data for both the user and the server. Furthermore, everything about the
user’s access pattern can be hidden [35, 25].

Public-key searchable encryption. In the setting of searching on public-key-encrypted data,
users who encrypt the data (and send it to the server) can be different from the owner of the decryption
key. In a typical application, a user publishes a public key while multiple senders send e-mails to the
mail server [15, 2]. Anyone with access to the public key can add words to the index, but only the
owner of the private key can generate “trapdoors” to test for the occurrence of a keyword. Although
the original work on public-key encryption with keyword search (PEKS) by Boneh, di Crescenzo,
Ostrosvky and Persiano [15] reveals the user’s access pattern, Boneh, Kushilevitz, Ostrovsky and
Skeith [16] have shown how to build a public-key encryption scheme that hides even the access pattern.
This construction, however, has an overhead in search time that is proportional to the square root of
the database size, which is far less efficient then the best private-key solutions.

Recently, Bellare, Boldyreva and O’Neill [8] introduced the notion of public key efficiently search-
able encryption (ESE) and proposed constructions in the random oracle model. Unlike PEKS, ESE
schemes allow anyone with access to a user’s public key to add words to the index and to generate
trapdoors to search. While ESE schemes achieve optimal search time (same as our constructions – see
below), they are inherently deterministic and therefore provide security guarantees that are weaker
than the ones considered in this work.

Single-database PIR. In single-database private information retrieval (or PIR), introduced by
Kushilevitz and Ostrovsky [31], a user can retrieve data from a server containing unencrypted data
without revealing the access pattern and with total communication less then the data size. This was
extended to keyword searching, including searching on streaming data [36]. We note, however, that
since the data in PIR is always unencrypted, any scheme that tries to hide the access pattern must
touch all data items. Otherwise, the server learns information: namely, that the untouched item was
not of interest to the user. Thus, PIR schemes require work which is linear in the database size. Of
course, one can amortize this work for multiple queries and multiple users in order to save work of
the database per query, as shown in [27, 28], but the key feature of all PIR schemes is that the data
is always unencrypted, unlike the previous two settings on searching on encrypted data.

1.3 Versions of this Paper

This is the full version of [20] and includes all omitted proofs and several improvements. Following [19],
the definition of SSE used in this version explicitly captures the encryptions of the documents. Using
the terminology of [19], we consider pointer-output SSE schemes as opposed to [20] which considered
structure-only schemes. While most previous work on SSE considers only the latter (ignoring how
the documents are encrypted), we prefer the former definition of SSE. Another difference with [20]
is in our treatment of multi-user SSE. Here, we describe the algorithms of a multi-user SSE scheme
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as stateful which allows us to provide a “cleaner” description of our construction. Finally, we note
that the simulation-based definitions used in this work (i.e., Definitions 4.8 and 4.11) differ from the
definitions that appeared in a preliminary full version of this paper (i.e., Definitions 3.6 and 3.9 in
[21]). We believe that the formulations provided here are easier to work with and intuitively more
appealing.

2 Related Work

We already mentioned the work on oblivious RAMs [35, 25]. In an effort to reduce the round complexity
associated with oblivious RAMs, Song, Wagner and Perrig [40] showed that a solution for searchable
encryption was possible for a weaker security model. Specifically, they achieve searchable encryption
by crafting, for each word, a special two-layered encryption construct. Given a trapdoor, the server
can strip the outer layer and assert whether the inner layer is of the correct form. This construction,
however, has some limitations: while the construction is proven to be a secure encryption scheme, it is
not proven to be a secure searchable encryption scheme; the distribution of the underlying plaintexts
is vulnerable to statistical attacks; and searching is linear in the length of the document collection.

The above limitations are addressed by the works of Goh [23] and of Chang and Mitzenmacher [18],
who propose constructions that associate an “index” to each document in a collection. As a result, the
server has to search each of these indexes, and the amount of work required for a query is proportional
to the number of documents in the collection. Goh introduces a notion of security for indexes (IND-
CKA and the slightly stronger IND2-CKA), and puts forth a construction based on Bloom filters [13]
and pseudo-random functions. Chang and Mitzenmacher achieve a notion of security similar to IND2-
CKA, except that it also tries to guarantee that the trapdoors not leak any information about the
words being queried. We discuss these security definitions and their limitations in more detail in
Section 4 and Appendix B.

As mentioned above, encryption with keyword search has also been considered in the public-key
setting [15, 2], where anyone with access to a user’s public-key can add words to an index, but
only the owner of the private-key can generate trapdoors to test for the occurrence of a keyword.
While related, the public-key solutions are suitable for different applications and are not as efficient
as private-key solutions, which is the main subject of this work. Public key efficiently searchable
encryption (ESE) [8] achieves efficiency comparable to ours, but at the price of providing weaker
security guarantees. The notion of ESE, originally proposed in a public key setting was extended to
the symmetric key setting [5], which views the outsourced data as a relational database and seeks
to achieve query-processing efficiency comparable to that for unencrypted databases. These schemes
sacrifice security in order to preserve general efficiency and functionality: Similar to our work, the
efficiency of operations on encrypted and unencrypted databases are comparable; unlike our work,
this comes at the cost of weakening the security definition (in addition to revealing the user’s query
access pattern, the frequency distribution of the plaintext data is also revealed to the server prior to
any client queries). Further, we also note that the notion of multi-user SSE—which we introduce in
this work—combined with a classical public-key encryption scheme, achieves a functionality similar
to that of public key ESE, with the added benefit of allowing the owner to revoke search privileges.

Whereas this work focuses on the case of single-keyword equality queries, we note that more
complex queries have also been considered. This includes conjunctive queries in the symmetric key
setting [26, 6]; it also includes conjunctive queries [37, 17], comparison and subset queries [17], and
range queries [39] in the public-key setting.

Unlike the above mentioned work on searchable encryption that relies on computational assump-
tions, Sedghi et al. [38] propose a model that targets an information theoretic security analysis.

Naturally, SSE can also be viewed as an instance of secure two-party/multi-party computation [41,
24, 11]. However, the weakening and refinement of the privacy requirement (more on this below) as
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well as efficiency considerations (e.g., [29]), mandate a specialized treatment of the problem, both at
the definitional and construction levels.1

A different notion of privacy is considered by Narayanan and Shmatikov [34], who propose schemes
for obfuscating a database so that only certain queries can be evaluated on it. However, their goal is
not to hide data from an untrusted server, but to transform the database such that it prevents users
that do not abide by the privacy policy from querying the database.

3 Notation and Preliminaries

We write x ← χ to represent an element x being sampled from a distribution χ, and x
$← X to

represent an element x being sampled uniformly from a set X. The output x of an algorithm A is
denoted by x← A. We write a||b to refer to the concatenation of two strings a and b. Let Func[n,m]
be the set of all functions from {0, 1}n to {0, 1}m. Throughout, k will refer to the security parameter
and we will assume that all algorithms take it as input. A function ν : N→ N is negligible in k if for
every positive polynomial p(·) and sufficiently large k, ν(k) < 1/p(k). Let poly(k) and negl(k) denote
unspecified polynomial and negligible functions in k, respectively.

In this work, honest users are modeled as probabilistic polynomial-time Turing machines, while
adversaries and simulators are modeled as (deterministic) polynomial-size circuits. As every proba-
bilistic polynomial-time algorithm can be simulated by a (deterministic) polynomial-size circuit [3],
our schemes guarantee security against any probabilistic polynomial-time adversary.

Document collections. Let ∆ = (w1, . . . , wd) be a dictionary of d words in lexicographic order,
and 2∆ be the set of all possible documents with words in ∆. We assume d = poly(k) and that all
words w ∈ ∆ are of length polynomial in k. Furthermore, let D ⊆ 2∆ be a collection of n = poly(k)
documents D = (D1, . . . , Dn), each containing poly(k) words. Let id(D) be the identifier of document
D, where the identifier can be any string that uniquely identifies a document such as a memory
location. We denote by D(w) the lexicographically ordered list consisting of the identifiers of all
documents in D that contain the word w.

Symmetric encryption. A symmetric encryption scheme is a set of three polynomial-time algo-
rithms SKE = (Gen,Enc,Dec) such that Gen takes a security parameter k and returns a secret key K;
Enc takes a key K and a message m and returns a ciphertext c; Dec takes a key K and a ciphertext
c and returns m if K was the key under which c was produced. Intuitively, a symmetric encryption
scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs do not leak any
useful information about the plaintext even to an adversary that can query an encryption oracle. In
this work, we consider a stronger notion, which we refer to as pseudo-randomness against chosen-
plaintext attacks (PCPA), that guarantees that the ciphertexts are indistinguishable from random (a
formal definition is provided in Appendix A). We note that common private-key encryption schemes
such as AES in counter mode satisfy this definition.

Pseudo-random functions. In addition to encryption schemes, we also make use of pseudo-random
functions (PRF) and permutations (PRP), which are polynomial-time computable functions that
cannot be distinguished from random functions by any probabilistic polynomial-time adversary (see
Appendix A for a formal definition).

1Indeed, some of the results we show—equivalence of SSE security definitions (Section 4)—are known not to hold for
the general secure multi-party computation case.
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Broadcast encryption. A broadcast encryption scheme is tuple of four polynomial-time algorithms
BE = (Gen,Enc,Add,Dec) that work as follows. Let U be BE’s user space, i.e., the set of all possible
user identifiers. Gen is a probabilistic algorithm that takes as input a security parameter k and outputs
a master key mk. Enc is a probabilistic algorithm that takes as input a master key mk, a set of users
G ⊆ U and a message m, and outputs a ciphertext c. Add is a probabilistic algorithm that takes
as input a master key mk and a user identifier U ∈ U , and outputs a user key ukU . Finally, Dec is
a deterministic algorithm that takes as input a user key ukU and a ciphertext c and outputs either
a message m or the failure symbol ⊥. Informally, a broadcast encryption scheme is secure if its
ciphertexts leak no useful information about the message to any user not in G.

4 Definitions for Searchable Symmetric Encryption

We begin by reviewing the formal definition of an index-based SSE scheme. The participants in
a single-user SSE scheme include a client that wants to store a private document collection D =
(D1, . . . , Dn) on an honest-but-curious server in such a way that (1) the server will not learn any
useful information about the collection; and that (2) the server can be given the ability to search
through the collection and return the appropriate (encrypted) documents to the client. We consider
searches to be over documents but, of course, any SSE scheme as described below can be used with
collections of arbitrary files (e.g., images or audio files) as long as the files are labeled with keywords.

Definition 4.1 (Searchable symmetric encryption). An index-based SSE scheme over a dictionary ∆
is a collection of five polynomial-time algorithms SSE = (Gen,Enc,Trpdr, Search,Dec) such that,

K ← Gen(1k): is a probabilistic key generation algorithm that is run by the user to setup the scheme.
It takes as input a security parameter k, and outputs a secret key K.

(I, c) ← Enc(K,D): is a probabilistic algorithm run by the user to encrypt the document collection.
It takes as input a secret key K and a document collection D = (D1, . . . , Dn), and outputs
a secure index I and a sequence of ciphertexts c = (c1, . . . , cn). We sometimes write this as
(I, c)← EncK(D).

t ← Trpdr(K,w): is a deterministic algorithm run by the user to generate a trapdoor for a given
keyword. It takes as input a secret key K and a keyword w, and outputs a trapdoor t. We
sometimes write this as t← TrpdrK(w).

X ← Search(I, t): is a deterministic algorithm run by the server to search for the documents in D
that contain a keyword w. It takes as input an encrypted index I for a data collection D and a
trapdoor t and outputs a set X of (lexicographically-ordered) document identifiers.

Di ← Dec(K, ci): is a deterministic algorithm run by the client to recover a document. It takes as
input a secret key K and a ciphertext ci, and outputs a document Di. We sometimes write this
as Di ← DecK(ci).

An index-based SSE scheme is correct if for all k ∈ N, for all K output by Gen(1k), for all D ⊆ 2∆,
for all (I, c) output by EncK(D), for all w ∈ ∆,

Search
(
I,TrpdrK(w)

)
= D(w)

∧
DecK(ci) = Di, for 1 ≤ i ≤ n.
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4.1 Revisiting searchable symmetric encryption definitions

While security for searchable encryption is typically characterized as the requirement that nothing be
leaked beyond the “outcome of a search” or the “access pattern” (i.e., the identifiers of the documents
that contain a keyword), we are not aware of any previous work other than that of [25, 35] that satisfies
this intuition. In fact, with the exception of oblivious RAMs, all the constructions in the literature
also reveal whether searches were for the same word or not. We refer to this as the search pattern
and note that it is clearly revealed by the schemes presented in [40, 23, 18] since their trapdoors
are deterministic. Therefore, a more accurate characterization of the security notion achieved for
SSE is that nothing is leaked beyond the access pattern and the search pattern (precise definitions in
Section 4.2).

Having clarified our intuition, it remains to precisely describe our adversarial model. SSE schemes
based on secure indexes are typically used in the following manner: the client generates a secure
index from its document collection, sends the index and the encrypted documents to the server and,
finally, performs various search queries by sending trapdoors for a given set of keywords. Here, it is
important to note that the user may or may not generate its keywords as a function of the outcome of
previous searches. We call queries that do depend on previous search outcomes adaptive, and queries
that do not, non-adaptive. This distinction in keyword generation is important because it gives rise
to definitions that achieve different privacy guarantees: non-adaptive definitions only provide security
to clients that generate their keywords in one batch, while adaptive definitions provide privacy even
to clients who generate keywords as a function of previous search outcomes. The most natural use of
searchable encryption is for making adaptive queries.

Limitations of previous definitions. To date, two definitions of security have been used for SSE:
indistinguishability against chosen-keyword attacks (IND2-CKA), introduced by Goh [23]2, and a
simulation-based definition introduced by Chang and Mitzenmacher [18].3

Intuitively, the security guarantee that IND2-CKA achieves can be described as follows: given
access to an index, the adversary (i.e., the server) is not able to learn any partial information about
the underlying documents that he cannot learn from using a trapdoor that was given to him by the
client, and this holds even against adversaries that can convince the client to generate indexes and
trapdoors for documents and keywords chosen by the adversary (i.e., chosen-keyword attacks). A
formal specification of IND2-CKA is presented in Appendix B.

We remark that Goh’s work addresses the problem of secure indexes which have many uses, only
one of which is searchable encryption. And as Goh remarks (cf. Note 1, p. 5 of [23]), IND2-CKA
does not explicitly require that trapdoors be secure since this is not a requirement for all applications
of secure indexes.

Although one might be tempted to remedy the situation by introducing a second definition to
guarantee that trapdoors not leak any information, this cannot be done in a straightforward manner.
Indeed, as we show in Appendix B, proving that an SSE scheme is IND2-CKA and then proving that
its trapdoors are secure (in a sense made precise in Appendix B) does not imply that an adversary
cannot recover the word being queried (a necessary requirement for searchable encryption).

Regarding existing simulation-based definitions, Chang and Mitzenmacher present a security defi-
nition for SSE in [18] that is intended to be stronger than IND2-CKA in the sense that it requires secure
trapdoors. Unfortunately, as we also show in Appendix B, this definition can be trivially satisfied by
any SSE scheme, even one that is insecure. Moreover, this definition is inherently non-adaptive.

2Goh also defines a weaker notion, IND-CKA, that allows an index to leak the number of words in the document.
3We note that, unlike the latter and our own definitions, IND2-CKA applies to indexes that are built for individual

documents, as opposed to indexes built from entire document collections.
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4.2 Our security definitions

We now address the above issues. Before stating our definitions for SSE, we introduce four auxiliary
notions which we make use of. The interaction between the client and server is determined by a
document collection and a sequence of keywords that the client wants to search for and that we wish
to hide from the adversary. We call an instantiation of such an interaction a history.

Definition 4.2 (History). Let ∆ be a dictionary and D ⊆ 2∆ be a document collection over ∆. A
q-query history over D is a tuple H = (D,w) that includes the document collection D and a vector
of q keywords w = (w1, . . . , wq).

Definition 4.3 (Access Pattern). Let ∆ be a dictionary and D ⊆ 2∆ be a document collection over ∆.
The access pattern induced by a q-query history H = (D,w), is the tuple α(H) = (D(w1), . . . ,D(wq)).

Definition 4.4 (Search Pattern). Let ∆ be a dictionary and D ⊆ 2∆ be a document collection over
∆. The search pattern induced by a q-query history H = (D,w), is a symmetric binary matrix σ(H)
such that for 1 ≤ i, j ≤ q, the element in the ith row and jth column is 1 if wi = wj, and 0 otherwise.

The final notion is that of the trace of a history, which consists of exactly the information we are
willing to leak about the history and nothing else. More precisely, this should include the identifiers
of the documents that contain each keyword in the history, and information that describes which
trapdoors correspond to the same underlying keywords in the history. According to our intuitive
formulation of security this should be no more than the access and search patterns. However, since in
practice the encrypted documents will also be stored on the server, we can assume that the document
sizes and identifiers will also be leaked. Therefore we choose to include these in the trace.4

Definition 4.5 (Trace). Let ∆ be a dictionary and D ⊆ 2∆ be a document collection over ∆. The
trace induced by a q-query history H = (D,w), is a sequence τ(H) = (|D1|, . . . , |Dn|, α(H), σ(H))
comprised of the lengths of the documents in D, and the access and search patterns induced by H.

Throughout this work, we will assume that the dictionary ∆ and the trace are such that all histories
H over ∆ are non-singular as defined below.

Definition 4.6 (Non-singular history). We say that a history H is non-singular if (1) there exists
at least one history H ′ 6= H such that τ(H) = τ(H ′); and if (2) such a history can be found in
polynomial-time given τ(H).

Note that the existence of a second history with the same trace is a necessary assumption, otherwise
the trace would immediately leak all information about the history.

4.2.1 Non-adaptive security for SSE

We are now ready to state our first security definition for SSE. First, we assume that the adversary
generates the histories at once. In other words, it is not allowed to see the index of the document
collection or the trapdoors of any keywords it chooses before it has finished generating the history.
We call such an adversary non-adaptive.

Definition 4.7 (Non-adaptive indistinguishability). Let SSE = (Gen,Enc,Trpdr,Search,Dec) be an
index-based SSE scheme over a dictionary ∆, k ∈ N be the security parameter, and A = (A1,A2) be
a non-uniform adversary and consider the following probabilistic experiment IndSSE,A(k):

4On the other hand, if we wish not to disclose the size of the documents, this can be easily achieved by “padding”
each plaintext document such that all documents have a fixed size and omitting the document sizes from the trace.
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IndSSE,A(k)

K ← Gen(1k)
(stA, H0, H1)← A1(1k)

b
$← {0, 1}

parse Hb as (Db,wb)
(Ib, cb)← EncK(Db)
for 1 ≤ i ≤ q,
tb,i ← TrpdrK(wb,i)

let tb = (tb,1, . . . , tb,q)
b′ ← A2(stA, Ib, cb, tb)
if b′ = b, output 1
otherwise output 0

with the restriction that τ(H0) = τ(H1), and where stA is a string that captures A1’s state. We say that
SSE is secure in the sense of non-adaptive indistinguishability if for all polynomial-size adversaries
A = (A1,A2),

Pr [ IndSSE,A(k) = 1 ] ≤ 1

2
+ negl(k),

where the probability is taken over the choice of b and the coins of Gen and Enc.

Note that, unlike the notion of IND2-CKA [23], our definition does not give the adversary access
to an Enc or a Trpdr oracle. This, however, does not weaken our security guarantee in any way. The
reason oracle access is not necessary is because our definition of SSE is formulated with respect to
document collections, as opposed to individual documents, and therefore it is sufficient for security to
hold for a single use.

Our simulation-based definition requires that the view of an adversary (i.e., the index, the ci-
phertexts and the trapdoors) generated from an adversarially and non-adaptively chosen history be
simulatable given only the trace.

Definition 4.8 (Non-adaptive semantic security). Let SSE = (Gen,Enc,Trpdr,Search,Dec) be an
index-based SSE scheme, k ∈ N be the security parameter, A be an adversary, S be a simulator and
consider the following probabilistic experiments:

RealSSE,A(k)

K ← Gen(1k)
(stA, H)← A(1k)
parse H as (D,w)
(I, c)← EncK(D)
for 1 ≤ i ≤ q,
ti ← TrpdrK(wi)

let t = (t1, . . . , tq)
output v = (I, c, t) and stA

SimSSE,A,S(k)

(H, stA)← A(1k)
v← S(τ(H))
output v and stA

We say that SSE is semantically secure if for all polynomial-size adversaries A, there exists a polynomial-
size simulator S such that for all polynomial-size distinguishers D,

|Pr [D(v, stA) = 1 : (v, stA)← RealSSE,A(k) ]− Pr [D(v, stA) = 1 : (v, stA)← SimSSE,A,S(k) ]| ≤ negl(k),

where the probabilities are over the coins of Gen and Enc.

We now prove that our two definitions of security for non-adaptive adversaries are equivalent.
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Theorem 4.9. Non-adaptive indistinguishability security of SSE is equivalent to non-adaptive seman-
tic security of SSE.

Proof. Let SSE = (Gen,Enc,Trpdr, Search,Dec) be an index-based SSE scheme. We make the following
two claims, from which the theorem follows.

Claim. If SSE is non-adaptively semantically secure for SSE, then it is non-adaptively indistingishable
for SSE.

We show that if there exists a polynomial-size adversary A = (A1,A2) that succeeds in an IndSSE,A(k)
experiment with non-negligible probability over 1/2, then there exists a polynomial-size adversary B
and a polynomial-size distinguisher D such that for all polynomial-size simulators S, D distinguishes
between the output of RealSSE,B(k) and SimSSE,B,S(k).

Let B be the adversary that computes (stA, H0, H1) ← A1(1k); samples b
$← {0, 1}; and outputs

the history Hb and state stB = (stA, b). Let D be the distinguisher that, given v and stB (which are
either output by RealSSE,B(k) or SimSSE,S,B(k)), works as follows:

1. it parses stB into (stA, b) and v into (I, c, t),

2. it computes b′ ← A2(stA, I, c, t),

3. it outputs 1 if b′ = b and 0 otherwise.

Clearly, B and D are polynomial-size since A1 and A2 are. So it remains to analyze D’s success
probability. First, notice that if the pair (v, stB) are the output of RealSSE,B(k) then v = (Ib, cb, tb)
and stB = (stA, b). Therefore, D will output 1 if and only if A2(stA, Ib, cb, tb) succeeds in guessing b.
Notice, however, that A1 and A2’s views while being simulated by B and D, respectively, are identical
to the views they would have during an IndSSE,A(k) experiment. We therefore have that

Pr [D(v, stB) = 1 : (v, stB)← RealSSE,B(k) ] = Pr [ IndSSE,A(k) = 1 ]

≥ 1

2
+ ε(k),

where ε(k) is some non-negligible function in k and the inequality follows from our original assumption
about A.

Let S be an arbitrary polynomial-size simulator and consider what happens when the pair (v, stB)
is output by a SimSSE,B,S(k) experiment. First, note that any v output by S will be independent of b
since τ(Hb) = τ(H0) = τ(H1) (by the restriction imposed in IndSSE,A(k)). Also, note that the string
stA output by A1 (while being simulated by B) is independent of b. It follows then that A2 will guess
b with probability at most 1/2 and that,

Pr [D(v, stB) = 1 : (v, stB)← SimSSE,B,S(k) ] ≤ 1

2
.

Combining the two previous Equations we get that,

|Pr [D(v, stB) = 1 : (v, stB)← RealSSE,B(k) ]− Pr [D(v, stB) = 1 : (v, stB)← SimSSE,B,S(k) ]|

is non-negligible in k, from which the claim follows.

�
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Claim. If SSE is non-adaptively indistinguishable, then it is non-adaptively semantically secure.

We show that if there exists a polynomial-size adversary A such that for all polynomial-size sim-
ulators S, there exists a polynomial-size distinguisher D that can distinguish between the outputs
of RealSSE,A(k) and SimSSE,A,S(k), then there exists a polynomial-size adversary B = (B1,B2) that
succeeds in an IndSSE,B(k) experiment with non-negligible probability over 1/2.

Let H and stA be the output of A(1k) and recall that H is non-singular so there exists at least
one history H ′ 6= H such that τ(H ′) = τ(H) and, furthermore, such a H ′ can be found efficiently.
Now consider the simulator S∗ that works as follows:

1. it generates a key K∗ ← Gen(1k),

2. given τ(H) it finds some H ′ such that τ(H ′) = τ(H),

3. it builds an index I∗, a sequence of ciphertexts c∗ and a sequence of trapdoors t∗ from H ′ under
key K∗,

4. it outputs v = (I∗, c∗, t∗) and st∗ = stA.

Let D∗ be the polynomial-size distinguisher (which depends on S∗) guaranteed to exist by our ini-
tial assumption. Without loss of generality we assume D∗ outputs 0 when given the output of a
RealSSE,A(k) experiment. If this is not the case, then we consider the distinguisher that runs D∗ and
outputs its complement.
B1 is the adversary that computes (H, stA) ← A(1k), uses τ(H) to find H ′ (as the simulator

does) and returns (H,H ′, stA) as its output. B2 is the adversary that, given stA and (Ib, cb, tb), sets
v = (Ib, cb, tb) and outputs the bit b obtained by running D∗(v, stA).

It remains to analyze B’s success probability. Since b is chosen uniformly at random,

Pr [ IndSSE,B(k) = 1 ] =
1

2
·
(

Pr [ IndSSE,B(k) = 1 | b = 0 ] + Pr [ IndSSE,B(k) = 1 | b = 1 ]

)
. (1)

If b = 0 occurs then B succeeds if and only if D∗(v, stA) outputs 0. Notice, however, that v and stA
are generated as in a RealSSE,A(k) experiment so it follows that,

Pr [ IndSSE,B(k) = 1 | b = 0 ] = Pr [D∗(v, stA) = 0 : (v, stA)← RealSSE,A(k) ]. (2)

On the other hand, if b = 1 then B succeeds if and only if D∗(v, stA) outputs 1. In this case, stA and
v are constructed as in a SimSSE,A,S∗(k) experiment so we have,

Pr [ IndSSE,B(k) = 1 | b = 1 ] = Pr [D∗(v, stA) = 1 : (v, stA)← SimSSE,A,S∗(k) ]. (3)

Combining Equations (2) and (3) with Equation (1) we get

Pr [ IndSSE,B(k) = 1 ] =
1

2
·
(

1− Pr [D∗(v, stA) = 1 : (v, stA)← RealSSE,A(k) ]

+ Pr [D∗(v, stA) = 1 : (v, stA)← SimSSE,A,S∗(k) = 1 ]

)
=

1

2
+

1

2
·
(

Pr [D∗(v, stA) = 1 : (v, stA)← SimSSE,A,S∗(k) = 1 ]

− Pr [D∗(v, stA) = 1 : (v, stA)← RealSSE,A(k) = 1 ]

)
≥ 1

2
+ ε(k),
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where ε(k) is a non-negligible function in k, and where the inequality follows from our original as-
sumption about A.

4.2.2 Adaptive security for SSE

We now turn to adaptive security definitions. Our indistinguishability-based definition is similar to
the non-adaptive counterpart, with the exception that we allow the adversary to choose its history
adaptively. More precisely, the challenger begins by flipping a coin b; then the adversary first submits
two document collections (D0,D1), subject to some constraints which we describe below, and receives
the index of one of the collections Db; it then submits two keywords (w0, w1) and receives the trapdoor
of one of the words wb. This process goes on until the adversary has submitted polynomially-many
queries and is then challenged to output the bit b.

Definition 4.10 (Adaptive indistinguishability security for SSE). Let SSE = (Gen,Enc,Trpdr, Search,Dec)
be an index-based SSE scheme, k ∈ N be a security parameter, A = (A0, . . . ,Aq+1) be such that q ∈ N
and consider the following probabilistic experiment Ind?A,SSE(k):

Ind?SSE,A(k)

K ← Gen(1k)

b
$← {0, 1}

(stA,D0,D1)← A0(1k)
(Ib, cb)← EncK(Db)
(stA, w0,1, w1,1)← A1(stA, Ib)
tb,1 ← TrpdrK(wb,1)
for 2 ≤ i ≤ q,

(stA, w0,i, w1,i)← Ai(stA, Ib, cb, tb,1, . . . , tb,i−1)
tb,i ← TrpdrK(wb,i)

let tb = (tb,1, . . . , tb,q)
b′ ← Aq+1(stA, Ib, cb, tb)
if b′ = b, output 1
otherwise output 0

with the restriction that τ(D0, w0,1, . . . , w0,q) = τ(D1, w1,1, . . . , w1,q) and where stA is a string that
captures A’s state. We say that SSE is secure in the sense of adaptive indistinguishability if for all
polynomial-size adversaries A = (A0, . . . ,Aq+1) such that q = poly(k),

Pr [ Ind?SSE,A(k) = 1 ] ≤ 1

2
+ negl(k),

where the probability is over the choice of b, and the coins of Gen and Enc.

We now present our simulation-based definition, which is similar to the non-adaptive definition,
except that the history is generated adaptively. More precisely, we require that the view of an adversary
(i.e., the index, the ciphertexts and the trapdoors) generated from an adversarially and adaptively
chosen history be simulatable given only the trace.

Definition 4.11 (Adaptive semantic security). Let SSE = (Gen,Enc,Trpdr,Search,Dec) be an index-
based SSE scheme, k ∈ N be the security parameter, A = (A0, . . . ,Aq) be an adversary such that q ∈ N
and S = (S0, . . . ,Sq) be a simulator and consider the following probabilistic experiments Real?SSE,A(k)
and Sim?

SSE,A,S(k):
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Real?SSE,A(k)

K ← Gen(1k)
(D, stA)← A0(1k)
(I, c)← EncK(D)
(w1, stA)← A1(stA, I, c)
t1 ← TrpdrK(w1)
for 2 ≤ i ≤ q,

(wi, stA)← Ai(stA, I, c, t1, . . . , ti−1)
ti ← TrpdrK(wi)

let t = (t1, . . . , tq)
output v = (I, c, t) and stA

Sim?
SSE,A,S(k)

(D, stA)← A0(1k)
(I, c, stS)← S0(τ(D))
(w1, stA)← A1(stA, I, c)
(t1, stS)← S1(stS , τ(D, w1))
for 2 ≤ i ≤ q,

(wi, stA)← Ai(stA, I, c, t1, . . . , ti−1)
(ti, stS)← Si(stS , τ(D, w1, . . . , wi))

let t = (t1, . . . , tq)
output v = (I, c, t) and stA

We say that SSE is adaptively semantically secure if for all polynomial-size adversaries A = (A0, . . . ,Aq)
such that q = poly(k), there exists a non-uniform polynomial-size simulator S = (S0, . . . ,Sq), such
that for all polynomial-size D,

|Pr [D(v, stA) = 1 : (v, stA)← Real?SSE,A(k) ]− Pr [D(v, stA) = 1 : (v, stA)← Sim?
SSE,A,S(k) ]| ≤ negl(k),

where the probabilities are over the coins of Gen and Enc.

In the following theorem we show that adaptive semantic security implies adaptive indistinguisha-
bility for SSE.

Theorem 4.12. Adaptive semantic security of SSE implies adaptive indistinguishability of SSE.

Proof. We show that if there exists a ppt adversary A = (A0, . . . ,Aq+1), where q = poly(k), that
succeeds in an Ind?SSE,A experiment with non-negligible probability over 1/2, then there exists a
polynomial-size adversary B = (B0, . . . ,Bq) and a polynomial-size distinguisher D such that for all
polynomial-size simulators S = (S0, . . . ,Sq), D distinguishes between the output of Real?SSE,B(k) and
Sim?

SSE,B,S(k).
The adversary B = (B0, . . . ,Bq) works as follows:

• B0 computes (stA,D0,D1)← A0(1k), samples b
$← {0, 1} and outputs Db and stB = (stA, b),

• B1 is given (stB, I, c) and parses stB into (stA, b), computes (w0,1, w1,1, stA)← A1(stA, I, c) and
outputs wb,1 and stB = (stA, b),

• for 2 ≤ i ≤ q, Bi is given (stB, I, c, t1, . . . , ti−1). It parses stB into (stA, b), computes (w0,i, w1,i, stA)←
Ai(stA, I, c, t1, . . . , ti−1), and outputs wb,i and stB = (stA, b).

Let D be the distinguisher that, given (v, stB) (which is either output by Real?SSE,B(k) or
Sim?

SSE,S,B(k)) works as follows:

• it parses stB into (stA, b) and v into (I, c, t), where t = (t1, . . . , tq),

• it computes b′ ← Aq+1(stA, I, c, t),

• it outputs 1 if b′ = b and 0 otherwise.

Clearly, B and D are polynomial-size since A is. So it remains to analyze D’s success probability. First,
notice that if the pair (v, stB) is output by Real?SSE,B(k) then v = (Ib, cb, tb), where tb = (tb,1, . . . , tb,q),
and stB = (stA, b). Therefore, D will output 1 if and only if Aq+1(stA, Ib, cb, tb) succeeds in guessing
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b. Notice, however, that A0 through Aq+1’s views while being simulated by B and D, respectively, are
identical to the views they would have during an Ind?SSE,A(k) experiment. We therefore have

Pr [D(v, stB) = 1 : (v, stB)← Real?SSE,B(k) ] = Pr [ Ind?SSE,A(k) = 1 ]

≥ 1

2
+ ε(k),

where ε(k) is some non-negligible function in k and the inequality follows from our original assumption
about A.

Let S be an arbitrary polynomial-size simulator and consider what happens when the pair (v, stB)
is the output of a Sim?

SSE,B,S(k) experiment. First, note that any v output by S will be independent
of b since τ(Hb) = τ(H0) = τ(H1) (by the restriction imposed in Ind?SSE,A(k)). Also, note that the
string stA is independent of b. It follows then that Aq+1(stA,v) will guess b with probability at most
1/2 and that

Pr [D(v, stB) = 1 : (v, stB)← Sim?
SSE,B,S(k) ] ≤ 1

2
.

Combining the two previous Equations we get that

|Pr [D(v, stB) = 1 : (v, stB)← Real?SSE,B(k) ]− Pr [D(v, stB) = 1 : (v, stB)← Sim?
SSE,B,S(k) ]|

is non-negligible in k, from which the claim follows.

5 Efficient and Secure Searchable Symmetric Encryption

We now present our SSE constructions, and state their security in terms of the definitions presented
in Section 4. We start by introducing some additional notation and the data structures used by the
constructions. Let δ(D) ⊆ ∆ be the set of distinct keywords in the document collection D, and
δ(D) ⊆ ∆ be the set of distinct keywords in the document D ∈ D. We assume that keywords in
∆ can be represented using at most ` bits. Also, recall that n is the number of documents in the
collection and that D(w) is the set of identifiers of documents in D that contain keyword w ordered
in lexicographic order.

We use several data structures, including arrays, linked lists and look-up tables. Given an array
A, we refer to the element at address i in A as A[i], and to the address of element x relative to A as
addrA(x). So if A[i] = x, then addrA(x) = i. In addition, a linked list L of n nodes that is stored in an
array A is a sequence of nodes Ni = 〈vi, addrA(Ni+1)〉, where 1 ≤ i ≤ n, and where vi is an arbitrary
string and addrA(Ni+1) is the memory address of the next node in the list. We denote by #L the
number of nodes in the list L.

5.1 An efficient non-adaptively secure construction (SSE-1)

We first give an overview of our one-round non-adaptively secure SSE construction. First, each
document in the collection D is encrypted using a symmetric encryption scheme. We then construct
a single index I which consists of two data structures:

A: an array in which, for all w ∈ δ(D), we store an encryption of the set D(w).

T: a look-up table in which, for all w ∈ δ(D), we store information that enables one to locate
and decrypt the appropriate element from A.
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For each distinct keyword wi ∈ δ(D), we start by creating a linked list Li where each node contains
the identifier of a document in D(wi). We then store all the nodes of all the lists in the array A

permuted in a random order and encrypted with randomly generated keys. Before encrypting the jth

node of list Li, it is augmented with a pointer (with respect to A) to the (j+ 1)-th node of Li, together
with the key used to encrypt it. In this way, given the location in A and the decryption key for the
first node of a list Li, the server will be able to locate and decrypt all the nodes in Li. Note that by
storing the nodes of all lists Li in a random order, the length of each individual Li is hidden.

We then build a look-up table T that allows one to locate and decrypt the first node of each list Li.
Each entry in T corresponds to a keyword wi ∈ δ(D) and consists of a pair <address,value>. The
field value contains the location in A and the decryption key for the first node of Li. value is itself
encrypted using the output of a pseudo-random function. The other field, address, is simply used to
locate an entry in T. The look-up table T is managed using indirect addressing (described below).

The client generates both A and T based on the plaintext document collection D, and stores them
on the server together with the encrypted documents. When the user wants to retrieve the documents
that contain keyword wi, it computes the decryption key and the address for the corresponding entry
in T and sends them to the server. The server locates and decrypts the given entry of T, and gets a
pointer to and the decryption key for the first node of Li. Since each node of Li contains a pointer to
the next node, the server can locate and decrypt all the nodes of Li, revealing the identifiers in D(wi).

Efficient storage and access of sparse tables. We describe the indirect addressing method that
we use to efficiently manage look-up tables. The entries of a look-up table T are tuples <address,value>
in which the address field is used as a virtual address to locate the entry in T that contains some value
field. Given a parameter `, a virtual address is from a domain of exponential size, i.e., from {0, 1}`.
However, the maximum number of entries in a look-up table will be polynomial in `, so the number of
virtual addresses that are used is poly(`). If, for a table T, the address field is from {0, 1}`, the value

field is from {0, 1}v and there are at most s entries in T, then we say T is a ({0, 1}` × {0, 1}v × s)
look-up table.

Let Addr be the set of virtual addresses that are used for entries in a look-up table T. We can
efficiently store T such that, when given a virtual address, it returns the associated value field. We
achieve this by organizing Addr in a so-called FKS dictionary [22], an efficient data structure for
storage of sparse tables that requires O(|Addr|) storage and O(1) look-up time. In other words, given
some virtual address a, we are able to tell if a ∈ Addr and if so, return the associated value in constant
look-up time. Addresses that are not in Addr are considered undefined.

Our construction in detail. We are now ready to proceed to the details of the construction. Let
SKE1 and SKE2 be PCPA-secure symmetric encryption schemes, respectively. In addition, we make
use of a pseudo-random function f and two pseudo-random permutations π and ψ with the following
parameters:

f : {0, 1}k × {0, 1}` → {0, 1}k+log2(s);

π : {0, 1}k × {0, 1}` → {0, 1}`;

ψ : {0, 1}k × {0, 1}log2(s) → {0, 1}log2(s),

where s is the total size of the encrypted document collection in “min-units”, where a min-unit is the
smallest possible size for a keyword (e.g., one byte)5. Let A be an array with s non-empty cells, and let
T be a ({0, 1}` × {0, 1}k+log2(s) × |∆|) look-up table, managed using indirect addressing as described
previously. Our construction is described in Fig. 1.

5If the documents are not encrypted with a length preserving encryption scheme or if they are compressed before
encryption, then s is the maximum of {total size of the plaintext D, total size of the encrypted D}.
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Gen(1k) : sample K1,K2,K3
$← {0, 1}k, generate K4 ← SKE2.Gen(1k) and output K = (K1,K2,K3,K4).

EncK(D) :

Initialization:

1. scan D and generate the set of distinct keywords δ(D)

2. for all w ∈ δ(D), generate D(w)

3. initialize a global counter ctr = 1

Building the array A:

4. for 1 ≤ i ≤ |δ(D)|, build a list Li with nodes Ni,j and store it in array A as follows:

(a) sample a key Ki,0
$← {0, 1}k

(b) for 1 ≤ j ≤ |D(wi)| − 1:

· let id(Di,j) be the jth identifier in D(wi)

· generate a key Ki,j ← SKE1.Gen(1k)

· create a node Ni,j = 〈id(Di,j)‖Ki,j‖ψK1
(ctr + 1)〉

· encrypt node Ni,j under key Ki,j−1 and store it in A:

A[ψK1(ctr)]← SKE1.EncKi,j−1(Ni,j)

· set ctr = ctr + 1

(c) for the last node of Li,

· set the address of the next node to NULL: Ni,|D(wi)| = 〈id(Di,|D(wi)|)‖0k‖NULL〉
· encrypt the node Ni,|D(wi)| under key Ki,|D(wi)|−1 and store it in A:

A[ψK1
(ctr)]← SKE1.EncKi,|D(wi)|−1

(
Ni,|D(wi)|

)
· set ctr = ctr + 1

5. let s′ =
∑
wi∈δ(D) |D(wi)|. If s′ < s, then set the remaining s− s′ entries of A to random values

of the same size as the existing s′ entries of A

Building the look-up table T:

6. for all wi ∈ δ(D), set T[πK3(wi)] = 〈addrA(Ni,1)||Ki,0〉 ⊕ fK2(wi)

7. if |δ(D)| < |∆|, then set the remaining |∆| − |δ(D)| entries of T to random values of the same
size as the existing |δ(D)| entries of T

Preparing the output:

8. for 1 ≤ i ≤ n, let ci ← SKE2.EncK4(Di)

9. output (I, c), where I = (A, T) and c = (c1, . . . , cn)

TrpdrK(w) : output t = (πK3
(w), fK2

(w))

Search(I, t) :

1. parse t as (γ, η), and set θ ← T[γ]

2. if θ 6= ⊥, then parse θ ⊕ η as 〈α||K ′〉 and continue, otherwise return ⊥
3. use the key K ′ to decrypt the list L starting with the node stored at address α in A

4. output the list of document identifiers contained in L

DecK(ci) : output Di ← SKE2.DecK4
(ci)

Figure 1: A non-adaptively secure SSE scheme (SSE-1)

17



Padding. Consistent with our security definitions, SSE-1 reveals only the access pattern, the search
pattern, the total size of the encrypted document collection, and the number of documents it contains.
To achieve this, a certain amount of padding to the array and the table are necessary. To see why,
recall that the array A stores a collection of linked lists (L1, . . . , L|δ(D)|), where each Li contains the
identifiers of all the documents that contain the keyword wi ∈ δ(D). Note that the number of non-
empty cells in A, denoted by #A, is equal to the total number of nodes contained in all the lists. In
other words,

#A =
∑

wi∈δ(D)

#Li.

Notice, however, that this is also equal to the sum (over all the documents) of the number of distinct
keywords found in each document. In other words,

#A =
∑

wi∈δ(D)

#Li =
n∑
i=1

|δ(Di)|.

Let #D be the number of (non-distinct) words in the document collection D. Clearly, if

n∑
i=1

|δ(Di)| < #D,

then there exists at least one document in D that contains a certain word more than once. Our goal,
therefore, will be to pad A so that this leakage does not occur.

In practice, the adversary (i.e., the server) will not know #D explicitly, but it can approximate
it as follows using the encrypted documents it stores. Recall that s is the total size of the encrypted
document collection in “min-units”, where a min-unit is the smallest possible size for a keyword (e.g.,
one byte). Also, let s′ be the total size of the encrypted document collection in “max-units”, where a
max-unit is the largest possible size for a keyword (e.g., ten bytes). It follows then that

s′ ≤ #D ≤ s.

From the previous argument, it follows that A must be padded so that #A is at least s′. Note, however,
that setting #A = s′ is not sufficient since an adversary will know that in all likelihood #D > s′. We
therefore pad A so that #A = s. The padding is done using random values, which are indistinguishable
from the (useful) entries in A.

We follow the same line of reasoning for the look-up table T, which has at least one entry for each
distinct keyword in D. To avoid revealing the number of distinct keywords in D, we add an additional
|∆| − |δ(D)| entries in T filled with random values so that the total number of entries is always equal
to |∆|.

Theorem 5.1. If f is a pseudo-random function, if π and ψ are pseudo-random permutations, and
if SKE1 and SKE2 are PCPA-secure, then SSE-1 is non-adaptively secure.

Proof. We describe a polynomial-size simulator S such that for all polynomial-size adversaries A, the
outputs of RealSSE,A(k) and SimSSE,A,S(k) are indistinguishable. Consider the simulator S that,
given the trace of a history H, generates a string v∗ = (I∗, c∗, t∗) =

(
(A∗, T∗), c∗1, . . . , c

∗
n, t
∗
1, . . . , t

∗
q

)
as

follows:

1. (Simulating A∗) if q = 0 then for 1 ≤ i ≤ s, S sets A∗[i] to a string of length log2(n) + k+ log2(s)
selected uniformly at random. If q ≥ 1, it sets |δ(D)| = q and runs Step 4 of the Enc algorithm
on the sets D(w1) through D(wq) using different random strings of size log2(s) instead of ψ(ctr).
Note that S knows D(w1) through D(wq) from the trace it receives.
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2. (Simulating T∗) if q = 0 then for 1 ≤ i ≤ |∆|, S generates pairs (a∗i , c
∗
i ) such that the a∗i are

distinct strings of length ` chosen uniformly at random, and the c∗i are strings of length log2(s)+k
also chosen uniformly at random. If q ≥ 1, then for 1 ≤ i ≤ q, S generates random values β∗i of
length log2(s) + k and a∗i of length `, and sets

T∗[a∗i ] = 〈addrA∗(Ni,1)||Ki,0〉 ⊕ β∗i .

It then inserts dummy entries into the remaining entries of T∗. So, in other words, S runs Step
6 of the Enc algorithm with |δ(D)| = q, using A∗ instead of A, and using β∗i and a∗i instead of
fy(wi) and πz(wi), respectively.

3. (Simulating t∗i ) it sets t∗i = (a∗i , β
∗
i )

4. (Simulating c∗i ) it sets c∗i to a |Di|-bit string chosen uniformly at random (recall that |Di| is
included in the trace).

It follows by construction that searching on I∗ using trapdoors t∗i will yield the expected search
outcomes.

Let v be the outcome of a RealSSE,A(k) experiment. We now claim that no polynomial-size
distinguisher D that receives stA can distinguish between the distributions v∗ and v, otherwise, by
a standard hybrid argument, D could distinguish between at least one of the elements of v and its
corresponding element in v∗. We argue that this is not possible by showing that each element of v∗

is computationally indistinguishable from its corresponding element in v to a distinguisher D that is
given stA.

1. (A and A∗) Recall that A consists of s′ SKE1 encryptions and s− s′ random strings of the same
size. If q = 0, A∗ consists of all random strings. While if q ≥ 1, A∗ consists of q SKE1 encryptions
and s− q random strings of the same size. In either case, with all but negligible probability, stA
does not include the keys Ki,j used to encrypt the list nodes stored in A. The PCPA-security of
SKE1 then guarantees that each element in A∗ is indistinguishable from its counterpart in A.

2. (T and T∗) Recall that T consists of |δ(D)| ciphertexts, ci, generated by XOR-ing a message with
the output of f , and of |∆| − |δ(D)| random values of size k + log2(s). If q = 0, T∗ consists of
all random values. While if q ≥ 1, T∗ consists of q ciphertexts generated by XOR-ing a message
with a random string β∗i of length k + log2(s), and |∆| − q random strings of the same length.
In either case, with all but negligible probability, stA does not include the PRF key K2, and
therefore the pseudo-randomness of f guarantees that each element of T is indistinguishable from
its counterpart in T∗.

3. (ti and t∗i ) Recall that ti consists of evaluations of the PRP π and the PRF f . With all but
negligible probability stA will not contain the keys K2 and K3, so the pseudo-randomness of π
and f then will guarantee that each ti is indistinguishable from t∗i .

4. (ci and c∗i ) Recall that ci is SKE2 encryption. Since, with all but negligible probability, stA will
not contain the encryption key K4, the PCPA-security of SKE2 will guarantee that ci and c∗i are
indistinguishable.

Regarding efficiency, we remark that each query takes only one round, and O(1) message size.
In terms of storage, the demands are O(1) on the user and O(s) on the server; more specifically, in
addition to the encrypted D, the server stores the index I, which has size O(s), and the look-up
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table T, which has size O(|∆|). Since the size of the encrypted documents is O(s), accommodating the
auxiliary data structures used for searching does not change (asymptotically) the storage requirements
for the server. The user spends O(1) time to compute a trapdoor, while for a query for keyword w,
the server spends time proportional to |D(w)|.

5.2 An adaptively secure construction

While our SSE-1 construction is efficient, it is only proven secure against non-adaptive adversaries.
We now show a second construction, SSE-2, which achieves semantic security against adaptive adver-
saries at the price of requiring higher communication size per query and more storage on the server.
Asymptotically, however, the costs are the same.

The difficulty of proving our SSE-1 construction secure against an adaptive adversary stems from
the difficulty of simulating in advance an index for the adversary that will be consistent with future
unknown queries. Given the intricate structure of the SSE-1 construction, with each keyword having a
corresponding linked list whose nodes are stored encrypted and in a random order, building an index
that allows for such a simulation seems challenging. We circumvent this problem as follows.

For a keyword w and an integer j, we derive a label for w by concatenating w with j, where j
is first converted to a string of characters. So, for example, if w is the keyword “coin” and j = 1,
then w||j is the string “coin1”. We define the family of a keyword w ∈ δ(D) to be the set of labels
famw = {w||j : 1 ≤ j ≤ |D(w)|}. So if the keyword “coin” appears in three documents, then
famw = {“coin1”, “coin2”, “coin3”}. Note that the maximum size of a keyword’s family is n, i.e.,
the number of documents in the collection. We associate with the document collection D an index
I, which is a look-up table managed using the indirect addressing technique described in Section 5.1
(thus, I has entries of the form <address, value>). For each label in a keyword’s family, we add an
entry in I whose value field is the identifier of the document that contains an instance of w. So for
each w ∈ δ(D), instead of keeping a list, we simply derive the family famw and for each label in famw
we add into the table an entry with the identifier of a document in δ(D). So if “coin” is contained
in documents (D5, D8, D9), then we add the entries <address1,5>, <address2,8>, <address3,9> (in
which the address field is a function of the labels “coin1”, “coin2”, “coin3”, respectively). In order
to hide the number of distinct keywords in each document, we pad the look-up table so that the
identifier of each document appears in the same number of entries. To search for the documents that
contain w, it now suffices to search for all the labels in w’s family. Since each label is unique, a search
for it “reveals” a single document identifier. Translated to the proof, this will allow the simulator to
construct an index for the adversary that is indistinguishable from a real index, even before it knows
any of the adversary’s queries.

Let k be security parameter and s = max · n, where n is the number of documents in D and max

is the maximum number of distinct keywords that can fit in the largest document in D (an algorithm
to determine max is given below). Recall that keywords in ∆ can be represented using at most `
bits. We use a pseudo-random permutation π : {0, 1}k × {0, 1}`+log2(n+max) → {0, 1}`+log2(n+max) and
a PCPA-secure symmetric encryption scheme SKE. Let I be a ({0, 1}`+log2(n+max) × {0, 1}log2(n) × s)
look-up table, managed using indirect addressing. The SSE-2 construction is described in Fig. 2.

Determining max. Recall that δ(D) is the set of distinct keywords that exist in D. Assuming the
minimum size for a keyword is one byte, we give an algorithm to determine max, given the size (in
bytes) of the largest document in D, which we denote by MAX. In step 1 we try to fit the maximum
number of distinct 1-byte keywords; there are 28 such keywords, which gives a total size of 256 bytes
(28 · 1 bytes). If MAX > 256, then we continue to step 2. In step 2 we try to fit the maximum number
of distinct 2-byte keywords; there are 216 such keywords, which gives a total size of 131328 bytes
(28 · 1 + 216 · 2 bytes). Generalizing, in step i we try to fit the maximum number of distinct i-byte
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Gen(1k) : sample K1
$← {0, 1}k and generate K2 ← SKE.Gen(1k). Output K = (K1,K2).

EncK(D) :

Initialization:

1. scan D and generate the set of distinct keywords δ(D)

2. for all w ∈ δ(D), generate D(w) (i.e., the set of documents that contain w)

Building the look-up table I:

3. for 1 ≤ i ≤ |δ(D)| and 1 ≤ j ≤ |D(wi)|,
(a) let id(Di,j) be the jth identifier in D(wi)

(b) set I[πK(wi||j)] = id(Di,j)

4. let s′ =
∑
wi∈δ(D) |D(wi)|

5. if s′ < s, then set values for the remaining (s−s′) entries in I such that for all documents D ∈ D,
the identifier id(D) appears exactly max times. This can be done as follows:

∗ for all Di ∈ D:

· let c be the number of entries in I that already contain id(Di)

· for 1 ≤ l ≤ max− c, set I[πK(0`||n+ l)] = id(Di)

Preparing the output:

6. for 1 ≤ i ≤ n, let ci ← SKE.EncK2
(Di)

6. output (I, c), where c = (c1, . . . , cn)

TrpdrK(w) : output t = (t1, . . . , tn) = (πK(w||1), . . . , πK(w||n))

Search(I, t) : for all 1 ≤ i ≤ n, if I[tw] 6= ⊥, then add I[tw] to X. Output X.

DecK(ci) : output Di ← SKE.DecK2
(ci)

Figure 2: An adaptively secure SSE scheme (SSE-2)

keywords, which is 28·i. We continue similarly until step i when MAX becomes smaller than the total
size accumulated so far. Then we go back to step i − 1 and try to fit as many (i − 1)-byte distinct
keywords as possible in a document of size MAX. For example, when the largest document in D has
size MAX = 1 MByte, we can fit at most max = 355349 distinct keywords (28 distinct 1-byte keywords
+ 216 distinct 2-byte keywords + 289557 distinct 3-byte keywords). Note that max cannot be larger
than |∆|; thus, if we get a value for max (using the previously described algorithm) that is larger than
|∆|, then we set max = |∆|.

Theorem 5.2. If π is a pseudo-random permutation and SKE is PCPA-secure, then the SSE-2 con-
struction is adaptively secure.

Proof. We describe a polynomial-size simulator S = (S0, . . .Sq) such that for all polynomial-size
adversaries A = (A0, . . . ,Aq), the outputs of Real?SSE,A(k) and Sim?

SSE,A,S(k) are computationally
indistinguishable. Consider the simulator S = (S0, . . . ,Sq) that adaptively generates a string v∗ =
(I∗, c∗, t∗) = (I∗, c∗1, . . . , c

∗
n, t
∗
1, . . . , t

∗
n) as follows:

S0(1k, τ(D)): it computes max using the algorithm described above. Note that it can do this
since it knows the size of all the documents from the trace of D. It then sets I∗ to be a
({0, 1}`+log2(n+max) × {0, 1}log2(n) × s) look-up table, where s = max · n, with max copies of each
document’s identifier inserted at random locations. S0 then includes I∗ in stS and outputs

(I∗, c∗, stS), where c∗i
$← {0, 1}|Di|.
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Since, with all but negligible probability, stA does not include K1, I∗ is indistinguishable from a
real index otherwise one could distinguish between the output of π and a random string of size
`+ log2(n+ max). Similarly, since, with all but negligible probability, stA does not include K2,
the PCPA-security of SKE guarantees that each c∗i is indistinguishable from a real ciphertext.

S1(stS , τ(D, w1)): Recall that D(wi) = (D(wi||1), . . . ,D(wi||n)). Note that each D(wi||j), for 1 ≤
j ≤ n, contains only one document identifier which we refer to as id(Di,j). For all 1 ≤ j ≤ n,
S1 randomly picks an address addrj from I∗ such that I∗[addrj ] = id(Di,j), making sure that
all addrj are pairwise distinct. It then sets t∗1 = (addr1, . . . , addrn). Also, S1 remembers the
association between t∗1 and wi by including it in stS . It then outputs (t∗1, stS).

Since, with all but negligible probability, stA does not include K1, t∗1 is indistinguishable from a
real trapdoor t1, otherwise one could distinguish between the output of π and a random string
of size `+ log2(n+ max).

Si(stS , τ(D, w1, . . . , wi)) for 2 ≤ i ≤ q: first Si checks whether (the unknown) wi has appeared
before. This can be done by checking whether there exists a 1 ≤ j ≤ i− 1 such that σ[i, j] = 1.
If wi has not previously appeared, then Si generates a trapdoor the same way S1 does (making
sure not to reuse any previously used addr’s). On the other hand, if wi did previously appear,
then Si retrieves the trapdoor previously used for wi and uses it as t∗i . Si outputs (t∗i , stS) and,
clearly, t∗i is indistinguishable from ti (again since stA does not include K1 with all but negligible
probability).

Just like our non-adaptively secure scheme, this construction requires one round of communication
for each query and an amount of computation on the server proportional with the number of documents
that contain the query (i.e., O(|D(w)|). Similarly, the storage and computational demands on the user
are O(1). The communication is equal to O(n) and the storage on the server is increased by a factor
of max when compared to the SSE-1 construction. We note that the communication cost can be
reduced if in each entry of I corresponding to an element in some keyword w’s family, we also store an
encryption of |D(w)|. In this way, after searching for a label in w’s family, the user will know |D(w)|
and can derive famw. The user can then send in a single round all the trapdoors corresponding to the
remaining labels in w’s family.

5.3 Secure updates

We consider a limited notion of document updates, in which new documents can be added to the exist-
ing document collection. We allow for secure updates to the document collection in the sense defined
by Chang and Mitzenmacher [18]: each time the user adds a new set ζ of encrypted documents, ζ is
considered a separate document collection. Old trapdoors cannot be used to search newly submitted
documents, as the new documents are part of a collection indexed using different secrets. If we con-
sider the submission of the original document collection an update, then after u updates, there will be
u document collections stored on the server. In the previously proposed solution [18], the user sends a
pseudo-random seed for each document collection, which implies that the trapdoors have length O(u).
We propose a solution that achieves better bounds for the length of trapdoors (namely O(log u)) and
for the amount of computation at the server. For applications where the number of queries dominates
the number of updates, our solution may significantly reduce the communication size and the server’s
computation. A thorough evaluation of the cost of updates for real-world workloads is outside the
scope of this work.

When the user performs an update, i.e., submits a set ζa of new documents, the server checks if
there exists (from previous updates) a document collection ζb, such that |ζb| ≤ |ζa|. If so, the server
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sends back ζb and the user combines ζa and ζb into a single collection ζc with |ζa|+ |ζb| documents.
The user then computes an index for ζc. The server stores the combined document collection ζc and
its index Ic, and deletes the document collections ζa, ζb and their indexes Ia, Ib. Note that ζc and
its index Ic will not reveal anything more than what was already revealed by the ζa, ζb and their
indexes Ia, Ib, since one can trivially reduce the security of the combined collection to the security of
the composing collections.

Next, we analyze the number of document collections that results after u updates using the method
proposed above. Without loss of generality, we assume that each update consists of one new document.
Then, it can be shown that after u updates, the number of document collections is given by f(u), by
which we denote the Hamming weight of u (i.e., the number of 1’s in the binary representation of
u”). Note that f(u) ∈ [1, blog(u+ 1)c]. This means that after u updates, there will be at most log(u)
document collections, thus the queries sent by the user have size O(log u) and the search can be done
in O(log u) by the server (as opposed to O(u) in [18]).

6 Multi-User Searchable Encryption

In this section we consider a natural extension of SSE to the setting where a user owns a document
collection, but an arbitrary group of users can submit queries to search the collection. A familiar
question arises in this new setting, that of managing access privileges while preserving privacy with
respect to the server. We first present a definition of a multi-user searchable encryption scheme
(MSSE) and some of its desirable security properties, followed by an efficient construction which, in
essence, combines a single-user SSE scheme with a broadcast encryption scheme.

Definition 6.1 (Multi-user searchable symmetric encryption). An index-based multi-user SSE scheme
is a collection of seven polynomial-time algorithms MSSE = (Gen,Enc,Add,Revoke,Trpdr,Search,Dec)
such that,

KO ← Gen(1k): is a probabilistic key generation algorithm that is run by the owner to set up the
scheme. It takes as input a security parameter k, and outputs an owner secret key KO.

(I, c, stO, stS) ← Enc(KO, G,D): is a probabilistic algorithm run by the owner to encrypt the docu-
ment collection. It takes as input the owner’s secret key KO a set of authorized users G ⊆ U
and a document collection D. It outputs a secure index I, a sequence of ciphertexts c, an owner
state stO and a server state stS. We sometimes write this as (I, c, stO, stS)← EncKO

(G,D).

KU ← Add(KO, stO, U): is a probabilistic algorithm run by the owner to add a user. It takes as input
the owner’s secret key KO and state stO and a unique user id U and outputs U ’s secret key KU .
We sometimes write this as KU ← AddKO

(stO, U).

(stO, stS) ← Revoke(KO, stO, U): is a probabilistic algorithm run by the owner to remove a user
from G. It takes as input the owner’s secret key KO and state stO and a unique user id U . It
outputs an updated owner state stO and an updated server state stS. We sometimes write this
as (stO, stS)← RevokeKO

(stO, U).

t ← Trpdr(KU , w): is a deterministic algorithm run by a user (including O) to generate a trapdoor
for a keyword. It takes as input a user U ’s secret key KU and a keyword w, and outputs a
trapdoor t or the failure symbol ⊥. We sometimes write this as t← TrpdrKU

(w).

X ← Search(stS , I, t): is a deterministic algorithm run by the server S to perform a search. It takes
as input a server state stS, an index I and a trapdoor t, and outputs a set X ∈ 2[1,n] ∪ {⊥},
where ⊥ denotes the failure symbol.
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Di ← Dec(KU , ci): is a deterministic algorithm run by the users to recover a document. It takes as
input a user key KU and a ciphertext ci, and outputs a document Di. We sometimes write this
as Di ← DecKU

(ci).

The security of a multi-user scheme can be defined similarly to the security of a single-user scheme,
as the server should not learn anything about the documents and queries beyond what can be inferred
from the access and search patterns. One distinct property in this new setting is that of revocation,
which essentially requires that a revoked user no longer be able to perform searches on the owner’s
documents.

Definition 6.2 (Revocation). Let MSSE = (Gen,Enc,Add,Revoke,Trpdr, Search) be a multi-user
SSE scheme, k ∈ N be the security parameter, and A = (A1,A2,A3) be an adversary. We define
RevMSSE,A(k) as the following probabilistic experiment:

RevMSSE,A(k)

KO ← Gen(1k)
(stA,D)← A1(1k)
KA ← Add(KO,A)
(I, c, stO, stS)← EncKO

(D)

stA ← AO(I,c,stS ,·)
2 (stA,KA)

(stO, stS)← RevokeKO
(A)

t← A3(stA)
X ← Search(stS , I, t)
if X 6= ⊥ output 1
else output 0

where O(I, c, stS , ·) is an oracle that takes as input a token t and returns the ciphertexts in c indexed
by X ← Search(I, t, stS) if X 6= ⊥ and ⊥ otherwise. We say that MSSE achieves revocation if for all
polynomial-size adversaries A = (A1,A2,A3),

Pr [ RevMSSE,A(k) = 1 ] ≤ negl(k),

where the probability is over the coins of Gen, Add, Revoke and Index.

6.1 Our construction

We assume the honest-but-curious adversarial model for the server; we also assume that the server
does not collude with revoked users (if such collusion occurs, then our construction cannot prevent a
revoked user from searching). In general, it is challenging to provide security against such collusion
without re-computing the secure index after each user revocation.

Our construction makes use of a single-user SSE scheme SSE = (Gen,Enc,Trpdr,Search) and a
broadcast encryption scheme BE = (Gen,Enc,Add,Dec). We require standard security notions for
broadcast encryption: namely, that in addition to being PCPA-secure it provide revocation-scheme
security against a coalition of all revoked users. Let U denote the set of all users and G ⊆ U the
set of users (currently) authorized to search. Let φ be a pseudo-random permutation such that
φ : {0, 1}k × {0, 1}t → {0, 1}t, where t is the size of a trapdoor in the underlying single-user SSE
scheme. φ can be constructed using techniques for building pseudo-random permutations over domains
of arbitrary size [12, 9, 32].

Our multi-user construction MSSE = (Gen,Enc,Add,Revoke,Trpdr, Search) is described in detail
in Fig. 3. The owner key is composed of a key K for the underlying single-user scheme, a key r for
the pseudo-random permutation φ and a master key mk for the broadcast encryption scheme. To
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Gen(1k) : generate K ← SSE.Gen(1k), mk ← BE.Gen(1k) and output KO = (K,mk).

Enc(KO, G,D) : compute (I, c)← SSE.EncK(D) and stS ← BE.Enc(mk,G, r), where G includes the server

and r
$← {0, 1}k. Set stO = r and output (I, c, stS , stO).

Add(KO, stO, U) : compute ukU ← BE.Add(mk,U) and output KU = (K,ukU , r).

Revoke(KO, stO, U) : sample r
$← {0, 1}k and output stS = BE.Enc(mk,G\U, r) and stO = r.

Trpdr(KU , w) : retrieve stS from the server. If BE.Dec(ukU , stS) = ⊥ output ⊥, else compute r ←
BE.Dec(ukU , stS) and t′ ← SSE.TrpdrK(w). Output t← φr(t

′).

Search(stS , I, t) : compute r ← BE.Dec(ukS , stS), t′ ← φ−1r (t) and output X ← SSE.Search(I, t′).

Figure 3: A multi-user SSE scheme

encrypt a data collection, the owner first encrypts the collection using the single-user SSE scheme.
This results in a secure index I and a sequence of ciphertexts c. It then generates a server state stS
that consists of a broadcast encryption of r. Finally, it stores the secure index I, the ciphertexts c
and the server state stS on the server. To add a user U , the owner generates a user key ukU for the
broadcast encryption scheme and sends U the triple (K, r, ukU ) (thus, the owner acts as the center in
a broadcast encryption scheme).

To search for a keyword w, an authorized user first retrieves the latest server state stS from the
server and uses its user key ukU to recover r. It generates a single-user trapdoor t, encrypts it using
φ keyed with r, and sends the result to the server. The server, upon receiving φr(t), recovers the
trapdoor by computing t = φ−1

r (φr(t)). The key r currently used for φ is only known by the owner
and by the set of currently authorized users (which includes the server). Each time a user U is revoked,
the owner picks a new r′ and generates a new server state st′S by encrypting r′ with the broadcast
encryption scheme for the set G\U . The new state st′S is then sent to the server who uses it to replace
the old state. For all subsequent queries, the server uses the new r′ when inverting φ. Since revoked
users will not be able to recover r′, with overwhelming probability, their queries will not yield a valid
trapdoor after the server applies φ−1

r′ .
Notice that to give a user U permission to search through D, the owner sends it all the secret

information needed to perform searches in a single-user context. This means that the owner should
possess an additional secret that will not be shared with U and that allows him to perform authen-
tication with the server when he wants to update D or revoke users from searching. The extra layer
given by the pseudo-random permutation φ, together with the guarantees offered by the broadcast
encryption scheme and the assumption that the server is honest-but-curious, is what prevents users
from performing successful searches once they are revoked. We leave the formal treatment of the
security of the multi-user scheme for future work.

We point out that users receive their keys for the broadcast encryption scheme only when they are
given authorization to search. So while a user U that has not joined the system yet could retrieve the
broadcast encryption of r (i.e., the state stS) from the server, since it does not have an authorized key
it will not be able to recover r. Similarly, when a revoked user U retrieves the broadcast encryption
of r from the server, it cannot recover r because U 6∈ G. Moreover, even though a revoked user which
has been re-authorized to search could recover (old) values of r that were used while he was revoked,
these values are no longer of interest. The fact that backward secrecy is not needed for the BE scheme
makes the Add algorithm more efficient, since it does not require the owner to send a message to the
server.

Our multi-user construction is very efficient on the server side during a query: when given a
trapdoor, the server only needs to evaluate a pseudo-random permutation in order to determine if
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the user is revoked. If access control mechanisms were used instead for this step, a more expensive
authentication protocol would be required for each search query in order to establish the identity of
the querier.

7 Conclusions

In this article, we have revisited the problem of searchable symmetric encryption, which allows a client
to store its data on a remote server in such a way that it can search over it in a private manner.
We make several contributions including new security definitions and new constructions. Motivated
by subtle problems in all previous security definitions for SSE, we propose new definitions and point
out that the existing notions have significant practical drawbacks: contrary to the natural use of
searchable encryption, they only guarantee security for users that perform all their searches at once.
We address this limitation by introducing stronger definitions that guarantee security even when users
perform more realistic searches. We also propose two new SSE constructions. Surprisingly, despite
being provably secure under our stronger security definitions, these are the most efficient schemes to
date and are (asymptotically) optimal (i.e., the work performed by the server per returned document is
constant in the size of the data). Finally, we also consider multi-user SSE, which extends the searching
ability to parties other than the owner.
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A Security Definitions of Basic Primitives

Definition A.1 (PCPA-security). Let SKE = (Gen,Enc,Dec) be a symmetric encryption scheme and
A be an adversary and consider the following probabilistic experiment PCPASKE,A(k):

1. a key K ← Gen(1k) is generated,

2. A is given oracle access to EncK(·),

3. A outputs a message m,

4. two ciphertexts c0 and c1 are generated as follows: c0 ← EncK(m) and c1
$← C, where C denotes

the ciphertext space of SKE (i.e., the set of all possible ciphertexts). A bit b is chosen at random
and cb is given to A,

5. A is again given access to the encryption oracle, and after polynomially-many queries it outputs
a bit b′.

6. if b′ = b, the experiment returns 1 otherwise it returns 0.

We say that SKE is CPA-secure if for all polynomial-size adversaries A,

Pr [ PCPASKE,A(k) = 1 ] ≤ 1

2
+ negl(k),

where the probability is over the choice of b and the coins of Gen and Enc.

Definition A.2 (Pseudo-random function). A function f : {0, 1}k × {0, 1}n → {0, 1}m is pseudo-
random if it is computable in polynomial time (in k) and if for all polynomial-size A,∣∣∣Pr

[
AfK(·) = 1 : K

$← {0, 1}k
]
− Pr

[
Ag(·) = 1 : g

$← Func[n,m]
]∣∣∣ ≤ negl(k)

where the probabilities are taken over the choice of K and g. If f is bijective then it is a pseudo-random
permutation.
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B Limitations of Previous SSE Definitions

As discussed in the Introduction, SSE schemes can be constructed by combining a secure index and
a symmetric encryption scheme. A secure index scheme is a tuple of four polynomial-time algorithms
SI = (Gen, Index,Trpdr, Search) that work as follows. Gen is a probabilistic algorithm that takes as
input a security parameter k and outputs a key K. Index is a probabilistic algorithm that takes as input
a key K and a document collection D and outputs a secure index I. Trpdr is a deterministic algorithm
that takes as input a key K and a keyword w and outputs a trapdoor t. Search is a deterministic
algorithm that takes as input an index I and a trapdoor t and outputs a set X of document identifiers.

To date, two security definitions have been used for secure index schemes: indistinguishability
against chosen-keyword attacks (IND2-CKA) from [23] and a simulation-based definition introduced
in [18].

Game-based definitions. Intuitively, the security guarantee that IND2-CKA provides can be de-
scribed as follows: given access to a set of indexes, the adversary (i.e., the server) cannot learn any
partial information about the underlying documents beyond what he can learn from using a trapdoor
that was given to him by the client, and this holds even against adversaries that can convince the
client to generate indexes and trapdoors for documents and keywords chosen by the adversary (i.e.,
chosen keyword attacks).

In the following definition, we use 	 to denote the symmetric difference between two sets A and
B: A	B = (A ∪B) \ (A ∩B).

Definition B.1 (IND2-CKA [23]). Let SI = (Gen, Index,Trpdr, Search) be a secure index scheme, ∆
be a dictionary, A be an adversary and consider the following probabilistic experiment CKASI,A(k):

1. A generates a collection of n documents D = (D1, . . . , Dn) from ∆.

2. the challenger generates a key K ← Gen(1k) and indexes (I1, . . . , In) such that Ii ← IndexK(Di)

3. given (I1, . . . , In) and oracle access to TrpdrK(·), A outputs two documents D∗0 and D∗1 such that
D∗0 ∈ D, D∗1 ⊆ ∆, and |D∗0 \D∗1| 6= 0 and |D∗1 \D∗0| 6= 0. In addition, we require that A does not
query its trapdoor oracle on any word in D∗0 	D∗1.

4. the challenger chooses a bit b uniformly at random and computes Ib ← IndexK(Db).

5. given Ib and oracle access to TrpdrK(·), A outputs a bit b′. Here, again, A cannot query its
oracle on any word in D∗0 	D∗1.

6. the output of the experiment is 1 if b′ = b and 0 otherwise.

We say that SI is IND2-CKA secure if for all polynomial-size adversaries A,

Pr [ CKASI,A(k) = 1 ] ≤ 1

2
+ negl(k),

where the probability is over the choice of b and the coins of Gen and Enc.

As Goh remarks (cf. Note 1, p. 5 of [23]), IND2-CKA does not explicitly require that trapdoors be
secure since this is not a requirement for all applications of secure indexes. It follows then that the
notion of IND2-CKA is not strong enough to guarantee that an index can be safely used to build a SSE
scheme. To remedy the situation, one might be tempted to require that a secure index be IND2-CKA
and that its trapdoors not leak any partial information about the keywords.
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We point out, however, that this cannot be done in a straightforward manner. Indeed, we give an
explicit construction of an IND2-CKA index with “secure” trapdoors that cannot yield a secure SSE
scheme.

Before we describe the construction, we briefly discuss two of its characteristics. First, it is defined
to operate on documents, as opposed to document collections. We chose to define it this way, as
opposed to defining it according to Definition 4.1, so that we could use the original formulations of
IND2-CKA (or IND-CKA). In particular, this means that build an index one must run the Index and
algorithm on each document Di in a collection D = (D1, . . . , Dn). Similarly, to search one must run
the Search algorithm on each index Ii in the collection (I1, . . . , In). Second, the construction is stateful,
which means that the Index and Trpdr algorithms are extended to take as input and output a state st.

Recall that ∆ = (w1, . . . , wd) is a dictionary of d words; we assume, without loss of generality, that
each word is encoded as a bit string of length `. The construction uses a pseudo-random permutation
π : {0, 1}k × {0, 1}`+k → {0, 1}`+k and a function H : ∆→ Zd that maps a word in ∆ to its position
in the dictionary (e.g., the third word in ∆ is mapped to 3). Let SI = (Gen, Index,Trpdr,Search) be
the secure index scheme defined as follows:

Gen(1k): generate a random key K
$← {0, 1}k.

Index(K, st,D):

1. Instantiate an array A of d elements6

2. set ctr← ctr + 1

3. for each word w ∈ δ(D):

(a) compute r ← πK(w||ctr) and z ← H(w)

(b) store r ⊕ (w||0k) in A[z];

4. fill in the empty locations of A with random strings of length `+ k;

5. output A as the index I and ctr as st.

Trpdr(K, st, w): output tw = (πK(w||1), . . . , πK(w||ctr)).

Search(Ii, tw):

1. parse tw as (r1, . . . , rctr)

2. for 0 ≤ j ≤ |A| − 1:

(a) decrypt the jth element of A by computing v ← A[j]⊕ ri
(b) output 1 if the last k bits of v are equal to 0, otherwise continue;

3. output 0.

Theorem B.2. If π is a pseudo-random permutation, then SI is IND2-CKA.

Proof. We show that if there exists a polynomial-size adversary A that wins in a CKASI,A(k) exper-
iment with non-negligible probability over 1/2, then there exists a polynomial-size adversary B that
distinguishes whether a permutation π is random or pseudo-random.
B begins by simulating A as follows. It initializes a counter ctr to 0 and, given a document

collection D = (D1, . . . , Dn) from A, it returns a set of indexes (I1, . . . , In) such that Ii is the result
of running the Index algorithm with document Di, counter ctr and where the PRP is replaced with
oracle queries to π. For any trapdoor query w from A, B returns t = (π(w||1), . . . , π(w||ctr)).

6We assume that A is “augmented” with an indirect addressing capability, namely, the ability to map |∆| values from
an exponential-size domain into its entries. See the construction in Section 5.1 for an efficient way to achieve this.
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After polynomially many queries, A outputs two documents D∗0 and D∗1 subject to the following
restrictions: D∗0 ∈ D, D∗1 ⊆ ∆, |D∗0 \D∗1| 6= 0 and |D∗1 \D∗0| 6= 0; and no word in D∗0 	D∗1 was used as
a trapdoor query.
B then samples a bit b uniformly at random and constructs an index Ib as above. It returns Ib to

A2 and answers its remaining Trpdr queries as before. After polynomially many queries, A outputs a
bit b′ and if b′ = b then B answers its own challenge indicating that π is a pseudo-random permutation;
otherwise it indicates that π is a random permutation.

Clearly B is polynomial-size sinceA is. Notice that if π is a random permutation then whether b = 0
or b = 1, the index returned to A2 is a d-element array filled with (`+k)-bit random strings. Similarly,
notice that since A is only allowed to query on keywords in D∗0 ∩D∗1, the trapdoors returned by B are
the same whether b = 0 or b = 1. It follows then that the probability that A succeeds in outputting
b′ = b is at most 1/2. On the other hand, if π is a pseudo-random permutation then A’s view while
being simulated is exactly the view it would have during a CKASI,A(k) experiment. Therefore, by our
initial assumption, A2 will succeed with non-negligible probability over 1/2. It follows then that B
will succeed in distinguishing whether π is random or pseudo-random with non-negligible probability.

Notice that while SI’s trapdoors do not leak any information about the underlying keyword (since
the trapdoors are generated using a pseudo-random permutation), the Search algorithm leaks the
entire keyword. Clearly then, SI cannot be used as a secure SSE scheme.

Simulation-based SSE definitions. In [18] a simulation-based security definition for SSE is pro-
posed that is intended to be stronger than IND2-CKA in the sense that it requires a scheme to have
secure trapdoors. Unfortunately, it turns out that this definition can be trivially satisfied by any SSE
scheme, even one that is insecure.

Definition B.3 ([18]). For all q ∈ N, for all ppt adversaries A, all sets H composed of a document
collection D and q keywords (w1, . . . , wq), and all functions f , there exists a ppt algorithm (simulator)
S such that

|Pr [A(Cq) = f(H) ]− Pr [S({E(D),D(w1), . . . ,D(wq)}) = f(H) ]| ≤ negl(k),

where Cq is the entire communication the server receives up to the qth query7 , E(D) is the encryption of
the document collection (either as a single ciphertext or n ciphertexts), and k is the security parameter.

Note that the order of the quantifiers in the definition imply that the algorithm S can depend on H.
This means that for any q and any H, there will always exist a simulator that can satisfy the definition.
This issue can be easily corrected in one of two ways: either by changing the order of the quantifiers
and requiring that for all q ∈ N, for all adversaries, for all functions, there exists a simulator such that
for all sets H, the inequality in Definition B.3 holds; or by requiring that the inequality hold over all
distributions over the set 2∆ ×∆q.

As mentioned in Section 1, Definition B.3 is inherently non-adaptive. Consider the natural way
of using searchable encryption, where at time t = 0 a user submits an index to the server, then at
time t = 1 performs a search for word w1 and receives the set of documents D(w1), at time t = 2
performs a search for word w2 and receives the set of documents D(w2), and so on until q searches are
performed (i.e., until t = q). Our intuition about secure searchable encryption clearly tells us that at

7While the original definition found in [18] defines Cq to be the entire communication the server receives before the
qth query, we define it differently in order to stay consistent with the rest of our paper. Note that this in no way changes
the meaning of the definition.
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time t = 0 the adversary (i.e., the server) should not be able to learn any partial information about the
documents from the index (beyond, perhaps, the number of documents it contains). Similarly, at time
t = 1 the adversary should not be able to learn any partial information about the documents and w1

from the index and the trapdoor for w1 beyond what it can learn from D(w1). More generally, at time
t = i, where 1 ≤ i ≤ q, the adversary should not be able to recover any partial information about the
documents and words w1 through wi from the index and the corresponding trapdoors beyond what it
can learn from the trace of the history.

Returning to Definition B.3, notice that for a fixed q ∈ N, the simulator is required to simulate
A(Cq) when only given the encrypted documents and the search outcomes of the q queries. But
even if we are able to describe such a simulator, the only conclusion we can draw is that the entire
communication Cq leaks nothing beyond the outcome of the q queries. We cannot, however, conclude
that the index can be simulated at time t = 0 given only the encrypted documents; or that the index
and trapdoor for w1 can be simulated at time t = 1 given only the encrypted documents and D(w1).
We note that the fact that Definition B.3 holds for all q ∈ N, does not imply the previous statements
since, for each different q, the underlying algorithms used to generate the elements of Cq (i.e., the
encryption scheme and the SSE scheme) might be used under a different secret key. Indeed, this
assumption is implicit in the security proofs of the two constructions presented in [18], where for each
q ∈ N, the simulator is allowed to generate a different index (when q ≥ 0) and different trapdoors
(when q ≥ 1).
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