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Abstract—The proliferation of mobile devices along with their
rich functionalities/applications have made people form addictive
and potentially harmful usage behaviors. Though this problem
has drawn considerable attention, existing solutions (e.g., text
notification or setting usage limits) are insufficient and cannot
provide timely recommendations or control of inappropriate us-
age of mobile devices. This paper proposes a generalized context
inference framework, which supports timely usage recommenda-
tions using low-power sensors in mobile devices Comparing to
existing schemes that rely on detection of single type user contexts
(e.g., merely on location or activity), our framework derives a
much larger-scale of user contexts that characterize the phone us-
ages, especially those causing distraction or leading to dangerous
situations. We propose to uniformly describe the general user
context with context fundamentals, i.e., physical environments,
social situations, and human motions, which are the underlying
constituent units of diverse general user contexts. To mitigate
the profiling efforts across different environments, devices, and
individuals, we develop a deep learning-based architecture to
learn transferable representations derived from sensor readings
associated with the context fundamentals. Based on the derived
context fundamentals, our framework quantifies how likely
an inferred user context would lead to distractions/dangerous
situations, and provides timely recommendations for mobile
device access/usage. Extensive experiments during a period of 7
months demonstrate that the system can achieve 95% accuracy
on user context inference while offering the transferability among
different environments, devices, and users.

Index Terms—Mobile Device Usage, Deep Learning

I. INTRODUCTION

Mobile devices forever change our lives, for better and for
worse. On the one hand, almost any service could be accessed
through a touch on the screen, which provides great conve-
nience to our daily lives. On the other hand, we are increas-
ingly addicted to mobile devices, forming annoying behaviors
(e.g., gluing to a phone when having dinner with families and
friends) or even dangerous habits (e.g., texting while driving).
Such pathological behaviors could cause distraction from daily
works and studies, leading to social isolation or even life-
threatening injuries. To mitigate the negative impacts of such
behaviors and ensure the wide adoption of mobile devices, it
becomes increasingly important to detect inappropriate usage
scenarios of mobile devices. Existing solutions [1], [2] rely
on long-term analysis, such as using screen time of multiple
days/weeks to analyze user behaviors. These approaches are
not sufficient in handling many of today’s usage scenarios

as they fail to detect annoying behaviors in real time (that
cause social uncomfortness) and dangerous usages that require
immediate actions. Detection of inappropriate usage scenarios
of mobile devices is not a single-dimensional decision that
only based on a user’s habits, but more importantly, it is tightly
coupled with the current and immediate context/environment
that the user is in. For instance, texting is fine while sitting
at home, but it is inappropriate when attending a meeting
and even could become dangerous when operating a vehicle.
Therefore, understanding current and immediate user contexts
is a critical key factor for determining the inappropriate usage
scenarios of mobile devices.

Existing studies use different sensors to infer user contexts,
allowing mobile devices to adapt their settings according to
the user’s immediate situation. For instance, existing studies
could derive the user’s location [3], physical activities [4], and
surrounding environments [5]. These solutions rely on detect-
ing single type of user contexts (e.g., coordinate of a user, type
of an activity, or indoor/outdoor environment). However, such
information is insufficient to determine inappropriate usage
scenarios of mobile devices, which are usually determined by
a much larger-scale of user contexts. For instance, attending a
business meeting can be characterized as “indoor”, “multiple
people participation”, and “static motion”. While attending a
party could be described with “multiple people participation”
along with “outdoor” and “dynamic motion”. We refer to these
constituent units as context fundamentals, which are shared in
a wide-spectrum of general user contexts.

To uniformly characterize general user contexts, as illus-
trated in Figure 1, we propose a context inference framework
to derive three types of context fundamentals including physi-
cal environment (i.e., indoor or outdoor), social situation (i.e.,
single or multiple users), and human motion (i.e., static or
dynamic motion) by using low-power sensors (i.e., WiFi mod-
ule, microphone, and accelerometer) that are readily available
on mobile devices. Existing context sensing approaches either
require building profiles for each environment, device, and
individual, or need dedicated equipment (e.g., shoe-mounted
initial sensors [6]) or surrounding infrastructures (e.g., cell
tower, wireless access point [7]). To reduce profiling efforts,
we propose to derive transferable representations from sensor
readings associated with context fundamentals across different
environments, devices, and individuals. By using a small set
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Fig. 1. An illustration of the proposed context inference framework to provide mobile device usage recommendations based on the derived context fundamentals.

of widely-available sensors in mobile devices, our context
inference frameworks could be easily deployed to provide
timely usage recommendations.

To design such a framework, several challenges need to
be addressed: (i) It is challenging to extract effective features
from sensor readings to consistently characterize the context
fundamentals, which exist in large-scale general user contexts.
(ii) Sensor data usually carry substantial information that is
specific to environments, devices, and human subjects, the de-
signed framework needs to be able to derive transferable rep-
resentations that are resilient to the impacts of such variations;
(iii) Constrained by the energy budget/limited computational
capabilities of mobile devices, it is also challenging to provide
timely context inference without affecting the functionalities
of other mobile applications.

To effectively characterize the context fundamentals while
restraining energy consumption on a mobile device, we pro-
pose to derive representative features from a small set of
low-power sensors which are capable of measuring gen-
eral contextual information such as the physical environment
around the user, interactions between people, and human
movements. Furthermore, to derive transferable representa-
tions without introducing much computation overhead, we
design a lightweight deep neural network (DNN) architec-
ture that could efficiently learn feature abstractions that are
resilient to diverse variations. By deriving the transferable
representations, the user can simply download models already
built by mobile vendors (e.g., Apple, Samsung) to avoid
the power-consuming training process on his own device. In
particular, the DNN model exploits a bidirectional recurrent
neural network (BRNN) to derive representations embedded
with the temporal dynamics of the sensor features, which
maximize the correlations between the derived representations
of the same type of context fundamental. It then aggregates the
representations of all three sensors to produce comprehensive
and transferable representations. Additionally, as shown in
Figure 2, our framework quantifies how likely a usage scenario
would lead to distractions/dangerous situations based on the
derived context fundamentals and then provides timely usage

recommendations. For example, it restricts the usage of apps
when the context fundamentals of inside vehicle, multi-user
participation, and dynamic&active motion are detected. The
main contributions of our work are summarized as follows:
• We propose context fundamentals to uniformly describe

large-scale user contexts that characterize phone usage
scenarios, especially those causing distractions or leading
to dangerous situations.

• Our context inference framework leverages a small set
of low-power embedded sensors to facilitate the context
fundamental recognition. A lightweight DNN architecture
is developed to learn reliable and transferable represen-
tations, which could maximize the transferability across
diverse environments, devices, and users.

• Based on the derived context fundamentals, we quantify
how likely the current usage scenario would lead to dis-
tractions or dangerous situations, enabling timely mobile
device usage recommendations.

• We conduct extensive experiments during a period of
7 months. The results demonstrate that the proposed
framework could recognize context fundamentals with
high accuracy while offering transferability.

II. RELATED WORK

Traditional approaches to restraining inappropriate uses of
the mobile device mainly rely on setting usage limits [2] and
installing smartphone apps to curb addictive behaviors [8].
For example, Screen Time [2] on iOS devices analyzes user
behaviors based on weekly reports of app uses, suggesting
usage limits for most-used apps. However, such long-term
analyses fail to timely detect immediate usage scenarios that
could cause distraction or lead to life-threatening situations.

To enable timely recommendations, it is necessary to
promptly and accurately infer the user context of a mobile de-
vice usage scenario. Existing studies of context inference use
various sensors to derive user contexts such as locations [3],
physical activities [4], and the surrounding environment [5],
[9]. For instance, CUPID [3] explores WiFi signals to esti-
mate Angle-of-Arrival for calculating the user’s coordination
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Fig. 2. Examples of providing device usage recommendations through recognizing context fundamentals.

in indoor environments. As another instance, FitCoach [4]
exploits sensing measurements from the accelerometer of
wearables/smartphones to recognize exercise types and further
provide fitness assistance. Each of these studies can recognize
a single type user context with great details. However, these
approaches could not characterize the users’ overall situations
toward controlling their mobile device usage.

To perform context inference, existing techniques mainly
rely on building profiles of built-in sensor readings (e.g.,
light sensor, accelerometer, gyroscope, and magnetometer)
to train machine-learning-based models [10], [11]. However,
since the sensor readings carry substantial information specific
to the user/environment, a trained model usually will not
work well if moving to a new environment, which involves
extra profiling efforts in practical deployment. Another line of
research works proposes to measure physical properties (e.g.,
Geolocation, delay of RF signals) embedded in user contexts.
These approaches however involve energy-hungry sensors
(e.g., GPS [12]), dedicated equipment (e.g., shoe-mounted
initial sensors [6]), or infrastructures in the environment (e.g.,
wireless access points [7]).

Different from previous studies, we develop a generalized
context inference framework that derives a much larger-scale
of user contexts via identifying underlying context fundamen-
tals, i.e., physical environment, social situation, and human
motion. Our solution also derives transferable representations
from sensor readings associated with various context funda-
mentals, which significantly reduces the profiling efforts across
different environments, devices, and individuals. By using a set
of low-power readily-available sensors, our framework could
be easily integrated into any mobile devices to provide timely
device usage recommendations.

III. SYSTEM DESIGN

A. Challenges

Deriving Context Fundamentals. User contexts of mobile
device usage scenarios are rich, unpredictable, and hard to
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Fig. 3. Overview of the proposed context inference framework.

define. It is thus necessary to characterize these contexts with
more general contextual information, i.e., context fundamen-
tals, which uniformly characterize diverse usage behaviors.
However, deriving reliable sensing features to characterize
such general contextual information is challenging.

Deriving Transferable Representations. The sensor data
used for constructing the DNN model usually carries substan-
tial information that is specific to environments, devices, and
human subjects, making the model ineffective when applied
to new environments/devices/users. To address this issue, the
framework should be able to derive transferable representa-
tions for identifying context fundamentals.
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Fig. 4. Accumulated WiFi feature values under indoor and outside environ-
ments in 30 minutes.

Robustness to Input Variations. To enable timely context
inference, it is essential to correctly identify context funda-
mentals from any segment of sensor data of a general user
context. However, the temporal pattern in a data segment could
be mismatched with that learned by the DNN model. To enable
robust context inference, the proposed framework should have
the capability to extract representations that are resilient to
such pattern variations.

B. System Overview

We aim to design a generalized context inference framework
that can uniformly interpret the immediate context of the usage
scenario of a mobile device. This can enable timely device
access recommendations (e.g., restricting access to games,
muting notifications) when inappropriate usage scenarios are
detected. As illustrated in Figure 3, the proposed framework
monitors sensing measurements of WiFi module, microphone,
and accelerometer, which possess extremely low-power con-
sumption and are always enabled in the background pro-
cesses [13]. To enable timely context inference, the framework
exploits a sliding time window to segment and cache the latest
observed sensor data. Then, it divides the sensor readings
within the time window into a set of data clips and organizes
these clips in a time sequence to preserve embedded temporal
patterns. To derive context fundamentals, representative fea-
tures regarding the three sensors are extracted to characterize
physical environment around the user, interactions between
people, and human movements.

The extracted features are then fed into the core compo-
nent of our framework, Deep Learning-based Context Funda-
mental Recognition. Compared to existing context inference
approaches, the proposed DNN architecture derives context
fundamentals by learning reliable representations and enables
the transferability over diverse environments, devices, and
people. In particular, the DNN architecture consists: 1) bidirec-
tional recurrent neural network (BRNN), 2) a fusion layer to
concatenate the representations of different sensor modalities,
3) classifiers to recognize the context fundamentals (i.e.,
physical environment, social situation, and human motion). To
ensure low power consumption on mobile devices, our DNN
architecture exploits a lightweight structure without stacked
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Fig. 5. Pairwise Pearson Correlation of MFCC features for single/multi-user.

BRNN or fully-connected layers. The lightweight structure
could also help to preserve the transferability which tends
to drop significantly in higher layers with increasing domain
discrepancy [14].

Specifically, the BRNN connects a set of Long Short-Term
Memory (LSTM) units to model and extract the temporal pat-
terns embedded in the context fundamentals. Such a recursive
structure of BRNN also enables temporal pattern recognition
on arbitrary input feature sequences that might either be shifted
or scaled. It thus enables context fundamental recognition
with any segments of sensor data from the user context. To
comprehensively interpret users’ contexts, our DNN archi-
tecture further fuses the representations of the three sensing
modalities by concatenating the outputs of the BRNNs. Based
on the fused representations, three classifiers are employed
to recognize the context fundamentals. Finally, using mobile
device usage recommendation as an application example, our
framework quantifies the degree of influence based on the
derived context fundamentals, and provides suggestions on
mobile device access through a recommendation policy.

IV. CONTEXT FUNDAMENTAL FOR DEFINING
INAPPROPRIATE MOBILE DEVICE USAGE SCENARIOS

A. Inappropriate Mobile Device Usage Scenarios

The usage scenario of a mobile device is defined as inap-
propriate when it is involved at least one of the following
situations: 1) physically inappropriate environment [15], 2)
socially inappropriate situation [16], and 3) human motion
required considerable attention [17] (e.g., driving a vehicle).
All three situations are associated with the context that the
user is in, and thus it is crucial to understand the context
before judging whether a usage scenario is appropriate or
not. Different from existing mobile device overuse study [2],
which relies on long-term analysis, our work focuses on deter-
mining inappropriate usage scenarios via inferring immediate
user contexts, which can further be used to provide usage
recommendation. To systematically detect a broad range of
inappropriate usage scenarios, our framework needs to derive
large-scale user contexts.



B. Context Fundamentals

We propose to use context fundamentals, i.e., physical
environment, social situation, and human motion, to jointly
describe a user context. These context fundamentals are de-
signed based on the inappropriate usage scenarios of mobile
devices [16]. As illustrated in Figure 2, our framework first
derives the context fundamentals from collected sensor data
via deep learning and then jointly considers the derived
context fundamentals for context inference. A variety of device
access recommendations (e.g., restricting access to mobile
games/apps) could then be provided.

Physical Environment. To reflect the general environments
around users, we define the physical environment as the
space/surrounding where the mobile user resides in. In partic-
ular, we categorize the user’s physical environments as Indoor
(e.g., library, shopping mall), Inside Vehicle (e.g., car, bus,
train) and Outside Environment (e.g., street).

Social Situation. To differentiate the social settings that
the mobile user is involving in, we categorize the associated
situations as Single-user participation (e.g., working, studying
alone), or Multi-user Participation (e.g., attending a party,
meeting with colleagues [18]).

Human Motion. Human motion is used to characterize
users’ involvement and location displacement. In particular,
we categorize human motion as Dynamic/Static Motion (e.g.,
sitting/sleeping or walking/running) and Active/Passive Motion
(e.g., traveling as a passenger or operating a vehicle).

V. TIME SERIES DATA SEGMENTATION AND FEATURE
EXTRACTION

A. Data Segmentation

To enable timely context inference, our framework applies
a sliding time window on the data streams of the three
sensors (i.e., Wi-Fi sensor, accelerometer, and microphone) to
cache the latest observed sensing measurements. We choose
a window length of 5-second based on an empirical study on
the computation overhead and the context inference accuracy.
In order to preserve temporal patterns of the context funda-
mentals, our framework divides the sensing measurements of
the time window into u data clips and organizes these clips
in a time sequence. From each data clip, one set of features
respecting to the three sensing modalities are extracted.

B. Feature Extraction

Characterizing context fundamentals within diverse general
user contexts is challenging due to the unpredictable usage
behaviors and noisy sensor readings. To consistently capture
contextual fundamentals, we propose to derive three sets of
representative features from WiFi module, microphone, and
accelerometer. Exacting features could also compress the high-
volume data clips, reducing computational complexity of data
processing in DNN. We denote the extracted WiFi, acoustic,
and acceleration features from the data clips as {W,M,A},
e.g., W = {w1, w2, ..., wu}.

WiFi Feature Extraction. Almost all indoor environments
are equipped with WiFi infrastructures (e.g., access point,
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IoT devices), which periodically generate beacon signals
to announce their presence. The magnitude of the beacon
signal could reveal the physical environments (e.g., indoor
and outside environment), while its pattern in time domain
could capture the movements (e.g., walking and remaining
stationary) of a user. Unlike the previous approach [19] that
relies on profiling MAC addresses of access points in specific
environments, our framework extracts general intensity of
the WiFi traffic via analyzing received signal strength (RSS)
of the beacon signals. The WiFi feature can be derived
as: n(δ) =

∑N
i=1 m(i), where i is the index of a WiFi

infrastructure and m(i) = 1 if RSS(i) is greater than a
predefined threshold δ and m(i) = 0 otherwise. N denotes
the total number of detected WiFi infrastructures. Note that
we exclude public WiFi APs (e.g., Xfinity, Spectrum WiFi,
optimum) to avoid the cases where outdoor environments have
higher WiFi densities than indoor environments. Based on
different intensity of WiFi traffic [20], we extract 5 WiFi
features by using 5 thresholds, -50, -60, -67, -70, -80. Figure 4
shows the accumulated values of WiFi features in 30 minutes.
We observe that the accumulated feature values of indoor
environments (i.e., a university building) are much greater than
that of the outdoor environments (i.e., a park).

Acoustic Feature Extraction. Our framework utilizes Mel-
frequency cepstral coefficient (MFCC) as the acoustic feature
to characterize social situations and physical environments.
Existing work [21] shows that MFCC-based features can be
used to estimate the number of speakers in a conversation,
it thus has the capability to reveal social interactions. It
could also capture acoustic characteristics of surrounding
environments (e.g., engine noise of vehicles). The number of
filterbank is set to 16, and the 8th order cepstral coefficients
are derived in each Hanning window with the same size as the
audio clip. Figure 5 shows the Pearson correlation coefficient
between any two MFCC features derived under single-user
and multiple-user participation. We observe that the MFCC
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features for the same group present a higher correlation than
that between different groups.

Acceleration Feature Extraction. To reveal human motion
and physical environments (e.g., inside a moving vehicle),
three acceleration features, velocity, range, variance, are ex-
tracted from each accelerometer axis. Specifically, velocity
represents the mobility and the displacement of human body.
Range is the absolute difference between maximum and
minimum values in the data clip. It reflects the intensity of
the human body motion, which is distinctive between active
(i.e., riding a bicycle) and passive motion (i.e., taking public
transportation). Moreover, we use variance as a complement
to characterize human motion.

VI. DEEP LEARNING BASED CONTEXT FUNDAMENTAL
RECOGNITION

It is highly desired to have a context inference framework
that could be directly applied to a user’s mobile device
without extra profiling efforts. To develop such a framework,
we propose to derive transferable representations of context
fundamentals that are resilient to the distortions caused by
changes of environments, devices, and people. In addition,
to avoid causing computational overhead to mobile devices
(e.g., smartphone), the proposed DNN model needs to have a
low run-time computational cost. As depicted in Figure 6, we
present a lightweight DNN architecture to derive transferable
representations by learning temporal patterns embedded in
feature sequences. The architecture utilizes bidirectional a re-
current neural network (BRNN) with long short-term memory
(LSTM) to learn temporal patterns of context fundamentals.
Finally, the representations are merged with a fusion mech-
anism and fed to three classifiers for identifying the context
fundamentals.

A. Bidirectional Recurrent Neural Network

The proposed BRNN module exploits a recurrent struc-
ture that connects consecutive LSTM units to learn temporal
patterns which are transferable among different general user
contexts. With this structure, the derived representations could
maximize the correlations between the same type of context
fundamentals even when the input feature sequences have sig-
nificant misalignments with the profile. As shown in Figure 6,
the BRNN module takes weighted WiFi features W ′ as input

TABLE I
EXAMPLES OF INFLUENCE SCORES BASED ON THE CONTEXT

FUNDAMENTALS.
Context Fundamental Score Context Fundamental Score

Indoor Environment S1 = 0 Inside Vehicle S1 = 2

Outside Environment S1 = 1 Single-user participation S2 = 0

Multiple-user participation S2 = 2 Static Motion S3 = 0

Dynamic Motion S3 = 1 Active Motion S4 = 2

Passive Motion S4 = 0

and derives WiFi representations with two hidden layers, i.e.,
a forward layer and a backward layer defined as:

→
ht = H(

→
λ1wt +

→
λ2

→
ht−1 +

→
b ),

←
ht = H(

←
λ1wt +

←
λ2

←
ht−1 +

←
b ).

(1)

The derived WiFi representation for the clip at t could be
represented as rwt = λ1→ht + λ2←ht + b. The λ terms

(e.g., {
→
λ1}) denote weight matrices, and the b terms (e.g.,

{
→
b }) represent bias vectors. H is an activation function

implemented with Long-Short Term Memory (LSTM) units,
which is well-suited to capture inherited temporal patterns
and addresses the vanishing gradient and error blowing up
problems [22]. Figure 7 shows the structure of LSTM which
takes the last LSTM state ct−1 and the hidden state ht−1 from
the last clip, along with a weighted WiFi feature w′t as input.
By utilizing the input gate, forget gate, update gate and output
gate, the LSTM unit could remember values over arbitrary
time intervals, which could facilitate learning on temporal
patterns. To avoid computational complexity while ensuring
context inference performance, we use only 64 LSTM units
for both forward and backward layers of the BRNN. We train
the model by using ADAM optimizer with a learning rate of
10% and 300 epochs.
B. Transferable Representation Derivation

Representation Fusion. To comprehensively interpret a
user context, we exploit a fusion layer to combine the repre-
sentations of the three sensing modalities for context inference.
The fusion layer concatenates the output of the three BRNNs:

R = Rw ⊕Ra ⊕Rm, (2)
where Rw, Ra, and Rm denote the representations of WiFi,
acoustic, acceleration features, respectively. ⊕ represents the
concatenation process and R is the fused representation.

Context Fundamental Recognition. The BRNN can only
derive sensing representations, and thus classifiers are needed
to recognize the context fundamentals. Specifically, we use
softmax layer using the output of fusion layer for classifica-
tion. The outputs of each softmax function characterize the
probability distribution over context fundamentals illustrated
in Section IV. Then a representation R will be classified as
class k if it has the largest probability.

VII. MOBILE DEVICE USAGE RECOMMENDATION

There are many mobile applications (e.g., health care,
pervasive games, multimedia apps) could benefit from our
generalized user context inference framework. In this section,
we use mobile device usage recommendation as an application
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Fig. 8. Performance of our system on recognizing physical environ-
ments/social situations.

example. Our goal is to design a policy that provides recom-
mendation based on the current usage scenario of a mobile
device. An inference score is designed to quantify that how
likely an inferred user context would lead to distractions or
dangerous situations. For example, a high inference score is
expected in the context of texting or answering phone calls
while driving a vehicle, which could lead to life-threatening
accidents. While a user should be allowed to access all mobile
functionalities in his leisure time. We define the inference
score as follow: I =

∑K
k=1 Sk, where K = 4 represents the

four sets of context fundamentals. An example of inference
score based on the context fundamentals is detailed in Table I.
Different access recommendations can be provided based on
the influence score with the threshold γ. For example, if the
inference score is over the threshold γ2 = 5, our framework
would warn that the mobile device usage in the current user
context (e.g., driving a car) is strictly prohibited.

VIII. PERFORMANCE EVALUATION
A. Experimental Methodology

Devices. We evaluate the proposed framework with two
types of mobile devices, smartphones (i.e., Motorola Nexus
6) and tablets (i.e., Amazon FireHD), that run on the Android
operating system. Both devices are equipped with a WiFi
module, a microphone, a 3-axes accelerometer. The data
collection processes are implemented based on the Android
platform with different built-in libraries, i.e., SensorManager,
MediaRecorder, and WifiManager, respecting to the three
sensing modalities. Specifically, the sampling rates for the
three sensors are set as 100Hz (i.e., accelerometer), 8000Hz
(i.e., microphone), and 10Hz (i.e., WiFi module), respectively.

Data Collection. Our framework is evaluated with 10 vol-
unteers (8 males and 2 females) over a period of 7 months. The
volunteers are of ages from 25 to 35 years old and are mainly
graduate students/university researchers. In particular, we col-
lect data of 12 representative user contexts, where the context
fundamentals are detailed in Table II. The volunteers are
asked to record the ground truth of the user contexts/context
fundamentals in the experiments. During the data collection,
the volunteers can either hold the device or place it in the
pocket. In total, we collect 84, 386 data segments, which are
obtained via applying a sliding time window (i.e., duration 5s,
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Fig. 9. Performance of our system on recognizing human motions.

step size 1s) on the time-series sensing measurements. All data
segments are shuffled for evaluating the system’s capability
given arbitrary data segments of the user contexts.

Metrics. The feature extraction mechanism and the DNN
model are implemented by using Python programming lan-
guage with Keras API which allows building customized
neural networks. To evaluate system performance, we define
three different metrics: precision/accuracy; recall; confusion
matrix. Particularly, precision of a context fundamental c is
defined as Precisionc = NT

c /(NT
c +MF

c ), where NT
c is the

number of sensor segments correctly recognized as the context
fundamental c and MF

c represents the number of segments
corresponding to other context fundamentals which are mis-
takenly recognized as c. Recall of a context fundamental c is
defined as Recallc = NT

c /Nc, where Nc is the number of all
segments from the context fundamental c. For the confusion
matrix, each row indicates the derived user contexts and each
column represents the ground truth. The entries located in the
diagonal of the matrix is the percentage of correct predictions.

B. Performance of Context Fundamental/General user Con-
text Inference

Context Fundamental Derivation. We first evaluate the
performance of our system on deriving context fundamentals.
Figure 8 depicts the precision/recall of recognizing physical
environments and social situations. The physical environments
include indoor (I), inside vehicle (V), and outside environment
(O), while the social situations involve single-user participa-
tion (S) and multi-user participation (M). It is encouraging to
find that the physical environments and social situations can be
accurately recognized with the lowest precision and recall as
95.7% and 97.4%, respectively. In Figure 9, we show precision
and recall of four motion contexts: dynamic and active context
(DA), dynamic and passive context (DP), static and active
context (SA), static and passive context (SP). We observe that
our system achieves high average precision (i.e., 95.32%) and
recall (i.e., 96.41%). Through the above examination, we find
that the proposed system is very effective in recognizing the
context fundamentals.

Impacts of Window Length. Generally, a larger length
sliding window would improve the system performance, while
it could also increase the computational cost in context infer-



TABLE II
CHARACTERIZING 12 REPRESENTATIVE USER CONTEXTS WITH CONTEXT FUNDAMENTALS.

ID User Context Physical Environment Social Situation Human Motion
1 Study/working alone in an office Indoor Single User Static&Passive Motion
2 Running/conducting exercises in a Gym Indoor Single User Static&Active Motion
3 Attending a meeting/talking to friends in an office Indoor Multi-user Static&Passive Motion
4 Walking in a campus building with friends Indoor Multi-user Dynamic&Active Motion
5 Taking a rest in a park Outside Environment Single User Static&Passive Motion
6 Running in a park Outside Environment Single User Dynamic&Active Motion
7 walking on the street with friends Outside Environment Multi-user Dynamic&Active Motion
8 Attending an outdoor party Outside Environment Multi-user Static&Passive Motion
9 Driving a car Inside Vehicle Single User Dynamic&Active Motion
10 Taking a bus/train Inside Vehicle Single User Dynamic&Passive Motion
11 Driving a car with friends Inside Vehicle Multi-user Dynamic&Active Motion
12 Taking a bus/train with friends Inside Vehicle Multi-user Dynamic&Passive Motion
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Fig. 10. Performance of our system on inferring general user contexts by
fusing the derived context fundamentals.

ence. To study the impacts of window length, we use lengths
of 2-10 (seconds) and examine performance with each window
size for 10 trials, where the data for training and testing are
randomly selected in each trial. Given the window length of 5s,
our system achieves the best performance on deriving context
fundamentals of physical environment, social situation, and
human motion, i.e., 97.82%, 96.6%, 94.71%, respectively.

General user Context Inference. We present the perfor-
mance of the proposed system on inferring user contexts,
where each context is uniquely inferred by integrating the
derived context fundamentals. For example, working along
in an office, can be characterized as indoor, single user, and
static&passive motion. As shown in Figure 10, we observe that
our system achieves over 91% context inference accuracies
for recognizing all 12 contexts. Especially, the accuracies of
context 2, 6, and 11 reach 100%. The average context inference
accuracy is 95.96% with a standard deviation of 3.84%. The
above results confirm that our system is highly effective in
inferring general user contexts.
C. Transferability of the Proposed Framework

We iteratively exclude samples of one context which is
one type of user environment from the training dataset, and
then use data of the other contexts to train the DNN model.
A user context can only be correctly inferred if all the
underlying context fundamentals are correctly identified. As
shown in Figure 11, we find that most of the user contexts
can be correctly inferred even corresponding data are excluded
from the training dataset. The lowest recall and precision are
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Fig. 11. Assessing the transferability over user contexts by iteratively
excluding data of one user context from the training dataset and using the
representations learned from the other user contexts for context inference.

82.85% and 81.89%, and the average recall and precision are
86.71% and 84.54%. The results validate that even without
profiling a user environment, our framework could still infer
a user context with transferable representations learned from
the other environments.

D. Effectiveness of Representation Fusion
Representation Fusion. Next, we study the effectiveness

of the proposed representation fusion grounded on BRNN.
Figure 12 depicts the accuracies of context inference with and
without the fusion mechanism. When the fusion mechanism
is removed, the system utilizes representations of the WiFi,
acoustic, and acceleration features to infer physical environ-
ment, social situation, and human motion, respectively. We can
observe that the fusion mechanism can help to achieve higher
context inference accuracies. This is because the fused rep-
resentations could capture more comprehensive characteristics
of each type of context fundamental.

IX. DISCUSSION

A. Framework Scalability
Serving as an initial study on deriving context fundamentals,

our framework has a high potential to be extended to various
context-driven applications such as phone addition studies,
augmented reality games, and multimedia services. By adding
a single entry of context fundamental based on the application
requirement, the proposed framework could be easily applied
to an additional set of general user contexts, which are the
combinations of the new entry and all existing context funda-
mentals. This greatly reduces the profiling efforts compared
to existing approaches.
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Fig. 12. Effectiveness of the proposed representation fusion mechanism.

B. Energy Consumption

Our system is a lightweight context inference framework
with low energy consumption. The most power-consuming
tasks of our system are sensor data collection and DNN-based
context inference. Specifically, the power consumption of WiFi
module, microphone, and accelerometer are 21mW , 135mW ,
101mW [23], respectably. The overall power consumption is
257mW , which is much lower than that of the GPS sensor,
i.e., 400mW . With the transferability, the DNN model avoids
the power-consuming training process. Since our DNN model
adopts a light structure without stacking BRNN/ReLU layers,
it has low run-time energy consumption, especially when using
the new generation of AI chips (e.g., A12 Bionic) on the latest
smartphones.

X. CONCLUSION

In this paper, we propose the first generalized context
inference framework, which supports timely usage recommen-
dations using low-power sensors in mobile devices. By identi-
fying context fundamentals, our framework can uniformly de-
scribe large-scale user contexts associated with inappropriate
usage scenarios of a mobile device. Furthermore, we design a
DNN architecture to learn transferable representations of the
context fundamentals to mitigate training efforts across various
contexts, devices, and individuals. Additionally, the framework
quantifies the degree of influence for the derived context fun-
damentals and provides warnings/feedbacks for mobile device
usages. Extensive experiments demonstrate that our framework
could achieve remarkable performance on context inference
while offering the transferability over different environments,
devices, and users.

XI. ACKNOWLEDGEMENT

This work was partially supported by the National Science
Foundation Grand CNS1801630, CNS1820624, CNS1815908,
and CNS1717356.

REFERENCES

[1] S. Perez, “Siempo’s new app will break your smartphone addic-
tion,” 2018, https://techcrunch.com/2018/05/19/siempos-new-app-will-
break-your-smartphone-addiction/.

[2] iPhone User Guide, “Set screen time, allowances, and lim-
its on iphone,” https://support.apple.com/guide/iphone/set-screen-time-
allowances-and-limits-iph9b66575d5/ios.

[3] S. Sen, J. Lee, K.-H. Kim, and P. Congdon, “Avoiding multipath to
revive inbuilding wifi localization,” in Proceeding of the 11th annual
international conference on Mobile systems, applications, and services.
ACM, 2013, pp. 249–262.

[4] X. Guo, J. Liu, and Y. Chen, “Fitcoach: Virtual fitness coach empowered
by wearable mobile devices,” in 2017 IEEE International Conference on
Computer Communications (IEEE INFOCOM), 2017, pp. 1–9.

[5] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, “Iodetector: A generic
service for indoor outdoor detection,” in Proceedings of the 10th acm
conference on embedded network sensor systems. ACM, 2012, pp.
113–126.

[6] S. Jain, C. Borgiattino, Y. Ren, M. Gruteser, Y. Chen, and C. F.
Chiasserini, “Lookup: Enabling pedestrian safety services via shoe
sensing,” in Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 2015, pp. 257–271.

[7] D. Wu, D. Zhang, C. Xu, Y. Wang, and H. Wang, “Widir: walking
direction estimation using wireless signals,” in Proceedings of the
2016 ACM international joint conference on pervasive and ubiquitous
computing. ACM, 2016, pp. 351–362.

[8] E. Livni, “Cut your phone dependence with an app that plants trees as
a reward,” 2017, https://qz.com/1112713/urb-tech-dependence-with-an-
app-that-plants-trees-as-a-reward/.

[9] D. H. Kim, J. Hightower, R. Govindan, and D. Estrin, “Discovering
semantically meaningful places from pervasive rf-beacons,” in Proceed-
ings of the 11th international conference on Ubiquitous computing (ACM
UbiComp), 2009, pp. 21–30.

[10] G. M. Weiss and J. Lockhart, “The impact of personalization on
smartphone-based activity recognition,” in Workshops at the Twenty-
Sixth AAAI Conference on Artificial Intelligence, 2012.

[11] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based trans-
portation mode detection on smartphones,” in Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems (ACM Sen-
Sys), 2013, p. 13.

[12] G. Xiao, Z. Juan, and C. Zhang, “Travel mode detection based on gps
track data and bayesian networks,” Computers, Environment and Urban
Systems, vol. 54, pp. 14–22, 2015.

[13] G. Milette and A. Stroud, Professional Android sensor programming.
John Wiley & Sons, 2012.

[14] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in International Conference
on Machine Learning (ICML), 2015, pp. 97–105.

[15] M. Kwon, J.-Y. Lee, W.-Y. Won, J.-W. Park, J.-A. Min, C. Hahn, X. Gu,
J.-H. Choi, and D.-J. Kim, “Development and validation of a smartphone
addiction scale (sas),” PloS one, vol. 8, no. 2, p. e56936, 2013.

[16] M. Takao, S. Takahashi, and M. Kitamura, “Addictive personality and
problematic mobile phone use,” CyberPsychology & Behavior, vol. 12,
no. 5, pp. 501–507, 2009.

[17] D. C. Schwebel, D. Stavrinos, K. W. Byington, T. Davis, E. E. O’Neal,
and D. De Jong, “Distraction and pedestrian safety: how talking on
the phone, texting, and listening to music impact crossing the street,”
Accident Analysis & Prevention, vol. 45, pp. 266–271, 2012.

[18] C. Moser, S. Y. Schoenebeck, and K. Reinecke, “Technology at the table:
Attitudes about mobile phone use at mealtimes,” in Proceedings of the
Conference on Human Factors in Computing Systems (ACM CHI), 2016,
pp. 1881–1892.

[19] M. Azizyan, I. Constandache, and R. R. Choudhury, “Surroundsense:
Mobile phone localization via ambience fingerprinting,” in Proceedings
of the 15th Annual International Conference on Mobile Computing and
Networking (ACM MobiCom), 2009, pp. 261–272.

[20] eyeSaaS, “Wi-fi signal strength: What is a good signal and how do you
measure it,” 2019, https://eyesaas.com/wi-fi-signal-strength/.

[21] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li, and
B. Firner, “Crowd++: unsupervised speaker count with smartphones,”
in Proceedings of the 2013 ACM international joint conference on
Pervasive and ubiquitous computing. ACM, 2013, pp. 43–52.

[22] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber et al., “Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies.”

[23] S. Tarkoma, M. Siekkinen, E. Lagerspetz, and Y. Xiao, Smartphone
energy consumption: modeling and optimization. Cambridge University
Press, 2014.


