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ABSTRACT
The market size of augmented reality and virtual reality (AR/VR)
has been expanding rapidly in recent years, with the use of face-
mounted headsets extending beyond gaming to various application
sectors, such as education, healthcare, and the military. Despite the
rapid growth, the understanding of information leakage through
sensor-rich headsets remains in its infancy. Some of the headset’s
built-in sensors do not require users’ permission to access, and
any apps and websites can acquire their readings. While these un-
restricted sensors are generally considered free of privacy risks,
we find that an adversary could uncover private information by
scrutinizing sensor readings, making existing AR/VR apps and web-
sites potential eavesdroppers. In this work, we investigate a novel,
unobtrusive privacy attack called FaceReader, which reconstructs
high-quality vital sign signals (breathing and heartbeat patterns)
based on unrestricted AR/VR motion sensors. FaceReader is built
on the key insight that the headset is closely mounted on the user’s
face, allowing the motion sensors to detect subtle facial vibrations
produced by users’ breathing and heartbeats. Based on the recon-
structed vital signs, we further investigate three more advanced at-
tacks, including gender recognition, user re-identification, and body
fat ratio estimation. Such attacks pose severe privacy concerns, as an
adversary may obtain users’ sensitive demographic/physiological
traits and potentially uncover their real-world identities. Compared
to prior privacy attacks relying on speeches and activities, Fac-
eReader targets spontaneous breathing and heartbeat activities that
are naturally produced by the human body and are unobtrusive to
victims. In particular, we design an adaptive filter to dynamically
mitigate the impacts of body motions. We further employ advanced
deep-learning techniques to reconstruct vital sign signals, achieving
signal qualities comparable to those of dedicated medical instru-
ments, as well as deriving sensitive gender, identity, and body fat
∗Yingying Chen is the corresponding author.
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information. We conduct extensive experiments involving 35 users
on three types of mainstream AR/VR headsets across 3 months.
The results reveal that FaceReader can reconstruct vital signs with
low mean errors and accurately detect gender (over 93.33%). The
attack can also link/re-identify users across different apps, websites,
and longitudinal sessions with over 97.83% accuracy. Furthermore,
we present the first successful attempt at revealing body fat in-
formation from motion sensor data, achieving a remarkably low
estimation error of 4.43%.

CCS CONCEPTS
• Security and privacy → Hardware attacks and countermea-
sures.
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1 INTRODUCTION
Augmented reality/virtual reality (AR/VR) technologies have cre-
ated an emerging market: the hardware and software revenues top
31.12 billion in 2023 and have a projected market volume of 52.05
billion in 2027 [39]. AR/VR face-mounted headsets have grown
in popularity within the gaming community, and their use has
been extended to education [7], healthcare [44], military [40], and
beyond. Despite the transformative potential of AR/VR, the de-
velopments of corresponding privacy protection techniques and
policies remain in their infancy. Recent studies highlight privacy
leakages through active virtual engagements [13, 27], where adver-
saries extract private information through users’ direct text input in
AR/VR scenarios (e.g., containing users’ names, gender, and shop-
ping preferences). These attacks typically employ cognitive tricks
during virtual conversations, such as social engineering tactics,
self-disclosure mechanisms, and adversarial AR/VR game designs,
to deceive users into disclosing their private information.
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However, we find that a variety of unrestricted sensors in AR/VR
headsets can enable a more stealthy form of privacy attack that does
not involve any active engagement from the user. The unrestricted
sensors (e.g., accelerometer, gyroscope), which are designed to uti-
lize users’ body movements to support immersive human-computer
interactions, are always on by default. This configuration provides
opportunities for passive attacks, where adversaries can infer pri-
vate attributes from sensor data during normal AR/VR activities
(e.g., gaming, surfing websites), without requiring any direct in-
teractions or cognitive tricks. Such private information could be
utilized for various malicious purposes, such as cyber-tracking [35],
targeted/personalized advertising [35], curtailing personal auton-
omy [6], cyber abuse [11], or even advancing political agendas [22].
The attacks using unrestricted sensors can significantly reduce the
risk of exposing the malicious intent, thereby achieving a higher
degree of stealthiness compared to active virtual engagements. In
this work, we explore such passive attacks by sensing facial vi-
brations induced by vital signs of users (i.e., breathing and heart
beating) through unrestricted AR/VR motion sensors. The designed
attack can lead to severe privacy leakage, revealing details such
as gender, identity, lifestyle, preferences, and even body fat ratio,
without assuming any active inputs from the users.

Proposed FaceReader Based on Vital Sign Reconstruction.
We find that human breathing and heartbeats, which correlate with
contractions and relaxations of the nasal cavity and facial blood
vessels, produce minute facial vibrations on the face surface. Since
AR/VR headsets are tightly mounted on users’ heads and touch
various facial areas (e.g., forehead, nose, temples), these vibrations
can propagate through the headset and vibrate the motion sen-
sors. Based on this insight, we design a new passive privacy attack,
FaceReader, which reconstructs high-quality vital signs, specifi-
cally breathing and heartbeat signals, from motion sensor readings.
These fine-grained vital signs contain rich biometrics and thus
can be leveraged to realize more advanced attacks, deriving users’
private attributes such as gender, identity, and body fat ratio. As
FaceReader only requires accessing unrestricted motion sensors, the
consequences could be dire if such privacy attacks are launched on
a large scale by enterprises or malicious actors to acquire compre-
hensive profiles of a large number of AR/VR users. We demonstrate
that two levels of privacy leakages are possible via FaceReader :

Direct attack: vital sign reconstruction. We demonstrate the feasi-
bility of reconstructing vital sign signals that yield similar signal
quality to medical instruments, such as Photoplethysmogram (PPG)
sensors and respiration monitoring belts (i.e., NeuLog NUL-236
respiration monitor belt). The reconstructed patterns of breathing
and heartbeats can be linked to important heart and lung functions,
such as the metabolism of oxygen, glucose, and lung capacity. Thus,
the fine-grained vital sign information can be categorized as highly
private information by USA GOV [15], and disclosure of such infor-
mation could lead to medical discrimination and fraud of healthcare
records (more consequences are elaborated in Section 2.1).

Advanced attacks: sensitive information derivation. Based on the
high-quality vital signs, we show more profound attacks that re-
veal sensitive information embedded within or extracted from vi-
tal sign signals: (1) Gender Recognition: Our attack could reveal
users’ gender information, which could be exploited to push gender-
specific advertisements [35] or perform romance scams. (2) User

Re-identification: With the vital sign signals containing rich biomet-
ric information (e.g., related to functions of the heart and lungs),
adversaries potentially link/re-identify users across apps, websites,
and longitudinal sessions. The attack is particularly concerning as
more users frequently post sensitive data (e.g., game reviews and
photos) on multiple websites, and the identity linkage could expose
their preferences, lifestyles, and even real-world identities.

(3) Body Fat Ratio Estimation: The reconstructed vital signs can
be leveraged to estimate the body fat ratio, which affects respiratory
resistance and blood flow of users [4, 8]. Adversaries can leverage
such information to effectively manipulate users’ minds (e.g., pro-
moting health-related products [3], performing cyber-bullying [30])
or sell the information for profit.

Challenges of Deriving Privacy Information via Facial Vi-
brations. To successfully execute our proposed attack leveraging
built-in motion sensors on commodity AR/VR headsets, we face
several practical challenges: (1) Capturing Subtle Facial Vibrations
on AR/VR Headsets: The amplitude of these vibrations induced by
human respiration and heartbeat are very small, while motion sen-
sors are designed to capture large-scale body motions, making it
difficult to sense fine-grained vital signs. (2) Interference of Motion
Artifact: In AR/VR scenarios, users interact with the virtual objects
and environments with hand, head, and body motions, which cause
significant distortions to the minute vital sign patterns. It is chal-
lenging to separate vital-sign-induced facial vibrations from the
motion artifact. Therefore, we need to design effective techniques
to separate facial vibrations from other types of body movements.
(3) Extract Effective Features for Advanced Attacks: Vital sign signals
are encoded wide range of biometrics. To realize effective advanced
attacks, we need to design features that capture task-specific char-
acteristics while suppressing the others.

Our Technical Contributions. Taking motion sensor readings
as input, our attack first mitigates motion artifacts using an adap-
tive filtering algorithm. This algorithm maintains signals exhibiting
strong periodicity and resembling breathing and heartbeat cycles,
while simultaneously removing other irregular motion patterns.
In addition, we design a recurrent neural network with attention
mechanisms to reconstruct fine-grained vital sign signals from
the time-frequency features of facial vibrations, achieving signal
quality comparable to dedicated medical instruments. Given the
reconstructed signals, we highlight the potential privacy risks by
developing features and recognition methods for body fat ratio
estimation, user re-identification, and gender recognition. Our con-
tributions are summarized as follows:

• We discover a new passive privacy attack that reconstructs high-
quality vital sign signals from unrestricted AR/VRmotion sensors.
The proposed attack presents a severe threat to the emerging
AR/VR paradigm, as all existing AR/VR apps can be maliciously
turned into an eavesdropper to uncover users’ privacy.

• We thoroughly investigate the relationships between the vital
signs (i.e., breathing and heartbeat patterns) with facial vibrations.
We further design a deep learning model based on a recurrent
neural network to reconstruct fine-grained vital sign signals
resembling those collected from medical instruments.

• We showcase three representative advanced attacks based on
the reconstructed vital signs, including body fat ratio estimation,
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user re-identification, and gender recognition. Capitalizing on
vital signs with consistent morphological patterns, our attacks
can be realized with only a small set (re-identification) or no
training data (gender and body fat ratio) from the victim.

• We conduct extensive experiments on three types of mainstream
AR/VR headsets, including one low-end cardboard headset and
two standalone headsets. The results demonstrate that our at-
tack can reconstruct vital signs with low error rates as well as
uncover body fat (less than 4.43%), identity (over 97.83%), and
gender of victims (over 93.33%) with high success rates. We also
validate that our attack can accurately re-identify users (among
27 participants) under more complicated and practical scenarios,
such as across different apps, websites, and longitudinal sessions.

2 ATTACK CONSEQUENCES AND THREAT
MODEL

2.1 Attack Consequences
We showcase the attack consequences that could be caused by
FaceReader in real-world AR/VR scenarios as follows:

Cyber Tracking. The adversaries can employ the derived phys-
iological status and demographic data to track and profile vic-
tims [10, 13, 35]. For example, by correlating vital sign biometrics
with network attributes, Internet sessions, and IP addresses, adver-
saries can pinpoint the geo-location of victims. In addition, once the
identity is detected, the victim’s anonymous post, message, and app
usage history can be compiled to construct a comprehensive profile,
shedding light on his/her longitude behaviors and lifestyle. Addi-
tionally, private data such as gender and physiological attributes
(e.g., breathing patterns, heartbeats, body fat) revealed with our
attack further enrich this profile.

Discrimination. The adversaries can leverage the leaked de-
mographic and physiological information via FaceReader to per-
form discrimination against specific individuals or groups. Such
discrimination can be reflected in virtual social media platforms
(e.g., HorizonWorlds [26], Sensorium Galaxy [33]) and the prices of
specific products. For instance, well-targeted hateful and offensive
comments can be customized by adversaries on virtual social media
platforms based on the demographic information derived from the
victims. Moreover, medical insurance companies can make price dis-
crimination [29] by charging different prices of medical insurance
after they derive victims’ physiological status via FaceReader.

Cyberbullying. Cyberbullying denotes using online platforms
to harass specific individuals or groups. In recent studies [30, 34],
cyber-bullying that correlates with humans’ physiological status
has been widely reported, where body overweight and underweight
have become important factors. With FaceReader, the adversaries
can derive victims’ body fat ratio and perform cyberbullying against
overweight or underweight people on AR/VR platforms. Victims
who experience such cyberbullying could endure severe emotional
distress, such as anxiety, depression, and low self-esteem, leading
to a decline in mental health and overall well-being.

2.2 Threat Model
The Adversary. The adversaries could be some enterprises (e.g.,
AR/VR companies, advertisement agencies, and healthcare vendors)

that intend to acquire vital signs and the gender/identity/body
fat ratio of users. Such information allows the enterprise to learn
important user statistics for product promotion, internal/external
collaboration, talent hiring, cross-enterprise business, and even
sell the data for benefits. In addition, the adversaries could be a
malicious actor (e.g., an application developer or an employee) who
has the opportunity to access the motion sensor data. As motion
sensors are accessible for AR/VR apps, our attack can be launched
at a large scale by reusing existing non-malicious AR/VR apps.
The attacker can also acquire the victims’ motion sensor data by
hosting an innocuous website (e.g., a forum or an online game),
which obtains the motion sensor data when users visit the website.

The Adversary’s Capability. We assume the adversary can ac-
quire motion sensor data from AR/VR headsets through an AR/VR
app or website. The app/website collects motion sensor data in the
background and sends it to the adversary for vital sign reconstruc-
tion and advanced sensitive information derivation. Particularly,
most commercial AR/VR headsets (e.g., Meta Quest, HTC Vive Pro
Eye, Valve Index) come equipped with a three-axis accelerometer
and a gyroscope, which are utilized to track the user’s head motion
for motion simulation in the virtual environment. Since motion
tracking is an essential feature of AR/VR, accessing the motion
sensor typically does not necessitate any user permissions. We
confirm the feasibility of stealthy motion sensor data collection by
building apps on two mainstream AR/VR programming platforms
(Oculus SDK [25], OpenVR SDK [38]) and a website based on We-
bXR Device API [42]. Our study involves three different headsets
(i.e., Meta Quest 1 & 2 and HTC Vive). Particularly, we develop
an AR/VR app using the Oculus SDK and successfully employ the
function ovr_GetTrackingState() to record accelerometer and
gyroscope readings from Meta Quest 1 & 2 without requesting user
permission. A similar app is implemented with OpenVR, which
supports the HTC Vive headset as well as various other headsets
(e.g., those manufactured by Valve, Lenovo, and Microsoft). Our
app leverages GetRawTrackedDevicesPoses() to gather motion
sensor data in the background, also without user permission. Fur-
thermore, we verify that motion sensor data can be stealthily col-
lected from all three headsets by hosting a website created with
the WebXR Device API, which enables users to interact with the
website via their headsets. Our website first requests users’ per-
mission to create a session to present immersive content and then
utilizes the function getPose() to collect motion sensor data in
the background without any further permissions.

Attack Scenarios.We study the following four attack scenarios
based on vital-sign-induced facial vibrations collected with AR/VR
motion sensors and elaborate on their training requirements:

Direct attack: vital sign reconstruction. The adversary can build a
deep-learning model to reconstruct high-quality vital signs from
the victim’s motion sensor data (i.e., facial vibrations). A pre-trained
model can be built by correlating the motion sensor data of other
people (not including the victim) with the ground-truth breathing
and heartbeat signals (e.g., collected using respiration belts and PPG
sensors). The adversary can execute a real-time attack leveraging
the pre-trained model. Additionally, the adversary may leverage the
victim’s motion sensor data (without the ground truth) collected
in the inference phase to perform adaptive training, which can
enhance the performance of the pre-trained model.
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Figure 1: Facial vibrations of human’s respiration and
heartbeat-related blood exchange process.

Advanced attack: gender recognition. The adversary constructs a
deep-learning-based model to discern victims’ gender, which can
be exploited to identify victims of a particular gender for intrusive
or detrimental purposes (e.g., promoting cosmetics for females or
action games for males). To train the model, the adversary can
utilize motion sensor data and gender labels gathered from other
individuals. Once the victim’s motion sensor data is acquired (with-
out the gender label), the adversary can either employ the data for
adaptive training or initiate a real-time attack without adaptation.

Advanced attack: user re-identification. In this scenario, the ad-
versary aims to identify and track users across various sources of
motion sensor data, including but not limited to different AR/VR
apps, websites, and sessions. This could enable the adversary to link
the users’ information from different apps and websites (e.g., game
reviews and photos on multiple websites) to discern the user’s per-
sonalities and even real-world identities. In addition, longitudinal
attacks across sessions of using AR/VR devices allow the attacker
to recognize the user’s interests and preferences. To construct a
re-identification model, the adversary trains a deep learning model
using the victim’s motion sensor data and the user ID (i.e., label)
from a single source (e.g., Source 1). The profile (deep learning
model) only needs to be constructed once based on data from a
single source, and the adversary can use this profile to track the user
on other sources (e.g., apps, websites, and sessions). It is crucial to
note that the user ID could be source-specific and may vary across
apps, websites, and sessions, meaning that it is unrealistic to find
the same user based on the ID across sources. Given new motion
sensor data from a different source (e.g., Source 2), the model deter-
mines whether the sensor data originates from one of the profiled
users with a specific ID in Source 1.

Advanced attack: body fat ratio estimation. The adversary may
infer the body fat ratio from the victim’s reconstructed vital signs.
Body fat typically impacts users’ cardiovascular systems by clog-
ging arteries and increasing resistance to breathing [4, 8], which
allows for deriving body fat information from vital signs. Specifi-
cally, the adversary can develop a regression model to correlate the
vital sign data with the ground-truth body fat ratio (e.g., obtained
using body fat scales [32]) collected from other people. Similar to
the direct attack, the adversary can either employ adaptive training
to enhance the derivation performance or initiate a real-time attack,
without using the victim’s body fat information for training.

3 ATTACK OVERVIEW
3.1 Capturing Vital-sign-induced Facial

Vibrations via AR/VR Motion Sensors
Kinetic of Breathing and Heartbeat. Human respiration and
heartbeat generate subtle facial vibrations on the face surface. In

(a) Breathing-induced facial vibrations

Heartbeat Cycle

(b) Heartbeat-induced facial vibrations

Figure 2: Comparisons of facial vibrations from AR/VR ac-
celerometer (i.e., x- and y-axis) and corresponding respira-
tion/heartbeat signals captured by medical sensors (i.e., a
head-mounted PPG sensor and a respiration belt).

particular, during respiration, inhalation and exhalation cause peri-
odic airflow into and out of the nasal cavities, encompassing nasal
passages and sinuses, situated at the roof of themouth. As illustrated
in Figure 1, the process of respiration results in periodic dilation
of the human nose. Due to the close contact between the headset
and the face, the contraction and expansion of the nasal cavities in-
duce minuscule vibrations on the headset. In addition to respiratory
patterns, the headset can also detect vibrations corresponding to
heartbeats. The human face comprises a complex network of blood
vessels, including the facial artery and its subsidiary branches, such
as arterioles and venules, as depicted in Figure 1. In each heartbeat
cycle, the heart propels blood through these vessels to the facial
tissues, generating minute facial vibrations that can be captured by
the AR/VR headset.

Capturing Facial Vibrations. We conducted two experiments
to separately validate the feasibility of detecting facial vibrations
induced by breathing and heartbeat. Our first experiment focuses
on analyzing the patterns of accelerometer readings from a Meta
Quest headset and a NeuLog NUL-236 respiration monitoring belt,
with a human participant wearing the headset and the monitoring
belt around the waist. The sampling rates are set at 1000Hz for the
motion sensors on the Meta Quest and 100Hz for the respiration
belt. We compare the patterns of the motion sensor data and the
respiration patterns in Figure 2(a). Note that we isolate the sensor
data related to breathing-induced facial vibrations using signal sep-
aration techniques, which will be discussed further in Section 4.4.
We observe similar trends and periodicity of breathing patterns
in the facial vibrations and the reference respiration data. In our
second experiment, we instruct the participant to wear the headset
and attach a face-mounted PPG sensor with a sampling rate of
100Hz. The comparison between heartbeat-related facial vibrations
(extracted using techniques that will be described in Section 4.4)
and PPG signals is presented in Figure 2(b). We find that heartbeat-
induced facial vibrations and heartbeat waveforms display similar
morphological patterns to some degree, although the facial vibra-
tions are noisier. The study demonstrates the potential of capturing
heartbeat patterns using accelerometers.

3.2 Advantages of Exploiting Facial Vibrations
Our attack, based on vital-sign-induced facial vibrations, presents
distinct advantages over prior works in the following perspectives.
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Figure 3: Overview of FaceReader for the direct attack on vital sign waveform reconstruction and the advanced attacks for
gender recognition, user re-identification, and body fat derivation.

(1) Employing unrestricted sensors. Our attack solely requires data
from unrestricted motion sensors, which are accessible by any
AR/VR apps and websites. Although some headsets are equipped
with PPG/ECG sensors (e.g., heartbeat sensor on HP Reverb G2
Omnicept VR headset [17]), these are considered restricted sensors
and necessitate explicit user permissions for access. (2) Unobtrusive
to victims. Our attack targets spontaneous breathing and heartbeat
activities that are naturally produced by the human body, and it is
unobtrusive to victims. Differently, prior privacy attacks assume
the victim is performing active (obtrusive) interactions, such as
speaking [1, 2, 18] and conducting activities [19, 23, 41]. (3) En-
hanced reliability and data-efficiency. Our attack leverages vital sign
signals that exhibit high consistency across different application
contexts and scenarios, facilitating sensitive information extraction
with significantly less (for re-identification) or no training data (for
body fat and gender recognition). In contrast, prior works based on
speeches and activities demand extensive training to remove the
phonemic and activity variations.

3.3 System Flow
FaceReader consists of three major modules, including Vibration
Processing, Direct attack and Advanced Attack. The overview of the
attack system is shown in Figure 3.

Vibration Processing. Our vibration processing first separates
the 3-axis accelerometer and gyroscope readings into breathing-
induced and heartbeat-induced facial vibrations. Then we employ
two band-pass filters with cut-off frequencies to extract breathing-
and heartbeat-related facial vibrations. A body movement mitiga-
tion scheme based on an adaptive filter is then applied to track the
vibration signals and dynamically cancel artifacts of humanmotions.
With the denoised vibrations, our attack extracts 3D acceleration,
speed, and displacement from breathing- and heartbeat-related
vibrations for vital sign waveform reconstruction.

Direct Attack. We design a waveform reconstruction network
to realize the proposed direct attack. Specifically, the reconstruction
network leverages Long Short-Term Memory (LSTM) units and a
self-attention mechanism to correlate the sequential characteris-
tics of facial vibrations with the ground truth (i.e., PPG signals
and breathing patterns). The sequential features are utilized by a

waveform reconstructor to derive fine-grained breathing and heart-
beat waveforms. Additionally, we design a domain discriminator
for adaptive training, which improves the reconstruction precision
when applied to the victim without the ground truth. Finally, the
fine-grained reconstructed vital sign waveforms will be leveraged
by adversaries to derive victims’ respiration and heartbeat rates.

Advanced Attack. Based on the reconstructed vital sign wave-
forms, we design a suite of task-specific schemes to perform Gender
Recognition, User Re-identification, and Body Fat Ratio Estimation.
(1) Gender Recognition:We design a hidden representation extractor
to extract features from heartbeat and breathing patterns. A light-
weight classifier is designed for gender detection without requiring
a gender label from the victim. A domain discriminator is built to
enhance the generalizability of the model. (2) User Re-identification.
Our user re-identification scheme includes a statistical feature ex-
tractor and a spectrogram feature extractor, which respectively
extract unique time and frequency-domain representations from
the reconstructed waveforms. We further develop a deep-learning-
based model that combines the two types of features to accurately
reveal the user’s identity. (3) Body Fat Ratio Estimation. We design
a Lasso-regression-based model to derive body fat ratio leveraging
statistical features of the reconstructed vital sign patterns. Our body
fat ratio estimation scheme is aligned with prior works on using
PPG/ECG signals to derive body fat information [4, 8].

4 ATTACK DESIGN
4.1 3D Representation Computation
Given the particularity of lung capacity, blood flow, and face struc-
ture of different people, minute facial vibrations corresponding to
human respiration and cardiac cycle show physiological characteris-
tics of different perspectives. For instance, the speed measurements
of facial vibration signals could reflect the resistance level of respi-
ration. The displacement measurements of facial vibration cycles
may also correlate with the face structure. Based on such consid-
erations, 3D representations of facial vibrations, such as 3D speed
and displacement, could depict these geometric characteristics of
the human’s head as well as the facial vibration magnitude during
each cycle of respiration/heartbeat. These representations allow the
attacker to derive sensitive physiological information. Particularly,
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Figure 4: Overview of the fine-grained vital sign waveform reconstruction model.

we calculate the 3D speed and displacement from facial vibration
signals leveraging first-order and second-order integration from
the 3-axis readings collected from unrestricted AR/VR motion sen-
sors. Our attack then leverages these 3D accelerations, speed, and
displacement as inputs for the direct attack.

4.2 Direct Attack: Vital Sign Waveform
Reconstruction

In Section 3.1, we show that facial vibrations captured by AR/VR
motion sensors suffer severe distortions caused by hardware noises
compared to ground-truth vital signs. These hardware noises have
orders of amplitudes than those of minute facial vibrations induced
by human vital signs. In such cases, the fine-grained morpholog-
ical features of vital signs, such as systolic and diastolic peaks in
each heartbeat cycle, are significantly distorted and hard to detect.
Traditional signal processing methods usually fail in recovering
such patterns since they rely on the assumption that the signals
have a sufficiently higher signal-to-noise ratio (SNR). Addition-
ally, while some AR/VR headsets (e.g., HP Reverb G2 Omnicept VR
headset [17]) have been equipped with heartbeat sensors, accessing
these sensors is typically restricted by the operating system. Under
this circumstance, the attackers could not acquire the ground truth
vital sign patterns for training the vital sign reconstruction model.
Motivated by prior works [45, 46] using deep learning techniques to
boost SNR in wireless sensing, we develop a signal reconstruction
model for adversaries to remove hardware noise and reconstruct
fine-grained vital signs. The model learns to correlate facial vibra-
tions with PPG signals (i.e., ground truth). We further develop a
domain adaptation approach to adapt the model parameters based
on unlabeled motion sensor data of the victim, as in practical sce-
narios, the ground truth is not available.

Fine-grained Vital Sign Reconstruction Network. Since res-
piration and heartbeat waveforms manifest strong characteristics
of periodicity and consistency, we build the deep representation
extractor based on two consequent bidirectional-LSTM layers to
expose periodic features from facial vibration signals. Specifically,
we set the output units of the two bidirectional LSTM layers as
1024 and 512, respectively. In order to capture the internal depen-
dencies within each waveform segment, particularly in the areas of
inhalation/exhalation and systolic/diastolic cycles, we incorporate a
self-attention layer for each bidirectional-LSTM layer. For these two
self-attention layers, we make the Query (Q), Key (K), and Value

(V) equal to the output dimension of their connected LSTM layers.
The detailed model architecture is depicted in Figure 4. Specifically,
the reconstruction model takes 6 channels corresponding to the
readings from the 3-axis accelerometer and gyroscope as inputs. For
each channel, it includes several segments 𝑥1, 𝑥2, ..., 𝑥𝑛 , which are
segmented from the motion sensor readings 𝒳 . The deep represen-
tation extractor ℱ (·) consists of two blocks of bidirectional-LSTM
layers and self-attention layers, which extract deep representations
from motion sensor readings. Finally, the extracted deep represen-
tation will pass through a waveform reconstructor 𝒟(·), which
includes two fully connected layers, to reconstruct fine-grained
respiration and heartbeat patterns.

Domain Discriminator for Adaptive Training. The vital sign
reconstruction model may work well on people with ground-truth
vital sign signals for training. However, the performance may de-
grade when being directly applied to a new user (victim). Training
the model on a large dataset may improve the generalizability, but
it will introduce significant training costs, making the attack diffi-
cult to launch in more practical scenarios. To enable the waveform
reconstructor𝒟(·) applicable to new victims, we develop a domain
adaptation scheme, which effectively transfers the prior knowledge
in the pre-trained vital sign reconstructor to unknown victims. As a
potent machine learning technique, domain adaptation empowers
models to extend their generalizability from a source domain (i.e.,
data from recruited users) to another distinct target domain (i.e.,
data from victims). The essence of domain adaptation is to align
the representations of the source and target domain, making the
model focus on the shared and domain-independent features, thus
enhancing the model’s performance on the target domain. Specif-
ically, we achieve this by designing a domain discriminator 𝒵 (·)
with two fully connected layers, which is depicted in Figure 4. The
domain discriminator 𝒵 (·) takes the representations from the deep
representation extractor ℱ (·) as inputs and outputs the domain
label (i.e., the victims or the other people recruited by the attackers).
Then we employ a generative adversarial loss [12] on the domain
discriminator 𝒵 (·), which guides the deep representation extractor
ℱ (·) to learn the user-independent features. Particularly, the idea
is to apply a negative factor to the loss function for updating the
parameters of the domain discriminator 𝒵 (·), so that the trainable
parameters of the deep representation extractor can be updated
through the negative loss until it can “confuse” the domain dis-
criminator. After involving the domain adaption scheme, the deep
representation extractor ℱ (·) is able to extract user-independent
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Figure 5: T-SNE of user-specific statistical features showing
distinctive clusters based on different user identities and
body fat ratios.

representations to the greatest possible extent, thus maximizing
the generalization performance of the pre-trained reconstruction
model on the victims.

Model Training. During the training phase of the deep repre-
sentation extractor ℱ (·), the waveform reconstructor 𝒟(·) and the
domain discriminator 𝒵 (·), the ground truth signals of respiration
belt and PPG sensors (e.g., collected from other people recruited
by the attackers) are segmented to 𝑦1, 𝑦2, ..., 𝑦𝑛 corresponding to
facial vibration segments 𝑥1, 𝑥2, ..., 𝑥𝑛 . Given the sensor readings
and their corresponding ground truth signals captured by medi-
cal sensors, we optimize the parameters 𝜃 , 𝜔 , and 𝛾 of the deep
representation extractor ℱ𝜃 (·), waveform reconstructor𝒟𝜔 (·) and
domain discriminator 𝒵𝛾 (·), which can be described as:

ℒ𝑅 =

𝑛∑︁
𝑖=1

ℒ𝑀𝑆𝐸 (𝒟𝜔 (ℱ𝜃 (𝑥𝑖 ) ), 𝑦𝑖 ),ℒ𝐷 =

𝑛∑︁
𝑖=1

ℒ(𝒵𝛾 (ℱ𝜃 (𝑥𝑖 ) ), 𝑑𝑖 ),

argmin
𝜃

ℒ𝑅 − 𝜆ℒ𝐷 , argmin
𝜔

ℒ𝑅, argmin
𝛾

ℒ𝐷 ,
(1)

where 𝑑𝑖 denotes the domain label (e.g., the victim individual or
users recruited by the attacker) of the facial vibration segment
𝑥𝑖 , ℒ𝑀𝑆𝐸 and ℒ refer to the Mean Square Error (MSE) and cross-
entropy loss, respectively. 𝜆 works as the negative factor described
previously for balancing the trade-off between the transferability of
deep representations and the distinctiveness of different domains,
which is set to be 0.1 empirically.

Respiration and Heartbeat Rate Derivation. To derive the
respiration and heartbeat rates, time-frequency analysis is applied
to the reconstructed vital sign waveforms. Specifically, we apply
a Hann Window on the reconstructed waveforms to highlight the
responses of dominating frequencies and utilize Short-Time Fourier
Transform (STFT) on these windowed respiration and heartbeat
waveforms. Subsequently, we select the highest frequency response
within 0.1Hz ∼ 0.5Hz to derive the victim’s respiration rate and
within 0.8Hz ∼ 3.0Hz to expose the victim’s heartbeat rate.

4.3 Advanced Attack: High-level Private
Information Derivation

To realize high-level private information derivation, we design a
suite of schemes to extract biometrics and biomarkers embedded
in the reconstructed vital sign waveforms. Gender Recognition.
We design a gender-related hidden feature and a lightweight pre-
trained gender classifier, which can be effectively and adaptively ap-
plied to entirely different user groups. Previous studies have shown

the potential of inferring genders based on PPG signals [5, 9, 28],
and we show that gender derivation is also feasible on the recon-
structed vital signs from facial vibrations. Our scheme extracts
hidden representations from the penultimate fully connected layer
of the fine-grained vital sign waveform reconstruction network de-
scribed in Section 4.2, which connect facial vibrations to PPG-like
signals, where the representations contain rich biometric charac-
teristics from both facial vibrations and PPG signals. By leveraging
extracted gender-related hidden representations, we build a light-
weight classifier based on the Support Vector Machine (SVM) with
the Radical Basis Function (RBF) kernel to infer the victim’s gen-
der information. Specifically, gender-related features are extracted
from several known male and female users (e.g., friends of the at-
tacker) and utilized to pre-train the SVM-based classifier. During
further evaluations, the classifier is demonstrated to be effective in
recognizing victims’ gender information that does not exist in the
training group.

User Re-identification. We design a statistical feature extrac-
tor and a spectrogram feature extractor to extract representative
features from the time and frequency domain. A dedicated identity
derivation network is developed to re-identify users by combining
time-domain statistical features and frequency-domain spectrogram
features extracted from reconstructed vital sign waveforms.

Statistical Features. Statistical features of vital signs contain rich
identity-specific physiological characteristics. For instance, themax-
imum value of the reconstructed breathing and heartbeat patterns
could indicate the highest pressure of a human’s breathing and the
systolic peak of a human’s heartbeat, respectively. To extract these
user-specific biomarkers from reconstructed vital sign series and
facial vibrations, we apply a sliding window on the short-time re-
constructed segments 𝒟𝜔 (𝒵𝜃 (𝑥1)),𝒟𝜔 (𝒵𝜃 (𝑥2)), ...,𝒟𝜔 (𝒵𝜃 (𝑥𝑛))
and extract 13 types of statistical features, including maximum,
minimum, range, mean, variance, root mean square, median, in-
terquartile range, mean crossing rate, skewness, kurtosis, entropy
and signal power. Figure 5(a) shows that the statistical features
of 5 different users (with similar body fat ratio) have distinctive
T-Distributed Stochastic Neighbor Embedding (T-SNE) clusters,
which indicate the effectiveness of the statistical features.

Spectrogram Features. The reconstructed respiration/heartbeat
waveforms produce frequency spectrograms that contain user-
specific features. The user-specific facial structures and components
produce unique vibration patterns associated with breathing and
heartbeat. Such properties could be utilized to differentiate users.
To extract user-specific spectrogram features from reconstructed
signals, Short-Time Fourier Transform (STFT) is applied to each
reconstructed segment. These user-specific spectrogram features
will be utilized by the attackers to re-identify different users.

Re-identification Model Design. We further explore realizing pre-
cise user re-identification leveraging the aforementioned features
by developing a dedicated deep learning model, which comprises a
deep representation extractor and an identity classifier. The deep
representation extractor takes four features as inputs, including
statistical/spectrogram features of facial vibrations 𝑥1, 𝑥2, ..., 𝑥𝑛 and
statistical/spectrogram features of reconstructed vital sign signals
𝒟𝜔 (𝒵𝜃 (𝑥1)),𝒟𝜔 (𝒵𝜃 (𝑥2)), ...,𝒟𝜔 (𝒵𝜃 (𝑥𝑛)). For the statistical fea-
ture inputs, we employ a representation extractor with two sequen-
tial 2D convolutional layers. 13 types of statistical features from
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Figure 6: Comparison of facial vibration signals before and
after adaptive-filter-based body movement mitigation corre-
sponding to human’s respiration and heartbeat.

each time window are vertically stacked and fed into the represen-
tation extractor. For the spectrogram inputs, we design another
representation extractor including two 2D convolutional layers and
two LSTM layers to extract deep representations from frequency-
domain spectrograms. Subsequently, the deep representations of
four different input features are concatenated as a larger represen-
tation for differentiating users. To train the representation extractor
and the classifier, we apply Triplet Loss [16] as the loss function,
which stretches the input features into a larger space, allowing ex-
tracting effective representations with a smaller amount of training
data. The training process can be described as:

argmin
𝜃

∑︁
𝑏,𝑝,𝑛

max
(����ℱ𝜃 (𝑏 ) − ℱ𝜃 (𝑝 )

����
2 −

����ℱ𝜃 (𝑏 ) − ℱ𝜃 (𝑛)
����
2 + 𝛼, 0

)
,

𝑠 .𝑡 . 𝑦𝑏 = 𝑦𝑝 ≠ 𝑦𝑛,

(2)

where ℱ , 𝜃 , and 𝛼 refer to the representation extractor, trainable
parameters, and the margin between positive and negative pairs
(we set it as 0.1 empirically). 𝑏, 𝑝 , 𝑛, and 𝑦𝑖 represent baseline
inputs, positive inputs, negative inputs, and corresponding labels,
respectively. After deep representation extraction, the concatenated
representation will be fed into a deep-learning-based classifier,
which consists of three fully connected layers and a softmax layer,
to predict the user’s identity. During the training phase of the
identity classifier, we apply cross-entropy loss as the loss function.

Body Fat Ratio Derivation. To derive the body fat ratio from
different users, we leverage the statistical feature extractor from
user re-identification to extract representative and unique features
and a regression-based derivation model to realize precise body fat
ratio prediction. We show examples of T-SNE from 5 different users
in Figure 5. In particular, 3 users have relatively lower and similar
body fat ratios (i.e., 11.85%, 14.34% and 15.12%) and the other 2 users
have higher body fat ratios (i.e., 19.34% and 28.77%). The clusters
indicate that user-specific statistical features are distinguishable
for different body fat ratios. Based on user-specific statistical fea-
tures, we design a regression-based framework to further derive
the approximate value of victims’ body fat ratio. Specifically, we
apply a Lasso-regression-based approach to derive victims’ body
fat ratio based on statistical features of reconstructed breathing and
heartbeat patterns. The regression process can be described as:

argmin
𝒲

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑔 ) =
𝑛∑︁
𝑖=1

(𝑦𝑔 −
𝑝∑︁
𝑗=0

𝒲𝑗 · 𝑥𝑖,𝑗 ) + 𝜆 ·
𝑝∑︁
𝑗=0

|𝒲𝑗 |, (3)

where 𝒲 , 𝑦𝑖 , 𝑦𝑔 , 𝑥𝑖, 𝑗 refer to the regression weights of each input
feature, the prediction result, the ground truth of human’s body
fat ratio and the 𝑗𝑡ℎ input feature of 𝑖𝑡ℎ facial vibration segment,
respectively. 𝑛 and 𝑝 represent the total number of input samples
and the number of features we involve in our regression-based
model (e.g., 13 different statistical features). 𝜆 is denoted to be the
weights of the Lasso penalty term to help control over-fitting, which
is set to be 0.5 empirically in this task.

4.4 Activity Mitigation
Vibration Signal Separation. Respiration and heartbeat patterns
usually have distinctive and independent frequency ranges of fa-
cial vibrations. Human usually breathes 12 ∼ 16 cycles and the
heart pumps 48 ∼ 180 times per minute. Accordingly, two level-
2 Butterworth band-pass filters with cut-off frequency ranges of
0.1Hz ∼ 0.5Hz and 0.8Hz ∼ 3.0Hz are utilized to separate vibrations
induced by human’s breathing and heartbeat, respectively.

Body Movement Mitigation. During practical usage of AR/VR
headsets, users interact with the devices through different types
of body movements. Thus, the built-in motion sensors on AR/VR
headsets can pick up various and unpredictable artifacts associated
with human motions, such as spontaneous head movements and
non-spontaneous body shaking. Since body motions in AR/VR sce-
narios typically share similar frequency components with human
respiration and heartbeat, the artifacts induced by body motions
cannot be filtered through fundamental band-pass filters. To miti-
gate such artifacts, we design a generalized scheme based on Short-
Time-Energy (STE) computation and adaptive filtering. For each
segment of readings from the 3-axis accelerometer and gyroscope,
our method continuously computes the total energy with a specific
time window. This energy computation is compared with a pre-
defined power threshold, which detects the existence of body mo-
tions in the signals under test. Once body motions are detected, an
adaptive-filter-based method is employed to mitigate the artifacts.
We realize the adaptive filter by solving the following optimization
problem to determine the adaptive weight vector 𝒲 :

argmin
𝒲

∑︁
𝑡 ∈𝒯

ℰ (𝑡 ) =
∑︁
𝑡 ∈𝒯

𝒟𝐾𝐿
(
ℛ(𝑡 ) | |𝒳 (𝑡 )

)
=

∑︁
𝑡 ∈𝒯

ℛ(𝑡 ) 𝑙𝑜𝑔ℛ(𝑡 )
𝒳 (𝑡 )

s.t.
∑︁
𝑡 ∈𝒯

𝒲 (𝑡 ) = 𝛼 ·
∑︁
𝑡 ∈𝒯

𝒲 (𝑡 ) + 𝜇 ·
∑︁
𝑡 ∈𝒯

ℰ (𝑡 ) · 𝒳 (𝑡 ),∑︁
𝑡 ∈𝒯

𝒳 (𝑡 ) =
∑︁
𝑡 ∈𝒯

𝒲 (𝑡 ) · 𝒳 (𝑡 ),
∑︁
𝑡 ∈𝒯

𝒳 (𝑡 )2 ≤ 𝜌𝑝𝑜𝑤𝑒𝑟 ,

(4)

where 𝒳 , 𝒳 , ℰ , and ℛ represent the signals before mitigation, the
signals after mitigation, error function, and the reference signal
for the adaptive filter, respectively. The signal index, leakage pa-
rameter, and step size are denoted by 𝒯 , 𝛼 , and 𝜇, respectively,
and are referred to as hyper-parameters in this optimization prob-
lem. For each segment of readings from the 3-axis accelerometer
and gyroscope, we select a specific value 𝜌 (0.2 empirically) as the
threshold to determine whether the signal segments need to be
adaptively filtered or not. Since Kullback-Leibler Divergence [21]
gives a reliable quantification on the difference of distributions of
two signal series [20], we select it as the error measurement be-
tween unfiltered and reference signals, and to optimize the weights
of the adaptive filter. Figure 6(a) and Figure 6(b) demonstrate the
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Figure 7: Attack performance of breathing and heartbeat re-
construction with/without victim’s data for adaptive training
compared with raw facial vibration signals.

effects before and after body motion mitigation. We can observe
that the artifacts are significantly mitigated after passing our pro-
posed scheme, which further manifests the effectiveness of our
adaptive-filter-based approach.

5 EVALUATION I: PERFORMANCE OF VITAL
SIGN RECONSTRUCTION

5.1 Experimental Setup
AR/VR Devices. FaceReader is validated upon two standalone
AR/VR headsets (i.e., Meta Quest and HTC Vive Pro Eye) and one
low-cost smartphone-based headset (i.e., Google Cardboard with
Samsung Galaxy S6 smartphone). The motion sensor module used
by HTC Vive Pro Eye and Samsung Galaxy S6 is Invensense MPU-
6500, which includes an accelerometer/gyroscope with a resolution
of 2048/4096/8192/16384𝐿𝑆𝐵/𝑔 and 16.4/32.8/65.5/131𝐿𝑆𝐵/◦/𝑠𝑒𝑐 ,
respectively. Differently, Meta Quest is equipped with a motion sen-
sor board, 330-00193-03 1PASF8K, which is originally designed by
Meta. For our proposed attack, we set the sampling rate of motion
sensors on Meta Quest, HTC Vive Pro Eye, and Samsung Galaxy
S6 to be 1000Hz, 1000Hz, and 203Hz, respectively, which are the
highest and most stable sampling rates these headsets can achieve.
We build a tool to collect motion sensor data in the background
from Meta Quest based on Oculus (Meta) SDK [25]. Our HTC Vive
Pro headset is connected to a desktop computer with an Intel E5-
2630v4 processor and Nvidia Quadro GV100 Graphics Card running
on Windows 10. We use the OpenVR SDK [38] to build the tool
to collect data from the headset. For Google Cardboard, we use
the Samsung Galaxy S6 smartphone running on Android OS and
develop a tool using the Android SDK [14]. Additionally, we use
WebXR Device API [42] to build and host a webpage, which can be
accessed by all three headsets.

Participants and Data Collection. The data collection cor-
responding to the direct attack involves 13 users (10 males and
3 females) for Meta Quest, 11 users (8 males and 3 females) for
HTC Vive Pro Eye, and 10 users (6 males and 4 females) for Google
Cardboard with Samsung Galaxy S6, respectively. To obtain ground
truth measurements for respiration and heartbeat patterns, we
use the NeuLog NUL-236 Respiration Monitor Belt and NeuLog
NUL-208 Photoplethysmography Monitor. The ground truth respi-
ration/heartbeat rates are calculated leveraging the ground truth
signals captured from corresponding devices. Specifically, we take
turns considering one user as the victim and build the pre-trained
vital sign reconstruction model using the labeled data of other users

(i.e., motion sensor readings with ground truth vital sign signals).
The data collection process has been approved by our university’s
Institutional Review Board (IRB).

Body Movements During Data Collection.We evaluate our
attack under four different types of typical body motions in AR/VR
scenarios. (1) Sitting and Watching a Demo Video. The user sits in
a chair and watches a demo video for 1 minute. During the exper-
iment, the participant remains in a static position and does not
perform body movements. (2) Standing and Watching a Demo Video.
The participant is requested to stand and watch a demo video for
1 minute. During the experiments, the participant may perform
some non-spontaneous body movements (e.g., body shaking) com-
pared to the sitting scenario. (3) Using Controllers to Browse the
AR/VR Webpage. In this scenario, the participant performs sponta-
neous arm movement similar to arm raising and dropping. While
spontaneous motions are involved in this scenario, the motions
are arm movements and could not induce direct and significant
fluctuations on the motion sensors of the head-mounted AR/VR
device. (4) Walking in the Virtual Environment. In this scenario, the
participant is requested to walk along a 2-meter trajectory within
the virtual environment, which lasts for 3 seconds approximately.
Walking introduces large-scale spontaneous movements and in-
duces significant changes in AR/VR motion sensor readings when
the participant starts or stops walking. All our experiments are
conducted under the aforementioned four scenarios with typical
non-spontaneous and spontaneous body movements. We apply our
designed adaptive-filter-based body movement mitigation scheme
to remove the artifacts.

Evaluation Metrics. We use two metrics to quantify the ef-
fectiveness of FaceReader for the direct attack, including respira-
tion/heartbeat reconstruction and respiration/heartbeat rate deriva-
tion. (1) Root Mean Square Error (RMSE): We evaluate the perfor-
mance of the direct attack on vital sign waveform reconstruc-
tion through computing RMSE between the reconstructed breath-
ing/heartbeat waveform and patterns captured by medical sensors
(e.g., respiration belts and PPG sensors). (2) Absolute Error (AE): We
utilize AE to evaluate the performance of respiration/heartbeat rate
derivation. Specifically, we measure the AEs between the derived
rates and the ground truth rates calculated from the head-mounted
PPG sensors and the respiration belt.

5.2 Evaluation of Breathing and Heartbeat
Waveform Reconstruction

We evaluate the performance of the direct attack that reconstructs
breathing and heartbeat waveforms on three different types of com-
modity AR/VR headsets. We show the results in Figure 7. Specifi-
cally, for Meta Quest and HTC Vive Pro Eye, the RMSEs between
facial vibrations and ground truth breathing signals (without recon-
struction) are more than 7.63 and 9.11. For ground truth heartbeat
signals, the RMSEs without reconstruction are more than 28.14 and
24.56 for Meta Quest and HTC Vive Pro Eye. After involving respi-
ration reconstruction, the RMSEs between reconstructed breathing
waveform and ground truth breathing signals on Meta Quest and
HTC Vive Pro Eye can achieve less than 1.33 and 2.01 with motion
sensor data from victims (particularly the ground-truth vital signs)
for adaptive training, and less than 1.79 and 2.10 without any sensor
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Figure 8: Attack performance of breathing/heartbeat rate
derivation from reconstructed breathing/heartbeat signals.

data from victims. For heartbeat reconstruction, the RMSEs of Meta
Quest and HTC Vive Pro Eye are lower than 2.75 and 3.73 with
adaptive training, and lower than 3.44 and 4.95 without adaptive
training. For the low-end Google Cardboard headset with less sensi-
tive motion sensors (e.g., lower sampling rate), the RMSEs between
facial vibrations and reconstructed fine-grained respiration and
heartbeat signals are greater than 10.19 and 30.24 without vital
sign reconstruction. After involving the breathing and heartbeat
reconstruction model, the RMSEs can achieve less than 2.61 and
5.72 without adaptive training, and less than 2.57 and 5.39 with
adaptive training. The results demonstrate that the direct attack on
breathing and heartbeat waveform reconstruction is effective on
different types of commodity AR/VR headsets.

5.3 Breathing/Heartbeat Rate Derivation
Next, we measure the absolute errors (AEs) between our breath-
ing/heartbeat ratemeasurements of reconstructed signals and ground
truth breathing/heartbeat rate captured by medical devices. Partic-
ularly, Beats Per Minute (BPM) is utilized to measure the AEs of
breathing and heartbeat rate derivation. The performance of three
different AR/VR headsets is shown in Figure 8. For Meta Quest, the
absolute errors of FaceReader on deriving breathing and heartbeat
rates are lower than 0.62BPM and 0.92BPM. For HTC Vive Pro Eye,
we also achieve absolute errors lower than 0.87BPM and 3.62BPM
for breathing and heartbeat rate derivation, respectively. For the
low-end Google Cardboard headset with less sensitive motion sen-
sors, the absolute errors of breathing and heartbeat rate derivation
are less than 1.50BPM and 2.75BPM. The results confirm the ef-
fectiveness of our direct attack for breathing and heartbeat rate
derivation on different types of commodity AR/VR headsets.

6 EVALUATION II: PERFORMANCE OF
ADVANCED ATTACK

6.1 Experimental Setup
Data Collection. Our dataset includes 27 users (19 males and 8
females) for Meta Quest, 25 users (17 males and 8 females) for HTC
Vive Pro Eye, and 15 users (8 males and 7 females) for Google
Cardboard with Samsung Galaxy S6, respectively. We involve all
four body movements mentioned in Section 5.1 during the data
collection and use the dataset to evaluate FaceReader for gender
recognition and user re-identification. Regarding body fat ratio es-
timation, we use a RENPHO Smart Body Fat Scale to track the body
fat percentage of 10 users for one month. While this device provides
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Figure 9: Attack performance of gender recognition on cross-
app/website scenario and cross-device scenario.

only consumer-level body fat estimation, we aim to demonstrate
that our proposed attack can achieve the potential derivation of
a victim’s body fat rate. Particularly, the data collection covers
the common body fat percentage ranging from 7.8% to 28.9%. All
data collection processes have been approved by our university’s
Institutional Review Board (IRB).

Evaluation Metrics. (1) Derivation Accuracy. To evaluate the
performance of advanced attacks on gender recognition and user
re-identification, we utilize derivation accuracy as a metric. This
metric measures the percentage of data samples that are correctly
recognized as belonging to the correct gender/user as the ground
truth labels. (2) Absolute Error (AE).We evaluate the effectiveness of
our proposed advanced attack on the task of body fat ratio deriva-
tion. Specifically, we measure the AEs between the derived ratio
and the ground truth measured from the smart body fat scale.

6.2 Gender Recognition
We validate the performance of FaceReader in gender recogni-
tion through evaluations conducted in two distinct attack sce-
narios: cross-app/website attack and cross-device attack. In the
cross-app/website attack, the victim utilizes a different AR/VR
app/website than the one the attacker employs to collect motion
sensor data for building the gender recognition model. In the cross-
device attack, the attack on gender recognition is implemented
within the same application/website and across the same type of
AR/VR devices (i.e., across two Meta Quests).

Cross-app/website Attack. We evaluate the gender recogni-
tion accuracy under the cross-app/website scenario, and the per-
formance is shown in Figure 9(a). Regarding Meta Quest, Fac-
eReaderachieves a gender recognition accuracy of 93.33% with
adaptive training and over 90.57% accuracy without adaptive train-
ing. For HTC Vive Pro Eye, FaceReader’s gender recognition also
achieves over 97.83% and 93.33% accuracy with and without adap-
tive training, respectively. In the case of Google Cardboard with
less sensitive sensors, the gender recognition accuracy can also sur-
pass 90.34% and 84.58% with and without adaptive training. High
gender recognition accuracy from three types of AR/VR headsets
demonstrates the effectiveness of gender recognition under the
cross-app/website scenario.

Cross-device Attack. We also conduct evaluations on cross-
device scenarios for gender recognition. As shown in Figure 9(b),
the accuracy of gender recognition for Meta Quest can achieve
88.44% without adaptive training and over 94.02% with adaptive
training. For HTC Vive Pro Eye, the accuracy of gender recognition
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Figure 10: Performance of user re-identification on the same
app/website and across different apps/websites.

can also achieve 98.03% and 93.73% with and without adaptive
training. For Google Cardboard with less sensitive motion sensors,
the gender recognition accuracy can also reach over 89.05% with
adaptive training and 82.21% without adaptive training. The results
demonstrate that our advanced attack on gender recognition can
realize precise recognition of the victims’ gender information across
different devices.

6.3 User Re-identification
To validate FaceReader on the user re-identification task, we involve
two separate evaluations that simulate practical AR/VR scenarios,
including cross-app/website and cross-session. Specifically, in the
cross-app/website scenario, the victim employs a different AR/VR
app or website from the ones attackers use to gather motion sensor
data and construct the re-identification model. In the cross-session
scenario, testing data from the victims are collected on different
days. In this scenario, we simulate practical and longitudinal user
tracking by leveraging our designed re-identification approach.

Cross-app/website Attack for User Re-identification.We
evaluate the accuracy of user re-identification in a cross-app/website
attack scenario. The re-identification accuracy for three types of
common AR/VR headsets is depicted in Figure 10(a). From the
results, we observe that prominent accuracy is achieved in user
re-identification via all three commodity AR/VR headsets. Specifi-
cally, the re-identification accuracy surpasses 97.83% and 98.96%
on Meta Quest, leveraging reconstructed breathing and heartbeat
waveforms. For HTC Vive Pro Eye, FaceReader’s accuracy in user
re-identification also exceeds 97.43% and 97.75%, utilizing finely re-
constructed breathing and heartbeat patterns. Similarly, on Google
Cardboard with less sensitive motion sensors, the re-identification
accuracy can reach over 92.21% and 95.65%, harnessing recon-
structed respiration and heartbeat signals. This high accuracy ob-
served across the three types of common AR/VR headsets under-
scores the effectiveness of the user re-identification attack design
when deployed across AR/VR apps or websites.

Cross-session Attack for User Re-identification. We also
assess the performance of user re-identification in the context of
the cross-session attack scenario. Specifically, we set a one-week
interval between the training data collection for training the user
re-identification model and testing data collection. The perfor-
mance of longitudinal cross-session user re-identification is de-
picted in Figure 10(b). The re-identification accuracy on Meta Quest
can exceed 92.44% and 95.03%, leveraging reconstructed breathing
and heartbeat signals. For HTC Vive Pro Eye, FaceReader achieves
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Figure 11: Performance of body fat percentage derivation
from facial vibrations induced by breathing and heartbeat.

a re-identification accuracy of over 91.91% and 94.36%, utilizing
finely reconstructed respiration and heartbeat patterns. Even for
the lower-end Google Cardboard headset, the re-identification ac-
curacy surpasses 86.75% and 90.44% with reconstructed breath-
ing and heartbeat signals. Remarkably, despite the one-week gap
between the collection of training and testing data from AR/VR
motion sensors, FaceReader maintains a high level of accuracy in
user re-identification across distinct AR/VR usage sessions. This
underscores the feasibility of utilizing FaceReader for longitudinal
user tracking in practical AR/VR scenarios.

6.4 Body Fat Percentage Derivation
To evaluate the performance of the advanced attack on deriving
the victim’s body fat ratio, we measure the absolute errors between
the Lasso regression results and the ground truth body fat ratio
measured via the smart body fat scale. Specifically, after construct-
ing the regression model using vital-sign-induced facial vibrations
from existing users, we directly apply the regression model to de-
rive the body fat ratio of victims. The derived measurements are
presented in Figure 11, and the absolute errors are found to be
under 4.92% and 6.91% for Meta Quest, utilizing features from re-
constructed breathing and heartbeat patterns. For HTC Vive Pro,
the absolute errors can also be less than 6.25% and 4.43% with re-
constructed breathing and heartbeat patterns. Similarly, for the
lower-end Google Cardboard headset with less sensitive motion
sensors, the absolute errors resulting from our advanced attack on
body fat ratio derivation are less than 6.85% and 5.59% using recon-
structed breathing and heartbeat patterns. The results effectively
demonstrate the success of our advanced attack in deriving the
body fat ratio across different types of commodity AR/VR headsets.

6.5 Evaluation on Attack Robustness
Different Frame Lengths of Training Samples. From the adver-
sary’s perspective, if FaceReader can achieve high re-identification
and gender recognition accuracy with a shorter frame of training
samples (e.g., less than 3 seconds), the adversary can derive the
victim’s private information with lower attack cost (e.g., shorter
data collection time). Consequently, we evaluate the impact of vary-
ing frame lengths of training samples for user re-identification and
gender recognition tasks using heartbeat-induced facial vibration
signals as inputs, as illustrated in Figure 12. It is evident from the
results that our proposed attack can achieve over 97.75%, 96.94%,
and 94.90% accuracy in user re-identification, as well as more than
96.53%, 95.43%, and 94.77% accuracy in gender recognition for Meta
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Figure 12: User re-identification and gender recognition ac-
curacy across different frame lengths of training samples.
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Figure 13: User re-identification and gender recognition ac-
curacy with different training requirements (average data
collection time for each user).

Quest, HTC Vive Pro Eye, and Google Cardboard, respectively,
with input signals shorter than 1.5 seconds. This substantiates that
FaceReader could be readily applicable in practical scenarios.

Study of Training Requirements. To study the training re-
quirements of FaceReader, we evaluate the performance of user
re-identification and gender recognition tasks with different num-
bers of data samples for training. Specifically, we collect motion
sensor data from each user over different time durations. The results
of re-identification and gender recognition accuracy are shown in
Figure 13. From the results, we observe that FaceReader consis-
tently maintains accuracy levels of more than 93.82%, 87.62%, and
84.50% on user re-identification, as well as over 87.75%, 86.88%,
and 94.77% on gender recognition for Meta Quest, HTC Vive Pro
Eye, and Google Cardboard, respectively, even with minimal train-
ing requirements (e.g., less than 75 seconds of data collection per
user). The notable outcomes of achieving high accuracy in both
re-identification and gender recognition, despite minimal training
requirements, indicate that FaceReader can be effortlessly imple-
mented in practical scenarios with significant implications. This
underscores the importance of AR/VR users giving ample attention
to the potential implications.

Impact of Body Movement Mitigation. We further conduct a
case study to specifically validate the effectiveness of body move-
ment mitigation scheme under strong body movements. We con-
sider two additional movements in practical AR/VR scenarios: (1)
Head Movements. Participants take turns rotating their heads from
left to right and then from right to left. Data collection for this
scenario lasts for 1 minute. (2) Speaking Random Digits. In this
scenario, participants select two random digits from the TIDigits
corpus [31], each of which is spoken at a random time slot during
the 1-minute data collection. Speaking introduces entirely different
responses that distribute in higher frequency ranges (e.g., ≥ 100Hz)
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Figure 14: Performance of breathing/heartbeat rate deriva-
tion before (BC) and after (AC) body movement mitigation.

compared to common body movements. Specifically, we compare
the performance under a total of six different AR/VR scenarios
before and after our proposed body movement mitigation scheme.
The results are shown in Figure 14. When compared to the base-
line (BC) without motion artifact mitigation, the absolute errors of
breathing rate derivation are improved from 8.13BPM, 8.75BPM,
and 10.43BPM to 0.57BPM, 0.89BPM, and 1.48BPM for three AR/VR
headsets. Similarly, the absolute errors of heartbeat rate derivation
are improved from 2.77BPM, 3.62BPM, and 3.87BPM to 43.32BPM,
38.90BPM, and 36.78BPM, which demonstrates the effectiveness of
our design in mitigating the artifacts of body movements.

7 POTENTIAL DEFENSES
Permissions on AR/VR Motion Sensors. Our attack, reliant
on vital sign reconstruction, is viable on prevalent AR/VR pro-
gramming platforms where access to motion sensor data doesn’t
necessitate any permission. We demonstrate the potential privacy
breaches it could entail, involving sensitive information like gen-
der, identity, and body fat data. To defend FaceReader, designers of
AR/VR OS platforms should implement a secure and user-friendly
permission control interface. This interface would inform users
about potential access to malicious motion sensor data. The per-
mission model could involve a run-time prompt, asking for user
consent, and any suspicious permission requests should undergo
review as part of the AR/VR application review policy.

Privacy-aware Sensor Management. To prevent potential
attacks through AR/VR built-in sensors, a potential defense strategy
is to develop a privacy-aware sensor management framework. This
framework aims to enhance the transparency of sensor utilization
on AR/VR headsets. Specifically, the framework could provide real-
time statistical assessments of sensor usage, including the duration
of sensor use by a specific AR/VR application/website. Based on
the design of this sensor management framework, AR/VR users can
determine whether the app/website recording sensor data in the
background needs to be enforced or not. The framework could also
identify suspicious apps or websites continuously recording sensor
readings and provide reminders or warnings to AR/VR users.

8 RELATEDWORK
Most initial studies of AR/VR privacy leakage focus on active vir-
tual engagement [6, 24, 27], where the adversaries obtain private at-
tributes through users’ direct input with personal information (e.g.,
users’ names, gender) in AR/VR scenarios. For example, Maloney et
al. [24] demonstrate that users often actively reveal their personal
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Table 1: Key differences of FaceReader from previous works
using motion sensors for privacy information derivation.

Works Leakage Type
No Speech/

Gesture Input
No Users’

Data for Training
Longitudinal
Tracking

Cross App/
Website Attack

FaceReader
Vital Sign and

Embedded Privacy
" " " "

Nair et al. [27]
Anthropometric
Demographic

% % % %

Face-Mic [36]
Speech Content
Demographic

% " % %

Wu et al. [43] Typed Characters
Passwords
Sentences

% % % %

TyPose [37] % " % %

experiences and information on AR/VR social media platforms.
These self-disclosures inevitably raise privacy concerns regarding
personal information leaks in AR/VR scenarios. Similarly, Dick et
al. [6] showcase social engineering attacks that manipulate users
into divulging their locations, appearances, and movements. Nair et
al. [27] design an innocuous-looking yet adversarial ’escape room’
game. While the game is running, it collects users’ active inputs for
solving puzzles (e.g., reading words, pressing virtual buttons, mim-
icking poses), thereby revealing users’ locations and movements
and allowing adversaries to infer users’ height and demographics
(e.g., age and gender). However, all these attacks necessitate consid-
erable skills and effort to manipulate users into revealing private
information, making the process complex and time-consuming. Fur-
thermore, the suspicious statements and behaviors of adversaries
during virtual interactions may alert users and expose malicious
intentions, particularly when adversaries are strangers.

More recently, a few research studies have shown private leak-
age through unrestricted position and motion sensors on AR/VR
devices [36, 37, 43]. For instance, Face-Mic [36] leverages motion
sensors on AR/VR headsets to infer users’ speech contents and de-
mographic information (e.g., identity, gender). The authors demon-
strate that AR/VR motion sensors are capable of capturing fa-
cial dynamics induced by human speech. Another example is Wu
et al. [43], who design a keystroke snooping attack that lever-
ages the position and orientation of AR/VR controllers to infer
users’ keystrokes, thereby deducing passwords or typed contents.
Similarly, Typose [37] explores the feasibility of inferring AR/VR
keystrokes from users’ head motions. The concept is based on the
idea that users’ heads move subtly while typing on a virtual key-
board, which can be captured by motion sensors to infer the text
input. However, all these attacks are effective only when users inter-
act with the AR/VR systems, such as engaging in speech activities or
typing through gestures. In contrast, FaceReader presents the first
fully passive attack that leverages vital signs naturally produced by
the human body, imposing no restrictions on users’ activities and
thereby remaining unobtrusive. The key differences of FaceReader
compared to the existing attacks are illustrated in Table 1.

9 CONCLUSION
In this paper, we investigate a stealthy privacy attack called Fac-
eReader, which reconstructs fine-grained vital signs based on pas-
sive vital-sign-induced facial vibrations collected with unrestricted
motion sensors. We showcase three advanced attacks that reveal
users’ gender, identity, and body fat ratio of victims based on the
reconstructed vital signs. Particularly, we design a waveform recon-
struction model that utilizes LSTM and a self-attention mechanism

to derive high-quality breathing and heartbeat signals. Through
adaptive training with a domain discriminator, FaceReader can per-
form the reconstruction without requiring training data or ground
truth from the target individual. By leveraging the reconstructed
vital sign signals, we design time-frequency features and employ ad-
vanced deep-learningmodels for gender detection and body fat ratio
estimation without training data from the victims. Extensive ex-
periments show that FaceReader is feasible under various practical
attack scenarios and settings (e.g., attack across different users and
devices). We further demonstrate practical user re-identification
across apps, websites, and longitudinal sessions by designing a
CNN-based model. FaceReader thus highlights a previously un-
explored avenue of privacy leakage through unrestricted AR/VR
motion sensors, emphasizing the need for well-directed defense
strategies within the AR/VR community.
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