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ABSTRACT

With the increasing prevalence of mobile and IoT devices (e.g.,

smartphones, tablets, smart-home appliances), massive private and

sensitive information are stored on these devices. To prevent unau-

thorized access on these devices, existing user verification solu-

tions either rely on the complexity of user-defined secrets (e.g.,

password) or resort to specialized biometric sensors (e.g., finger-

print reader), but the users may still suffer from various attacks,

such as password theft, shoulder surfing, smudge, and forged bio-

metrics attacks. In this paper, we propose, CardioCam, a low-cost,

general, hard-to-forge user verification system leveraging the unique

cardiac biometrics extracted from the readily available built-in cam-

eras in mobile and IoT devices. We demonstrate that the unique

cardiac features can be extracted from the cardiac motion patterns

in fingertips, by pressing on the built-in camera. To mitigate the

impacts of various ambient lighting conditions and human move-

ments under practical scenarios, CardioCam develops a gradient-

based technique to optimize the camera configuration, and dynam-

ically selects the most sensitive pixels in a camera frame to extract

reliable cardiac motion patterns. Furthermore, the morphological

characteristic analysis is deployed to derive user-specific cardiac

features, and a feature transformation scheme grounded on Prin-

ciple Component Analysis (PCA) is developed to enhance the ro-

bustness of cardiac biometrics for effective user verification. With

the prototyped system, extensive experiments involving 25 sub-

jects are conducted to demonstrate that CardioCam can achieve

effective and reliable user verification with over 99% average true

positive rate (TPR) while maintaining the false positive rate (FPR)

as low as 4%.
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1 INTRODUCTION

The increasingly prevalent usage of mobile and IoT devices (e.g.,

smartphones, tablets and smart-home appliances) inevitably con-

tains private and sensitive information (e.g., contact list, emails,

credit card numbers andmerchandise ordering information). Unau-

thorized access to such devices could put huge amounts of sensi-

tive information at the risks ofmisuse. Traditional user verification

solutions mainly rely on passwords or graphical patterns [29, 52],

which suffer from various attacks including password theft, shoul-

der surfing [53] and smudge attacks [9]. Biometric-based user ver-

ification opens up a new pathway to secure mobile devices, es-

pecially fingerprint-based solutions [7, 31], which are widely de-

ployed in many premium smartphones (e.g., iPhones and Samsung

phones) and offer a more secured way to access mobile and smart

devices. However, there is still a large market for phones with 50

dollars and less (e.g., BLU A4) in many developing regions around

the world where phones do not come with dedicated fingerprint

sensors [46]. Furthermore, some of these low-cost markets heav-

ily rely on mobile payments due to the large distribution of geo-

graphic areas and the lacking establishment of traditional banking

and payments infrastructure [36]. Moreover, fingerprint-based so-

lutions are vulnerable to synthetic fingerprints created through vic-

tims’ photographs [14, 41, 48]. These lead to a renewed search of

a low-cost, general, hard-to-forge security solution, which could

also facilitate the usage of increasingly convenient mobile pay-

ment systems. Existing studies have demonstrated that using ei-

ther body-attached PPG/ECG sensors [8, 12, 25, 42] or Doppler
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Figure 1: Enabling cardiac-pattern based user verificationus-

ing device’s built-in camera.

radar [30] is promising to perform user verification by capturing

human cardiac biometrics. These existing investigations usually re-

quire specialized equipments (e.g., sensors or radar devices), which

could add extra cost and bring inconvenience the mobile users. To-

wards this direction, we propose CardioCam that does not involve

specialized equipments to extract unique cardiac biometrics to per-

form user verification. CardioCam makes use of the built-in cam-

era which is readily available in almost all kinds of mobile devices

including both premium and low-end devices (e.g., phones under

50 dollars).

Some researchers have shown that the built-in camera on smart-

phone could be utilized tomeasure heart rate and pulse volume [32,

51]. Existing work [28] also demonstrated the correctness and suit-

ability of the cardiac signals captured by the smartphone’s camera,

which are very close to those measured by the specialized medical

instrument (i.e., pulse oximetry) [28]. However, whether the cam-

era is able to extract unique cardiac biometrics for user verification

remains an open issue. CardioCam takes one step further to ex-

plore the limits of the built-in camera and aims to achieve user ver-

ification leveraging the unique cardiac biometrics extracted from

the camera. The system simply requires the user to press his/her

fingertip on the camera surface for cardiac feature extraction as

shown in Figure 1. Therefore, it could be directly applied to almost

all the mobile devices to perform user verification including un-

locking the devices and authorizing specific permissions. Further-

more, there is a growing trend of deploying low-cost cameras on

smart appliances to support a broad range of emerging IoT appli-

cations. For instance, FridgeCam [43] allows users to stick a small

camera to the inside of the refrigerator for storage food monitor-

ing. Amazon’s virtual assistant Echo Look [3] is also equippedwith

a camera to support its growing commands sets (e.g., asking for

the opinion on which outfit looks best). In addition, small IoT de-

vices, such as video doorbell [40], equipped with low-cost cameras

are serving for many home security systems these days, and Ama-

zon Dash Button [4] can be easily integrated with a low-cost cam-

era to enable user verification for privacy protection. Therefore,

the large-scale deployment of the cameras on IoT devices provides

great opportunities for CardioCam to verify users for various ap-

plications, such as entrance’s access control, ordering food via the

refrigerator with parental control and purchasing clothes via the

virtual assistant without disclosing personal lifestyle.

Traditional Solutions. The built-in cameras onmobile devices

have been used to perform user verification with biometric fea-

tures including iris patterns [27], facial features [15] and palmprint [47].

These solutions mainly rely on computer-vision based methods

and usually suffer from spoofing attacks with forged biometrics.

For instance, the iris-based user verification system can be deceived

by the synthesized iris imageswith identical iris texture as the legit-

imate user [49]. Face ID on iPhone X can capture the geometry and

depth of the user’s face [19] to verify user’s identity. Although it

has been proved to be more secure than fingerprint-based authen-

tication (e.g., Touch ID) [6], this technique requires high-end and

expensive camera (i.e., TrueDepth front-facing camera). Addition-

ally, these vision-based solutions may result in privacy concerns

induced by the rich information embedded in the visual content

captured by camera, and their performance could be degraded by

the surrounding lighting conditions.

Cardiac-patternbasedUserVerificationUsingBuilt-inCam-

era. In this paper, we explore to extract cardiac biometrics from the

built-in camera. It has been demonstrated the cardiac feature is in-

trinsic, unique and non-volitional among a large population [1, 26,

34, 55]. Instead of using PPG/ECG sensors, in this work we search

for the unique cardiac features extracted from the cardiac motion

patterns in fingertips, by pressing on the built-in camera. We hope

the extracted cardiac features from fingertips are distinguishable

among different individuals and could serve as a candidate for ef-

fective user verification. The cardiac features are usually affected

under practical scenarios: the extracted cardiac motion patterns

are impacted by the lighting conditions; Heartbeats are varied un-

der movements and human emotion changes; the fingertip press-

ing position and pressure also play a critical role in cardiac biomet-

ric feature extraction. To address the above challenges, CardioCam

adaptively updates camera configuration and dynamically derives

cardiac motion patterns to suppress the effects caused by ambient

light changes. We also develop a mechanism that could handle dif-

ferent fingertip pressing positions and pressure by choosing the

most sensitive pixels to derive cardiac motion patterns from the

video frames captured by the built-in camera.

To facilitate biometric extraction, CardioCam segments the car-

diac measurements into different heartbeat cycles and normalizes

the duration/amplitude of each cardiac cycle tomitigate the impact

of heartbeat rate/strength variations. The normalization process

will enhance the robustness of the derived cardiac biometrics while

preserving morphological distinctiveness embedded in the cardiac

motion pattern. We further extract user-specific heartbeat features

within each cardiac cycle via morphological characteristic analy-

sis. To effectively suppress the small-scale cardiac motion varia-

tions, a feature transformation scheme based on Principal Compo-

nent Analysis (PCA) [23] is developed. These feature abstractions

are used to construct legitimate user profiles during the system

enrollment. During verification phase, CardioCam examines the

Euclidean distance of the feature abstractions between new obser-

vations and the user profiles to authenticate the legitimate user or

reject adversaries. The main contributions of our work are summa-

rized as follows:



• To the best of our knowledge, CardioCam is the first low-

cost, general user verification system that uses cardiac bio-

metrics extracted from the built-in cameras on mobile de-

vices or IoT appliances.

• Wedemonstrate that the intrinsic, unique and non-volitional

cardiac properties can be preserved when extracting the car-

diac features from fingertips; the cardiac biometrics are well

captured by the reflected lights on the built-in camera when

the user presses her/his fingertip upon.

• We develop a gradient-based optimization technique that

adapts the configuration of camera to ambient light changes

and human movements variations and derives high-quality

cardiac measurements from a set of dynamically selected

image pixels. Given the selected pixels that are sensitive to

cardiac motion, the impacts of fingertip position and pres-

sure upon the camera can be suppressed.

• With the proposed cardiac biometric feature extraction and

the feature transformation scheme based onPCA, we demon-

strate that CardioCam can robustly verify users and is re-

silient to themodeled attacks, inwhich an adversary presses

his/her own fingertip upon the camera hoping to pass the

system.

• Weperform extensive experiments involving 25 subjects un-

der various data collection strategies and system settings.

The results demonstrate that CardioCam can achieve over

99% average true positive rate (TPR) to verify users while

maintaining less than 4% false positive rate (FPR) to well

reject adversaries.

2 RELATED WORK

Traditional user verificationmechanisms rely on either password [29]

or graphic screen patterns [52], which require users to memorize

complicated text/graph secrets, to verify their identities. Since these

solutions only verify the secret itself instead of a user, they are usu-

ally vulnerable to various attacks such as shoulder surfing [53], and

smudge attack [9].

As an alternative, many researchers resort to physiological bio-

metrics to performuser verification. In particular, fingerprint-based

solutions [7, 21, 22, 31] have become an essential specification on

many premium smartphones such as iPhone and Samsung Galaxy

S series. However, the fingerprint reader is still unavailable in most

of themid-range and low-endmobile devices, the fingerprint based

systems are also vulnerable to spoofing attacks by using synthetic

artifacts [14, 48]. Besides the fingerprints, other human biometric

features (e.g., iris [27], face [15], and palmprint [47]) are also ex-

ploited to achieve user verification with the assistance of cameras,

especially the built-in camera onmobile devices, which has already

been used for device authentication [10]. However, the privacy con-

cerns of such vision-based solutions prevent them from extensive

use due to the rich information embedded in the image/video cap-

tured by cameras. For instance, the surrounding background scene

may disclose the user’s location, living environment or any per-

sonal stuff. Additionally, the biometrics (e.g., iris, face, palmprint)

captured in the aforementioned vision-based solutions are all exter-

nal features of human beings, which can be forged by an adversary

for launching spoofing attacks [17, 18, 49].
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Figure 2: Four phases of cardiac cycle and data collection

leveraging camera and flashlight.

To overcome the aforementioned weaknesses, some studies rely

on intrinsic cardiac biometrics (e.g., heartbeat patterns) derived

from electrocardiogram (ECG) [11, 20, 45, 55] and photoplethys-

mography (PPG) [25] signals. However, these methods require the

users to attach specialized sensors to their chest or fingertip, mak-

ing them hard to be applied to mobile users. Cardiac Scan [30]

recently proposes a non-obtrusive way to extract distinct cardiac

motion pattern with Doppler radar for user authentication, but the

involvement of specialized devices also adds extra cost and brings

inconvenience to the mobile users.

In order to remove the limitation on involving specialized equip-

ments, some studies explore to capture the cardiac biometrics lever-

aging the readily available sensors on commercial off-the-shelf de-

vices. Specifically,Matsumura et.al. [32] demonstrate that the heart

rate and pulse volume can be measured when the users put their

fingertips upon the built-in camera. Additionally, Seismo [51] pro-

poses to derive pulse transit time (PTT) leveraging smartphone

accelerometer and built-in camera. Some researchers [13, 50] fur-

ther make use of both built-in camera to estimate blood oxygen

level PhO2 and Hemoglobin level. Towards this direction, this pa-

per takes one step further to explore the feasibility of using built-

in camera to extract non-volitional and hard-to-forge cardiac bio-

metrics to perform user verification. Comparing to existing bio-

metric authentication (e.g., fingerprint, face recognition), Cardio-

Cam has better scalability since it only requires the built-in cam-

era and flashlight that are available in almost all kinds of mobile

devices. In addition, our system is a light-weight user verification

system with extremely low computational complexity and mem-

ory/energy overhead.

3 PRELIMINARIES

3.1 Kinetics of Cardiovascular System

The heart pumps the blood into the vessels through alternative

cardiac muscle contraction and relaxation, which forms a periodic

heartbeat pattern, called cardiac cycle, while the vessels carry blood

circulated throughout thewhole body, including the fingertips. The

human heart contains four chambers (i.e., upper left and right atria;

and lower left and right ventricles), and a typical cardiac cycle

usually involves four major phases: atrial systole, isovolumetric

contraction, ventricular ejection and isovolumetric relaxation, as

shown in Figure 2 (a). In the phase of atrial systole, the ventri-

cles are contracting, while the atria are relaxing and collecting

blood. Then isvolumetric contraction occurs, and the ventricles



contract with no corresponding blood volume change in all cham-

bers. When the ventricles start ejecting blood (i.e., ventricular ejec-

tion), the atria contracts to pump blood to the ventricles. Finally, a

short interval, called isovolumetric relaxation, begins and the atria

valve starts closing until the onset of another cardiac cycle. Due

to the existence of physiological differences on cardiovascular sys-

tems (e.g., heart size, shape and tissues, etc.), different people have

different amplitudes of cardiac muscle contraction and relaxation.

Consequently, the blood flow in the vessels follows a unique vari-

ation trend within a cardiac cycle for different individuals. Both

ECG and PPG signals have the capability to reveal unique cardiac

biometrics embedded in the four phases of a cardiac cycle [5], and

existing work [34] has demonstrated the uniqueness such cardiac

biometrics among a large population. Similar to PPG based ap-

proaches, CardioCam measures cardiac motion patterns in terms

of blood flow variations by illuminating the fingertip with an ex-

ternal light source (i.e., flashlight), making it possible to capture

equivalent unique biometrics. In addition, the blood flow passing

through the veins in fingertip will result in unique cardiac motion

pattern. Such pattern could reveal the distensibility of fingertip

vascular [16] and reflect distinctive vein characteristics (e.g., vein

distribution), which has been demonstrated among a large popula-

tion [38, 55].

Therefore, we are inspired to extract effective biometric features

from the cardiac motion pattern to perform user verification.

3.2 Capturing Cardiac Motion

Given the intrinsic, unique and non-volitional properties of car-

diac motion pattern, the next step is how to effectively extract the

biometric features. Unlike existing works that rely on specialized

instruments to capture the cardiac motion, we seek to examine

the blood flow, which reflects the unique cardiac motion, through

the fingertips with commercial off-the-shelf devices. As shown in

Figure 2 (b), by illuminating the fingertip skin with the flashlight

on smartphone, the built-in camera can continuously observe the

variations on light absorption introduced by blood flow changes,

where the unique cardiac features are embedded.

Specifically, each pixel of the built-in camera acts as an inde-

pendent light sensor to detect the light changes on fingertip. Due

to the high resolution of current smartphone cameras (e.g., 1280×

720 pixels per frame), fine-grained cardiac cycle monitoring can

be achieved. Besides, the three color channels (i.e., Red, Blue and

Green) of each pixel provide multiple dimensions for effective fea-

ture extraction. By contrast, traditional cardiac monitors, such as

photoplethysogram (PPG) sensors, can only support up to 3 differ-

ent photodiodes (i.e., red, green, infrared photodiodes), which is

equivalent to three pixels, for cardiac dynamic detection [2].

Figure 3 shows light intensity changes of two different color

channels (i.e., red and green) across three cardiac cycles of two dif-

ferent users. We normalized the time scale of each cardiac cycle

to remove the impacts of fluctuating heartbeat rate. It is obvious

to find that the two users exhibit different cardiac motion patterns

for both color channels, which confirm that unique cardiac features

can be captured by smartphone camera. Additionally, since human

skin has different absorption/reflection rate for the light of differ-

ent colors, the cardiac motion patterns revealed by red and green
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Figure 3: Cardiac cycles of two users extracted from the cam-

era’s red and green channels.

channels have slight differences, which instead provide some re-

dundancy for reliable cardiac feature extraction.

4 SYSTEM OVERVIEW

4.1 Challenges

In order to achieve effective user verification leveraging unique

cardiac biometrics with ubiquitous built-in camera on mobile and

smart devices, a number of challenges need to be addressed.

Reliable CardiacMeasurements.The success of user verifica-

tion is built upon reliable measurements on cardiac motion pattern.

However, various impacting factors, such as ambient lighting con-

dition, fingertip pressing position and human motion can impact

the reliability of the derived cardiac measurements under practical

scenarios. Thus, it is critical to mitigate these impacts in cardiac

measurements for the proposed system.

UniquenessofCardiacCharacteristics. Since the cardiacmo-

tion pattern is indirectly obtained by capturing the blood flow vari-

ation in fingertips with built-in camera, it is a challenging task to

convert the recorded video frames to reliable cardiac biometrics

associated with unique cardiac motion pattern. Furthermore, to fa-

cilitate effective user verification, it is important to extract and val-

idate representative biometric features from the raw cardiac mea-

surements.

System Robustness. The cardiac measurements are also af-

fected bymany random factors, such as the emotion changes, heart

and breath rate variations. The system should be capable to elimi-

nate such randomness and derive robust biometric abstractions. It

is necessary to develop a transformation algorithm that can sup-

press the small-scale cardiac motion variations.

4.2 Attack Model

We consider the attacking scenario where an adversary attempts

to access the sensitive information or functionality (e.g., schedule,

photos and mobile payment) on the private mobile device that is

left unattended by legitimate users. The adversary does not have

any prior knowledge of the cardiac biometrics of the legitimate

users. To spoof the device, the adversary tries to pass the user

verification process with the adversary’s own cardiac biometrics

by pressing his or her fingertip upon the built-in camera. Further-

more, the adversary can also shift the position of his fingertip with

respect to the camera or adjust finger pressure, aiming to yield sim-

ilar cardiac biometrics as the legitimate user.



Data Acquisition

Flashlight/ISO Update

User Verification Model

Dynamic Cardiac Wave Extraction

Fingertip Pressing Detection

Camera Parameter Optimization

Biometric Quality Assessment

User Verified

PCA based Feature Transformation

Profile Matching

Dynamic Pixel Selection

Cardiac Wave Derivation

Data Calibration and Normalization

Verification Failed

Match?

YesNo

Systolic-Dicrotic

Feature Extraction

Non-fiducial 

Feature Extraction

Cardiac Biometric Extraction

Registration

Verification Model 

Construction

User Profile 

Construction

Cardiac Cycle Segmentation

Threshold Selection
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4.3 System Overview

The basic idea of CardioCam is to verify the user’s identity lever-

aging the intrinsic, unique, and non-volitional cardiac biometrics

with the assistance of ubiquitous built-in camera/flashlight on mo-

bile devices. CardioCam can be triggered when a user is trying to

access sensitive information/functionalities (e.g., mobile payment,

photo) or unlock her or his mobile device by either swiping up

on the device’s touchscreen or pressing the on-off button. Consid-

ering time for video recording and profile matching, CardioCam

takes about 2.5 seconds to complete one-time user verification. As

illustrated in Figure 4,Data Acquisition is then initialized with both

the build-in camera and flashlight turned on when detecting the

camera is covered by a fingertip. Under the illumination of flash-

light, the blood flow in fingertip, which is associated with cardiac

motion pattern, will be captured by the built-in camera in the form

of video frames. Before cardiac motion derivation, we first develop

a gradient-based optimization technique to adapt the camera con-

figurations (i.e., flashlight intensity, ISO) to complement ambient

light changes. Next, the reliable cardiac motion pattern is derived

via the module Dynamic Cardiac Wave Extraction from the cap-

tured video frames. Since the pressing position and pressure of fin-

gertip may keep slightly changing during the verification process,

we propose Dynamic Pixel Selection to merely include a subset of

pixels that are most sensitive to cardiac motion to boost the signal-

to-noise ratio of the cardiac measurements. In particular, the sen-

sitive pixels are determined within each individual cardiac cycle,

which is segmented by searching for subsequent local minima in

cardiac measurements. Then the video stream of the selected pix-

els will be converted to three cardiac waves with respect to red,

green and blue channels, following with a bandpass filter and a

normalization process to mitigate the impacts caused by human

respiration and heart rate changes, respectively.

In the Cardiac Biometric Extractionmodule, CardioCam extracts

30 systolic-diastolic features directly from the cardiacmeasurements

and 36 non-fiducial features after further processing. The systolic

and diastolic features are represented as normalized distances/slopes

between four fiducial points (i.e., Diastolic Point (DP), Systolic Point

(SP), Dicrotic Notch (DN), DicroticWave (DW) [2]) within each car-

diac cycle. The four fiducial points are used to characterize the four

phases of cardiac contraction and relaxation. The fiducial point po-

sitions can be localized through recursively finding the local max-

ima and minima within a cardiac cycle. To further extend feature

space, CardioCam also passes the cardiac measurements through

two high-pass filters to reveal cardiac uniqueness via overall signal

morphology and extract more fine-grained non-fiducial features.

The non-fiducial features, which are denoted as the normalized

distance between local maximums and minimums of the processed

measurements, are also unique among different users.

Finally, User Verification Model facilitates user verification by

matching new cardiac observations to the predefined a user profile.

Instead of directly building user profile with the aforementioned

morphological features, the system performs profile construction

by converting these features into a set of robust feature abstracts

through principal component analysis (PCA). PCA transformation

preserves the key characteristics that are effective to discriminate

different users while eliminates the impact of unpredictable inter-

ferences. The verification succeeds if the featured abstracts are

within a certain Euclidean distance from the user profile. Other-

wise, it fails and denies the access request.

5 FINGERTIP TOUCH DETECTION &
CAMERA PARAMETER OPTIMIZATION

In this section, we first introduce how to detect fingertip touch

on the built-in camera, and we then discuss the camera/flashlight

configuration optimization tomitigate the impacts of ambient light

for reliable cardiac motion derivation.

5.1 Fingertip Touch Detection

Under the illumination of the built-in flashlight, the captured video

frames have the color dominated by red channel (i.e., the color of

blood) if the camera is fully covered by a fingertip. When the cam-

era is fully covered, the red pixels would show extreme high inten-

sity, otherwise give relatively low intensity. We thus examine the

proportion of red channel component in the overall light intensity

across all the pixels in each frame t ∈ T as follows:

Pr (x,y) =
r(x ,y)(t)

r(x ,y)(t) + д(x ,y)(t) + b(x ,y)(t)
,

(x ∈ X ,y ∈ Y , t ∈ T ),

(1)

where r(x ,y), д(x ,y) , b(x ,y) denote the light intensity in red, green,

and blue channel at pixel (x,y), respectively. X and Y represent

the frame width and height, andT is the total number of frames in

the captured video. By comparing Pr with a predefined threshold

(i.e., τ = 0.85), we can determine the pixels that are covered, and

the cardiac motion derivation starts up only when over 95% of the

pixels are dominated by red channel.
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5.2 Camera Parameter Optimization

Our preliminary study finds that the reliable cardiac motion pat-

terns can only be obtained under appropriate camera configura-

tionswith adequate amount of light entering the camera. Extremely

low or high flashlight illumination would degrade the pixel sen-

sitivity on capturing the cardiac motion patterns from the cam-

era. Due to the various ambient lighting conditions, CardioCamera

needs to adapt the camera configurations to complement the light

introduced by ambient sources (e.g., sun, artificial light). We thus

design a gradient-based optimization scheme on camera/flashlight

configuration to mitigate the impacts of ambient light.

Cardiac Cycle Segmentation. Periodic cardiac motion results

in regular changes of blood flow in the fingertip, which are repre-

sented as pixel value variations on camera videos. To capture the

cardiac cycles embedded in such pixel value variations, CardioCam

first calculates the time-series cardiac measurements by averaging

pixel values of red channel for each frame in a video stream. We

choose the red channel because the captured video frames have

the color dominated by the color of blood, and the red pixels have

the best sensitivity on the blood flow variations. Then, CardioCam

exploits peak-valley detection algorithm [44] to identify the val-

leys with a minimum prominence of 40, and the segment between

two detected consecutive valleys is considered as a cardiac cycle.

The threshold is determined through our empirical study based on

the cardiac signal samples collected from 25 subjects. Due to heart

rate differences between individuals, the number of frames in each

cardiac cycle ranges from 36 to 65. Note that the above segmenta-

tion algorithm will also be used for both Dynamic Cardiac Wave

Extraction (Section 6) and Biometric Extraction (Section 7).

Biometric Sensitivity Assessment.We study the pixel sensi-

tivity by evaluating the light intensity changes (i.e., absolute pixel

value changes in frames) during each cardiac cycle. Specifically, we

calculate the element-wise (pixel-by-pixel) difference,Di f f (r(x ,y)),

between the two frames with maximum and minimum pixel aver-

ages in red channel as:

Di f f (r(x ,y)) = r(x ,y)(tmax ) − r(x ,y)(tmin),

(x ∈ X ,y ∈ Y ),
(2)

where tmax and tmin denote the indexes of frames that have max-

imum and minimum averages of pixel values, respectively. Then,

we indicate the distribution of Di f f (r )with a histogram H with k
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Figure 6: Comparison of the cardiac waves derived under

dim and bright ambient light conditions, respectively.

bins and derive the assessment score as below:

S =

k
∑

i=1

i2 ×
|Hi |

X × Y
, (3)

where |Hi | denotes the number of the pixels falling into ith bin.

Figure 5(a) shows the average light intensity in the red channel of

two video streams including the four cardiac cycles. It is obvious

to observe that higher assessment score (i.e., S=8.5) indicates a bet-

ter biometric sensitivity, and thus confirms the effectiveness of the

proposed assessment scheme on assessing pixel sensitivity.

Gradient-based Configuration Update. As illustrated in Fig-

ure 5 (b), either high or low camera ISO/flashlight illumination can-

not achieve satisfied frame quality on detecting cardiac motion pat-

tern. Particularly, the maximum assessment score can be found at

flashlight intensity of 0.2, 0.2, 0.3 when ISO is 300, 400, and 500, re-

spectively. This observation motivates us to search for an optimal

camera and flashlight configuration (i.e., ISO and flashlight inten-

sity) that maximizes the pixel sensitivity (i.e., assessment score S).

Specifically, we develop an iterative searching method, where the

next configuration adjustment is based on the feedback from cur-

rent one. The flashlight/ISO offset of each iteration is calculated as

follows:

an+1 = an + γ ▽ S(an), (4)

where an denotes either flashlight intensity or camera ISO con-

figuration at n-th cardiac cycle and the corresponding assessment

score is represented as S(an). At each cardiac cycle, an is updated

following the gradient ascent direction ▽S(an) with fixed step val-

ues (i.e., γF L = 0.05 and γI SO = 5) until the satisfactory pixel

sensitivity is reached (i.e., beyond an empirical threshold). The op-

timization procedures are summarized in Algorithm 1.

Figure 6 shows an example of the derived cardiac waves from a

user when the surrounding environments are in two different am-

bient lighting conditions (i.e., dim and bright ambient light), respec-

tively. As CardioCamera adaptively adjusts the camera flashlight

and ISO configuration to complement the ambient light variations,

we observe that the cardiac waves collected under the two differ-

ent lighting environments exhibit similar morphological charac-

teristics. The results indicate that the proposed camera parameter

optimization is a promising and reliable approach to ensuring the

high-quality cardiac motion pattern derivation.



Algorithm 1 Video Biometric Optimization

function CameraAdjustment

2: I SO = 550, Sprev = 0, FLprev = 0

while S < Threshold do

4: Sprev = S

FL = Camera .f lashliдht

6: S = Score(Framepeak , Framevalley )

Feedback = (S − Sprev )

8: if FL − FLprev > τ then

FLprev = FL

10: Of f setf l = Feedback ∗ γF L
FL = FL +Of f setf l

12: Camera .f lashliдht = FL

else

14: Of f setiso = Feedback ∗ γiso
I SO = I SO +Of f setiso

16: Camera .I SO = I SO

end if

18: end while

end function

6 DYNAMIC CARDIAC WAVE EXTRACTION

To extract unique and reliable cardiac biometrics, it is essential to

derive cardiacwaves that are robust to ambient noises and the ever-

changing position/pressure of fingertip during the verification pro-

cess. In this section, we introduce how to derive reliable cardiac via

selecting the most sensitive pixels to cardiac motion in the video

frames captured by built-in camera.

6.1 Dynamic Pixel Selection

Our preliminary studies find that the light intensity sensed by dif-

ferent pixels on camera are subject to the differences of fingertip

thickness, pressing position and pressure. Therefore, a pixel se-

lection strategy is required to dynamically exclude the ineffective

camera pixels for cardiac wave extraction.

Specifically, we first calculate the average of the frames in a car-

diac cycle and then identify two frames that have the maximum

and minimum average pixel values, respectively. Element-wise dif-

ference between these two frames is then calculated by using Equa-

tion 2. We select the effective pixels that have sufficient max-to-

min difference and obtain a mask matrix, Mk (x,y), by using the

following equation:

Mk (x,y) =

{

1, Di f f k (r(x ,y)) > γ

0, Di f f k (r(x ,y) ≤ γ ,
(5)

where Di f f k (r(x ,y)) is the element-wise difference of pixel (x,y)

in the kth cardiac cycle. Based on our experiments with different

subjects, we empirically determine γ = 15 to ensure fiducial fea-

tures (i.e., systolic and dicrotic points) can be correctly derived. The

mask matrix has the same size as the video frames and is applied

to all the frames in one cardiac cycle.

6.2 Cardiac Wave Derivation

Although blood flow variation can be captured by all sensitive pix-

els, deriving cardiac measurements from all individual pixels will
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Figure 7: Two different fingertip pressing positions and the

corresponding cardiac motion patterns.

incur significant computational overhead. Additionally, cardiacmo-

tion patterns derived from different camera pixels may exhibit ex-

tremely high similarity across different color channels (i.e., red,

green, blue). Thus we use the pixel average over the three color

channels (i.e., red, green, blue) to derive three cardiac waves. In par-

ticular, the cardiac waves are derived based on the selected pixels,

which are adaptively updated for each cardiac cycle. To simplify

the cardiac wave derivation, the derived cardiac wave segment of

the kth cardiac cycle can be obtained as:

W k
c (t) =

∑

x ,y M
k (x,y) × ck

(x ,y)
(t)

∑

x ,y M
k (x,y)

, (6)

where W k
c (t) and ck

(x ,y)
(t) denote the derived cardiac wave and

light intensity respectively at tth frame in the channel c (i.e., r ,д,b).

As shown in Equation 6, only the sensitive pixel values are in-

volved in cardiac wave generation through multiplying the pixel

matrix by themask. Figure 7 (a) gives an example that two different

fingertip-touch positions from the same person, respectively. And

Figure 7 (b) shows the corresponding cardiac waves derived from

the selected pixels. We can observe that the two cardiac waves are

surprisingly similar to each other even the fingertip touch posi-

tions are different. The results validate that our dynamic cardiac

wave derivation algorithm is robust to the impact of the fingertip

position changes.

6.3 Data Calibration and Normalization

According to our empirical study, the cardiac wave derivation is

also affected by the user’s respiration and inherent defects of cam-

era. Previous study [35] found that the impacts of respiration on

cardiac measurement normally appear at the frequency band less

than 0.3Hz. To furthermitigate the above interferences, a bandpass

Butterworth filter [39] with the passing frequency band 0.3Hz ∼

10Hz is adopted to further calibrate the cardiac wave. Additionally,

there are several intrinsic factors related to human emotion (e.g.,

exercising or resting) that may also affect human heartbeat rate

and strength, so the cardiac wave duration and amplitude will be

either stretched or shrunk. To ensure the robustness of the cardiac

biometrics, we normalize both the duration and amplitude of one

cardiac cycle into a common scale [0, 1] to mitigate the impact of

heartbeat rate/strength fluctuation.



(a) Systolic-diastolic features (b) Non-fiducial features

Figure 8: Systolic-diastolic features extracted from a car-

diac wave and non-fiducial features derived from the decom-

posed wave passing a 2Hz high-pass filter.

7 BIOMETRIC EXTRACTION

We propose to exploit both systolic-diastolic and non-fiducial fea-

tures to capture the unique physiological characteristics inherited

from the user’s cardiovascular system. Specifically, systolic-diastolic

features are the amplitude of the inflection points in the cardiac cy-

cles. Such amplitudes represent round-trip delay time of bloodflow

and are proportional to unique physiological characteristics (e.g.,

height, arterial stiffness [33]). While non-fiducial features charac-

terize the overall signal morphology of the cardiac cycle. Suchmor-

phology characteristics represent cardiac motion patterns which

are unique among individuals.

7.1 Systolic-Diastolic Features

In our proposed system, we first extract 30 systolic-diastolic fea-

tures (i.e., fiducial features) directly from the cardiac wave to char-

acterize cardiac motion. The fiducial features contain the biomet-

ric characteristics that are unique and non-volatile with respect to

different individuals, and these features are invariant to the emo-

tional state, such as anxiety, nervousness or excitement [20]. As

shown in Figure 8 (a), the four cardiac phases in a cardiac cycle

are separated by three fiducial points: diastolic peak (DP), dicrotic

notch (DN) and systolic peak (SP). We locate these fiducial points

by searching for the local maximums and minimums within each

cardiac cycle. Specifically, the normalized time intervals t1, t2, t3
and t4 characterize the duration of ventricular ejection, isovolu-

metric relaxation, atrial systole and isovolumetric contraction, re-

spectively, while the normalized amplitude values h1 and h2 rep-

resents the blood flow volumes in corresponding cardiac phases.

Note that h3 is excluded as a feature since it keeps constant (i.e., 1)

after normalization. Additionally, we also explore the normalized

slopes s1, s2, s3 and s4 to depict the gradient of blood flow changes

in each phase as: sj = |
hj
tj
|, j = 1, 2, 3, 4. We extract a set of 10

systolic-diastolic features from every color channel (i.e., red, green,

blue) and obtain 30 features in total. As depicted in Figure 9 (a), the

pairwise Pearson correlation of the systolic-diastolic features from

the same user present higher correlation than those of different

users, which validates the effectiveness of this feature-set.
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(a) Systolic-diastolic features (b) Non-fiducial features

Figure 9: Pairwise Pearson Correlation of systolic-diastolic

and non-fiducial features extracted from 30 cardiac cycles

for three different users (i.e., U1, U2, and U3): the features

of same user are highly correlated while the features of dif-

ferent users present lower correlation.

7.2 Non-fiducial Feature Derivation

The data calibration process (i.e. bandpass filter with cutoff fre-

quency 0.3 − 10Hz) removes the impacts of human respiration,

but the subtle movement of fingertip still introduces the interfer-

ences beyond 0.3Hz and thereby distorts the biometrics embedded

in the cardiac wave. We are thus motivated to utilize high-pass

filter to mitigate the interferences caused by the fingertip move-

ment and then extract distinct non-fiducial features. Comparing to

fiducial characteristics, non-fiducial features could better charac-

terize overall signal morphology (e.g., shape) of each cardiac cycle.

Recent study [24] has shown the success in deriving non-fiducial

features from the PPG signal for differentiating users. Specifically,

the cardiac waves pass through two high-pass filters with the cut-

off frequencies of 1Hz and 2Hz to obtain two non-fiducial cardiac

waves Wd1 and Wd2, respectively. The normalized distances be-

tween the local maximums and minimums of Wd1 and Wd2 are

unique to each individual and together serve as non-fiducial fea-

tures for characterizing cardiac motion. As shown in Figure 8 (b),

6 features {x1,x3, x5, |y1−y2 |, |y3−y4 |, |y5|} are extracted from ev-

ery color channel of the two non-fiducial cardiac waves, so there

are 36 non-fiducial features in total. The 6 features are selected by

finding the horizontal and vertical peak-to-valley distances that

are the most distinctiveness among different users. As shown in

Figure 9 (b), the much lower correlation between the non-fiducial

features of different user than that of the same user demonstrates

the effectiveness of this selected feature-set.

8 USER VERIFICATION MODEL

8.1 Feature Transformation grounded on PCA

Cardiac waves may have small-scale variations from day to day,

thus we propose a feature transformation scheme to construct reli-

able user profile and perform user verification ground on PCA [23].

Specifically, PCA transforms cardiac features into a set of orthog-

onal principal components in a low dimensional space, where the

first few ones are the most representative and robust to signal dis-

turbances. The principle components can be derived through ap-

plying singular value decomposition (SVD) to the biometricmatrix,

which consists cardiac features ofn cardiac cycle observations, and
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Figure 11: Performance of CardioCam on verifying individual user leveraging

1 cycle, 3 cycles, and 5 cycles, respectively.

derive the principle components asW = {w1,w2, ...,wp }, where

wj , j = 1, · · · ,p, represents a n-by-1 principle component vector.

Next, we select the top k principal components, called cardiac

abstracts, with the largest normalized variances. Particularly, we

find that all the cardiac cycles share similar first several principal

components, which describe the morphological outline of the de-

rived cardiac wave, and the remaining components could better

discriminate different individuals. Therefore, we discard the first

two principal components and start the principal component se-

lection process from the third component. The principal compo-

nent selection process satisfies the following objective function:

arдmin{k |
∑k
j=3

w j
∑p
i=1wi

< τ ,k < p}, where k is the number of se-

lected principal components and τ = 0.9 is a pre-defined threshold,

which is empirically determined to balance the tradeoff between

verification performance and computational complexity.

8.2 Profile Matching

Given that the cardiac abstracts derived from feature transforma-

tion, we conduct the user verification through measuring the sim-

ilarity between the newly captured cardiac abstracts and the pro-

filed cardiac abstracts. Intuitively, the cardiac signs from the legiti-

mate user should have small distance from his/her profile, whereas

an unauthorized user should have a relatively large distance. Car-

dioCam uses a set of cardiac abstract vectors F = { f1, ..., f70} de-

rived from 70 cardiac cycles in the profile of a legitimate user. For

each cardiac cycle, the cardiac abstract vector is obtained via mul-

tiplying a cardiac feature vector with principal component matrix

W described in Section 8.1. Given the profiled cardiac abstracts,

each newly captured cardiac wave that requests verification will

undergo feature transformation grounded on PCA to obtain a car-

diac abstract vector s . Then, we compute the average Euclidean

distance between each s and F as below:

Dist(s) =

∑n
i=1 ‖ fi − s ‖

n
. (7)

Subsequently, a thresholdη is then applied to performprofilematch-

ing through a hypothesis test as: the user verification successes if

Dist(s) ≤ η; otherwise the verification fails, indicating an adver-

sary or unauthorized user is detected. In order to obtain an op-

timized threshold, our system needs both legitimate samples and

also some adversarial samples from simulated spoofing attacks to

examine and score a set of pre-defined thresholds. Particularly, we

recursively score the thresholds leveraging Youden’s J statistic [54],

which is a single statistic that characterizes performance on iden-

tifying both the attacker and the legitimate user, and choose the

threshold with the maximum Youden’s J statistic. Specifically, the

optimized threshold ηu for the user u is derived via the following

optimization function: arдmax J (ηu) = {ηu |ηu ∈ S ∧ ηy ∈ S :

J (ηy) ≤ J (ηu)}, where S denotes the set of distances for threshold

selection.

9 PERFORMANCE EVALUATION

9.1 Experimental Methodology

Devices. We implement CardioCam on iPhone 7 with AVFoun-

dation framework which provides various image processing and

camera configuration functions. iPhone 7 is equipped with a built-

in high-definition rear camera with 12 megapixel, which enables

video frame rate of 60f ps with a resolution of 720p/1080p. Al-

though iPhone 7 supports slow-motion video recordingwith 120f ps/240f ps ,

we choose the frame rate of 60f ps that is available on most of the

mobile devices, especially the mid-range/low-end smartphones. In

addition, we further adjust the frame rate (i.e., 30/40/50/60f ps) and

video resolution (i.e., 240/360/480/720p) programmatically by call-

ing the built-in AVCaptureDevice.Format class to test the gener-

ality of our system, which is presented in Section 9.5. Note that

CardioCam only adjusts flashlight intensity and camera ISO for

better capturing cardiac motion pattern, and the other camera pa-

rameters, such as focus distance, shutter speed, and white balance,

are locked in the proposed system.

Cardiac DataCollection. The cardiac dataset is collected from

25 participants (19 males and 6 females) aging from 25 to 33. Partic-

ularly, we construct a main dataset, which contains three trails for

each participant, and each trail lasts 60 seconds including around

60-75 cardiac cycles. In total, we collect 5, 583 cardiac cycle sam-

ples from the 25 participants. During the data collection, there is

no restriction on the postures of participant (e.g., standing or sit-

ting) and surrounding environments (e.g., indoor or outdoor). In

addition, we further construct four separated datasets involving 8

participants to investigate the impacts of biometric variations, dif-

ferent fingers, various fingertip pressing positions, and emotion

state changes. We will elaborate the data collection details in sec-

tion 9.4.

Verification Strategies.To test the performance of our system,

we alternatively set each participant as the legitimate user and the

remaining 24 participants act as attackers. During the process of

user enrollment, the first 70 pre-collected cardiac cycles of each
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Figure 12: Performance of Individual system components.

legitimate user is used for PCA coefficient derivation and profile

construction, and the rest of the cardiac cycles are for system vali-

dation.

Evaluation Metrics. To evaluate our system performance, we

define five different metrics: true positive rate (TPR) and false posi-

tive rate (FPR); balanced accuracy (BAC); receiver operating charac-

teristic (ROC) curve; area under the ROC curve (AUC). Particularly,

TPR is the percentage of users that are correctly verified as legiti-

mate users, and FPR is the percentage of attackers that are mistak-

enly identified as legitimate users. BAC is the equal-weight combi-

nation of TPR and true negative rate (TNR), i.e., TNR = 1 − FPR.

The ROC curve is created by plotting the TPR against the FPR

under various threshold settings (i.e., η from 0 to 400). AUC is a

measurement of how well the verification model can distinguish

between the legitimate and spoofing samples. Note that AUC is

usually between 0.5 (random guess) and 1 (perfect verification).

9.2 Performance of User Verification

Figure 10 depicts the average ROC curves of verifying 25 partici-

pants leveraging different numbers of cardiac cycles (i.e., 1, 3 and

5) in each verification. Specifically, the AUC for each ROC curve is

calculated as 0.958, 0.974, 0.987 for verification with 1 cycle, 3 cy-

cles and 5 cycles, respectively. It is easy to find that 5 cardiac cycles

give the best performance. The results demonstrate the effective-

ness of CardiaoCam on user verification even with only 3 cardiac

cycles per user. Furthermore, in Figure 11, we also present BAC of

verifying all 25 participants. We can find that CardioCam achieves

95.5%, 97.9% and 98.6% average BAC with the corresponding stan-

dard deviation (STD) of 3.8%, 2.7%, 2.2% for 1 cycle, 3 cycles and 5

cycles, respectively. The above results confirm that CardioCam is

highly reliable on verifying all the legitimate users while rejecting

the adversaries.

9.3 Effectiveness of Each System Component

Systolic-Diastolic/non-fiducial Features. To analyze the effec-

tiveness of the extracted systolic-diastolic/non-fiducial features, we

evaluate CardioCam under three different feature sets: systolic-

diastolic feature only, non-fiducial feature only, and the combined

feature set. Figure 12(a) shows BAC of verifying 25 users leverag-

ing the three feature sets under 1 cycle, 3 cycles, and 5 cycles. Given

5 cardiac cycles, our system can achieve average BAC of 89.8%,

85.3%, 98.6%, with only systolic-diastolic, only non-fiducial, and

the combined feature set, respectively. We observe that systolic-

diastolic feature set could achieve better verification performance

than that of the non-fiducial feature set. This is because the fidu-

cial features, which describe the amplitude of the inflection points

in the four stages of the cardiac cycle, are more robust to heart-

beat rate variations. In fact, both fiducial and non-fiducial features

contribute to the authentication power of CardioCam, and they are

complementary.We observe that the combined feature set achieves

the best BAC, indicating that the combination of systolic-diastolic

and non-fiducial feature sets can further enhance the user verifica-

tion accuracy.

Dynamic Cardiac Wave Extraction. Figure 12(b) the impact

of dynamic cardiac wave extraction on the user verification per-

formance. We find that CardioCam is more effective in verifying

user with dynamic wave extraction. In particular, when using only

1 cardiac cycle for user verification, CardioCam is improved by 7%

BAC using dynamic cardiac wave extraction. This is because the

proposed dynamic cardiac wave extraction mechanism can effec-

tively select sensitive pixels and suppress the impacts of ambient

noises introduced by small scale variations of fingertip pressing

position and pressure.

Feature Transformation grounded on PCA. Next we study

the effectiveness of the proposed feature transformation scheme

grounded on PCA method. Figure 12(c) depicts the BAC of user

verification with and without feature transformation leveraging 1,

3, and 5 cycles. We find that the feature transformation scheme

can greatly improve the user verification accuracy, especiallywhen

only 1 cardiac cycle is used for user verification. This is because the

proposed feature transformation method suppresses the biometric

variations in the cardiac biometrics, making the system more ro-

bust.

9.4 Evaluation of System Robustness

Biometric Permanence. The cardiac motion patterns always ex-

perience small-scale disturbance from day to day, so we further

study the robustness of CardioCam by examining the biometric

permanence of cardiac motion. Specifically, we take the first 70 car-

diac cycles from all the samples to construct the profile for each of

the 8 participants, including 5 males and 3 females with ages rang-

ing from 21 to 35.. The data collected in the following three months

are used for testing. In addition, during the data collection, there

is no restriction on the time of day and surrounding environments

(e.g., indoor or outdoor), thus the cardiac cycles of each participant
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Figure 13: Performance evaluation of collecting cardiac cycles from different days, different emotion states, different fingers,

and different fingertip placements.

are collected under various ambient light conditions. Figure 13(a)

shows the BAC of user verification with 1, 3, and 5 cycles. We find

that CardioCam shows very robust performance on user verifica-

tion even though the cardiac cycles are collected on different days.

Specifically, we can observe that CardioCam achieves 90.8%, 94.4%,

95.7% average BAC with standard deviation of 3.1%, 2.6%, 2.2% for

1 cycle, 3 cycles and 5 cycles, respectively. Therefore, we can con-

clude that there is no significant performance decreasing with the

cardiac samples collected from different days, which demonstrates

the robustness of CardioCam in a long term.

Impacts of Emotion State. We also study the robustness of

CardioCam under various human emotional states. We design a

set of emotional tasks involving different levels of stress, and each

participant is asked to perform two low-stress tasks (i.e., sitting, lis-

tening to music) and two high-stress tasks (i.e., reading, running).

The designed tasks involve both mental activities and physical ex-

ercise (i.e., running) that would greatly change the human’s heart-

beat rate. Particularly, we construct user profile with 70 cardiac cy-

cles when the participant is sitting. Then, we evaluate CardioCam

when the 8 participants are performing one of the four emotional

tasks. Figure 13(b) shows the user verification accuracy with re-

spect to four different emotional tasks in terms of TPR and FPR.

We find that CardioCam achieves high TPR while maintaining low

FPR for all the four tasks. Even for the high-stress task of exercise,

which can significantly raise heartbeat rate, CardioCam can still

achieve over 94% TPR and less than 4% FPR. This is because the

cardiac normalization process and the proposed feature transfor-

mation mechanism greatly suppress the interferences caused by

human emotion changes. Additionally, since running activity is

the aerobic exercise that incurs more significant heartbeat varia-

tions than many other common physical activities (e.g., walking),

CardioCam has the potential to suppress cardiac motion variations

introduced by both physical exercises and daily activities.

Impact ofDifferent Fingers.Wenext examine the performance

of CardioCam with different fingers of the same user applied for

user verification. Since the blood circulating in the five fingers are

supplied by the same artery, the blood flow pattern should be con-

sistent across different fingertips. For each person among the 8 par-

ticipants, we collect around 180 cardiac cycles from both index and

middle fingers. The user profile is constructed with 70 cardiac cy-

cles collected from either index finger or middle finger, and the

remaining cardiac cycles are used for system validation. In order

to test theworst case performance of CardioCam, only 1 cardiac cy-

cle is used to verify each individual user. As shown in Figure 13(c),

CardioCam achieves similar ROC curves no matter the training set

is collected based on index or middle finger. Specifically, both two

ROC curves achieve high AUC around 0.953, which validate the

effectiveness of our system regardless of which fingertip pressing

upon the camera surface.

Impact of Different Fingertip Pressing Positions. To vali-

date the effectiveness of CardioCam on mitigating the impact of

varying fingertip pressing positions, we conduct a set of exper-

iments involving 8 participants with their fingertips pressing at

different positions upon the camera. Specifically, each subject is

required to collect two sets of cardiac motion patterns, and each

set includes around 180 cardiac cycles with two different finger-

tip pressing positions the participant is accustomed to. Specifically,

the user profile is constructed with the first 70 cardiac cycles col-

lected from one of the two pressing positions, and the proposed

system is then evaluated with the rest of the cardiac samples. Fig-

ure 13(d) depicts the average ROC curves of verifying the 8 users

leveraging only 1 cardiac cycle in each verification. CardioCam has

similar verification performance for both pressing positions, which

imply the effectiveness of the proposedmethod on suppressing the

impacts of different fingertip pressing positions.

9.5 Impact of Video Quality

Impact of Camera Sampling Frame Rates. CardioCam infers

cardiacmotion pattern from the light intensity changes of recorded

video stream, so the quality of caridac features is easily affected

by the video frame rate. To evaluate the impact of frame rate, the

cardiac samples from 25 participants are collected under the frame

rates of 30, 40, 50, 60 frames per second(fps) to verify the user iden-

tity with 5 cardiac cycles. As the average AUC for user verification

shown in Figure 14 (a), we can observe that the higher the frame

rate is, themore the verification accuracy improves. This is because

the high frame rate mitigates the motion blur in the cardiac wave

derivation and ensures a high resolution on the cardiac motion

pattern estimation. The above results show that our system has

consistently good performance regardless of different frame rates.

Impact ofCameraResolution.At last, to further study the im-

pact of the video quality on capturing unique cardiac biometrics,

we use systolic-diastolic/non-fiducial features from video frames

with scaled-down resolutions (i.e., 320 × 240, 640 × 360, 854 × 480)

to verify 25 users’ identity with 5 cardiac cycles. The AUC for the
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Figure 14: Performance evaluation under different video

qualities.

four different camera resolutions are shown in Figure 14 (b). We

can find that CardioCam achieves over 0.98 AUC for all of the four

resolutions. And the verification performance is highly consistent

across different camera resolutions. This is primarily because Car-

dioCam leverages the average light intensity changes of the whole

frame, instead of individual or portions of pixels, to capture cardiac

biometrics. It is easy to conclude that video resolution has little im-

pact on the user verification performance.

10 DISCUSSION

Deployment Feasibility. CardioCam has a minimum hardware

requirement (i.e., camera and flashlight) to facilitate user verifi-

cation leveraging cardiac biometrics. Specifically, the camera and

flashlight are readily available in most mobile devices and IoT ap-

pliances, so it will not bring extra cost and inconvenience to the

mobile users. Furthermore, as illustrated in section 9, the proposed

CardioCam system can still achieves high verification accuracy of

0.953 and 0.98 even under low frame rate (i.e., 30fps) and a low cam-

era resolution (i.e., 240p). Therefore, we believe CardioCam can be

applied to a broad range of mobile and IoT devices with the need

of reliable user verification.

Memory and Energy Consumption. Our system is a light-

weight user verification system with low computational complex-

ity and memory/energy overhead. The most memory and power-

intensive task in CardioCam is data acquisition, which captures

user cardiac pattern with the built-in camera. The recorded video

lasts for 2 seconds and takes up only 0.2MB of thememory, and the

corresponding power consumption is as low as 4.6J. Given the cap-

tured cardiac pattern, CardioCam only takes around 0.5 seconds to

complete one-time user verification due to its low complexity de-

sign, affordable for most mobile and IoT devices without imposing

much overhead.

Authentication Delay. In contrast to other user verification

scheme, such as fingerprint and face ID, CardioCam normally takes

longer time to complete the verification process (i.e., at least 2.5

seconds depending on individual heart rate). We further find that

a large proportion of the time cost is spent on optimizing the cam-

era configuration instead of cardiac sign collection. To reduce the

time cost, we will conduct in-depth study on the relationship be-

tween pixel sensitivity and ambient light intensity, so that the op-

timization process can be completed in prior to the cardiac sign

collection.

Accuracy Improvement and Further Evaluation. While it

is not yet clear whether the cardiac features in our system are suf-

ficiently distinctive in a large user population, our results show

promise, at least as an additional signal used in conjunction with

other existing techniques (e.g., fingerprint and face recognition).

In our future work, we target to evaluate the system’s scalabil-

ity using various devices with different camera-flashlight settings,

more serious attacks (e.g., the attacker can reproduce the systolic-

diastolic features). We will try to improve the verification accuracy

by exploring the advances in mobile/IoT hardware, such as emerg-

ing multiple cameras and improvements in video frame rate (e.g.,

120-240fps), and the fiducial/non-fiducial features that are more

discriminative among different people. In addition, we used the

video frames with various scaled-down resolutions for evaluating
the impact of camera resolution. The results show that CardioCam

is capable of suppressing the impacts of frame resolution due to

the use of pixel average instead of the image features (e.g., edges,

interest points). To further study the impact of low-resolution cam-

eras on our system, we will evaluate the scalability of CardioCam

with low-end smartphones that have lower camera resolution (e.g.,

320 × 240).

Copping with Spoofing Attack. The most extreme case is

when an adversary acquires cardiac waves of the legitimate user

(e.g., via pulse oximetry) and tries to spoof CardioCam by regener-

ating the cardiac motion patternwith a semiconductor light source

(e.g., a red light-emitting diode). To deal with such attacks, we

could further explore cardiac motion patterns of different color

channels (e.g., green and blue), which are hard to forge with the

light source of single color. We would leave the detailed study of

such adversarial cases as an avenue for our future work.

Robustness underCardiac Illnesses.Currently, ourworkmainly

focuses on verifying the identifies of health people, who do not

have heart diseases such as arrhythmia and congenital heart fail-

ure. But the cardiac abnormalities could have considerable impacts

on the cardiac motion pattern and thus affect the stability of car-

diac biometrics. In the future, we plan to apply CardioCam to the

peoplewith cardiovascular diseases and develop more general user

verification mechanisms.

11 CONCLUSION

In this paper, we propose CardioCam, the first low-cost, general

and hard-to-forge cardiac biometric based user verification sys-

tem. Unlike existing user verification systems, CardioCam extracts

unique cardiac biometrics for verifying the user’s identity leverag-

ing the readily available built-in camera in mobile devices and IoT

appliances. To enable highly reliable cardiac motion derivation, we

devise a gradient-based camera configuration optimization tech-

nique together with dynamic pixel selection to mitigate the im-

pact from ever-changing ambient light and fingertip touch pres-

sure/positions. To facilitate accurate user verification, CardioCam

takes two types of biometrics, morphological and non-fiducial fea-

tures, into consideration. A prototype system is implemented to

evaluate the performance of CardioCam through extensive experi-

ments involving 25 subjects. The results demonstrate that Cardio-

Cam can achieve remarkable accuracy and robustness on verifying

legitimate user while denying unauthorized users under various

camera settings and data collection modes.
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