Math 662-  Final Exam     Name:__________________

December 18, 2000                                            Student #: ________________

 

Must show all work for full credit!!!

 

I pledge that I have not violated the NJIT code of honor____________________________

 

1.       Let X be the random variable with exponential density f (x) = exp {-x}, x > 0,

         and f (x) =  0, elsewhere.

(a)   Find the density of Y = X5  - 10.

(10 pts)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


(b)  Let X1, X2, , X10 be a random sample for m this exponential density.

            Find the density of Y1  = minimum {X1, X2, …, X10}.

(10 pts)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.        Let X1 and X2 have the joint probability density function given by h (x1, x2) =

2exp{-x1 - x2}, 0 < x1 < x2, zero elsewhere.

 

(a)   Find the joint probability density function of Y1  = X2 and Y2 = X2 - X1.

(12 pts)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            (b)  Compute E(X2 | X1).

(10 pts)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.         Let  X  be uniformly distributed on the interval (-2, 3). Compute the probability density function of Y = 1 - X2.

(10pts)

 

 

 

 

 

 

 

 

 

 

 

 

4.        It is discovered that 85 percent of the pages of a certain book contains no errors.

           If we assume that the number of errors per page follows a Poisson distribution,                          

            find the percentage of pages that have exactly one error?

(10 pts)

 

 

 

 

 

 

 

 

 

 

 

 

 

5.         Let X1, X2, …,X5  be a random sample from Normal with mean 0 and variance . Find the constant c so that   has t-distribution. How many degrees of freedom are associated with this t-distribution? Give the reasoning behind your answer.

(12 pts)

 

 

 

 

 

 

 

 

 

 

 

 

6.                  Given below is the cumulative distribution function of the random variable

F(x) =

(i) Compute P (X > 0.5 |  -1 < X < 1).

(6 pts)

 

 

 

 

 

 

(ii) Compute E (X).

(10 pts)

 

 

 

 

 

 

 

 

           

 

7.         Let X and Y have the joint probability density function given by 

    f (x, y) = , y = 0, 1, 2, …;  x = 0, 1,…, y, zero elsewhere.

 

            (a) Compute E(XY).

(10 pts)