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Abstract—With the increasing prevalence of smart mobile and
Internet of things (IoT) environments, user authenticatian has be-
come a critical component for not only preventing unauthorized
access to security-sensitive systems but also providingstomized
services for individual users. Unlike traditional approaches re-
lying on tedious passwords or specialized biometric/wealde
sensors, this paper presents a device-free user authentimm
via daily human behavioral patterns captured by existing Wi
infrastructures. Specifically, our system exploits ready available
channel state information (CSI) in WiFi signals to capture wnique
behavioral biometrics residing in the user's daily activites,
without requiring any dedicated sensors or wearable device

attachment. To build such a system, one major challenge is

that wireless signals always carry substantial informatio that
is specific to the user’s location and surrounding environmet,
rendering the trained model less effective when being apd to
the data collected in a new location or environment. This iase
could lead to significant authentication errors and may qui&ly
ruin the whole system in practice. To disentangle the behawral
biometrics for practical environment-independent user adhenti-
cation, we propose an end-to-end deep-learning based apprch
with domain adaptation technigues to remove the environmen
and location-specific information contained in the colleactd WiFi
measurements. Extensive experiments in a residential apenent
and an office with various scales of user location variations
and environmental changes demonstrate the effectivenessc
generalizability of the proposed authentication system.

I. INTRODUCTION

Traditionally, passwords and physiological biometricslsu
as fingerprint and facial information are widely used to auath
ticate users. They either require the user to remembertsecre
details or need deployment of dedicated biometric sengors.
new trend is to verify users through behavioral biometrics.
For instance, gestures on smart glasses’ touchpad (epg., ta
or swipes) could be utilized to continuously authenticate
users [3]. In another instance, gait patterns derived from
mobile devices can be utilized to identify walking peoplé [4
Furthermore, unique behavioral hallmarks captured thnoug
wrist-worn sensors are explored to identify users when they
are operating home appliances. This trend has the ability
to provide continuous user authentication and also brings
convenience to users. But these new solutions require the
user to wear devices, such as wearable sensors and smart
glasses. To further advance user authentication basedeos us
behaviors, in this work, we aim to develop a device-freeesyst
that verifies the user identity through daily behaviors aagm
spaces without requiring the user to wear any devices opglepl
any dedicated sensors. We would like to utilize WiFi signals
generated by the regular communications among smart/leT de
vices to capture inherited behavioral characteristicadtdifate
identification/authentication. Particularly, we aim toride a
solution that could be environment-dependent (e.g., totous

With the increasing deployment of smart and loT envthe changes of furniture/appliance placement).
ronments, private resources are linked to a huge number ofn the past decade, smart environments have incorporated

spatially distributed intelligent devices (e.g., smarbhuoice

WiFi technologies to provide increasing wireless intercon

assistant, laptop) and many of them store private infolwnatinections among appliances and mobile devices (e.g., voice
or run security-sensitive applications. Unauthorizedeasc assistants, smart TVs, smart refrigerators, smart glpsseis

to such restricted devices puts user privacy and propertyiatreased popularity of wireless technologies produceBi Wi
high risk. For example, an unauthorized user may obtasignals that cover almost every corner of the smart spaces.

private information (e.g., classified file, credit card imf@-

In addition to the prevalence usage of communication, Users

tion, healthcare data) stored on a laptop [1] or disarm tlhwmique behaviors could be embedded inside the wireless
home security system via a smart speaker [2]. Thus, usggnals through their daily behaviors (e.g., interactinghw
authentication has become a critical component in assurisgart home appliances, operating on a laptop, entering a
user security in smart spaces. Furthermore, smart envieatam corporate building). It is thus natural to explore wireless
have a growing trend of exploring the ability to identifysignals ubiquitous in smart environments to derive inbdrit
users and deliver personalized services for improving thehavioral characteristics to authenticate and identgrsi
utility of the space, such as recommending music channéls,a convenient and device-free manner. Recent years have
supporting online shopping, and controlling home appksnc witnessed the emergence of user identification using Wi [5

User identification/authentication is serving as an inszpe

[9]. Many of these solutions rely on gait patterns derivesirfr

step in enabling personalized and convenient use of entergiviFi signals to identify walking users [5]-[7]. They usuall

services in smart environments.

require the user to walk through well-designed paths and are



thus limited to recognizing walking people, which might notlifferent users while being transferable in different damsa
be practical in many scenarios. Our research group obtair(éd., user locations and environmental status). We highli
the initial success of identifying the user through dailyivac  our contributions as follows:

ties [8] or finger gestures [9]. These initial studies shotrel , \we develop a domain adaptation technique to remove unpre-
success of using WiFi to perform user authentication duringgictable environment-specific factors from the learned rep
daily activities. However, they did not address the problem egentations to achieve more practical user authenticatio

in real-world scenarios with dynamics, such as small locati, By examining the fine-grained channel state information
changes during activities and physical environmental dyios.  (Cs|) of WiFi signals, we find the combination of amplitude
(e.g., placement changes of furniture/appliances, momesne and relative amplitude between two links is effective for
of WiFi/smart 0T devices). capturing unique individual behavioral biometrics.

In this work, we take one step further to design and develQpoyr domain adaptation strategy is unsupervised and can
user identification/authentication using WiFi signalstthan derive environment-independent convolutional neurat net
work under various scales of environmental dynamics. Inyygrk (CNN) models for both activity recognition and user
particular, we address two important problenf§: Small- jgentification. The derived model is also resilient to spogfi
scale Location Variations: A user usually conducts the same zttacks.
behavior in proximity with small location variations; and, Extensive experiments in a residential apartment and an
(i) Large-scale Environmental Changes:The status of a  office over four months demonstrate the effectiveness, (e.g.
physical environment (e.g., the placements of furniturd an over87% user identification accuracy) and generabizability
home appliances) could vary from day to day in practical of the proposed system under various degrees of location

scenarios. Propagation of wireless signals can be imp&gted yariations and environmental changes.
the environmental changes, and WiFi signal, especially the

channel state information (CSI), is very sensitive to small Il. RELATED WORK

scale user location changes. Thus, both the small-scaéidnc ~ Traditional password or PIN number based schemes rely on
variations and large-scale environmental changes coattitle using memorized secret details to confirm the user’s identit
changes of fluctuation pattern in the fine-grained WiFi me&uch schemes solely based on the knowledge of the secrets in-
surements, thereby causing signal profile mismatches glursiead of the user. They are vulnerable to password theferRec
user authentication. This profile inconsistency problemallg user authentication solutions utilize physiological bedrits
requires the system to collect massive training data torcode authenticate users, such as fingerprint, facial infoionat

all the possible locations and environmental status andiret and iris. These solution need the deployment of dedicated
the model, making the system hard to be deployed in practitéometric hardware or sensors, which incur extra cost.

To address these two issues encountered in practice, wé new trend of user authentication is to explore behavioral
develop a deep-learning-based user recognition modeitege biometrics [3], [10], [11]. Some research studies attenopt t
with an unsupervised domain discriminator, which are buitontinuously authenticate users through unique typipgita
upon both labeled data (i.e., WiFi signals containing usbehaviors on smart devices, such as gestures on smart
behaviors with user-identity labels) and unlabeled dag,(i glasses’ touchpad [3], taping on devices’ touch screen, [10]
user behavior data without labels), to mitigate the impaot keystroke dynamics [11]. Although these approaches do
of varying location and environmental changes and achiemet require the user to remember a password, they only work
reliable user authentication. This developed deep legrniwhen a user is operating on a device. Furthermore, Ranjan
model could be utilized in a new environment when workingnd Whitehouse [12] exploit wrist-worn sensors to capture
with the collected user behaviors (i.e., unlabeled data) tmique behavioral hallmarks when users are operating home
perform user authentication and thus achieving envirortmenppliances.
independency. The prevalent WiFi technologies opens up a new direc-

To implement such an environment-independent WiFi-basédn for researchers to explore WiFi signals to perform user
user authentication system, we extract information fronftimu identification/authentication. Many of these works use WiF
ple links of CSI measurements. Particularly, we exploit kmp signals to capture human walking gait patterns and ideatify
tude (i.e., from every single link) and relative amplitude.( small group of users in a shared space. For example, WiFi-
between every two links), which are affected by user belravidD [5], WiWho [6], and WifiU [13] extract statistic features
and thus have the potential to capture unique behaviofedm CSI variations in either the time or frequency domain to
characteristics. Our system then performs normalizatmn identify a person’s walking steps and gait patterns. Istea
mitigate the impacts caused by ambient and hardware noisafs.using handcraft features, WiAU [7] exploits a ResNet-
Both time-domain and frequency-domain representatioas (i based model to learn deep features from CSI to characterize
spectrogram) of these amplitude and relative amplituda ddiuman gait patterns and utilizes a transfer learning algori
will be then fed into a convolutional neural network (CNNYo alleviate the impacts of environmental variations. Ehes
to learn features for characterizing both user’s identitgt the approaches do not require the user to wear any devices. Our
performed activities. By training the CNN with an adverahri research group has shown the initial success of using WiFi
loss, we will make the extracted features discriminativeagn signals to authenticate users through either daily a&/{8]
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Fig. 1: CSI amplitude and relative amplitude capturing twb9- 2: CSI amplitude of 30 subcarriers for the same user
users’s behaviors in a daily activity (i.e., picking up a oien behavior (i.e., picking up a remote controller) collected i
controller). different environmental status, in which the positions dfeak

and two chairs are different.

or finger gestures [9]. These approaches show reasonahle W$g,_changing gain offsets shifted by the hardware control

identification accuracy and confirm the advantages of USifghchanism and the ambient radio frequency interference.
WiFi signals to authenticate user. However, they rely oblsta Figure 1 (a) and (b) show the CSI amplitude and relative

environment status and do not address the problems oféocaty yyjitude information of a subcarrier over time when two
variations _and environmental changes in practical scesarisers were picking up a remote controller (3 rounds for each)
In comparison, we propose an unsupervised domain adapi@spectively in a residential apartment. We observe thét bo
tion discriminator ground on deep learning to simultangousihe amplitude and relative amplitude exhibit distinctivectu-
address these two problems. Different from WIAU [7] whichyion patterns between these two users, which confirms their
requires using labeled data in adapting the deep feature%é‘bability in capturing unique user behavioral charasties.

new environments, our approach is unsupervised and d%ﬁﬁjitionally, compared to amplitude, the relative ampitu
not require any labeled data for the adaptation. With such @f,ws different variation trends for the same users behavi

unsupervised approach, our system can achieve adaptive gofonstrating its capability on providing extra infornoation
practical user authentication based on WiFi. unique behavioral characteristics.

Ill. PRELIMINARIES IV. SYSTEM DESIGN

WiFi signals generated by ubiquitous electronic devicéas Challenges
(e.g., voice assistant, smart refrigerator, and laptop) lba  Reliability of CSI Measurements. CSI is susceptible to
easily impacted by the surrounding people’s moving behiavicmbient radio frequency interference (e.g., from neigimigor
during their daily activities. The channel station infotina WiFi devices) and channel condition changes. It is thus
(CSI) available in the existing WiFi protocol (e.g., 802n)1 necessary to convert the CSI readings into a reliable form to
can describe the properties of signal propagation (e.gt; sonitigate the impacts of such channel distortions.
tering, fading, power decay, and multi-path) and thus can beSmall-scale Location Variations.In real-world scenarios,
used to derive unique individual behavioral charactesstor people may perform the same activity at slightly differeud-
user authentication. tions every time. It is thus highly desired to make the exadc

Specifically, the CSI measurements are complex values theatures invariant to such small-scale location variatifor
characterize how WiFi signals propagate from the transmitfobust user authentication.
to the receiver at certain subcarrier frequencies. The CcsiLarge-scale Environmental Changes.The variations of
amplitude describes the combined attenuation effects ef f@nvironmental status (e.g., placement changes of furni-
WiFi signals propagating through different paths in the efure/home devices) could alter the multipath environmewt a
vironment. Human behaviors can alter the propagation paistort the frequency-selective fading patterns of CSI],[14
of the WiFi signals, resulting in distinctive charactddston thereby resulting in different CSI fluctuation patterns. We
the CSI amplitude. We thus propose to extract represen@@nonstrate this with two sets of CSI associated with thessam
tive features from CSI amplitude to capture unique humat$er behavior (i.e., picking up a remote controller) caéelc
behavioral characteristics. To extract extra informatibrthe in two environmental status, in which the positions of a desk
user’s behaviors over multiple OFDM antennas, we propose&gd two chairs are different. From Figure 2, we can observe
utilize relative amplitudederived from every two OFDM WiFi that the two sets of CSI are significantly different, making i
links. It captures the gain difference between the two linRgry challenging to derive a reliable authentication model
and is more stable under the changing environmental statgs.Attack Model

Considering two WiFi |InkSll and ls, the relative amplitude Random Attack. An adversary does not have prior infor-

at thek,, subcarrier can be represented as: mation on the activities used by the legitimate user for emth
Hp o = |H (HP), (1) tication. To pass the authentication, the adversary attenop
where | - | represents the absolute value afd denotes conduct random activities to create similar impacts on CSI

the complex conjugate. The relative amplitude can avoideasurements as the legitimate user.
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Mimic Attack. An adversary has observed how the le- a
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gitimate user performed activities during the autheniicat Cstfrom

process multiple times by peeping (e.g., through videogpi )’ | Data Preprocessing S\

The adversary tries to pass the authentication by imitating ‘ E [ Adtivity Detection and Segmentation ) i

the performed activities of the legitimate user with the sam ! (__csi Ampitude/Relative Amplitude Extraction ]|

environmental status when the user enrolled the system. i [ e ] [ STFTH’olOgmm ] :
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C. System Overview AR S A M

We design an environment-independent system that exploits Authentication Model

Domain Discriminator CNN Model 1

I
behavioral features derived from WiFi signals for user au- i .
thentication. As illustrated in Figure 3, our system takes a ! @ @.
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input time-series CSI measurements from WiFi links between
smart |oT devices (e.g., voice assistants, smart TVs) for

. . 1
data preprocessing. Our system then examines the frequency

Specific Information [

User Recognizer ] [ Activity Recognizer ],I
components of CSI amplitude to determine the CSI segment  ~~~~""~-----===-< d------------§------
- . , . Ident_lfylr)gand ][ EnabllngC}Jstomlzed ]
containing user behavior. To capture the user’s uniqueweha [ Authenticating Users Services

ioral characteristics, our system also extracts relatiwpléude Fig. 3: Architecture of the proposed system on extracting
information at each OFDM subcarrier, which captures ﬂ}ﬁ'lv.iroﬁment-invariant behavioral features

relative channel response between two WiFi links and is more

stable. The amplitude and relative amplitude informatiom adlly renders the extracted features invariant under differ
then calibrated with Z-score normalization to suppress te@mains.

impacts of channel condition changes. Moreover, our system V. HUMAN BEHAVIOR DETECTION AND DATA

converts CSI amplitude and relative amplitude into freaquyen SEGMENTATION
domain representations (i.e., STFT holograms) to chaiaete  To authenticate users through their daily behaviors, it is
the moving speeds of different body parts. necessary to first detect the presence of human activitiés an

After data preprocessing, we feed both standardizgegecisely segment the corresponding CSI measurements. In
CSI amplitude/relative amplitude and STFT holograms interactice, CSI measurements are usually susceptible to the
Environment-independent User Authentication Mddeluser interferences of ambient radio frequency signals and harelw
authentication and activity recognition. Particularlyrsys- control mechanisms, which lead to high-frequency distodi
tem uses two CNN models with 3 convolutional layers tih CSI and cause false detections. To circumvent this issae,
extract time and frequency domain features, which charagilize time-frequency analysis for detecting human bédrav
terize both human identity and activity uniqueness. Theetimhat mainly reside at a low frequency range [13]. Partidylar
domain and frequency domain features together charaetefigr each subcarrier, we calculate a spectrogram by applying
behavioral characteristics such as gesture preferenediény Fast Fourier Transform to a sliding frame. Furthermore, we
gait patterns, and movement speeds of torso and leg. Basechotumulate spectrograms across all the subcarriers on the
the extracted features, our system utilizes a user recegnizink between the main antenna pair (i.ést antenna in both
a 2-layer fully-connected neural network, to learn nodin transmitter and receiver) to ensure reliable behavioratiete
biometric abstractions that amplify the user's unique abar  Figure 4 (a) and (b) show the accumulated spectrogram and
teristics and are robust to small-scale behavior variatido the time-series CSI amplitude for three consecutive disi
deliver personalized customized services (e.g., recordingn (j.e., walking to a seat, sitting down, fetching a document o
music channels, controlling home appliances), an activifytable). We observe that the accumulated spectrogram of the
recognizer based on a 2-layer fully-connected network éslusyser behaviors exhibits high energy in low frequencies. We
to identify the user’s activity. are thus motivated to use spectrogram energy baloiw =

To make the CNN models environment-independent, ottr segment user behaviors. For each frame of the spectrpgram
system employs an unsupervised domain discriminator W@ calculate the average energy beloddH z. We then use
remove the domain-specific information from the time and threshold-based approach to detect the starting poinb of a
frequency domain features. The domain discriminator i$- ophctivity and then search for the ending pointing with the sam
mized predict the domain (i.e., user location and enviramale threshold. Figure 4 (c) shows that we can correctly locage th
status) of both labeled data and unlabeled data. It seemsstarting/ending points of the behaviors, which validates t
contradict with our goal of extracting domain-independewffectiveness of our threshold-based approach.
features. However, by simultaneously training the domai| preprocESSING INTIME AND FREQUENCY DOMAINS
discriminator and the CNN models with an adversarial los8, Time-domain Standardization
the CNN models can gradually learn to extract features thatHuman behaviors can alter CSI amplitude/relative ampditud
are indistinguishable by the domain discriminator. At tame and produce distinctive time-series patterns. Howeveg, th
time, the domain discriminator also increases its caggbilichannel condition changes can alter the gain offset of the-wi
in predicting domain labels. This two-player game eventless link, shifting the value distributions of amplitudsative
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. . . . adaptation strategy to learn domain-invariant featuresnfr
Fig. 4: lllustration of CSI amplitude of 3(.) subcarrlers_,, @CC the standardized CSI amplitude/relative amplitude andTSTF
mulated spectrogr_am, ar?d_ _detef:ted start_lng and end'ngs_po%logram. Figure 6 illustrates the model architecture. The
of three conseCL_mve activities (i.e., walking to a seating deep learning model takes both labeled d&tand unlabeled
down, and fetching a document on a table). data X’ as input. The input data are first mapped into a
set of low-rank behavioral features by using the feature
amplitude. To remove the unpredictable gain offset in eagltractor, which consists of two CNN models to process time-
segment, we exploit Z-score normalization for data calibre.  domain data (i.e., amplitude/relative amplitude inforio}
H] = Hi — /‘k’ ) and frequency-domain data (i.e., STFT holograms), respec-
_ Ok ) ) _tively. Based on the extracted features, a user recognizer
whereH}, is the segmented data of either amplitude or reIatn(ﬁe_, a fully-connected neural network) can predict theriss
amplitude from thekth subcarriery, and o), are the mean jqentity v,. In addition, an activity recognizer is used to
and the standard deviation, respectl\(gly. Such ast.arzmm obtain the activity types (i.eY,) of all the input data. To
process can also increase the stability of the trainingge®c (o move the domain-specific information entangled 4n a
and improve the system’s performance. domain discriminator is trained to predict the domain label
B. STFT Hologram Derivation Y, (i.e., user location or environmental status), which seems
In addition to time-series data, we calculate spectrogramascontradict with our objective of deriving domain-inwant
of both amplitude and relative amplitude to characterize tlieatures. However, by using an adversarial loss, the CNN
motion speeds of user behaviors [13]. To feed the highrodels are guided to derive features that indistinguishhbigl
dimension 3D spectrogram matrices (i.e., subcarrier, tamd the adversarial network, while at the same time, maximize th
frequency dimensions) to standard CNN with 2D kernels, weerformance of the user recognizer and the activity recagni
convert the spectrogram matrices into a 2D form. PartitglarThrough this minimax game, the derived deep learning model
we first flatten the spectrogram of each subcarrier into a Idan finally extract domain-independent features that chara
array and then stack the 1D arrays of all subcarriers to forime both identity and activity uniqueness. Besides adgptin
a 2D matrix. We refer to this matrix as STFT hologram as the location and environment changes, our domain adaptatio
integrates information across time, frequencies, andaubc strategy may be extended to address domain variationsaause
ers. The STFT hologram still preserves the time-seriegpat by the movement or replacement of WiFi devices. We leave
in the spectrogram. We illustrate this with an example STRhe detailed study of this case to our future work.
hologram in Figure 5 (a), which is associated with a behavior
of sitting down on a chair. The spectrograms are derived frofy Feature Extractor
CSI amplitude of 90 subcarriers (i.e., from 3 MIMO antenna The feature extractor consists of two CNN models that
pairs). As shown in Figure 5 (b), the ~ 17 frames of the |earn a set of behavioral features to characterize both huma
spectrograms are associated with #&8 ~ 544 frames of identity and activity uniqueness. As illustrated in Figute
the STFT hologram, with the elements across the frequenge CNN models consist of a 3-layer stacked CNN. In each
dimension flattened. By transforming a 3D spectrogram matiayer of the CNNs, a convolutional layer with 2D kernels is
into such a 2D form, a standard CNN with 2D kernel capsed to calculate 2D feature maps that characterize behavio

effectively learn features in the frequency domain. uniqueness of different activities/users. In addition, aich
VII. ENVIRONMENT-INDEPENDENTUSER normalization layer is used to calibrate the input data,irmgm
AUTHENTICATION MODEL to mitigate small-scale input variations, and a dropou¢iag
A. Model Overview utilized to prevent over-fitting. The 2D feature maps arenthe

To enable adaptive and practical user authentication, Wettened and compressed with three fully-connected layers
develop a deep learning model and an unsupervised domBarticularly, given input CSI amplitude/relative amptierX,
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Fig. 6: Domain adaptation strategy to derive the environtmeririg. 7: Architecture of the deep learning-based featureaext

independent user authentication model. tor to extract behavioral features by taking inputs fromhbot
the time and frequency domains.

and STFT hologramX;, the CNN models map the input into 300 o Usert v 1)
behavioral featureg as follows: ~ 200 oy B oo (o

Z =CNN(X;, X;,0), (3) - ,:A}f: A o
where© represents a set of learnable parameters (i.e., weights 5 :'AAA . * L eabas®
and biases) in the feature extractor. The activations dre al z TN RIS

= -100 N AAB A

Leaky ReLU. abee s Wa e
C. User Recognizer and Activity Recognizer "0 20 0 0 0 20 %0 40

Based on the extracted behavioral featusgstwo fully- Fig. 8: Learned environment-invariant abstractions of two

connected neural networks are used as classifiers to perfarsers (marked in red and blue) picking up a remote controller
user identification and activity recognition. Both the uaad under two environmental statuses (circle and triangle erajk
the activity recognizers have the same architecture so we

omit the subscripts; and a in the symbols for simplicity. the activation functions. By taking the behavioral feasure
The fully-connected networks further derive non-lineatéee as input, the domain discriminator acquires the envirortaien
abstractions to characterize the behavioral biometdtisity ~status/location label as:

patterns. Based on the abstractions, a SoftMax layer is used Yy = Ga(Z,9), (6)

to predict the user identities or a_ctivity_ types. Given thput where G,(-) represents the mapping function abd is the

feature Z, the mapping function is defined as: domain label.Y,; represents either the environmental status
Y =G(Z;9), (4)  and the location label based on the domain adaptation gask.

whereG(-) represents the mapping function aéds the a of is a set of trainable parameters in the adversarial netvilark.

learnable parameters in the neural network. train the adversarial network for recognizing the domaie, w

To train the deep learning model (i.e., feature extractar adefine the domain loss as:

user/activity recognizer), we use both labeled and unéabel Lg = Las(Yq, Ya), 7

data. For the labeled data, we calculate the cross-entomsy | herey, is the set of domain labels, which can be passively

between the predictions and the ground truth labels. For jiected.

unlabeled data, we also calculate the entropy of predlstloE_ Unsupervised Domain Adversarial Training

Y as the loss, which reduces the uncertainty when predictingTh biecti fthe d i discrimi i
on the unlabeled data. The loss function is defined as: _The objective of the domain discriminator seems to contra
N . dict with our goal of location- and environment-indepernden
L= Las(Y,Y)+ H(Y), () user authentication and activity recognition. But with aeca
where L (-, -) represents the cross-entropy loss functiofy|ly designed loss function, we can use the domain dis-
H(:) denotes the entropyL could be eitherL, or L.. criminator to guide the feature extractor on learning domai
Note that our system simultaneously optimizes the user apariant features. The key is a negative factek applied
the activity recognizers so that the behavioral featufes to the domain loss so that the feature extractor is trained to
characterize both identity and activity uniqueness. maximize the loss of the domain discriminator. We define the

D. Domain Discriminator adversarial loss for optimizing the feature extractor as:

We aim to use domain adversarial training [15] to derive a Ly=L,+al,— ALg, (8)
mapping shared under different environmental statuses orwhere L., L,, and L, are the user loss, activity loss, and
different locations. The key component of the domain adagemain loss, respectivelyx and A are the weighting pa-
tation technique is a domain discriminator that is used & tlmameters. Particularlyp controls the trade-off between the
training process to force the feature extractor to deriveao- transferability and the distinctiveness of the learnedufiess.
independent features. Particularly, the domain discr@tan During the adversarial training process, we take turns ttatg
consists of 2 fully-connected layers using Leaky ReLUs &, {®,,®,}, and).



TABLE I: Detailed activities performed.

[ Lerge-scale IITlra"smmer Code | Activity Code | Activity
activity A—B | Walking (trajectory 1) E Operating on the oven
:;‘fv’:‘t;/m'e @ B—C | Walking (trajectory 2) F Using the stove
B Picking up a remote control G Sitting in a seat
& WiFi devices ® ‘ C Sitting in a chair H Stretching the body
NG D Exercising | Typing on a keyboard
& IE' |
\:I\:I Receiver J
ecelver
s Transmitter [D
i ] - LD apartment, we change the positions of 1 sofa, 1 microwave
_ (a) Residential Apartment . (b)Office __ . oven, 3 cabinets, and 5 chairs. While for the office, we move
Fig. 9: Experimental setups and the illustration of thewitt¥s 3 desks, 3 chairs, and some books placed on the desks. Each
in an residential apartment and an office. piece of furniture is moved at lea8tft for emulating large-

a/ceale environmental changes. Particularly, when coligalata

To examine the proposed domain adaptation strategy, . o ;
brop P 9y n the office, we ask 5 users to perform 3 activities (i.e., G, H

conduct a preliminary experiment by asking two volunteers #

perform the same activity (i.e., picking up a remote coterdl ).W'th 'OCa“OP variations. The users conduct each agfiait4
under two environmental statuses. i.e. Env. 1 and Env. different proximate locations at least one foot away frorohea

where the positions of a desk and two chairs are differet?tt.hi%ln total,. thCO”eth’W? bezaglcs)azegmhent.s peréaim t
We visualize the user abstractions (i.e., outputs of thé Iapsy users in the apartment and 3, ehavior segments

layer in the user recognizer excluding the SoftMax layer) o%erformed by 5 users in the office.

a 2D space with t-SNE as shown in Figure 8. Note that the\ye separate the collected data into source dataset (i.e.,
ground truth labels for Env_. 2 are not used for training. e cagpeled data) and target dataset (i.e., unlabeled dataf), wi
observe that the abstractions of the two users can form ty |ocations/environments referred as the source anettarg
clearly separate clusters. Furthermore, for differentirenv |gcations/environments. We usd, : N, to present the
mental statues, the abstractions of the same user fall &0 humber of locations/environments involved in the source, (i
same cluster, showing that the abstractions are envirormeg y and the target datasets (i.8];) when presenting the
independent. These results validate the effectiveneshi®f tesyits. Half of the target dataset is used for unsupervised

proposed domain adaptation strategy. training and the other half is used for testing. We refer the
VIIl. PERFORMANCEEVALUATION environments associated with the source dataset as theesour
A. Experimental Setup and Methodology locations/environments and that corresponding to theetarg

Devices and NetworkWe use two commercial laptops (i.e. dataset as the target locations/environments.

Dell E6430) to emulate 10T devices in smart environments. i hod h with
One laptop is used as the transmitter and the other laptog>2S€liné Methods.We compare our approach with a CNN

is used as the receiver. Both laptops are equipped with”?del .onIy _consisting_ of t_he feat.ure extractqr and the user
MINI PCI-E internal antennas and an Intel 5300 WiFi NIC£C09NIZEr (|._e.,_ described in _S_ec'uon V”'_C) without appl .
which internally tracks and reports CSI at 30 subcarrie6d.[1 domain discriminator. In addition, we build anot_her baseli
Our system can also be extended to use a wider bandwiifde! based on transferable component analysis (TCA) [17].
(e.g., 802.11ac, 802.11ax) and more WiFi devices to achiel&A aims to learn a set of transferable representationsdbase
enhanced performance. We extract the CSI amplitude on unlabeled data from the source datasets and the target

9 OFDM links between the transmitter and the receiver aﬁ@unln.g datasets. SpeC|.f|caIIy, we _extract time and freqye
calculate the relative amplitude between every two linkse T domain features (used in our previous work [8]) from source

WiFi packet transmission rate is set to 10p@ts/s for and target datasets and learn a set of transferable repaesen
extracting fine-grained frequency domain features. tions using TCA. Based on these representations, an support

Data Collection. Experiments are conducted in a residentiafecto" machine classifier ?s used for user identificatidin/ag
apartment and an office with the size 83f¢ x 17f¢ and recognition on target testing datasets.
21t x 12ft, respectively. Figure 9 illustrates the positions gyajyation Metrics. We define four different evaluation
of the two laptops emulating 10T devices. For the resideéntig,erics:user identification/activity recognition accuraiythe
apartment, we place the receiver on two locations to collggt centage of predicted user identities/activities ameectly
behavior data in the living room and the kitchen. A total Olfecognized among all user behavioesnfusion matrixvisu-
10 representative activities (20 rounds for each) are paed gjizes the percentage of each user’s behaviors being figenti
by 10 and 5 users in these two scenarios. The details of thegg,ng all users (i.e., the correct user and the other users);
activities are shown in Table |. _ _ true positive rate (TPRis the percentage of a legitimate user’s

Specifically, to evaluate the environmental independeng¥nayiors that are correctly accepted among all behavions f
of our approach, for both residential apartment and campys, legitimate usefalse positive rate (FPRis the percentage

office, we collect data under 3 different environments it the adversary’s behaviors being mistakenly acceptechgmo
which the furniture placements are different. For the @sitl 5| pehaviors of the adversary.
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B. Performance of Environment-dependent User ldentifica-
tion/Activity Recognition

We first show the performance of our system on user
identification and activity recognition using the randorapfit
training and testing dataset of roughly same size (refetwed 2 L 2
as environment-dependent). Figure 10 (a) shows that fdr bot
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. : (a) Residential Apartment (b) Office
scenarios, our system achieves 098 overall accuracy on Fig. 12: Performance of environment-independent activity
simultaneously recognizing both the identity and actify recognition

user behaviors. Figure 10 (b) gives the confusion matrix for
identifying 10 users in the apartment. We can find that otion method can achieve robust activity recognition and use
system can achieve high accuracy on user identification. Tidentification under large-scale environment variations.
results demonstrate that our system is effective in both us® Performance of Environment-independent Spoofer Detec-
identification and activity recognition, showing its paiahfor tion
enabling customized services. To detect unauthorized users, we train a user recognieer (i.
) ) . presented in Section VII-C) to differentiate a legitimatenfi

C. Performance of Environment-independent User ldentificgy oiher users. The user recognizer then serves as a spoofer
tion/Activity recognition detection component. In the training phase, we randomécsel

We use all source dataset and half of the target dataset 2ousers as spoofers to guide the user recognizer on detecting
training. The other half of the target datasets are used the legitimate user. In addition, we select the data of timeesa
testing. Figure 11 (a) gives the user identification perfamoe set of users from the target dataset to extract environment-
under large-scale environmental changes in the residentiavariant features. During testing, we select 2 differesens
apartment. Our approach can achi®re3% and83.6% user acting as spoofers to conduct random and mimic attacksgusin
identification accuracies for two different settings. Raitarly, their behavior data from both source and target datasets.
when training with 2 source environments and testing on 1Figure 13 (a) and (b) show the spoofer detection perfor-
target environment, the accuracies 24€2% and18.7% higher mance under random attacks in the apartment and the campus
than the CNN baseline model and the TCA-based methaiffice. We find that our system can achieve closel®%
respectively. From Figure 11 (b), we find that our approacfPR with a low FPR below % for all settings. These results
also has the highest user identification accuracy in theefficonfirm that the random activities of the attacker can hardly
with 85.2% and 83.6% accuracies under the 2 settings. Furereate similar behavioral biometrics as the legitimate, Lesed
thermore, we observe that the user identification acculsari® thus the system can reliably defend against random attacks.
slightly higher in the residential apartment. This is besgathe Figure 14 shows the performance of our system under mimic
apartment does not have high-power WiFi infrastructures (e attacks. We can find that the system has FPRs lower 2k@an
campus-wide WiFi station) that create strong interferefibe under all dataset settings, with ov&t% and91% TPR for the
above results confirm that the proposed approach can realipartment and the office, respectively. The results show tha
environment-independent user identification. our system is effective in defending against both randoachtt

As shown in Figure 12, for activity recognition, the proand mimic attack. This is because even for the same activity,
posed domain adaptation approach still outperforms the twor approach can extract unique behavioral charactexisfic
baseline methods in both scenarios. Particularly, in thieeof the legitimate users.
environment, our approach is at le@gt4% and10.2% higher E. Performance of Location-independent User Identifica-
than the accuracies of CNN and TCA baselines, respectiveipn/Activity Recognition
We also find that the activity recognition accuracies aghsly We combine all source and half of the target datasets for
higher than user identification accuracies in both scesaritraining. The other half of the target dataset is used for
indicating that domain adaptation for the user identifarati testing. From Figure 15 (a), we find that the proposed domain
task is more difficult. Overall, the proposed domain adaptadaptation approach can achie¥e3%, 84.5%, and 81.2%
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