Math 762- Final Exam

	Name:	
April 17, 2003	Student #:	
	Must show all work for full credit!!!	

I pledge that I have not violated the NJIT code of honor_____

Please note that the **problems with specified number** and page are **from the course** textbook: **A Course in Mathematical Statistics**, **By George G. Roussas - Second Edition**

1. Suppose that n cylindrical shafts made by a machine are selected at random from the production of the machine and their diameters and lengths measured. It is found that N_{11} have both (diameters and lengths) measurements within the tolerance limits, N_{12} have satisfactory length but unsatisfactory diameters, N_{21} have satisfactory diameters but unsatisfactory lengths, and N_{22} are unsatisfactory as to both measurements. $\sum_{i,j=1}^2 N_{ij} = n$. Each shaft may be regarded as a drawing from a multinomial population with density

$$p_{11}^{x_{11}}p_{12}^{x_{12}}p_{21}^{x_{21}}(1-p_{11}-p_{12}-p_{21})^{x_{22}}, for x_{ij}=0,1; \sum_{i,j=1}^{2}x_{ij}=1,$$

having three parameters. What are the maximum-likelihood estimates of the parameters if N_{11} = 90, N_{12} = 6, N_{21} = 3, and N_{22} = 1? (10 pts)

- 2. Observations $X_1,...,X_n$ are drawn from normal populations with the same mean μ but with different variances $\sigma_1^2,\sigma_2^2,...,\sigma_n^2$. If we assume that the σ_i^2 are known, what is the maximum likelihood estimator of μ ? (10 pts)
- 3. Let X_1, \dots, X_n be a random sample from the discrete density function $f(x;\theta) = \begin{cases} \theta^{-x}(1-\theta^-)^{1-x}, x=0,1,\\ 0, & elsewhere \end{cases}$, where $0 \le \theta \le \frac{1}{2}$. Note that $\Omega = [0,\frac{1}{2}]$. Find a maximum likelihood estimator of θ . What is the maximum likelihood estimator of θ^{-2} ? (10 pts)

4. Let X_1, \dots, X_n be a random sample from the density

$$f(x;\theta) = \frac{\ln(\theta)}{\theta - 1} \theta^x I_{(0,1)}(x)$$
. (a) Find a complete sufficient statistic if there is one.

(6pts) (b) Find a function of
$$\theta$$
 for which there exists an unbiased estimator whose variance coincides with the Cramer-Rao lower bound if such exists (7 pts).

- 5. For a random sample from the Poisson distribution, find an unbiased estimator of $\tau(\lambda) = (1 + \lambda)e^{-\lambda}$. (10 pts)
- 6. Let X_1, \dots, X_n be a random sample from the density $f(x;\theta) = \theta^{-2}xe^{-\theta x}I_{(0,\infty)}(x)$. (a) In testing H: $\theta \le 1$ versus A: $\theta > 1$ for n =1 (a sample of size one) the following test was used: Reject H if and only if $X_1 \le 1$. Find the power function and size of this test. (7 pts)

(b) Find a most powerful size- α test of H: θ = 1 versus A: θ = 2. (8 pts) (c) Does there exits a uniformly most powerful size- α test of H: $\theta \le 1$ versus A: $\theta > 1$? If so, what is it? Show work. (10 pts)

- 7. Problem # **13.7.2 i)**, page 369. Must show how the Likelihood ratio test was arrived at. (12 pts)
- 8. Problem # **15.2.2** page 404. (10 pts)