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Abstract—With the increasing prevalence of smart mobile and
Internet of things (IoT) environments, user authentication has be-
come a critical component for not only preventing unauthorized
access to security-sensitive systems but also providing customized
services for individual users. Unlike traditional approaches re-
lying on tedious passwords or specialized biometric/wearable
sensors, this paper presents a device-free user authentication
via daily human behavioral patterns captured by existing WiFi
infrastructures. Specifically, our system exploits readily available
channel state information (CSI) in WiFi signals to capture unique
behavioral biometrics residing in the user’s daily activities,
without requiring any dedicated sensors or wearable device
attachment. To build such a system, one major challenge is
that wireless signals always carry substantial information that
is specific to the user’s location and surrounding environment,
rendering the trained model less effective when being applied to
the data collected in a new location or environment. This issue
could lead to significant authentication errors and may quickly
ruin the whole system in practice. To disentangle the behavioral
biometrics for practical environment-independent user authenti-
cation, we propose an end-to-end deep-learning based approach
with domain adaptation techniques to remove the environment-
and location-specific information contained in the collected WiFi
measurements. Extensive experiments in a residential apartment
and an office with various scales of user location variations
and environmental changes demonstrate the effectiveness and
generalizability of the proposed authentication system.

I. I NTRODUCTION

With the increasing deployment of smart and IoT envi-
ronments, private resources are linked to a huge number of
spatially distributed intelligent devices (e.g., smart hub, voice
assistant, laptop) and many of them store private information
or run security-sensitive applications. Unauthorized access
to such restricted devices puts user privacy and property at
high risk. For example, an unauthorized user may obtain
private information (e.g., classified file, credit card informa-
tion, healthcare data) stored on a laptop [1] or disarm the
home security system via a smart speaker [2]. Thus, user
authentication has become a critical component in assuring
user security in smart spaces. Furthermore, smart environments
have a growing trend of exploring the ability to identify
users and deliver personalized services for improving the
utility of the space, such as recommending music channels,
supporting online shopping, and controlling home appliances.
User identification/authentication is serving as an inseparable
step in enabling personalized and convenient use of emerging
services in smart environments.

Traditionally, passwords and physiological biometrics such
as fingerprint and facial information are widely used to authen-
ticate users. They either require the user to remember secret
details or need deployment of dedicated biometric sensors.A
new trend is to verify users through behavioral biometrics.
For instance, gestures on smart glasses’ touchpad (e.g., taps
or swipes) could be utilized to continuously authenticate
users [3]. In another instance, gait patterns derived from
mobile devices can be utilized to identify walking people [4].
Furthermore, unique behavioral hallmarks captured through
wrist-worn sensors are explored to identify users when they
are operating home appliances. This trend has the ability
to provide continuous user authentication and also brings
convenience to users. But these new solutions require the
user to wear devices, such as wearable sensors and smart
glasses. To further advance user authentication based on user’s
behaviors, in this work, we aim to develop a device-free system
that verifies the user identity through daily behaviors at smart
spaces without requiring the user to wear any devices or deploy
any dedicated sensors. We would like to utilize WiFi signals
generated by the regular communications among smart/IoT de-
vices to capture inherited behavioral characteristics to facilitate
identification/authentication. Particularly, we aim to derive a
solution that could be environment-dependent (e.g., robust to
the changes of furniture/appliance placement).

In the past decade, smart environments have incorporated
WiFi technologies to provide increasing wireless intercon-
nections among appliances and mobile devices (e.g., voice
assistants, smart TVs, smart refrigerators, smart glasses). This
increased popularity of wireless technologies produces WiFi
signals that cover almost every corner of the smart spaces.
In addition to the prevalence usage of communication, users’
unique behaviors could be embedded inside the wireless
signals through their daily behaviors (e.g., interacting with
smart home appliances, operating on a laptop, entering a
corporate building). It is thus natural to explore wireless
signals ubiquitous in smart environments to derive inherited
behavioral characteristics to authenticate and identify users
in a convenient and device-free manner. Recent years have
witnessed the emergence of user identification using WiFi [5]–
[9]. Many of these solutions rely on gait patterns derived from
WiFi signals to identify walking users [5]–[7]. They usually
require the user to walk through well-designed paths and are



thus limited to recognizing walking people, which might not
be practical in many scenarios. Our research group obtained
the initial success of identifying the user through daily activi-
ties [8] or finger gestures [9]. These initial studies showedthe
success of using WiFi to perform user authentication during
daily activities. However, they did not address the problem
in real-world scenarios with dynamics, such as small location
changes during activities and physical environmental dynamics
(e.g., placement changes of furniture/appliances, movements
of WiFi/smart IoT devices).

In this work, we take one step further to design and develop
user identification/authentication using WiFi signals that can
work under various scales of environmental dynamics. In
particular, we address two important problems:(i) Small-
scale Location Variations:A user usually conducts the same
behavior in proximity with small location variations; and
(ii) Large-scale Environmental Changes:The status of a
physical environment (e.g., the placements of furniture and
home appliances) could vary from day to day in practical
scenarios. Propagation of wireless signals can be impactedby
the environmental changes, and WiFi signal, especially the
channel state information (CSI), is very sensitive to small-
scale user location changes. Thus, both the small-scale location
variations and large-scale environmental changes could lead to
changes of fluctuation pattern in the fine-grained WiFi mea-
surements, thereby causing signal profile mismatches during
user authentication. This profile inconsistency problem usually
requires the system to collect massive training data to cover
all the possible locations and environmental status and retrain
the model, making the system hard to be deployed in practice.

To address these two issues encountered in practice, we
develop a deep-learning-based user recognition model together
with an unsupervised domain discriminator, which are built
upon both labeled data (i.e., WiFi signals containing user
behaviors with user-identity labels) and unlabeled data (i.e.,
user behavior data without labels), to mitigate the impact
of varying location and environmental changes and achieve
reliable user authentication. This developed deep learning
model could be utilized in a new environment when working
with the collected user behaviors (i.e., unlabeled data) to
perform user authentication and thus achieving environment-
independency.

To implement such an environment-independent WiFi-based
user authentication system, we extract information from multi-
ple links of CSI measurements. Particularly, we exploit ampli-
tude (i.e., from every single link) and relative amplitude (i.e.,
between every two links), which are affected by user behaviors
and thus have the potential to capture unique behavioral
characteristics. Our system then performs normalization to
mitigate the impacts caused by ambient and hardware noises.
Both time-domain and frequency-domain representations (i.e.,
spectrogram) of these amplitude and relative amplitude data
will be then fed into a convolutional neural network (CNN)
to learn features for characterizing both user’s identity and the
performed activities. By training the CNN with an adversarial
loss, we will make the extracted features discriminative among

different users while being transferable in different domains
(i.e., user locations and environmental status). We highlight
our contributions as follows:

• We develop a domain adaptation technique to remove unpre-
dictable environment-specific factors from the learned rep-
resentations to achieve more practical user authentication.

• By examining the fine-grained channel state information
(CSI) of WiFi signals, we find the combination of amplitude
and relative amplitude between two links is effective for
capturing unique individual behavioral biometrics.

• Our domain adaptation strategy is unsupervised and can
derive environment-independent convolutional neural net-
work (CNN) models for both activity recognition and user
identification. The derived model is also resilient to spoofing
attacks.

• Extensive experiments in a residential apartment and an
office over four months demonstrate the effectiveness (e.g.,
over87% user identification accuracy) and generabizability
of the proposed system under various degrees of location
variations and environmental changes.

II. RELATED WORK

Traditional password or PIN number based schemes rely on
using memorized secret details to confirm the user’s identity.
Such schemes solely based on the knowledge of the secrets in-
stead of the user. They are vulnerable to password theft. Recent
user authentication solutions utilize physiological biometrics
to authenticate users, such as fingerprint, facial information,
and iris. These solution need the deployment of dedicated
biometric hardware or sensors, which incur extra cost.

A new trend of user authentication is to explore behavioral
biometrics [3], [10], [11]. Some research studies attempt to
continuously authenticate users through unique typing/taping
behaviors on smart devices, such as gestures on smart
glasses’ touchpad [3], taping on devices’ touch screen [10],
or keystroke dynamics [11]. Although these approaches do
not require the user to remember a password, they only work
when a user is operating on a device. Furthermore, Ranjan
and Whitehouse [12] exploit wrist-worn sensors to capture
unique behavioral hallmarks when users are operating home
appliances.

The prevalent WiFi technologies opens up a new direc-
tion for researchers to explore WiFi signals to perform user
identification/authentication. Many of these works use WiFi
signals to capture human walking gait patterns and identifya
small group of users in a shared space. For example, WiFi-
ID [5], WiWho [6], and WifiU [13] extract statistic features
from CSI variations in either the time or frequency domain to
identify a person’s walking steps and gait patterns. Instead
of using handcraft features, WiAU [7] exploits a ResNet-
based model to learn deep features from CSI to characterize
human gait patterns and utilizes a transfer learning algorithm
to alleviate the impacts of environmental variations. These
approaches do not require the user to wear any devices. Our
research group has shown the initial success of using WiFi
signals to authenticate users through either daily activities [8]
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Fig. 1: CSI amplitude and relative amplitude capturing two
users’s behaviors in a daily activity (i.e., picking up a remote
controller).

or finger gestures [9]. These approaches show reasonable user
identification accuracy and confirm the advantages of using
WiFi signals to authenticate user. However, they rely on stable
environment status and do not address the problems of location
variations and environmental changes in practical scenarios.
In comparison, we propose an unsupervised domain adapta-
tion discriminator ground on deep learning to simultaneously
address these two problems. Different from WiAU [7] which
requires using labeled data in adapting the deep features to
new environments, our approach is unsupervised and does
not require any labeled data for the adaptation. With such an
unsupervised approach, our system can achieve adaptive and
practical user authentication based on WiFi.

III. PRELIMINARIES

WiFi signals generated by ubiquitous electronic devices
(e.g., voice assistant, smart refrigerator, and laptop) can be
easily impacted by the surrounding people’s moving behaviors
during their daily activities. The channel station information
(CSI) available in the existing WiFi protocol (e.g., 802.11n)
can describe the properties of signal propagation (e.g., scat-
tering, fading, power decay, and multi-path) and thus can be
used to derive unique individual behavioral characteristics for
user authentication.

Specifically, the CSI measurements are complex values that
characterize how WiFi signals propagate from the transmitter
to the receiver at certain subcarrier frequencies. The CSI
amplitude describes the combined attenuation effects of the
WiFi signals propagating through different paths in the en-
vironment. Human behaviors can alter the propagation path
of the WiFi signals, resulting in distinctive characteristics on
the CSI amplitude. We thus propose to extract representa-
tive features from CSI amplitude to capture unique human
behavioral characteristics. To extract extra informationof the
user’s behaviors over multiple OFDM antennas, we propose to
utilize relative amplitudederived from every two OFDM WiFi
links. It captures the gain difference between the two links
and is more stable under the changing environmental status.
Considering two WiFi linksl1 and l2, the relative amplitude
at thekth subcarrier can be represented as:

Ĥ l1↔l2
k = |H l1

k (H l2
k )∗|, (1)

where | · | represents the absolute value and(·)∗ denotes
the complex conjugate. The relative amplitude can avoid

(a) Environmental Status 1 (b) Environmental Status 2

Fig. 2: CSI amplitude of 30 subcarriers for the same user
behavior (i.e., picking up a remote controller) collected in
different environmental status, in which the positions of adesk
and two chairs are different.

ever-changing gain offsets shifted by the hardware control
mechanism and the ambient radio frequency interference.

Figure 1 (a) and (b) show the CSI amplitude and relative
amplitude information of a subcarrier over time when two
users were picking up a remote controller (3 rounds for each)
respectively in a residential apartment. We observe that both
the amplitude and relative amplitude exhibit distinctive fluctu-
ation patterns between these two users, which confirms their
capability in capturing unique user behavioral characteristics.
Additionally, compared to amplitude, the relative amplitude
shows different variation trends for the same user’s behavior,
demonstrating its capability on providing extra information on
unique behavioral characteristics.

IV. SYSTEM DESIGN

A. Challenges

Reliability of CSI Measurements. CSI is susceptible to
ambient radio frequency interference (e.g., from neighboring
WiFi devices) and channel condition changes. It is thus
necessary to convert the CSI readings into a reliable form to
mitigate the impacts of such channel distortions.

Small-scale Location Variations.In real-world scenarios,
people may perform the same activity at slightly different loca-
tions every time. It is thus highly desired to make the extracted
features invariant to such small-scale location variations for
robust user authentication.

Large-scale Environmental Changes.The variations of
environmental status (e.g., placement changes of furni-
ture/home devices) could alter the multipath environment and
distort the frequency-selective fading patterns of CSI [14],
thereby resulting in different CSI fluctuation patterns. We
demonstrate this with two sets of CSI associated with the same
user behavior (i.e., picking up a remote controller) collected
in two environmental status, in which the positions of a desk
and two chairs are different. From Figure 2, we can observe
that the two sets of CSI are significantly different, making it
very challenging to derive a reliable authentication model.

B. Attack Model
Random Attack. An adversary does not have prior infor-

mation on the activities used by the legitimate user for authen-
tication. To pass the authentication, the adversary attempts to
conduct random activities to create similar impacts on CSI
measurements as the legitimate user.



Mimic Attack. An adversary has observed how the le-
gitimate user performed activities during the authentication
process multiple times by peeping (e.g., through videotaping).
The adversary tries to pass the authentication by imitating
the performed activities of the legitimate user with the same
environmental status when the user enrolled the system.

C. System Overview

We design an environment-independent system that exploits
behavioral features derived from WiFi signals for user au-
thentication. As illustrated in Figure 3, our system takes as
input time-series CSI measurements from WiFi links between
smart IoT devices (e.g., voice assistants, smart TVs) for
data preprocessing. Our system then examines the frequency
components of CSI amplitude to determine the CSI segment
containing user behavior. To capture the user’s unique behav-
ioral characteristics, our system also extracts relative amplitude
information at each OFDM subcarrier, which captures the
relative channel response between two WiFi links and is more
stable. The amplitude and relative amplitude information are
then calibrated with Z-score normalization to suppress the
impacts of channel condition changes. Moreover, our system
converts CSI amplitude and relative amplitude into frequency
domain representations (i.e., STFT holograms) to characterize
the moving speeds of different body parts.

After data preprocessing, we feed both standardized
CSI amplitude/relative amplitude and STFT holograms into
Environment-independent User Authentication Modelfor user
authentication and activity recognition. Particularly, our sys-
tem uses two CNN models with 3 convolutional layers to
extract time and frequency domain features, which charac-
terize both human identity and activity uniqueness. The time
domain and frequency domain features together characterize
behavioral characteristics such as gesture preferences, walking
gait patterns, and movement speeds of torso and leg. Based on
the extracted features, our system utilizes a user recognizer,
a 2-layer fully-connected neural network, to learn non-linear
biometric abstractions that amplify the user’s unique charac-
teristics and are robust to small-scale behavior variations. To
deliver personalized customized services (e.g., recommending
music channels, controlling home appliances), an activity
recognizer based on a 2-layer fully-connected network is used
to identify the user’s activity.

To make the CNN models environment-independent, our
system employs an unsupervised domain discriminator to
remove the domain-specific information from the time and
frequency domain features. The domain discriminator is opti-
mized predict the domain (i.e., user location and environmental
status) of both labeled data and unlabeled data. It seems to
contradict with our goal of extracting domain-independent
features. However, by simultaneously training the domain
discriminator and the CNN models with an adversarial loss,
the CNN models can gradually learn to extract features that
are indistinguishable by the domain discriminator. At the same
time, the domain discriminator also increases its capability
in predicting domain labels. This two-player game eventu-
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Fig. 3: Architecture of the proposed system on extracting
environment-invariant behavioral features.

ally renders the extracted features invariant under different
domains.

V. HUMAN BEHAVIOR DETECTION AND DATA

SEGMENTATION

To authenticate users through their daily behaviors, it is
necessary to first detect the presence of human activities and
precisely segment the corresponding CSI measurements. In
practice, CSI measurements are usually susceptible to the
interferences of ambient radio frequency signals and hardware
control mechanisms, which lead to high-frequency distortions
in CSI and cause false detections. To circumvent this issue,we
utilize time-frequency analysis for detecting human behaviors
that mainly reside at a low frequency range [13]. Particularly,
for each subcarrier, we calculate a spectrogram by applying
Fast Fourier Transform to a sliding frame. Furthermore, we
accumulate spectrograms across all the subcarriers on the
link between the main antenna pair (i.e.,1st antenna in both
transmitter and receiver) to ensure reliable behavior detection.

Figure 4 (a) and (b) show the accumulated spectrogram and
the time-series CSI amplitude for three consecutive activities
(i.e., walking to a seat, sitting down, fetching a document on
a table). We observe that the accumulated spectrogram of the
user behaviors exhibits high energy in low frequencies. We
are thus motivated to use spectrogram energy below100Hz
to segment user behaviors. For each frame of the spectrogram,
we calculate the average energy below100Hz. We then use
a threshold-based approach to detect the starting point of an
activity and then search for the ending pointing with the same
threshold. Figure 4 (c) shows that we can correctly locate the
starting/ending points of the behaviors, which validates the
effectiveness of our threshold-based approach.

VI. PREPROCESSING INTIME AND FREQUENCY DOMAINS
A. Time-domain Standardization

Human behaviors can alter CSI amplitude/relative amplitude
and produce distinctive time-series patterns. However, the
channel condition changes can alter the gain offset of the wire-
less link, shifting the value distributions of amplitude/relative



Fig. 4: Illustration of CSI amplitude of 30 subcarriers, accu-
mulated spectrogram, and detected starting and ending points
of three consecutive activities (i.e., walking to a seat, sitting
down, and fetching a document on a table).

amplitude. To remove the unpredictable gain offset in each
segment, we exploit Z-score normalization for data calibration:

H ′

k =
Hk − µk

σk

, (2)

whereHk is the segmented data of either amplitude or relative
amplitude from thekth subcarrier.µk and σk are the mean
and the standard deviation, respectively. Such a standardization
process can also increase the stability of the training process
and improve the system’s performance.

B. STFT Hologram Derivation
In addition to time-series data, we calculate spectrograms

of both amplitude and relative amplitude to characterize the
motion speeds of user behaviors [13]. To feed the high-
dimension 3D spectrogram matrices (i.e., subcarrier, time, and
frequency dimensions) to standard CNN with 2D kernels, we
convert the spectrogram matrices into a 2D form. Particularly,
we first flatten the spectrogram of each subcarrier into a 1D
array and then stack the 1D arrays of all subcarriers to form
a 2D matrix. We refer to this matrix as STFT hologram as it
integrates information across time, frequencies, and subcarri-
ers. The STFT hologram still preserves the time-series patterns
in the spectrogram. We illustrate this with an example STFT
hologram in Figure 5 (a), which is associated with a behavior
of sitting down on a chair. The spectrograms are derived from
CSI amplitude of 90 subcarriers (i.e., from 3 MIMO antenna
pairs). As shown in Figure 5 (b), the9 ∼ 17 frames of the
spectrograms are associated with the288 ∼ 544 frames of
the STFT hologram, with the elements across the frequency
dimension flattened. By transforming a 3D spectrogram matrix
into such a 2D form, a standard CNN with 2D kernel can
effectively learn features in the frequency domain.

VII. E NVIRONMENT-INDEPENDENT USER

AUTHENTICATION MODEL
A. Model Overview

To enable adaptive and practical user authentication, we
develop a deep learning model and an unsupervised domain

(a) STFT hologram of CSI amplitude(b) Spectrograms of four subcarriers

Fig. 5: A STFT hologram of 90 subcarriers from 3 OFDM
WiFi links (i.e., 30 subcarriers for each link) and the corre-
sponding spectrograms of the subcarrier 1, 20, 40, 60.

adaptation strategy to learn domain-invariant features from
the standardized CSI amplitude/relative amplitude and STFT
hologram. Figure 6 illustrates the model architecture. The
deep learning model takes both labeled dataX and unlabeled
data X ′ as input. The input data are first mapped into a
set of low-rank behavioral featuresZ by using the feature
extractor, which consists of two CNN models to process time-
domain data (i.e., amplitude/relative amplitude information)
and frequency-domain data (i.e., STFT holograms), respec-
tively. Based on the extracted features, a user recognizer
(i.e., a fully-connected neural network) can predict the user’s
identity Ŷu. In addition, an activity recognizer is used to
obtain the activity types (i.e.,̂Ya) of all the input data. To
remove the domain-specific information entangled inZ, a
domain discriminator is trained to predict the domain label
Ŷd (i.e., user location or environmental status), which seems
to contradict with our objective of deriving domain-invariant
features. However, by using an adversarial loss, the CNN
models are guided to derive features that indistinguishable by
the adversarial network, while at the same time, maximize the
performance of the user recognizer and the activity recognizer.
Through this minimax game, the derived deep learning model
can finally extract domain-independent features that character-
ize both identity and activity uniqueness. Besides adapting to
the location and environment changes, our domain adaptation
strategy may be extended to address domain variations caused
by the movement or replacement of WiFi devices. We leave
the detailed study of this case to our future work.

B. Feature Extractor

The feature extractor consists of two CNN models that
learn a set of behavioral features to characterize both human
identity and activity uniqueness. As illustrated in Figure7,
the CNN models consist of a 3-layer stacked CNN. In each
layer of the CNNs, a convolutional layer with 2D kernels is
used to calculate 2D feature maps that characterize behavioral
uniqueness of different activities/users. In addition, a batch
normalization layer is used to calibrate the input data, aiming
to mitigate small-scale input variations, and a dropout layer is
utilized to prevent over-fitting. The 2D feature maps are then
flattened and compressed with three fully-connected layers.
Particularly, given input CSI amplitude/relative amplitudeXt
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Fig. 6: Domain adaptation strategy to derive the environment-
independent user authentication model.

and STFT hologramsXf , the CNN models map the input into
behavioral featuresZ as follows:

Z = CNN(Xt, Xf ,Θ), (3)

whereΘ represents a set of learnable parameters (i.e., weights
and biases) in the feature extractor. The activations are all
Leaky ReLU.

C. User Recognizer and Activity Recognizer
Based on the extracted behavioral featuresZ, two fully-

connected neural networks are used as classifiers to perform
user identification and activity recognition. Both the userand
the activity recognizers have the same architecture so we
omit the subscriptsu and a in the symbols for simplicity.
The fully-connected networks further derive non-linear feature
abstractions to characterize the behavioral biometrics/activity
patterns. Based on the abstractions, a SoftMax layer is used
to predict the user identities or activity types. Given the input
feature Z, the mapping function is defined as:

Ŷ = G(Z; Φ), (4)

whereG(·) represents the mapping function andΦ is the a of
learnable parameters in the neural network.

To train the deep learning model (i.e., feature extractor and
user/activity recognizer), we use both labeled and unlabeled
data. For the labeled data, we calculate the cross-entropy loss
between the predictionŝY and the ground truth labelsY . For
unlabeled data, we also calculate the entropy of predictions
Ŷ ′ as the loss, which reduces the uncertainty when predicting
on the unlabeled data. The loss function is defined as:

L = Lcls(Y, Ŷ ) +H(Ŷ ′), (5)

where Lcls(·, ·) represents the cross-entropy loss function.
H(·) denotes the entropy.L could be eitherLu or La.
Note that our system simultaneously optimizes the user and
the activity recognizers so that the behavioral featuresZ
characterize both identity and activity uniqueness.

D. Domain Discriminator
We aim to use domain adversarial training [15] to derive a

mapping shared under different environmental statuses or in
different locations. The key component of the domain adap-
tation technique is a domain discriminator that is used in the
training process to force the feature extractor to derive domain-
independent features. Particularly, the domain discriminator
consists of 2 fully-connected layers using Leaky ReLUs as

Fully-connected Layer

2D Convolution + BN + Dropout

Fully-connected Layer

2D Convolution + BN + Dropout

2D Convolution + BN + Dropout 2D Convolution + BN + Dropout

Fully-connected Layer

2D Convolution + BN + Dropout 2D Convolution + BN + Dropout

Time Domain Input  ! Frequency Domain Input  !

Behavioral Features  

Fig. 7: Architecture of the deep learning-based feature extrac-
tor to extract behavioral features by taking inputs from both
the time and frequency domains.

Fig. 8: Learned environment-invariant abstractions of two
users (marked in red and blue) picking up a remote controller
under two environmental statuses (circle and triangle markers).

the activation functions. By taking the behavioral features Z
as input, the domain discriminator acquires the environmental
status/location label as:

Ŷd = Gd(Z,Ω), (6)

whereGd(·) represents the mapping function andŶd is the
domain label.Ŷd represents either the environmental status
and the location label based on the domain adaptation task.Ω
is a set of trainable parameters in the adversarial network.To
train the adversarial network for recognizing the domain, we
define the domain loss as:

Ld = Lcls(Yd, Ŷd), (7)

whereYd is the set of domain labels, which can be passively
collected.
E. Unsupervised Domain Adversarial Training

The objective of the domain discriminator seems to contra-
dict with our goal of location- and environment-independent
user authentication and activity recognition. But with a care-
fully designed loss function, we can use the domain dis-
criminator to guide the feature extractor on learning domain-
invariant features. The key is a negative factor−λ applied
to the domain loss so that the feature extractor is trained to
maximize the loss of the domain discriminator. We define the
adversarial loss for optimizing the feature extractor as:

Lf = Lu + αLa − λLd, (8)

whereLu, La, and Ld are the user loss, activity loss, and
domain loss, respectively.α and λ are the weighting pa-
rameters. Particularly,λ controls the trade-off between the
transferability and the distinctiveness of the learned features.
During the adversarial training process, we take turns to update
Θ, {Φu,Φa}, andΩ.
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To examine the proposed domain adaptation strategy, we
conduct a preliminary experiment by asking two volunteers to
perform the same activity (i.e., picking up a remote controller)
under two environmental statuses, i.e., Env. 1 and Env. 2,
where the positions of a desk and two chairs are different.
We visualize the user abstractions (i.e., outputs of the last
layer in the user recognizer excluding the SoftMax layer) on
a 2D space with t-SNE as shown in Figure 8. Note that the
ground truth labels for Env. 2 are not used for training. We can
observe that the abstractions of the two users can form two
clearly separate clusters. Furthermore, for different environ-
mental statues, the abstractions of the same user fall into the
same cluster, showing that the abstractions are environment-
independent. These results validate the effectiveness of the
proposed domain adaptation strategy.

VIII. P ERFORMANCEEVALUATION

A. Experimental Setup and Methodology
Devices and Network.We use two commercial laptops (i.e.,

Dell E6430) to emulate IoT devices in smart environments.
One laptop is used as the transmitter and the other laptop
is used as the receiver. Both laptops are equipped with 3
MINI PCI-E internal antennas and an Intel 5300 WiFi NIC
which internally tracks and reports CSI at 30 subcarriers [16].
Our system can also be extended to use a wider bandwidth
(e.g., 802.11ac, 802.11ax) and more WiFi devices to achieve
enhanced performance. We extract the CSI amplitude on the
9 OFDM links between the transmitter and the receiver and
calculate the relative amplitude between every two links. The
WiFi packet transmission rate is set to 1000pkts/s for
extracting fine-grained frequency domain features.

Data Collection.Experiments are conducted in a residential
apartment and an office with the size of33ft × 17ft and
21ft × 12ft, respectively. Figure 9 illustrates the positions
of the two laptops emulating IoT devices. For the residential
apartment, we place the receiver on two locations to collect
behavior data in the living room and the kitchen. A total of
10 representative activities (20 rounds for each) are performed
by 10 and 5 users in these two scenarios. The details of these
activities are shown in Table I.

Specifically, to evaluate the environmental independency
of our approach, for both residential apartment and campus
office, we collect data under 3 different environments in
which the furniture placements are different. For the residential

TABLE I: Detailed activities performed.
Code Activity Code Activity
A→B Walking (trajectory 1) E Operating on the oven
B→C Walking (trajectory 2) F Using the stove

B Picking up a remote control G Sitting in a seat
C Sitting in a chair H Stretching the body
D Exercising I Typing on a keyboard

apartment, we change the positions of 1 sofa, 1 microwave
oven, 3 cabinets, and 5 chairs. While for the office, we move
3 desks, 3 chairs, and some books placed on the desks. Each
piece of furniture is moved at least3ft for emulating large-
scale environmental changes. Particularly, when collecting data
in the office, we ask 5 users to perform 3 activities (i.e., G, H,
I) with location variations. The users conduct each activity at 4
different proximate locations at least one foot away from each
other. In total, we collect 4,079 behavior segments performed
by 10 users in the apartment and 3,513 behavior segments
performed by 5 users in the office.

We separate the collected data into source dataset (i.e.,
labeled data) and target dataset (i.e., unlabeled data), with
the locations/environments referred as the source and target
locations/environments. We useNs : Nt to present the
number of locations/environments involved in the source (i.e,
Ns) and the target datasets (i.e,Nt) when presenting the
results. Half of the target dataset is used for unsupervised
training and the other half is used for testing. We refer the
environments associated with the source dataset as the source
locations/environments and that corresponding to the target
dataset as the target locations/environments.

Baseline Methods.We compare our approach with a CNN
model only consisting of the feature extractor and the user
recognizer (i.e., described in Section VII-C) without applying
domain discriminator. In addition, we build another baseline
model based on transferable component analysis (TCA) [17].
TCA aims to learn a set of transferable representations based
on unlabeled data from the source datasets and the target
training datasets. Specifically, we extract time and frequency
domain features (used in our previous work [8]) from source
and target datasets and learn a set of transferable representa-
tions using TCA. Based on these representations, an support
vector machine classifier is used for user identification/activity
recognition on target testing datasets.

Evaluation Metrics. We define four different evaluation
metrics:user identification/activity recognition accuracyis the
percentage of predicted user identities/activities are correctly
recognized among all user behaviors;confusion matrixvisu-
alizes the percentage of each user’s behaviors being identified
among all users (i.e., the correct user and the other users);
true positive rate (TPR)is the percentage of a legitimate user’s
behaviors that are correctly accepted among all behaviors from
the legitimate userfalse positive rate (FPR)is the percentage
of the adversary’s behaviors being mistakenly accepted among
all behaviors of the adversary.
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Fig. 10: Performance of environment-dependent user identifi-
cation and activity recognition.

B. Performance of Environment-dependent User Identifica-
tion/Activity Recognition

We first show the performance of our system on user
identification and activity recognition using the randomlysplit
training and testing dataset of roughly same size (referredto
as environment-dependent). Figure 10 (a) shows that for both
scenarios, our system achieves over93% overall accuracy on
simultaneously recognizing both the identity and activityof
user behaviors. Figure 10 (b) gives the confusion matrix for
identifying 10 users in the apartment. We can find that our
system can achieve high accuracy on user identification. The
results demonstrate that our system is effective in both user
identification and activity recognition, showing its potential for
enabling customized services.

C. Performance of Environment-independent User Identifica-
tion/Activity recognition

We use all source dataset and half of the target dataset for
training. The other half of the target datasets are used for
testing. Figure 11 (a) gives the user identification performance
under large-scale environmental changes in the residential
apartment. Our approach can achieve87.3% and83.6% user
identification accuracies for two different settings. Particularly,
when training with 2 source environments and testing on 1
target environment, the accuracies are24.2% and18.7% higher
than the CNN baseline model and the TCA-based method,
respectively. From Figure 11 (b), we find that our approach
also has the highest user identification accuracy in the office,
with 85.2% and 83.6% accuracies under the 2 settings. Fur-
thermore, we observe that the user identification accuracies are
slightly higher in the residential apartment. This is because the
apartment does not have high-power WiFi infrastructures (e.g.,
campus-wide WiFi station) that create strong interference. The
above results confirm that the proposed approach can realize
environment-independent user identification.

As shown in Figure 12, for activity recognition, the pro-
posed domain adaptation approach still outperforms the two
baseline methods in both scenarios. Particularly, in the office
environment, our approach is at least22.4% and10.2% higher
than the accuracies of CNN and TCA baselines, respectively.
We also find that the activity recognition accuracies are slightly
higher than user identification accuracies in both scenarios,
indicating that domain adaptation for the user identification
task is more difficult. Overall, the proposed domain adapta-
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Fig. 11: Performance of environment-independent user identi-
fication.
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Fig. 12: Performance of environment-independent activity
recognition.

tion method can achieve robust activity recognition and user
identification under large-scale environment variations.
D. Performance of Environment-independent Spoofer Detec-
tion

To detect unauthorized users, we train a user recognizer (i.e.,
presented in Section VII-C) to differentiate a legitimate from
all other users. The user recognizer then serves as a spoofer
detection component. In the training phase, we randomly select
2 users as spoofers to guide the user recognizer on detecting
the legitimate user. In addition, we select the data of the same
set of users from the target dataset to extract environment-
invariant features. During testing, we select 2 different users
acting as spoofers to conduct random and mimic attacks, using
their behavior data from both source and target datasets.

Figure 13 (a) and (b) show the spoofer detection perfor-
mance under random attacks in the apartment and the campus
office. We find that our system can achieve close to100%
TPR with a low FPR below1% for all settings. These results
confirm that the random activities of the attacker can hardly
create similar behavioral biometrics as the legitimate user, and
thus the system can reliably defend against random attacks.
Figure 14 shows the performance of our system under mimic
attacks. We can find that the system has FPRs lower than2%
under all dataset settings, with over94% and91% TPR for the
apartment and the office, respectively. The results show that
our system is effective in defending against both random attack
and mimic attack. This is because even for the same activity,
our approach can extract unique behavioral characteristics of
the legitimate users.
E. Performance of Location-independent User Identifica-
tion/Activity Recognition

We combine all source and half of the target datasets for
training. The other half of the target dataset is used for
testing. From Figure 15 (a), we find that the proposed domain
adaptation approach can achieve91.3%, 84.5%, and 81.2%
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Fig. 13: Performance of environment-independent spoofing
detection against random attacks. N denotes the case when
the attacks are launched in the source environment.
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Fig. 14: Performance of environment-independent spoofing
detection against mimic attacks. N denotes the case when the
attacks are launched in the source environment.

user identification accuracies given 3 source locations, which
are at least17.2% higher than the two baseline approaches. In
addition, under the source-target ratio of3 : 1, our approach is
25.3% better than the TCA baseline method with the second
highest accuracy. These results confirm the superiority of
our approach to learn location-invariant features. Figure15
(b) presents the performance of location-independent activity
recognition. We find that our approach achieves over91.3%
under all settings, which are at least18% higher than that of
the TCA baseline method. The results show that the proposed
unsupervised domain adaptation approach can effectively miti-
gate the small-scale location variations during daily behaviors.

IX. CONCLUSION

In this paper, we develop a device-free user authentica-
tion system by extracting unique behavioral characteristics
captured by the CSI measurements in WiFi signals. Unlike
existing WiFi-based user authentication schemes, our system
aims to address two practical problems, small-scale location
variations and large-scale environment changes, which lead to
significant change of the CSI patterns and thereby cause pro-
file mismatches. To realize such an environment-independent
system, we design an unsupervised domain adaptation strategy
to remove the location and environment-specific information
entangled in CSI measurements to build an environment-
independent model for user identification and activity recog-
nition. Extensive experiments showed that the proposed sys-
tem has the capability of authenticating users through daily
behaviors under various scales of location variations and
environmental changes.
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Fig. 15: Performance of location-independent user identifica-
tion/activity recognition.
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