Math 762- Exam I Page 1 of 3

Math 762- Exam I

March	Name: 3, 2003 Student #:
	Must show all work for full credit!!!
I pledge that I have not violated the NJIT code of honor	
1.	Prove or disprove following (7 pts. each): (a) If two c.d. f.'s of the random variables X and Y satisfy $F_X(z) = F_Y(z)$ for all z, then $P(X = Y) = 1$. (b) If $E[X] > E[Y]$, then $P(X > Y) = 1$.
2.	Suppose that X_1, \dots, X_n form a random sample from a uniform (0, 1). Let Y_1 and Y_n be the first and last order statistics, respectively.
(15 pts	Determine the value of P(Y $_1 \le 0.1$ and Y $_n \le 0.9$).
\	
3.	Let X_n be a t-distributed random variable, with n degrees of freedom. Show that X_n converges in distribution to standard normal random variable as n goes to ∞ .

4. Let X_n , n=1,2,..., be random variables having negative binomial distribution with P_n and r_n such that $P_n \to 1$, $r_n \to \infty$, so that $r_n(1-p_n) = \lambda_n \to \lambda$ (>0). Show that $X_n \to X_n \to X_n$, where $X_n \to X_n \to X_n$ is a random variable distributed as $P(\lambda)$, i.e., the Poisson r. v. with parameter λ . (15 pts)

5. Suppose that X_1,\dots,X_n form a random sample from a distribution whose mean is μ and variance $\infty > \sigma^2 > 0$. Show that $\sqrt[n]{\left(\frac{\overline{X} - \mu}{S}\right)^d} \stackrel{d}{\to} Z$, as n goes to ∞ , where Z denotes the standard normal random variable and $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$. (15 pts)

Math 762- Exam I Page 3 of 3

- 6. Let X_1, X_2 be independent r. v.'s distributed as U ($\alpha, \alpha+1$). Then
 - i) Derive the p. d. f.'s of the r.v.'s $X_1 + X_2$ and $X_1 X_2$;
- ii) Determine whether these r. v.'s are independent or not. (15 pts)

7. Let X be the uniform random variable on the interval (-1, 3). Compute the p. d. f. of $Y = X^2$. (15 pts)