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ABSTRACT
This paper aims to provide an efficient solution for people
in a city who drive their cars to visit several destinations,
where they need to park for a while, but do not care about
the visiting order. This instance of the multi-destination
route planning problem is novel in terms of its constraints:
the real-time traffic conditions and the real-time free parking
conditions in the city. The paper proposes a novel Multi-
Destination Vehicle Route Planning (MDVRP) system to
optimize the travel time for all drivers. MDVRP’s design has
two components: a mobile app running on the drivers’ smart
phones that submits real-time route requests and guides the
drivers toward destinations, and a server in the cloud that
optimizes the routes by finding the most efficient order to
visit the destinations. MDVRP uses TDTSP-FPA, an algo-
rithm that finds the fastest route to the next destination and
also assigns free curbside parking spaces that minimize the
total travel time for drivers. We evaluate MDVRP using
a driver trip dataset that contains real vehicular mobility
traces of over two million drivers from the city of Cologne,
Germany. By learning the spatio-temporal distribution of
real driver destinations from this dataset, we build a novel
experimental platform that simulates real, multi-destination
driver trips. Extensive simulations executed over this plat-
form demonstrate that TDTSP-FPA delivers the best per-
formance when compared to three baseline algorithms.

CCS Concepts
•Information systems → Location based services;
•Human-centered computing → Mobile computing;

Keywords
Route planning, Multiple Destinations, Parking Assign-
ment, Cooperative System, Mobile App

1 Introduction

The aim of multi-destination route planning is to find the
most efficient order of visiting a number of destinations in
order to reduce the trip cost, such as the travel time. While
this problem has been studied extensively in the context of
the Traveling Salesman Problem (TSP) [16, 27], this paper
defines a new instance of the problem that is important in
real-life. We aim to provide an efficient solution for people
in a city who drive their cars to visit several destinations,
where they need to park for a while, but do not care about
the visiting order. Specifically, the problem’s novelty comes
from its constraints: the real-time traffic conditions and the
real-time free parking conditions in the city. Furthermore,
the two constraints influence each other. For example, traf-
fic congestion increases when the drivers cruise looking for
parking in a region where all the free parking spaces are
already taken.

Managing the interplay between traffic conditions and
parking conditions to reduce the travel time for drivers can
help both delivery companies and individuals in a city. For
example, many times, delivery drivers must park around
their destinations (e.g., big buildings) where they need to
deliver several packages. An individual, on the other hand,
may have a number of tasks to do in a weekend day: gro-
cery shopping, take clothes to/from dry cleaning, stop by
the work office to get some papers, and see a small art exhi-
bition downtown. The tasks can be done in any order, and
we want to do it as efficiently as possible.

The problem that we need to solve is two-fold: a route
planning problem and a free parking assignment problem.
To solve it, the paper proposes a Multi-Destination Vehicle
Route Planning (MDVRP) system to efficiently plan routes
for all drivers in the system. MDVRP optimizes the travel
time for all drivers (i.e., plan their routes), while satisfying
the free curbside parking conditions (i.e., provide parking
guidance). It is cost-effective, as it does not rely on any sens-
ing infrastructure. Its design has two components: a mobile
app running on the drivers’ smart phones and a server run-
ning in the cloud. The app submits real-time route requests
to the server, receives optimized routes from the server, and
guides the drivers toward destinations. In addition, the app
reports to the server when and where a car is parked and
when it leaves its parking space. This allows the server to
manage the parking information and assign parking spaces
to drivers. The server’s main job is to interact with the mo-
bile apps of all drivers and to optimize the routes for these
drivers to reduce their travel time, while managing traffic



congestion. The optimization determines the best order to
visit the destinations and finds the best free curbside parking
spaces for the drivers.

MDVRP uses TDTSP-FPA, a novel algorithm that com-
bines a solution for the Time-Dependent Traveling Sales-
man Problem (TDTSP) [22] to find the fastest route for the
next destination with our Free Parking Assignment Algo-
rithm (FPA) [13] to find free curbside parking that mini-
mizes the driving plus walking time for all drivers in the
system. TDTSP-FPA manages the incoming requests in two
steps: first, it finds the shortest path to the next destina-
tion in a trip in such a way as to minimize the total travel
time. Second, it solves driver contention for the same park-
ing spaces in such a way as to minimize the total travel time
for all drivers. The travel time for one driver is the sum
of: (1) driving time from the moment the driver submits
a parking request to the moment she parks, and (2) walk-
ing time from the parking space to the destination and back.
TDTSP-FPA’s optimization goal is to reduce the total travel
time for all drivers.

The main contributions of this paper are:

• We define a new instance of the multi-destination route
planning problem, which has significant practical ap-
plicability. To the best of our knowledge, this is the
first work on route planning that considers simultane-
ously the real-time conditions of vehicular traffic and
free parking availability.
• We propose a novel system, MDVRP, and an algo-

rithm, TDTSP-FPA, to solve this problem. The opti-
mization goal of the algorithm is to minimize the total
travel time for all drivers, where this time includes
both the driving time to parking spaces and walking
time between parking spaces and destinations. The
design of MDVRP is modular and, thus, other algo-
rithms for time-dependent route planning and parking
assignment can be used to replace TDTSP-FPA.
• We build a new experimental platform for realistic sim-

ulations of multi-destination routing. We use real ve-
hicular mobility traces from over two million drivers
from the city of Cologne, Germany to learn the spatio-
temporal distribution of real driver destinations. Our
platform then uses a new method to generate realistic
multi-destination route requests, exploiting Cologne’s
road network along with many destinations and curb-
side parking spaces in the city’s downtown.
• We perform extensive experiments to demonstrate the

performance of our system. According to the exper-
imental results, TDTSP-FPA reduces the total travel
time by 34% when compared to the solution that repre-
sents current driver habits and by 29% and 26% when
compared to baseline solutions for TSP and TDTSP,
respectively. TDTSP-FPA scales well, as it works
better when a larger fraction of drivers in the road
network are MDVRP drivers. For example, TDTSP-
FPA’s travel time reduction compared with TDTSP’s
is 25% when 5% of drivers are part of MDVRP vs.
19% when only 3% of the drivers are part of MDVRP.
The system is robust and provides benefits even when
drivers do not comply with the recommended visiting
order, but accept the parking assignment.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents an overview of the
MDVRP system. Section 4 defines the optimization criteria

for time-dependent route planning and free parking assign-
ment, and it describes TDTSP-FPA. Section 5 presents our
new experimental platform and the experimental results ob-
tained on top of this platform. Section 6 presents conclusions
and future work.

2 Related Work
As urban population grows, cities face many challenges re-
lated to transportation, resource consumption, and the en-
vironment. Vehicle route planning has been proposed as a
strategy to decrease road traffic congestion and implicitly
reduce the travel times for drivers. Most of the previous
studies on route planning focused on single-destination sce-
narios. Unlike these studies, our work focuses on a new and
practical problem: many drivers have to go to several des-
tinations in a trip, but do not care about the visiting order
of these destinations. Furthermore, our problem needs to
satisfy real-time constraints regarding vehicular traffic and
free curbside parking availability.

The Traveling Salesman Problem (TSP) is a well-known
multi-destination route planning problem that aims to find
the shortest route (i.e., in terms of distance) that visits each
destination once [16]. Although this problem is NP-hard,
there is a large number of algorithms that can solve the
problem exactly for practical number of destinations or ap-
proximately for very large number of destinations. However,
these algorithms assume that the travel times are constant
throughout the day. The Time-Dependent Traveling Sales-
man Problem (TDTSP) is a variation of TSP in which the
amount of time it takes the salesman to travel from one
destination to another fluctuates depending on the time of
the day. By allowing the travel time between destinations
to vary, the TDTSP can better model real world conditions
such as heavy traffic, road repairs, and automobile accidents.
We are interested in the time dependent problem introduced
by [10, 5, 27] which strives to find the shortest route when
the travel time depends on the time of day when the route
is traversed.

traveling salesman problem with multiple time windows
and time-dependent travel and service time

In these real-world TDTSP problems, there are frequently
additional constraints such as time-windows or precedence
constraints. TDTSP with time windows [21] deals with
finding a set of optimal routes for a fleet of vehicles in
order to serve a set of customers, each one with a speci-
fied time window. Hurkala [15] proposes a novel algorithm
that computes the minimum route duration for the TDTSP
with multiple time windows and time-dependent travel and
service/visit time constraints. Different constraints are ad-
dressed in Huang et al. [29] to efficiently plan a route that
satisfies deadlines and cost requirements. The work finds
an objective-optimized route where the user-specified desti-
nations are visited before their corresponding deadlines. It
also considers multiple deadlines for multiple destinations as
well as optimizing the trip cost simultaneously. Melagarejo
et al. [20] proposes a set of benchmarks for TDTSP based
on real traffic data and shows the importance of handling
time dependency in the problem. The authors present a new
global constraint (an extension of no-overlap) that integrates
time-dependent transition times and show that this new con-
straint outperforms the classical Constraint Programming
approach.

In addition to academic research, route planning apps



such as Route4Me and GSMtasks [1, 2] aim to optimize
driver’s route when traveling to multiple destinations. These
apps are able to efficiently manage driver fleets as well as
business and delivery drivers.

None of these works considers finding free curbside park-
ing for drivers and does not consider the influence parking
availability and parking locations on the traffic conditions.
To the best of our knowledge, our MDVRP system is the
first work on multiple-destination route planning that con-
siders real-time parking and traffic conditions for multiple
destinations, while optimizing the total travel time for all
drivers.

MDVRP chooses to learn the parking information from
the drivers because infrastructure such as ParkNet [19] and
SFpark [3], which is installed to detect and monitor the avail-
ability of curbside parking, is expensive to deploy and main-
tain. Nevertheless, MDVRP can integrate information from
other parking monitoring solutions. For example, Nawaz
et al. [23] proposed a smart phone based sensing system
that leverages the ubiquity of WiFi beacons to monitor the
availability of street parking spaces. Salpietro et al. [26] de-
veloped Park Here!, a smart curbside parking system based
on smart phone-embedded sensors and short range commu-
nication technologies. Arnott and Rowse [6] developed an
integrated model for curbside parking and traffic congestion
control in a downtown area.

Most previous research on parking in a city focused on
managing information about parking availability and shar-
ing it with the drivers, but let the drivers make their own
parking decisions. However, this still leads to traffic con-
gestion because multiple drivers will attempt to park in the
same space. A better approach would be to assign the park-
ing spaces automatically to the drivers and let them concen-
trate on their trips. Several works studied parking assign-
ment solutions from different perspectives. Boehle [9] pre-
sented a centralized reservation system. A parking service
constantly gathers traffic data from participating vehicles.
This data is then used to determine time-optimal routes
from the vehicles’ current position to the parking spaces.
Mackowski et al. [18] developed a demand-based real-time
pricing model to optimally allocate parking spaces in busy
urban centers. In [13], we introduced FPA for on-the-fly
curbside parking assignment. Unlike other parking assign-
ment systems, FPA adapts on-the-fly to new parking re-
quests and optimizes parking space allocation to maximize
a social welfare objective (i.e., minimizing the total travel
time for all drivers). However, none of these works was
designed to optimize parking space allocation for multiple-
destination route planning over time. MDVRP leverages
FPA in its TDTSP-FPA algorithm to optimize the travel
time for all drivers in our system.

3 System Overview
This section presents an overview of MDVRP, focusing on
how to plan a multi-destination route that satisfies real-time
traffic and parking conditions. MDVRP aims to reduce the
total travel time (i.e., driving and walking times) for all
drivers in the system.

Figure (1) shows the system design of MDVRP system,
which consists of two components, namely Driver Manager
(DM) and Route Planning Manager (RPM).

DM is a mobile app that runs on each driver’s smart
phone, which consists of three modules: driver request initia-

Figure 1: MDVRP System Overview

tor, tracker, and driver guidance. DM is in charge of submit-
ting a multi-destination route request and reporting parking
status to the RPM. Once it receives a route from RPM, it
guides the driver in their trip. The reporting of parking sta-
tus relies on the app, which can learn this status from an
activity recognition service running on the phone [11].

RPM runs on a central server and consists of two mod-
ules, the multi-destination route planner and the parking
scheduler. RPM manages the incoming route requests, ag-
gregates the DM parking reports to determine the available
parking spaces, and provides multi-destination route plan-
ning services to drivers. The services are invoked upon the
initial request for trip planning from a driver, and are re-
invoked at each destination to plan the remaining route for
the driver based on her current location. The TDTSP-FPA
algorithm running at RPM combines a solution for the Time-
Dependent Traveling Salesman Problem (TDTSP) [22] to
find the fastest route for the next destination with our Free
Parking Assignment Algorithm (FPA) [13] to find free curb-
side parking that minimizes the driving plus walking time
for all drivers in the system. MDVRP is designed to first
consider traffic conditions, and then consider the parking
conditions, as drivers approach their destinations.

We now describe the lifecycle of a multi-destination route
request in MDVRP, from generation to completion. When
a driver submits a request, the driver request initiator on
her phone generates two types of requests: a route request
and several parking requests (corresponding to the multiple
destinations). The route request contains the destinations
chosen by the driver and the driver’s current-status record,
i.e., (driver’s current road segment, position on road seg-
ment, observation time). The route request is sent to RPM,
where all incoming route requests are streamed into a queue
by the multi-destination route planner module and are pro-
cessed on a first-come-first-serve basis. The parking requests
are forwarded to the tracker at the DM, which sends them
individually to the parking scheduler at the RPM each time
the driver approaches a new destination and needs a parking
space near that destination. The number of parking requests
equals the number of the driver-specified destinations. Each
parking request contains a driver-specified destination and
the amount of time the driver wants to spend at the desti-
nation (i.e., parking duration).

The multi-destination route planner manages and serves
incoming route requests. It plans routes in a way that op-
timizes the total travel time. Specifically, for each route
request, it uses a time-dependent graph representation of
the road network and applies a Time-Dependent Traveling



Salesman Problem (TDTSP) solution to compute the fastest
path between two given locations. The travel time over a
road segment depends on its traffic congestion status, which
in turn depends on the time instant at which the road seg-
ment is traversed. Thus, knowledge about real-time traffic
information over the road network is required. Even though
speed profiles extracted from history data can provide a good
estimation of long-term traffic dynamics, the short and mid-
term forecast of travel times on road segments, particularly
the time instant at which the segments are traversed must
be made dynamically. Thus, we obtain the time cost of a
road segment from existing open source historic trajectory
data [28] and real-time traffic information from drivers who
are part of our system (i.e., MDVRP drivers) [24]. As shown
in [14], drivers’ smart phones can form a traffic sensing in-
frastructure, and a 2-3% penetration of smart phones in the
driver population is enough to provide accurate measure-
ments of the velocity of the traffic flow.

The initial routes determined by TDTSP are adjusted af-
ter visiting each destination based on the locations of avail-
able parking spaces around the next destination. This is
done to minimize the total cost of traversing the route, which
includes the time spent on both driving to parking spaces
and walking to destinations from parking spaces. Since park-
ing spaces may be taken without notice by drivers who are
not part of MDVRP, we consider the (k) closest parking
spaces to each destination when computing the routes. To
select the next destination, the multi-destination route plan-
ner averages the travel times between driver’s origin location
and the k selected parking spaces around each destination. It
then selects the destination with the shortest average travel
time. Once the next destination is computed, the corre-
sponding route and the destination are sent to the DM’ s
driver guidance module.

Given the driver’s next target destination, the driver guid-
ance module guides the driver to the destination. It also
forwards the destination to the tracker, which then submits
a parking request to the parking scheduler when the driver
approaches the target destination. If the parking request is
sent when the driver is far away from the destination, drivers
who are not part of our system (i.e., unsubscribed drivers)
have a high likelihood of taking the assigned space. If the
request is sent when the driver is too close to the destina-
tion, the system may not be able to find a parking space
close enough to the destination.

Therefore, as the driver approaches the target destina-
tion, we use a Request Distance (see Figure (2)) to deter-
mine when the driver’s parking request has to be sent by the
tracker to the parking scheduler in order to be assigned a
parking space. This distance defines a circle centered around
the destination and its radius was determined experimen-
tally to be initially set to the average length of the roads
within the whole region (i.e., zip code). The radius can be
adjusted periodically based on the parking occupancy rate
in the area which is learned from the RPM (i.e., the radius
is increased when the occupancy becomes higher). RPM
may over-estimate the number of available parking spaces
as it uses only information from MDVRP drivers. This is
because unsubscribed drivers may take parking spaces pre-
sumed to be available by our system. This problem is solved
in our previous work [13] based on keeping track of spaces
occupied by unsubscribed drivers and on avoiding assigning
these spaces for a period of time.

Figure 2: Parking Search Region

After receiving the parking request, the parking scheduler
enqueues it for parking scheduling and assignment. The
parking assignment decision is made once the Request Dis-
tance is reached in such a way as to minimize the total travel
time (driving and walking times) of all drivers in MDVRP.
The parking assignment algorithm is described in Section 4.
Once the driver parks in the assigned space, the parking
scheduler deletes the parking request from the queue. The
tracker reports the status of the parking space to the park-
ing scheduler when the driver is going to either park at or
leave the assigned space. When the driver leaves the space,
the tracker also updates the driver’s current-status record
and sends it to the multi-destination route planner to find
the fastest path toward the next target destination in the
trip. The aforementioned process is repeated until all the
driver-specified destinations are visited.

Both the multi-destination route planner and the parking
scheduler aim to minimize the total travel time; however, the
multi-destination route planner minimizes the travel time
toward the next destination (up to the Request Distance) for
each driver. Then, once the Request Distance is reached, the
parking scheduler minimizes the total travel time (driving
from the Request Distance to the parking space and walking
from the parking space to the destination and back) for all
the drivers.

The design of our MDVRP system is modular and, thus,
other time-dependent route planning and parking assign-
ment algorithms can be used. Even though we use the
TDTSP’s point-to-point shortest path algorithm [22] and
the Free Parking Assignment algorithm (FPA) [13], they
can be replaced with other such algorithms.

4 Travel Time Optimization
We consider the multi-destination route planning problem
with parking and traffic constraints defined as follows. Given
a sequence of route requests ordered by generation time, we
aim to serve each request by finding the fastest route leading
drivers to their destinations while considering the real-time
traffic and providing free parking assignment service at each
destination in the route.

The salient character of our problem lies in that we aim
to reduce the total travel time of all drivers as much as it is
practically possible. The travel time for each driver is split
into: 1) The driving time from the current location to the
parking’s Request Distance of the next target destination;
2) The driving time from the moment the driver reaches the
Request Distance to the moment it parks; 3) The walking
time between the parking space and destination (forth and
back).

To achieve this goal, we develop the TDTSP-FPA algo-
rithm. TDTSP-FPA uses a solution to TDTSP to solve a



multi-destination route planning problem in such a way as
to minimize the travel time toward destinations (point 1
above). FPA solves drivers’ contention for the same parking
spaces in such a way as to optimize the total travel time
to each destination in their trips (points 2 and 3 above).
TDTSP helps FPA in the sense that it finds the fastest route
that avoids traffic congestion to the destination, which im-
plicitly means it is easier to find a parking space along the
path. FPA helps TDTSP by reducing the traffic congestion
due to cruising while looking for parking.

4.1 Optimization Formulation
The optimization objective for our problem is to reduce the
total travel time for all drivers. Specifically, the problem tar-
gets a set of requesting drivers V = {v1, v2, ...., vn}; and each
driver vi has a set of target destinations D = {d1, ...., dz}.
When planning routes, we also consider curbside parking
spaces, which are denoted by S = {s1, s2, ...., sm}, and the
parking occupancy periods for each destination, which are
described by wsj , i.e., the time duration that parking space
sj will be occupied by a driver and cannot be utilized for
any other driver.

The drivers are assumed to be moving independently
based on legal speeds and on the congestion levels on differ-
ent road segments. All the geographical locations, including
the addresses of destinations and the locations of parking
spaces, are converted into latitude and longitude coordinates
in the system.

The optimization solves two problems together, TDTSP
and FPA, which are as described as follows.

4.1.1 TDTSP Definition

TDTSP is a well-known route planning problem for multiple
destinations. TDTSP extends the original Traveling Sales-
man Problem (TSP) with the specific goal of finding the
fastest connection on time-dependent road networks. The
travel time on the road networks depends on the traffic con-
gestion. All drivers travel along a road network that is mod-
eled as a directed graph G(N,E). Each directed edge e ∈ E
represents a road segment and each node n ∈ N represents
the intersection of two or more roads. Given a segment ei,
it takes time ti for a driver to travel from one intersection to
another along ei. Note that traffic conditions represented by
ti can be incorporated in the model by introducing weights
on graph edges [24]. If a trip begins or ends in the mid-
dle of a road segment, we approximate the location to the
nearest intersection node. This approximation works well
in our city settings, where the road segments are a mix of
medium-length and short.

Next, we formally define the concept of path, travel time
function, timed-path in a graph, travel time of sub-tour, and
we then give an alternative formal definition of the TDTSP.

Definition 1 (Path). A path P = (n1, ..., nk) in a graph
G = (N,E) is a sequence of nodes such that (ni, ni+1) ∈
E, ∀i ∈ {1, ....k − 1}, k ≥ 2.

Definition 2 (Travel Time Function). A travel time
function f : E × R+ → R+ is a function such that for a
given edge (ni, nj) ∈ E, f(ni, nj , t) is the travel time from
ni to nj when leaving ni at time t.

The travel time function dynamically associates travel
times to road segments at the time when the segment is

traversed, i.e.. MDVRP does this based on historical speed
profiles as well as frequent updates received from drivers in
the system.

Definition 3 (Timed-Path). Given a graph G=(N,E),
a path starting time τ ∈ R+ and a travel time function
f : E × R+ → R+, a timed-path Pτ,f in G is a path
(ni, ...., nk), in which each node ni has an associated start
time t(ni, Pτ,f ) such that:

t(ni, Pτ,f ) ≥ τ, ∀i ∈ {1, ..., k}

t(ni+1, Pτ,f ) ≥ t(ni, Pτ,f ) + f(ni, ni+1, t(ni, Pτ,f ))

Next, we define the travel time to parking, which is the
time between the current location of the driver (origin or
current parking space) and its next parking space (i.e., for
the next destination). Recall that we do not know which
parking space will be available when the car approaches the
next destination, and thus consider the k closest parking
spaces to the destination in our system.

Definition 4 (Travel Time to Parking.)Given a graph
G=(N,E), two nodes (ni, nj) that represent a driver’s cur-
rent location (ni) and the next target destination (nj) in a
driver’s route, a current time t, and a travel time function
f : E×R+ → R+, a travel time to parking Tij is the average
of the minimum costs (i.e., time) timed-paths between the
origin ni and the k available parking spaces closest to the
destination nj.

MDVRP calculates the k available parking spaces at the
time the vehicle is ready to drive toward the next destination
(i.e., MDVRP does not predict the parking availability at the
time the vehicle arrives at destination). The parking spaces
are calculated based on the occupancy period wsj and the
travel time to the parking space sj from the current location
ni. If by the time the driver approaches the destination,
some of the k parking spaces become unavailable, MDVRP
is able to adapt and find other parking spaces.

Definition 5 (TDTSP). Given a graph G=(N,E), a path
starting time τ ∈ R+, a travel time function f : E × R+ →
R+, and a timed-path Pτ,f , TDTSP finds the fastest route
which starts from the origin (n1 = o) and visits each desti-
nation exactly once. The route is computed using the travel
times to parking, Tij, computed between each pair of (ni, nj)
nodes.

4.1.2 FPA Definition

A parking assignment of spaces to drivers is defined as Y:
V → S, where yij is the assignment of a driver vi ∈ V to a
parking space sj ∈ S:

yij =

{
1, if vi is assigned to sj

0, otherwise
1 ≤ i ≤ n, 1 ≤ j ≤ m (1)

n∑
i=1

yij ≤ 1, 1 ≤ j ≤ m (i.e., sj ∈ S) (2a)

m∑
j=1

yij = 1, 1 ≤ i ≤ n (i.e., vi ∈ V ) (2b)

Constrains 2a and 2b ensure that a driver receives at most
one space and that a space is not assigned to more than one



driver, respectively. Further, the space is forbidden to be
reassigned during the time occupancy period of the current
assignment, such that the assignments do not overlap.

For a set of drivers and a set of parking spaces, there may
exist a large number of assignments. The algorithm seeks to
find an assignment that can minimize the total travel time
(driving and walking) of the drivers to each destination in
their trips. The travel time T (vi) toward one destination in
a driver vi’s trip is calculated in real-time and consists of
two parts, the driving time and the walking time:

• Td (Ovi , sj) is the driving time of driver vi from the
moment she submits her request from location Ovi until
she parks at the parking space sj .

• Tw (sj , dvi +sj) is the walking time of the driver between
the parking space sj and the destination dvi (forth and
back).

4.2 A Solution for the TDTSP
In the RPM component of our system, we deploy the time-
dependent point-to-point shortest path solution [22] to com-
pute a timed-path with minimum travel time to the next
destination. This is a bidirectional search algorithm on time-
dependent road networks, based on the A* algorithm. The
given network is modeled as a directed graph with time-
dependent travel time functions for all edges. The algorithm
procedure leverages a modified generalization of Dijkstra’s
algorithm, made bidirectional and improved in several as-
pects. As for the backward search in A*, the arrival times
are not known in advance. Thus, the reversed graph has to
be weighted by a lower bound cost (constant travel time for
all time instants i.e., edge length/maximum speed limit).

Given a graph G=(N,E) and origin and destination nodes
o, d ∈ N, the algorithm for computing the fastest o-d path
works in three phases.

1. A bidirectional A* search occurs on G, where the forward
search is run on the graph weighted by the travel time
function, and the backward search is run on the graph
weighted by the lower bound cost. All nodes settled by
the backward search are included in a set M . Phase one
terminates as soon as the two search scopes meet.

2. Suppose that node n ∈ N is the first node in the inter-
section of the forward and backward searches, where a
time cost of the path going from o to d passing v is an
upper bound cost of the path of (o, d, t). In the second
phase, both search scopes are allowed to proceed until
the backward search queue contains only nodes associ-
ated with costs less than the upper bound. Again, all
nodes settled by the backward search are added to M .

3. Only the forward search continues, with the additional
constraint that only nodes in M can be explored. The
forward search terminates when d is settled.

4.3 The FPA Algorithm
The parking scheduler component runs the FPA algorithm
periodically to assign parking spaces to outstanding park-
ing requests in the queue. We determined experimentally,
based on simulations, that running FPA every 2 seconds
provides a good trade-off between performance and over-
head. In each period, FPA first pre-allocates to the driver
of each outstanding request an available parking space that

Algorithm 1 TDTSP-FPA Pseudo-code Executed for Each
Visited Destination

1: Phase one
2: Input: a driver’s origin ov, set of target destinations
Dv = d1, ..., dz, a value k for the closest parking spaces
to each destination, and a starting time τ

3: curr orig ←−ov // current origin of the trip
4: rem Dv ←−Dv //set of remaining destinations to be

visited
5: for each destination div ∈ Dv do
6: Define a list of k parking spaces Ldiv which are the

closest available spaces to div at the approximate time
of arrival to div

7: Origin set ←−Dv-div+curr orig
8: for each parking space sj ∈ Ldiv do
9: for each o in Origin set do

10: Compute travel time α
sj
o of the timed-path be-

tween o and sj at time t
11: end for
12: end for
13: for each o in Origin set do
14: Compute the travel time to parking Ti between o

and div by averaging the travel times αsjo between
o and the k parking spaces

15: end for
16: end for
17: fastestRoute ←− TDTSP (Dv,T )
18: Send first destination, d, in fastestRoute to FPA pro-

cedure to assign parking space
19: Phase two //executed once the driver reaches the Re-

quest Distance for parking assignment
20: Input: a driver’s current location cv and the destination

d
21: Create the list of current available parking spaces Ld in

the proximity of d
22: sv ←− FPA(cv, d, Ld) //assigned parking space for

driver v
23: Guide v to sv.
24: rem Dv ←− rem Dv − div
25: curr orig ←− sv
is closest to her destination. The pre-allocation adapts the
solution to the flow problem described in [7] to minimize the
total walking time of these drivers. The actual assignment
of parking spaces takes place based on the urgency of the de-
mands for parking spaces, which is measured by how close
the corresponding drivers are to their destinations or their
pre-allocated parking spaces. Specifically, in each period,
the drivers with the most urgent demand (i.e., they may
pass their destination if a parking assignment is not made
quickly) are selected and their pre-allocated parking spaces
are officially allocated to them. For more details, we direct
the reader to a description of the FPA algorithm [13].

4.4 The TDTSP-FPA Algorithm
The procedure of serving drivers’ request in TDTSP-FPA al-
gorithm is divided into two phases, as shown in Algorithm 1,
and each phase requires a list of parking spaces that are lo-
cated in a destination’s region. These lists are static, as
defined by the municipality data on streets with free curb-
side parking. Therefore, for each destination, we define an
ascending list of parking spaces offline where each parking
space is ordered according to the road distance to its asso-
ciated destination.

The first phase invokes the TDTSP procedure to find the
shortest route that starts from a driver’s current origin and
visits all the destinations once in such a way as to minimize



the total travel time. We compute the travel time to parking
according to Definition 4 (lines 5-16 in Algorithm 1) for each
pair of nodes in the graph (i.e., the union of current origin
and the set of remaining destinations not visited yet). Then,
we apply TDTSP according to Definition 5 (line 17), and
select the first destination in the fastest route generated by
TDTSP (line 18). This will be the next destination, for
which FPA will assign parking. In order to reduce the time
spent on computing paths, we re-use the paths that have
been computed in the past x minutes for drivers who share
the same locations and destinations, where x is determined
experimentally. In this second phase, the FPA procedure
is invoked when a driver reaches the Request Distance (line
22). Once a parking space is assigned, the driver’s phone
will guide the driver toward this space (line 23). Lines 24-
25 update the set of visited destinations and sets the new
current origin of the driver. The whole algorithm is executed
again to determine the next destination after the parking
duration at the current destination expires.

5 Experimental Evaluation
We have evaluated the performance of MDVRP and
TDTSP-FPA algorithm using simulation with real traffic
traces in a real-world road network, which provide us with
realistic constraints in terms of traffic and parking.

5.1 Evaluation Goals
Our evaluation aims to determine:
• The overall effectiveness of the TDTSP-FPA algorithm

on reducing the average travel time. The travel time
of a driver includes the time spent on driving to the
assigned parking locations and the time spent on walk-
ing from the parking locations to destinations and then
back to the parking locations. It does not include park-
ing duration. The travel times of all drivers in each
experiment are averaged to reflect the overall perfor-
mance.
• Contributions of driving time and walking time in the

total reduction of travel time.
• The scalability of TDTSP-FPA, as the percentage of

the MDVRP’s drivers among all drivers on the roads
increases.
• The effectiveness of MDVRP on reducing the travel

times of individual drivers. We want to know how
many drivers use less time to finish their trips and
how many drivers spend more time when MDVRP is
used. We calculate the improvement rate, which is
the proportion of drivers with travel time reduced by
MDVRP, to reflect its effectiveness.
• The robustness of the system under a varying compli-

ance rates (i.e., percentage of drivers who follow the
suggested visiting order).

5.2 Comparison Algorithms
• Highest Transition Probability Order (HTPO) repre-

sents human mobility habits without careful route
planing: a driver always picks the destination that is
closest to her current location as her next stop.

• Traveling Salesman Problem (TSP) is a classical rout-
ing strategy that aims to minimize the total travel dis-
tance; it does not consider any constraints. The prob-
lem is NP-hard, but a heuristic algorithm for solving
the TSP problem is used in the experiments [12].

• Time-dependent Traveling Salesman Problem
(TDTSP) uses travel time as a metric to select
the shortest path between driver’s origin and desti-
nation that yields the provably fastest route. Paths
can be evaluated by considering simply point-to-point
shortest paths [22] and real-time traffic density on the
road segments [24].

In HTPO, TSP, and TDTSP, a driver searches for the
closest free parking spaces using breadth-first search.

5.3 Experimental Platform
5.3.1 Real-World Traffic and Road Network Dataset
We use the TAPAS Cologne driver trace [28], which contains
the traffic records of over two million drivers in the city
of Cologne, Germany during a period of tow hours from
6:00 am to 8:00 am. Each trip record includes a departure
time, an origin location and a destination (the IDs of the
corresponding road segments), and the route from the origin
to the destination. We map the trips to the road network in
the same city, which contains 31,584 road intersections and
71,368 road segments.

5.3.2 Request Generation
The requests used to drive the simulation are derived from
the trip records in the TAPAS Cologne dataset. This pro-
cess allows us to 1) control the number of drivers in simula-
tion experiments; 2) select only the destinations in Cologne
downtown, which is the most congested area in the city,
since we are most interested to evaluate TDTSP-FPA in
crowded areas with enough vehicular traffic and contention
for parking; and 3) have requests with multiple destinations
in simulation experiments.

To generate realistic route requests with specific depar-
ture times and multiple destinations, we use the method
proposed in [17]. We first divide the trips in the dataset
into short-time bins, denoted by bi and denote all road seg-
ments by ri. Then all trips are assigned into bins based on
the departure time of the trips. We assume that the desti-
nations of trips on each road segment approximately follow
a Poisson distribution [25] during time frame fj , where each
frame has a fixed length spanning L time bins. Thus, the
Poisson distribution parameter λij is computed for each road
segment ri during time frame fi. Specifically, for each road
segment ri, we count the number of trips that originated
from ri within time frame fi, denoted by cij , and learn the
probability distribution of the destination road segments of
these trips, denoted by pij . Then, we calculate λij based on
cij using Equation (3) and generate a target route request
that follows a Poisson process.

λij = cij/L. (3)

For each route request generated in frame fi with the ori-
gin road segment ri, a destination road segment is generated
according to the probability distribution pij . We only con-
sider the destination road segments with high probability
distribution in the Cologne downtown area to ensure enough
vehicular traffic and enough contention for parking spaces.
Note that the dataset only reveals one destination in a trip;
however, in reality there are more destinations. To keep the
characteristics of a realistic scenario, we repeat the opera-
tion and select from the list more trip records with the origin



of each trip record being the destination of the previous trip
record.

Since trip records are selected according to the probability
distribution, they reflect the real distribution of trip destina-
tions in Cologne downtown and the mobility patterns of the
drivers. Also note that the drivers that submit requests are
not the only drivers in the road network in the simulation,
since background traffic is also included in the simulation,
as we will discuss in this section. The route requests contain
only the trips that we are interested to evaluate.

The route requests have different numbers of destinations
(e.g., 1∼7). We set 40% of the routing requests to the largest
number of destinations to induce more traffic congestion and
to resemble the case of delivery drivers. The rest of the re-
quests are set with fewer destinations to resemble individual
drivers. For example, in an experiment with 1∼4 destina-
tions, 40% of requests are set with 4 destinations, 30% with
3 destinations, 20% with 2 destinations, and 10% with one
destination. To obtain a diverse workload, different simula-
tions have different upper limits.

The length of parking duration is randomly chosen within
[10 min, 25 min], to keep the duration reasonable. Note,
the time needed to walk from the parking location to the
destination and back to the parking location is not included
in the parking duration, as it is an important factor in our
optimization objective.

We set the value of k, the number of closest available
parking spaces to each destination considered in TDTSP, to
3. We found that a small value of k is sufficient to deal with
the problem of parking spaces taken by cars that are not part
of MDVRP, while avoiding an increase in the computation
time. Furthermore, k cannot be very large in order to ensure
that the parking spaces are close to the destinations.

5.3.3 Simulation Setup

We use SUMO [8] to run vehicular traffic simulations, and
use TraaS [4] to send commands to drivers and direct them
in their routes. We use the NetEdit tool in SUMO to create
travel destinations and parking spaces on the Cologne map.
The total number of parking spaces around the destinations
is 2400.

To simulate the scenarios with real traffic conditions, we
varied the background traffic by including different num-
bers of additional drivers (40k∼80k). These drivers make
single-destination trips, which are randomly selected from
the TAPAS Cologne dataset. Background traffic is intro-
duced because we do not assume that all or even a large
fraction of drivers will use the MDVRP system. However,
we assume that MDVRP drivers are generally representative
of the entire driving population.

The background traffic simulates realistic traffic condi-
tions, but it is not used for parking contention for two rea-
sons. First, we selected only a small number of parking
spaces for the drivers that we control; there are many more
parking spaces that could be used by drivers in the back-
ground traffic. Second, we are not interested to evaluate the
effect of unsubscribed drivers (i.e., drivers not subscribed to
MDVRP) on parking contention in this paper. We proposed
a solution to this problem elsewhere [13].

All experimental results show averages over five runs.

Figure 3: Average Travel Time with Different Number
of Drivers and Number of Destinations [1∼4]

Figure 4: Walking and Driving Time for Different
Numbers of Drivers and Numbers of Destinations [1∼4]

5.4 Experimental Results
Figure (3) compares the performance of HTPO, TSP, and
TDTSP with TDTSP-FPA with the number of drivers var-
ied from 800 to 2400. The background traffic is gener-
ated with 60K drivers. As the figure shows, TDTSP-FPA
outperforms the competing solutions consistently, and its
performance advantage is more prominent when the num-
ber of drivers increases. When the number of drivers is
2400, TDTSP-FPA reduces the average travel time by 34%,
29%, and 26%, respectively, compared to HTPO, TSP, and
TDTSP. The results demonstrate the substantial impact
MDVRP can have on driving and parking in the cities.

The figure also shows that the average travel time grows
quickly for HTPO, TSP, and TDTSP when the number of
drivers increases. There are two reasons for this behavior.
First, traffic conditions are not considered in HTPO and
TSP; thus, they may select congested road segments. The
comparison between TDTSP and TSP shows the benefits
from taking traffic conditions into consideration. Second,
drivers in HTPO, TSP, and TDTSP need to travel more to
search for parking, which further increases traffic congestion.
TDTSP-FPA directs drivers to parking spaces that are likely
to be available. Thus, drivers travel shorter distances look-
ing for parking spaces. This reduces not only their travel
time but also the traffic in the road network.

Figure (4) breaks down the travel time into two parts:
driving time and walking time. The figure shows that drivers
spend most time on driving and TDTSP-FPA reduces the
average travel times by mostly reducing the driving time.
With 2400 drivers, TDTSP-FPA can reduce driving time
by up to 54%. Reducing the driving time is very impor-
tant, as this reduces traffic congestion and implicitly the
gas cost and pollution. Since the number of parking spaces
in the centroid area is limited, TDTSP-FPA can hardly re-
duce walking time. We expect that, with the technology
developing toward self-driving cars that can drop off drivers
at the locations closest to their destinations, the impact of
walking time can be ignored in the future. In such a sce-
nario, a self-driving car finds its way to the assigned parking
space after dropping off its passenger.



Figure 5: Average Travel Time with Different Number
of Destinations and Constant Number of Drivers (1200)

Figure 6: Average Travel Time for 2000 Drivers with
Different Patterns of Background Traffic and Number

of Destinations [1∼4]

The next set of experiments investigate how the travel
times change when the number of destinations is varied.
Figure (5) shows the average travel time for 1200 drivers
and 60K background traffic drivers. As the figure shows,
TDTSP-FPA reduces the average travel time by larger per-
centages when the number of destinations increases. For
the experiments with 1∼3 destinations, TDTSP-FPA re-
duces the average travel time by 13% and 7%, respectively,
relative to HTPO and TDTSP. For 5∼7 destinations, the
percentages increase to 23% and 14% respectively. TDTSP-
FPA shows more advantage with more destinations in each
trip not only because the traffic in the road network in-
creases, but also because there is more optimization space
for TDTSP-FPA to improve parking performance.

We have also investigated how TDTSP-FPA scales when
the percentage of MDVRP’s drivers increases. To model
this scenario, we varied the number of background traffic
drivers and kept the number of MDVRP’s drivers constant
at 2000. The background traffic is generated with 40K, 60K,
and 80K drivers. Figure (6) shows that TDTSP-FPA de-
creases the average travel time by 25%, 19%, and 14%, rel-
ative to TDTSP, for 40k, 60k, and 80k background drivers,
respectively. We observe that TDTSP-FPA scales well, as it
reduces the average travel time by larger percentages when
the percentage of MDVRP’s drivers increases. With more
MDVRP drivers, TDTSP-FPA can collect more informa-
tion from these drivers and affect the traffic more effectively.
These results confirm what we observed in Figure (3), where
we varied the number of MDVRP’s drivers, but kept the
number of background drivers constant.

While the reduction of average travel time reflects the
overall benefits for the drivers in the road network, we also
want to find out if most individual drivers spend less time
for their trips. Thus, for each driver, we calculate an im-
provement ratio between the travel time obtained with TSP
and the travel time obtained by TDTSP-FPA. A ratio higher
than 1 indicates that the driver has benefited from TDTSP-
FPA and spent less time with TDTSP-FPA. Then, we sort
the drivers based on their ratios, and show the ratios in Fig-
ure (7). In the experiments, there are 2000 MDVRP drivers

Figure 7: Distribution of Travel Time Gain/Loss for
2000 Drivers in the System with Number of

Destinations [1∼4]. Gains are Values Greater Than 1,
and Losses are Values Less Than 1

Figure 8: Average Travel Time as a Function of the
Compliance Rate for 2400 Drivers with Number of

Destination [1∼4]

with 1∼4 destinations and 60k drivers in background traffic.
As shown in the figure, TDTSP-FPA manages to reduce

the travel time for a large majority of drivers (over 85%).
However, there are still some drivers who cannot experi-
ence improvements. In real-life, these drivers may not know
that their time increased, but a few bad experiences could
impact the system adoption. Thus, we plan to investigate
limiting the number of drivers who experience performance
losses and bound performance loss to avoid the worst user
experiences.

While it is in the drivers’ interest to follow the MD-
VRP’s guidance, it is possible that some drivers will not
comply with the guidance (i.e., they will not follow the rec-
ommended visiting order of destinations). Therefore, we
vary the compliance rate (percentage of drivers who follow
the recommended visiting order) to test the system robust-
ness. In this experiment, all drivers (including the non-
compliant ones) accept the FPA parking assignments. The
non-compliant drivers follow their own routes, according to
HTPO. Figure (8) indicates that MDVRP is robust; com-
pared to TDTSP and HTPO, TDTSP-FPA still offers good
improvement, even under a low compliance rate. This is
due to the fact that, even at a 0% compliance, drivers still
receive benefits from FPA, which in turn can improve the
travel time. Conversely, at the higher compliance rate, both
FPA and our updated version of TDTSP provide benefits
to drivers. The figure shows that the FPA benefits range
from 19% to 27%, and the TDTSP benefits are 7% when
compared to HTPO.

6 Conclusion and Future Work
This paper has addressed a novel problem, namely multi-
destination route planning with parking and traffic con-
straints. This problem has practical applications in many
real-life situations, such as package delivery or people vis-
iting multiple destinations in one trip. We formulated this
problem analytically in order to optimize the travel time
for all drivers. To solve the problem, we designed a novel



system, MDVRP, which finds the sequence of destinations
that result in the shortest driving and walking time for the
drivers. To the best of our knowledge, this is the first work
on multi-destination route planning that considers real-time
traffic and parking conditions to optimize the travel time
for all drivers in the system. We evaluated the optimiza-
tion algorithm of MDVRP, namely TDTSP-FPA, over a new
and realistic experimental platform that leverages millions of
real-life vehicular traces. The experimental results demon-
strated that TDTSP-FPA outperforms the comparison base-
lines, scales well when the number of drivers in MDVRP in-
creases, and is robust to non-compliant drivers. For future
work, we plan to optimize the travel time by considering
destination arrival deadlines as an additional constraint to
our problem.
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