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Circadian rhythms are established by the entrainment of our intrinsic body clock to periodic
forcing signals provided by the external environment, primarily variation in light intensity
across the day/night cycle. Loss of entrainment can cause a multitude of physiological
difficulties associated with misalignment of circadian rhythms, including insomnia,
excessive daytime sleepiness, gastrointestinal disturbances, and general malaise.
This can occur after travel to different time zones, known as jet lag; when changing
shift work patterns; or if the period of an individual’s body clock is too far from the 24 h
period of environmental cycles. We consider the loss of entrainment and the dynamics
of re-entrainment in a two-dimensional variant of the Forger-Jewett-Kronauer model
of the human circadian pacemaker forced by a 24 h light/dark cycle. We explore the
loss of entrainment by continuing bifurcations of one-to-one entrained orbits under
variation of forcing parameters and the intrinsic clock period. We show that the
severity of the loss of entrainment is dependent on the type of bifurcation inducing the
change of stability of the entrained orbit, which is in turn dependent on the
environmental light intensity. We further show that for certain perturbations, the
model predicts counter-intuitive rapid re-entrainment if the light intensity is
sufficiently high. We explain this phenomenon via computation of invariant
manifolds of fixed points of a 24 h stroboscopic map and show how the manifolds
organise re-entrainment times following transitions between day and night shift work.
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1 INTRODUCTION

The function of the circadian timekeeping system is to align an organism’s physiology and behaviour
with the daily environmental cycles conferred by Earth’s rotation. Alignment is achieved by
endogenous circadian oscillators with periods close to, but not exactly, 24 h synchronising to
external 24 h periodic signals, such as the light/dark cycle, in a process called entrainment. Properties
of both the internal oscillator and the external forcing signal, such as intrinsic period and light
intensity, combine to determine the stable phase of entrainment. For example, circadian clocks with
long intrinsic periods can lead to delayed sleep phase syndrome (DSPS), a disorder where patients
tend to be unable to fall asleep until late at night and have difficulty waking up in the morning. Bright
light therapy can help to advance the entrained phase of DSPS patients so that their hormonal
rhythms, sleep-wake patterns, and peak performance times are more in line with societal norms [1].
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Failure to achieve entrainment can occur if the mismatch
between the periods of the intrinsic oscillator and the external
forcing is sufficiently large and the forcing signal is sufficiently
weak. In non-24 h sleep-wake disorder (non-24), patients are
unable to establish a stable 24 h sleep-wake rhythm [2–5]. Non-24
is common in blind people that do not have any light perception,
leading to sleep-wake rhythms with the period of their intrinsic
circadian clock. Since the intrinsic period of most people is
greater than 24 h, this results in sleep-wake patterns where the
phase of sleep onset progressively drifts later in the day from one
day to the next. Non-24 is also experienced by sighted individuals
where the combination of a short or long intrinsic period and a
reduced sensitivity to light renders them unable to entrain to 24 h
cycles.

Transient misalignment of circadian rhythms occurs when
there is an abrupt shift in the phase of environmental cycles.
After rapid travel across time zones, it can take several days for
the circadian clock to establish a stable phase relationship with
the light/dark cycle in the new time zone. During the re-
entrainment process, travelers may experience insomnia,
daytime sleepiness, gastrointestinal issues, and other
symptoms collectively known as jet lag. Circadian
misalignment and associated health problems can also be
caused by a change in work patterns, for example, when a
worker transitions from day shift to night shift or vice versa.
In particular, rotating or permanent night-shift workers have
increased incidence of cardiovascular disease and cancer
compared to permanent day shift workers [6]. Furthermore,
night shift workers that are not entrained to a permanent night
shift work schedule exhibit decreased alertness and performance
levels relative to entrained night shift workers [7].

Mathematical modeling and tools from dynamical systems
theory can be used to gain insight into circadian rhythm sleep
disorders and the re-entrainment process following shifts in the
light/dark cycle [8, 9]. The circadian clock is a complex system
consisting of cellular oscillators and network interactions within
and across brain regions and tissues throughout the body.
Mathematical models have been developed to describe the
circadian system at various levels, including detailed models
of the transcription/translation feedback loops underlying
intracellular molecular clocks and models of the electrical
activity of the suprachiasmatic nucleus—a network of
∼20,000 neurons in the hypothalamus that serves as the
brain’s master circadian timekeeper. We refer the reader to
[10, 11] for reviews of biochemical and electrophysiological
circadian models. Other modelers have focused less on the
cellular details and instead have tried to capture the behavior
of the circadian system at the level of the whole organism
(see [12] for a review). One such effort is the
Forger–Jewett–Kronauer (FJK) model, a low-dimensional
model of the human circadian system consisting of a central
limit cycle oscillator that responds to light via processing by the
retina [13]. This model is based on experiments measuring how
the amplitude and phase of circadian rhythms in human
subjects respond to light pulses. It has been extensively
validated in laboratory and field conditions, making it an
attractive choice for simulating jet lag and other

perturbations to the circadian system [14]. Here, we use
dynamical systems tools to analyse the entrainment dynamics
of a reduction to the original FJK model.

The remainder of the manuscript is organised as follows. In
Section 2, we consider the FJK model equations and then
introduce the two-dimensional version of the model that we
use in the present study. In Section 3, we characterise the
bifurcations that lead to loss of entrainment when key
parameters are varied and discuss these results in the context
of non-24. In Section 4, we compute invariant manifolds of fixed
points for a 24 h stroboscopic map constructed from the model.
We show that these manifolds are able to explain the dynamics of
a rapid re-entrainment phenomenon that has been previously
observed under certain conditions in simulations and
experiments. In Section 5, we illustrate how the manifolds
organise the dynamics of re-entrainment following transitions
between day and night shift work schedules. Finally, in Section 6,
we discuss how our results relate to previous studies on the
dynamics of circadian entrainment.

2 THE FORGER–JEWETT–KRONAUER
MODEL

In 1990, Kronauer introduced a mathematical model of the
human circadian pacemaker that reproduces many general
features of how the circadian clock responds to light exposure
in laboratory experiments [15]. Kronauer’s original model has
subsequently been revised and extended to account for additional
data on the effects of light observed in phase resetting
experiments [16–18]. These models consist of a limit cycle
oscillator, based on the Van der Pol equations, combined with
a model of retinal light processing. Although these models are
simplified descriptions of the human circadian system, they have
become a widely-used tool for predicting circadian phase and
have been carefully validated under a range of conditions [19–21].
Here we utilise the Forger–Jewett–Kronauer (FJK) version of the
model [13]. This three-dimensional system of ordinary
differential equations with external periodic forcing takes the
following form:

_A � π

12
(μ(A − qA3) − C[( 24

ρ τc
)

2

+ kB]), (1)

_C � π

12
(A + B), (2)

_n � α[I] f (t)(1 − n) − βn (3)

B � Gα[I] f (t)(1 − n)(1 − KC)(1 − KA), (4)

α[I] � α0[ II0]
p

, (5)

where the dots indicate derivatives with respect to time. The
variable C captures daily fluctuations in core body temperature,
A is a phenomenological auxiliary variable, and n ∈ [0, 1]
describes the activity of the phototransduction pathway that
drives the circadian system in response to light input of intensity
I with activation rate α and decay rate β. Equations 1,2 include
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modifications to the Van der Pol oscillator that scale the
amplitude and adjust the period. The parameter τc represents
an individual’s intrinsic circadian period; the correction factor ρ
ensures that the model oscillation period equals τc for
simulations in the absence of light (I � 0). The amplitude
recovery term (A − qA3) yields a limit cycle amplitude of 1.0
in the absence of light. The parameter μ describes the rate of
growth and decay of perturbations away from the limit cycle
representing an entrained (24 h) circadian rhythm. The variable
B, which is scaled by the gain parameter G, modulates the
oscillator’s sensitivity to light in accordance with known
circadian rhythms in human visual sensitivity [17]. The
function α scales the light intensity with respect to a basal

value I0, a sensitivity exponent p, and a gain parameter α0
that was fitted to data on experiments with light stimuli over
the photopic range [18]. The parameter K determines the shape
of the phase response curve (PRC) to light, with positive values
biasing the PRC to phase delays as observed in experiments [22].
Note that the impact of B on the auxiliary variable is scaled by a
parameter k< 1. Finally, f (t) is a periodic function with a period
of 24 h that, when combined with α, represents the light/dark
cycle. In this paper, we assume that f is a square-wave with duty
cycle N ∈ [0, 24], shifted by an amount ts ∈ [0, 24]:

f (t) � { 1, (t − ts)mod 24<N ,
0, otherwise,

(6)

whereN represents the number of hours of light in a 24 h interval.
In the absence of light (i.e., with N � 0 or I � 0), the system

Eqs. 1–5 supports a stable limit cycle solution with period τc. For
appropriate choices of system and forcing parameters, the system
can be entrained to a 24 h period orbit; example simulations using
the default parameter values given in Table 1 are shown in
Figures 1A–C. Throughout the paper, we will explore the
ability of the system to entrain to such a 24 h cycle, and the
consequences of perturbing trajectories away from the limit cycle
representing this entrained solution, for example, in response to
shift work.

TABLE 1 | Default parameter values used in analysis and model simulations.

Parameter Value Parameter Value Parameter Value

μ 0.23 q 4/3 ρ 0.99669
τc {24.2} k 0.55 β 0.45
G 33.75 K 0.4 α0 3
I {50} I0 9,500 p 0.5
ts {0} N {12}

For parameters whose values vary, they should be assumed to take the values in curly
braces unless otherwise stated. The units for the parameters associated with light
intensity (I and I0 ), time (τc, ts, andN), and rates (α0 and β) are lux, h, and h−1, respectively.

FIGURE 1 | (A–C): Simulations of the FJK model Eqs 1–5 for N � 12, τc � 24.2 with I � 50. (D–F): Simulations of the 2D version of the FJK model using (Eq. 8) in
place of (Eq. 4). (A) + (D): Time series of A (black), C (blue), and n (red). The shaded regions indicate where f(t) � 0, whereas f(t) � 1 in the unshaded regions. (B) + (E):
Stable entrained limit cycle. The dark portion of the orbit corresponds to the interval in which f(t) � 0. The marker shows the point along the orbit where f changes from 0
to 1. (C) + (F): Projection of panels (B, E), respectively, into the (A,C) plane.
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The dynamics for n are significantly faster than those forA and
C, as can be seen in the time series in Figure 1. This means that n
rapidly adopts its steady state value:

n∞(I) � f (t)α(I)
β + α(I). (7)

This observation allows us to approximate the full, three
variable system with a 2-dimensional version by replacing Eq.
4 with

B � Gα[I] f (t)(1 − n∞[I])(1 − KC)(1 − KA), (8)

where n∞ has been substituted for n. To demonstrate the validity
of this reduced model, we plot in Figures 1D–F a comparison of
the full system with the one obtained by replacing n by n∞(I).
Reduction of the system to a two variable approximation
facilitates analysis of the underlying dynamics, as we shall later
elucidate.

The effect of changing shift work patterns, or of the jet lag
induced by travelling across time zones (assuming variation in
longitude only), can be modelled by changing ts and observing
how trajectories return to the stable limit cycle. The severity of the
effect of such perturbations can be measured by the entrainment
time, that is, the duration required for trajectories starting from
arbitrary initial points to converge to the stable orbit (we provide
a more precise definition in Section 4) as the phase of the
circadian oscillator with respect to the external forcing is
varied. In Figures 2A,B, we plot re-entrainment times
obtained by choosing initial conditions at regular phase shifts
along the entrained limit cycle. For each point we change ts
instantaneously from its reference value by the amount indicated
on the x-axis, Δts, and compute the time taken for the resulting
trajectory to converge back to the limit cycle.

Similarly to results reported in [23–26], we observe that there
is a pronounced peak in the re-entrainment for I � 50 for
Δts ≈ +10.5, which suggests the existence of a “worst” shift in
circadian phases. Interestingly, for higher light intensities, this
global maximum in re-entrainment time is replaced by a local
minimum, suggesting a change in dynamics near this value of Δts.

We remark here, that whilst we demonstrate this transition (from
global maximum to local minimum) under variation of I, similar
observations can be made for other system parameters, such as G
or α0. This phenomenon has implications for jet lag (where Δts �
+10 corresponds to traveling 10 time zones in the eastward
direction) and also for workers rotating between day and night
shifts. We demonstrate in Figure 2C that at low light intensity,
rotating from nights to days is more difficult than rotating from
days to nights, whereas at high light intensity days to nights is
more difficult than nights to days. The primary goals of this paper
are to understand this transition and to establish where and how
entrainment to a stable 24 h rhythm is lost.

3 BIFURCATION ANALYSIS

The behaviour of dynamical systems in general is organised by
invariant sets in phase space and their associated manifolds. For
periodically forced systems, these invariant sets typically take the
form of periodic orbits, where we note that there may be many
such objects in the full phase space. With this in mind, we aim to
find periodic orbits of the two variable FJK model (hereby
referred to as the 2D model) for the default parameter values;
see Table 1. In particular, we seek to identify bifurcations in the
number of periodic orbits since these transitions are relevant to
understanding the dynamics of the entrainment process. Hence,
we proceed to probe the bifurcation structure of the 2D model,
using the methodology detailed in the Supplementary
Material S1.

3.1 Variation of Light Intensity
We first perform bifurcation analysis in the light intensity
parameter I and display the results in Figure 3. The
bifurcation diagram in Figure 3A shows the branches of
solutions under variation of I and we identify two fold
bifurcations (around I ≈ 2.1 and I ≈ 118.6), which we label IF1
and IF2, respectively. For I > IF2, we find that the only invariant set
in the forced system is a stable limit cycle, the time series of which
is shown in Figure 3B, and so all trajectories will converge to this

FIGURE 2 | (A) + (B): Re-entrainment times as a function of the shift in the phase of the external forcing. The FJK model is shown in panel (A) and our two
dimensional reduction is shown in panel (B). For I � 50, we observe a peak in the re-entrainment time at around a +10.5 h shift. For I � 1000, we now observe a local
minimum, rather than a global maximum, in re-entrainment time for a +10.5 h shift in both models. (C): Re-entrainment times following transitions from day shift to night
shift (DS→NS) and from night shift to day shift (NS→DS) in the 2D model.
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FIGURE 3 | The stable (solid), saddle (dashed), and fully unstable (dotted) periodic orbits in the 2D model. (A): Bifurcation diagram of the periodic orbits under
variation of Iwith other parameters as in Table 1. Purple triangles mark folds of periodic orbits at approximately IF1 ≈ 2.1 and IF2 ≈ 118.6. The vertical grey lines show the
values of I used in panels (B) and (C). (B–C): Time series plots of the orbits over a 24 h period for I � 150 [panel (B)], and I � 50 [panel (C)]. Grey portions of the orbits
correspond to f(t) � 1, and navy portions correspond to f(t) � 0 (shaded). (D–E): Orbits for I � 50, as shown in panel (C), plotted over a 24 h period. The projection
of these orbits onto a plane at zero phase of the forcing cycle [i.e., where f(t) switches from 0 to 1] is shown on the front-facing surface [Time � 0 h] of panel (D) and in this
(A,C)-plane alone in panel (E). The markers show the location of the periodic orbits at the zero phase of the forcing cycle.

FIGURE 4 | (A–C): Bifurcation diagrams of the 2D model under variation in N for I � 50 [panel (A)], I � 150 [panel (B)], and I � 1000 [panel (C)]. Depicted are the
amplitudes (L2-norm) of the stable (solid), saddle (dashed), and fully unstable (dotted) periodic orbits. The vertical grey lines mark the default parameter value of N � 12.
(D–F): Bifurcation diagrams of the 2Dmodel under variation in τc for I � 50 [panel (D)], I � 150 [panel (E)] and I � 1000 [panel (F)]. The vertical linesmark τc � 24.2 in each
panel. Fold bifurcations are indicated by purple triangles. Neimark–Sacker bifurcations are indicated by teal squares.
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orbit. For I < IF1, there are no stable periodic orbits, and
trajectories undergo quasiperiodic motion, highlighting the
difficulty to entrain to a 24 h rhythm under extremely low
light intensities. For intermediate values of IF1 < I < IF2, the
system exhibits three periodic orbits, one of which is stable
and one of which is fully unstable, with the remaining orbit
being of saddle type. These orbits are shown as time series in
Figure 3C, in the full (A,C, t) space in Figure 3D, and projected
onto the plane of zero phase (of the light/dark cycle, i.e., the time
at which f switches from 0 to 1) in Figure 3E. In this case,
trajectories will ultimately converge to the stable periodic orbit,
but the unstable limit cycles and their manifolds play an
important role in organising how this occurs, as we shall
discuss in Section 4.

3.2 Variation of Day Length
In addition to light intensity, the day length, expressed by the
parameter N, also influences the number and type of periodic
orbits supported by the system, as illustrated in Figures 4A–C.
For I � 50, the fully unstable limit cycle is disconnected from the
branch of saddle and stable orbits; see Figure 4A. The isola
formed by these latter branches is bounded by two fold
bifurcations around NF1 ≈ 2.4 and NF4 ≈ 23.5, using similar
notation as before. Thus, if the day length becomes too long
or too short (as would be expected in polar regions), the circadian
rhythm cannot be entrained to a 24 h rhythm. For higher values
of I, the branch of fully unstable orbits merges with the branch of
saddle orbits via a cusp bifurcation, leading to the formation of
two more fold bifurcations. This scenario is highlighted in Figure
4B for I � 150, where the additional folds occur at NF2 ≈ 9.3 and
NF3 ≈ 16.1. ForNF2 <N <NF3, the stable periodic orbit is the only
solution to the system. As I is increased further, the interval over
N for which this is true grows (as shown in Figure 4C for
I � 1000), highlighting that higher light intensities facilitate
entrainment to a 24 h rhythm.

3.3 Variation of Natural Period
As well as considering properties of the external environment
such as light intensity and day length, it is pertinent to consider
the influence of intrinsic properties of the circadian oscillator on
entrainment. The natural period, τc, is of particular note since it
can be directly measured and has been shown to affect
individual’s entrainment properties and daily cycle habits,
such as their chronotype [27]. To this end, we show in
Figures 4D–F the branches of solutions under variation of
τc for the same I values as in Figures 4A–C. We observe a
similar structure between the two bifurcation diagrams,
namely, that for low I values, as in Figure 4D, there is an
isola structure similar to that in Figure 4A, but over a much
smaller range of τc. For higher I values, as seen by comparing
Figure 4E with Figure 4B, there is a range over τc for which
the system possesses only the stable periodic orbit, whilst for
τc values either side of this region, all three aforementioned
solutions are present. For the highest value of I � 1000, as in
Figure 4F, the stable periodic orbits destabilise via
Neimark–Sacker bifurcations, rather than folds. This
distinction in bifurcation type, whilst subtle, can have a

significant effect on entrainment beyond the bifurcation
point, as we shall discuss in Section 3.4.

3.4 Behaviour Near the Bifurcations
In Figures 4D–F, we observe that the type of bifurcation leading
to loss of stability of the entrained orbit under variation of τc
changes as I increases, switching from a fold to a Neimark–Sacker
bifurcation. Following both of these bifurcation types, the system
no longer possesses a stable period 1 orbit. In both scenarios,
trajectories undergo torus-like behaviour, however, the manner
in which they do so differs. This observation has particular
significance for people with non-24 h sleep/wake cycles, which
can be observed by analysing the phase dynamics of the
quasiperiodic motion. In Figure 5, we show the dynamics of
the system just past the fold bifurcations shown in Figure 4D (the
top row shows dynamics for τc < τF1c , where τF1c corresponds to
the left-most fold, whilst the bottom row displays dynamics for
τc > τF4c , where τF4c corresponds to the right-most fold). The torus-
like behaviour in both cases is evident from the modulation of the
amplitude of the oscillations in C in Figures 5A,D.

To demonstrate the effect that the loss of entrainment has on
the circadian rhythm, we plot in Figures 5B,E, the cycle-to-cycle
variation of the period, as measured by the interval between
successive nadirs in C; denoted Cmin. Where τc < τF1c (τc > τF4c ), we
see that the period of the circadian cycles is always smaller
(greater) than 24 h, highlighting the failure to entrain to a 24 h
period rhythm. The consequence of this can be seen by examining
the evolution of the phase of the Cmin values relative to the forcing
cycle, as shown in Figures 5C,F. Here we see that relative phase of
the circadian oscillator constantly slips with respect to the forcing
cycle, completing successive rotations around the full circle of
possible phase differences. A person with a circadian oscillator
following such dynamics will rarely phase-match to the external
forcing, and as such, is likely to experience significant circadian
rhythm disorders.

To compare the differences between dynamic behaviour
associated with the different bifurcation types, we plot in
Figure 6 the system behaviour following Neimark–Sacker
instabilities. The panels in the figure follow the same layout as
in Figure 5. Whilst we would conclude mathematically that the
circadian oscillator is no longer entrained following such a
bifurcation as in the case for dynamics near a fold, from a
physiological perspective, the oscillator may still be regarded as
entrained if the oscillatory dynamics around the now unstable
periodic solution are small in amplitude (relative to the original
limit cycle). In a similar vein to Figure 5, the top row in Figure 6
displays dynamics for τ < τN1c , where τN1c is the left-most
Neimark–Sacker bifurcation, whilst the bottom row shows
trajectories for τc > τN2c , where τN2c is the right-most
Neimark–Sacker bifurcation. Close to each Neimark–Sacker
bifurcation, we expect the period of the modulation of the
original limit cycle (that which undergoes the instability) to be
approximated by the imaginary part of the linearised system around
this limit cycle. In particular, if the eigenvalues of this linearisation at
the bifurcation point are given by λ ± � μ ± iω with |λ ±| � 1, then
the expected period of the modulation will be T � 2π/ω. In our
case, we find that for Figure 6A, ω ≈ 0.56, leading to T ≈ 11.20,
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FIGURE 5 | Dynamics of the 2Dmodel with I � 50 at τc values just beyond the fold bifurcation points with τc � 23.3< τF1c [panels (A–C)] and τc � 24.8> τF4c [panels
(D–F)]. (A) + (D): Trajectories ofC highlighting modulation in the amplitude of the circadian oscillations. Open black circles indicate the dailyCmin values, and solid orange
circles indicate the peak values of C for the longer time scale amplitude modulation, which has a period of ∼ 68 days in panel (A) and ∼ 100 days in panel (D). (B) + (E):
Evolution of the interval between successive Cmin values. Dashed lines indicate entrainment to a 24 h rhythm. (C) + (F): Evolution of the phase of the Cmin values
relative to the forcing phase.

FIGURE 6 | Dynamics of the 2D model with I � 1000 at τc values just beyond the Neimark–Sacker bifurcation points with τc � 21.8 < τN1c [panels (A–C)] and
τc � 26.1 > τN2c [panels (D–F)]. (A) + (D): Trajectories of C highlighting modulation in the amplitude of the circadian oscillations. Open black circles indicate the daily Cmin

values, and solid orange circles indicate the peak values ofC for the longer time scale amplitude modulation which has a period of ∼ 11 days in panel (A) and ∼ 18 days
in panel (D). The remaining panels are organised in the same manner as in Figure 5.
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whilst for Figure 6D, ω ≈ 0.35 so that T ≈ 17.79. In both cases, we
find excellent agreement between the numerical simulations and the
predictions from the bifurcation analysis.

For parameter values near the Neimark–Sacker instabilities, we
see that the cycle-to-cycle period of C now varies around 24 h, as
can be seen in Figures 6B,E. The consequence of this is that the
phase of C relative to the external forcing, although varying from
cycle-to-cycle, is constrained to an interval around the correct
phase (i.e., the phase of the underlying limit cycle), as shown in
Figures 6C,F. This means that even though people with such
dynamics will not be entrained to a 24 h period, their phase
variation relative to the external forcing will be of small amplitude,
meaning that theymay not experience significant circadian rhythm
disorders. Overall, this highlights the importance of high light
intensities (or, equivalently, in boosting sensitivity to light) for
combating non-24 h sleep/wake disorders.

3.5 Summary of Bifurcation Analysis
The observations of the one-parameter continuations may be
summarised via the three-parameter bifurcation diagram as
shown in Figure 7A, with two-dimensional slices of the full
diagram shown in Figures 7B–D. Figure 7A shows the surfaces
of fold bifurcations (purple) together with the surfaces of
Neimark–Sacker bifurcations (teal) that bound parameter
regimes (indicated in Figures 7B–D) with different entrainment
behavior. Figure 7B and Figure 7C showcase the so-called Arnol’d
tongues that are commonly observed in forced oscillator systems.

In the central, light orange shaded, region in Figure 7B, bounded
by the Neimark–Sacker (teal) and fold (purple) bifurcation lines,
only the stable periodic orbit exists and so the system entrains
easily. In the lower, darker orange shaded part of the central region,
the stable, unstable and saddle periodic orbits coexist. In this
region, the system ultimately converges to the stable periodic
orbit, since it is the only attracting set, but the pathway
involved in this convergence may be heavily shaped by the
other orbits, as will be investigated in Section 4. In the white
region to the left and right of the shaded regions, no stable 24 h
period orbit exists and so we conclude that the circadian oscillator
does not entrain to a 24 h rhythm. Similarly, the light orange
shaded region in Figure 7C supports only a single, stable periodic
orbit, whilst the region bounded between the two fold curves
possesses all three types of periodic orbit. To the left and right of
the outer fold curve, only the unstable orbit exists, and hence there
is no possibility to entrain to a 24 h rhythm. Figure 7D shows the
so-called Arnol’d onion [25, 28], where we now identify a central
portion in which only the stable periodic orbit exists. This is
surrounded by a region supporting all three orbit types, which itself
is surrounded by the white region with only the unstable orbit.

4 ENTRAINMENT TIMES

The bifurcation diagrams in Section 3 indicate where in
parameter space the circadian oscillator can be entrained to a

FIGURE 7 | (A): Three-parameter bifurcation diagram of the 2D model under variation of (I,N, τc). (B–D): Two-parameter bifurcation diagrams under variation of
(I, τc) for N � 12 [panel (B)]; (I,N) for τc � 24.2 [panel (C)]; and (N, τc ) for I � 200 [panel (D)]. In all panels, purple lines/surfaces correspond to fold bifurcations, whereas
teal lines/surfaces show Neimark–Sacker bifurcations. The square markers in panels (B) and (D) indicate the points at which the Neimark–Sacker and fold curves meet.
In the orange shaded regions of panels (B–D) the stable, unstable and saddle periodic orbits exist; in the light orange shaded region only the stable periodic orbit
exists. In the surrounding area (white), only the unstable periodic orbit exists and there is no entrainment to a 24 h cycle.
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24 h cycle under our choice of forcing. Even in these regions of
parameter space, however, the dynamics involved with the
entrainment can be markedly different depending on initial
conditions. To demonstrate this point, we compute the time
taken for a trajectory starting from an arbitrary initial
condition to converge to the stable limit cycle; we refer to
such times as entrainment times. Formally, we define the
entrainment time, T (X) ∈ R≥ 0, of an initial condition X �
(A,C) to be

T (X) � min{t ≥ 0| ‖Φt(X) − Γs(t)‖2 ≤ ε}, (9)

where ε is a tolerance which we hereon set to ε � 0.001, and Γs is
the stable limit cycle, defined by

Γs(t) � Φt(Xs
L), 0≤ t < 24, (10)

where Xs
L is the point along the stable limit cycle when f (t)

switches from 0 to 1 (dawn), we refer to this point as the point of
zero phase. We denote phase differences along the limit cycle with
respect to the point of zero phase by Z, which is defined
modulo 24 h.

In Figures 2A,B, we recapitulated results from [25] by plotting
the entrainment times for initial conditions along the stable limit
cycle at different relative phases (note that the definition of
entrainment times between the two studies are different). This
section is dedicated to understanding this phenomenon. To this
end, we consider a stroboscopic map P : R2 →R2 defined by

Xn+1 � P(Xn) � Φ24(Xn) � ΦD
24−N+ΦL

N(Xn). (11)

The above may equivalently be thought of as a Poincaré return
map, with a section chosen at the zero phase of the forcing cycle. In
Figure 8, we show sequences of map iterates of Eq. 11 for I � 50
(Figure 8A and Figure 8C) and I � 1000 (Figure 8E) following an
abrupt phase advance of the light/dark cycle, such as that which
occurs for positive phase shifts +Δts. Figures 8B,D,F show the
evolution of the phase of the Cmin values relative to the forcing
phase. The initial conditions on Γs for the Figure 8A and Figure
8C are slightly phase-shifted with respect to each other. The effect
of this small difference is evident from the resulting dynamics. In
Figure 8A, the iterates move around the orbit in an anti-clockwise
fashion, whilst in Figure 8C the iterates follow a clockwise motion.
Anti-clockwise iterates correspond to re-entrainment in an
orthodromic fashion (i.e., in the same direction as the phase
shift of the light/dark cycle) through repetitive phase
advancements, as shown in Figure 8B. Conversely, clockwise
iterates reflect antidromic re-entrainment (i.e., in the opposite
direction as the phase shift of the light/dark cycle) via
successive phase delays, as shown in Figure 8D. The sensitivity
around the initial conditions in Figure 8A and Figure 8C suggests
the presence of a “neutral point” at which the behaviour switches
from anti- to orthodromic re-entrainment.

In Figure 8E, we plot iterates for the map with I � 1000 with
an initial condition close to the neutral point. Rather than
displaying anti- or orthodromic behaviour, the sequence of

FIGURE 8 | Long re-entrainment times for I � 50 through phase-advancement [panels (A) + (B)] or phase-delay [panels (C) + (D)]. (E) + (F): Fast re-entrainment for
I � 1000, whereby a trajectory takes a “shortcut” instead of advancing or delaying. Note the panel labelling is now column-wise. Panels (A, C, E) show the stable limit
cycle for the relevant value of I, the grey arrow indicates the direction of the phase shift of the light/dark cycle. The point of zero phase XL along the orbits is marked by a
black circle. The coloured arrows indicated the direction the iterates move around the orbit. Panels (B, D, F) show the evolution of the phase of the Cmin values
relative to the forcing phase.
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iterates cuts directly across the phase space, appearing to take a
“shortcut”, rather than re-entraining via gradual phase
advancement or delay. This shortcut-type behaviour is
reflected by the decrease in entrainment time observed at a
phase shift of Δts ≈ + 10 as shown in Figure 2. In [25], the
neutral point appears as an unstable fixed point of a one-
dimensional entrainment map whose section was chosen to be
transverse to the stable limit cycle at the point of zero phase. Here,
we will show that the neutral point can be understood by
examining (strong) stable manifolds of the stable and saddle
fixed points of the stroboscopic map.

4.1 Manifolds as Organisers of Entrainment
Times
We compute manifolds following the steps outlined in
Supplementary Material S2. Figure 9 shows the projection of
the periodic orbits in the (A,C)-plane with the fixed points of Eq.
11 indicated with a marker, and the corresponding stable and
unstable manifolds of the points for I � 50 and I � 1000. In
Figure 9A, we plot the manifolds of the three fixed points
(corresponding to stable, saddle, and unstable limit cycles of
the 2D model) for I � 50. The stable manifolds (blue lines) of the
stable and saddle fixed points are approximately linear for this
parameter set, whilst the unstable manifolds (red lines) of the

saddle and unstable fixed points curve away from the fixed points,
following the periodic orbits more closely. If we focus specifically
on the manifolds associated with the saddle orbit, we can clearly
see how the manifolds organise the behaviour observed in
Figures 8A–D. In particular, the orthodromic and antidromic
re-entrainment behaviour closely follow the trajectory charted by
the unstable manifold of the saddle point. The separatrix is given
by the stable manifold of the saddle point Xsaddle

L , and the neutral
point is the intersection of the same stable manifold with the
projection of the periodic orbit onto the plane of zero phase.
Importantly, we have that

∣∣∣∣λssaddle − 1
∣∣∣∣> ∣∣∣∣λusaddle − 1

∣∣∣∣ so that
contraction toward Xsaddle

L along the stable manifold is
stronger than repulsion away from the same point along its
unstable manifold. This means that trajectories near Xsaddle

L get
pulled toward the saddle limit cycle before slowing moving away,
explaining the long entrainment times near this point in the
simulations shown in Figure 2. This observation is confirmed by
examining entrainment times for initial conditions across a range
of (A,C) values, as shown in Figure 9B, which we compute
according to Eq. 9 via simulation over a GPU architecture.
Superimposed on these entrainment time heat maps are the
stable manifold of the saddle limit cycle and strong stable
manifold of the stable limit cycle. In this figure, we see that
peaks in the entrainment times occur exactly along the stable
manifold of the saddle. If we examine the unstable manifolds of

FIGURE 9 | Intersections of the manifolds of the periodic orbits of the 2D model with the plane of zero phase for I � 50 [panels (A) + (B)] and I � 1000 [panels (C) +
(D)]. (A) + (C): Manifolds of the stable and saddle periodic orbits [panel (A)] and of the stable periodic orbit [panel (C)]. Stable and strong stable manifolds are depicted in
blue, whilst unstable manifolds are red. Also plotted are the projections onto the plane of zero phase of the stable (solid lines), saddle (dashed lines), and unstable (dotted
lines) periodic orbits in black and grey. The markers denote the points of zero phase along the respective periodic orbits. (B) + (D): Heat maps of entrainment times,
T , of trajectories with initial conditions distributed across the (A,C) plane. The dashed blue lines are the strong stable manifolds of the stable periodic orbit [panels (B) +
(D)] and the stable manifold of the saddle periodic orbit [panel (B)].
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the saddle point in Figure 9A, we see that they organise the
orthodromic and antidromic return to the stable fixed point
shown in Figures 8A,C. As such, the stable manifold of the
saddle point serves as a separatrix between trajectories exhibiting
these two kinds of behaviour.

If we increase the light intensity to I � 1000, the saddle and
unstable orbits are no longer present, having disappeared via a
fold bifurcation. In this case, we observe that the stable manifolds
of the stable limit cycle are responsible for organising behaviour
near the neutral point as shown in Figure 9C. Now we can see
that the shortcut shown in Figure 8E corresponds to trajectories
that follow this stable manifold, which is confirmed in the heat
map in Figure 9D.

This plot highlights the existence of a “river” of points in the
(A,C) plane centred on the strong stable manifold of the stable
limit cycle that possess significantly lower entrainment times than
points around them. We are now in a position to demonstrate
how the global maximum at Δts ≈ 10.5 for I � 50 becomes a local
minimum for I � 1000. As the fixed points of Eq. 11
corresponding to the fully unstable and saddle fixed points
approach each other and coalesce at fold point IF2, the stable
manifolds of the saddle and stable limit cycles also approach one
other. Since the manifolds vary smoothly with respect to the
system parameters, the stable manifold of the saddle limit cycle is
effectively replaced by the strong stable manifold of the stable
limit cycle as the system moves through the bifurcation. For
I > IF2, trajectories close enough to the strong stable manifold of
the stable limit cycle can now follow the shortcut, though most
trajectories still follow the typical orthodromic and antidromic
re-entrainment routes. As I increases, the width of the river
increases, so that more trajectories entrain to the limit cycle
quickly, though we remark that this width ultimately saturates as I
continues to increase.

Thus far, we have set ts � 0, setting the point of zero phase to
occur exactly at dawn [when f (t) switches from 0 to 1]. As time
zones change, or as a result of changing shift work patterns, the
phase of the intrinsic circadian clock will become shifted with
respect to the external forcing, causing a shift in ts. Note that
variations in ts do not change the location of limit cycles in the

system, rather, they cause the point of zero phase to rotate around
the orbit. A similar observation holds for the manifolds. This is
demonstrated in Figure 10A, where we plot the stable manifold of
the saddle limit cycle and strong stable manifold of the stable limit
cycle for I � 50, shown in Figure 9B, for a sequence of values of ts.
In fact, if we denote the set of points comprising a particular
manifold in the system with an arbitrary value for ts at a general
forcing phase, θ, by Wθ

ts , we have that W
θ
ts is equal to the image

under the flow of the system of W0
0 for duration θ − ts that is:

Wθ
ts
� { ΦL

θ−ts(W0
0), 0≤ θ − ts ≤N

ΦD
θ−ts−N+Φ

L
N(W0

0), N < θ − ts < 24
, (12)

noting that θ − ts should be treated modulo a 24 h period. The
natural rotation induced by the flow gives rise to the rotated
position of the manifolds as ts and θ vary. This relationship allows
us to trace out the manifolds over the entire forcing cycle, which
we display in Figure 10B for the default parameters as listed in
Table 1; compare to Figure 3D. The integrated manifolds can
then be used to separate trajectories that follow orthodromic vs
antidromic re-entrainment for arbitrary phase shifts and at
arbitrary phases of the forcing cycle.

5 APPLICATION TO SHIFT WORK

In developed economies, millions of people either permanently
work the night shift or rotate in and out of night shift work.When
a worker rotates from day shift to night shift, or vice versa, the
abrupt change in the pattern of their exposure to light can cause
circadian misalignment and jet lag-like symptoms until they
entrain to the light/dark cycle of the new shift. Here we study
the dynamics of re-entrainment following shift work rotations
and use the manifolds of the stable and saddle limit cycles
discussed in Section 4.1 to explain the simulation results
shown in Figure 2. In particular, we focus on the following
two questions. Firstly, at low light intensity (I � 50), why does it
take longer to re-entrain after rotating from night shift to day shift
(NS→DS: 1,360 h) than it does after rotating from day shift to

FIGURE 10 | (A): Intersection of the strong stable manifolds (dark coloured) of the stable periodic orbit and stable manifolds (light coloured) of the saddle periodic
orbit for the indicated values of ts. The projection of each periodic orbit (black and grey) onto this plane of zero phase is also shown. We see that the manifolds rotate
around each orbit as ts is varied, as evidenced by comparing the manifolds with ts � 0 and ts � 12. (B): Strong stable manifolds of the stable limit cycle (dark blue) and
stable manifolds of the saddle limit cycle (light blue) along the entire 24 h forcing cycle.
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night shift (DS→NS: 802 h)? Secondly, why is this asymmetry
reversed at higher light intensity (I � 1000), with a shorter re-
entrainment time after rotating from night shift to day shift
(NS→DS: 329 h) than after rotating from day shift to night shift
(DS→NS: 392 h)?

We assume that a worker on the day shift works from 7 AM to 3
PM and sleeps from 11 PM to 6 AM, whereas someone on the night
shift works from 11 PM to 7 AM and sleeps from 8 AM to 3 PM. In
either case, they are exposed toN � 17 hours of light. For bothDS and
NS workers, “dawn” (i.e., when their light exposure begins) occurs at
the Z � 0 location on the stable limit cycle. Similarly, “dusk” (when
their light exposure ends) occurs at the Z � 17 location for both DS
and NS workers. However, DS and NS workers are at these locations
on the limit cycle at different wall-clock times: Z � 0 corresponds to 6
AM for DSworkers and 3 PM for NSworkers; Z � 17 corresponds to
11 PM for DSworkers and 8AM for NSworkers.With regards to our
previous notation, the switch from DS→NS corresponds to Δts � 16
and the switch from NS→DS represents a value of Δts � 22.

5.1 Rotating From Day Shift to Night Shift at
Low Light Intensity
To simulate a worker rotating from day shift to night shift, we
assume that they remain entrained to the DS light/dark cycle until
11 PM, which is the Z � 17 location indicated by the solid teal dot
in Figure 11A. If they were staying on DS, this would be dusk.
However, since they are rotating to NS, instead of going to bed

they go to work and receive additional light exposure which
perturbs them away from the stable limit cycle. More specifically,
the DS worker rotating to NS will receive nine extra hours of light
before going to bed at 8 AM. This can be thought of as equivalent
to traveling nine time zones in the westward direction. By contrast, a
worker that is already entrained to the NS light/dark cycle will not be
at the Z � 17 location on the stable limit cycle at 11 PM. Rather, they
will be at the Z � 8 location indicated by the solid orange dot in
Figure 11A. The orange periodic orbit shown in Figure 11B
represents the entrained NS worker, and the teal trajectory
represents the DS worker switching to NS. Re-entrainment is
considered complete when the Euclidean norm of the difference
between the teal and orange trajectories first falls below the tolerance
ε. To help visualise the re-entrainment process, we strobe the system
every 24 h and plot the location of the re-entraining trajectory in the
(A,C) plane as open teal dots in Figure 11A and as filled teal dots in
the time course shown in Figure 11B. For reference, the strobed
iterates of the entrained NS worker are shown as filled orange dots.
From Figure 11A, we see that the iterates of the stroboscopic map
move along the unstable manifold of the saddle limit cycle until they
converge to the location of the entrained NS worker.

5.2 Rotating From Night Shift to Day Shift at
Low Light Intensity
Next we consider a worker rotating from night shift to day shift.
We assume that they remain entrained to the NS light/dark cycle

FIGURE 11 | Low lux (I � 50) entrainment dynamics for τc � 24.2 and N � 17. (A) + (B): Dynamics following transition from day shift to night shift (DS→NS). (A):
Projections of the periodic orbits, and their points of zero phase, for the day shift are shown in black (and grey). The points of zero phase corresponding to the periodic
orbits for the night shift (which has a different phase of entrainment than the day shift) are shown in orange. The unstable and (strong) stable manifolds of the periodic
orbits at the phases indicated by the orange markers are shown in red and blue, respectively. The worker transitions from DS→NS when f(t) � 1→ f(t) � 0, with
their instantaneous (A,C) values at this time indicated by the solid teal dot (to the left of the panel). The open teal markers indicate the (A,C) values of the trajectory
starting from this point evaluated at successive 24 h intervals. The trajectory ultimately converges to the entrained phase indicated by the solid orange marker. (B): Time
course ofC of the entraining trajectory (teal) as it converges to the stable entrained periodic orbit of the night shift (orange). Solid markers on each trajectory indicate theC
value of the trajectory evaluated at successive 24 h intervals [corresponding to the open teal markers in panel (A)]. (C) + (D): Dynamics following transition from night shift
to day shift (NS→DS), following the same format as panels (A, B). See the Supplementary Material for movies of the entraining trajectories.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 70335912

Creaser et al. Global Manifolds Organise Circadian Re-Entrainment

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


until 8 AM, which is at the Z � 17 location on the stable limit
cycle indicated by the solid teal dot in Figure 11C. If they were
staying on NS, this would be “dusk”. However, since they are
rotating to DS, instead of going to bed they remain at work, and
receive additional light exposure which perturbs them away from
the stable limit cycle. More specifically, the NS worker rotating to
DS will receive 15 extra hours of light before going to bed at 11
PM. This can be thought of as equivalent to traveling 9 time zones
in the eastward direction. In contrast, a worker that is already
entrained to the DS light/dark cycle will not be at the Z � 17
location on the stable limit cycle at 8 AM. Rather, they will be at
the Z � 2 location indicated by the solid orange dot in
Figure 11C. The orange periodic orbit shown in Figure 11D
represents the entrained DS worker, and the teal trajectory
represents the NS worker rotating to DS. Similarly to the
NS→DS scenario described in Section 5.1, in the (A,C) plane,
we see that the iterates of the stroboscopic map move along the
unstable manifold of the saddle limit cycle (red curve) until they
converge to the location of the entrained DS worker
(Figure 11B). However, a key difference between the two
scenarios is the location of the stable manifold of the saddle
limit cycle. The stable manifold of the saddle limit cycle (blue
curve) passes through the projection of the stable limit cycle onto
the plane of zero phase (black/grey orbit) near the Z � 17 location
for the NS→DS case, but does not do so for the DS→NS case. In
the NS→DS case, the first few iterates move along the stable
manifold, passing close to the saddle point of the Poincaré map
Eq. 11 before starting to slowly move away from this point along
its unstable manifold, leading to the very long re-entrainment
time of 57 days shown in Figure 11D. In the DS→NS case, the
first few iterates do not move along the stable manifold and thus
do not pass as close to the saddle point and therefore move away

from the point along its unstable manifold more quickly, leading
to the relatively shorter re-entrainment time of 33 days shown in
Figure 11B.

5.3 Rotating Between Shifts at High Light
Intensity
We assume the same shift work schedules and rotation protocols
as in Section 5.1 and 5.2. With I � 1000, the saddle limit cycle
that played such a key role in the behavior for I � 50 no longer
exists. The strong stable manifold of the stable limit cycle passes
through the projection of the stable limit cycle onto the plane of
zero phase near the Z � 17 location for NS→DS scenario
(Figure 12A), but not for DS→NS scenario (Figure 12C),
similarly to the situation with the stable manifold of the
saddle limit cycle at low light intensity. In the NS→DS
scenario with I � 1000, the stroboscopic map iterates move
along the strong stable manifold, taking the shortcut through
phase space and re-entraining in 13.7 days (Figure 12D). In the
DS→NS scenario with I � 1000, the map iterates are not near the
strong stable manifold and thus do not have access to the
shortcut, leading to a relatively longer re-entrainment time of
16.3 days (Figure 12B). This example highlights the importance
of the strong stable manifold of the stable limit cycle in organising
re-entrainment dynamics under changes in shift work patterns.

6 DISCUSSION

The first key result of our paper is the identification of the
boundaries of the parameter regimes in which the circadian
oscillator can entrain to external forcing. To this end, we

FIGURE 12 |High lux (I � 1000) entrainment dynamics for τc � 24.2 andN � 17. Panel order and format are the same as in Figure 11. (A) + (C): Note here that only
the stable periodic orbit exists, and the starting point for the re-entraining trajectory (solid teal dot) in panel (C) is close to the stable manifold (blue curve) that constitutes
the “shortcut” to entrainment. See the Supplementary Material for movies of the entraining trajectories.
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perform one-parameter continuation of the periodic orbits in each
of light intensity I, day length N and natural period τc, to identify
their codimension-one bifurcations. We then continue these fold
and Neimark–Sacker bifurcations in each pair of parameters. This
approach leads us to identify Arnol’d tongue structures in the
(τc, I) and (N , I) parameter planes. Arnol’d tongues demarcate the
region of stability of entrained solutions of systems of forced
oscillators, tracing out bifurcations to instability of such
solutions [29]. In our study, we not only compute the outer
tongue structure of the entrained 24 h solution, but also show
how other bifurcations within the tongue change the transient
dynamics of trajectories converging to this solution. In the
(τc,N)-plane, we instead find the so called “Arnol’d Onion”
shown in Figure 7D in which the widest parameter window for
entrainment occurs at N � 12. The Arnol’d Onion entrainment
region was first identified in a generic amplitude-phase-oscillator
model of a circadian clock [28]. It has also been found in the (I, τc)
and (N , τc)-planes via computation of entrainment times in the
reduction of the FJK model to a one-dimensional iterative
entrainment map [25]. In this paper, using numerical
continuation and bifurcation analysis, we identify not only the
boundaries of the entrainment region, but also the structure within
the area of entrainment. This allows us to distinguish two distinct
parameter regimes for entrainment, one where the stable periodic
orbit is the only asymptotic solution, and one that contains a saddle
periodic orbit, the existence of which leads to longer entrainment
times. Via concatenation of two-parameter bifurcation diagrams,
we extend the boundaries of all parameter regimes into the full
(I,N , τc)-space.

Interestingly, Schmal et al. [28] identify higher order “strings” of
onions for lower τc values, specifically τc � 24/K whereK takes the
value of any of the factors of 24, and gives the number of onions
(entrainment regions) in the string. In our model, we too identify
regions of entrainment for fractional values of the natural period
near τc ≈ 3.4, 4.8, and 8 which appear as additional branches of
solutions that are terminated and initiated via fold bifurcations.
These regions are shown in Figure S13 in SupplementaryMaterial
S3 for N � 12 and I � 150, thereby extending Figure 4, along with
the associated “strings of onions” in the (τc,N)-plane. The
majority of people have a natural period between 23.5 and
24.7 h so it is unlikely that these branches play a significant role
in entrainment dynamics [22]. However, for individuals that do
exhibit extremely low τc values, these results suggest that
entrainment to a 24 h cycle is possible, in spite of the wide
discrepancy between the forcing period and their natural period.

The second key result of our paper is the computation of the
geometric structures in phase space that organise previously
observed re-entrainment dynamics; namely, the invariant
manifolds of fixed points for a 24 h stroboscopic map
constructed from the model. Computation of these manifolds
allows us to find and fully characterise a separatrix between
phase advancing and phase delaying re-entrainment trajectories.
This phase space separatrix was conjectured to exist following
studies of the one-dimensional iterative map reduction of the FJK
model [25]. The separatrix is also responsible for the rapid re-
entrainment phenomenon that has been observed under certain
conditions in simulations and experiments [24, 25, 30–32]. If we

interpret Figure 2B as representing entrainment times following
international travel, we see that for low light intensity, the longest
entrainment times occur for journeys approximately 10 h East
(+10Δts). This is the East-West jet lag asymmetry phenomenon
whereby travelling East results in longer entrainment times and
worse reported jet lag [25, 33]. By contrast, for high light intensity,
this same figure indicates that this global maximum over
entrainment times becomes a local minimum leading to a so-
called “shortcut” to entrainment. Diekman and Bose identified this
change from a maximum to a minimum in their 1D map and
hypothesised that the shortcut corresponds to a phaseless set where
isochrons of the periodic orbit converge [25]. Here we show that it
is the composition of the separatrix that organises this behaviour.
For low light intensity, when the separatrix consists of the strong
stable manifold of the stable fixed point and the stable manifold of
the saddle point of the stroboscopic map there is a local (in phase
space) increase in entrainment times. For high light intensity, the
saddle point no longer exists and the separatrix consists of only the
strong stable manifold of the stable point enabeling entrainment
trajectories that start close to the manifold to exhibit a local
decrease in entrainment times.

Invariant manifolds of saddle orbits as organizing centres of
entrainment times have recently been identified in a forced
Kuramoto model of pacemaker cell dynamics [24] and a
hierarchical system of planar Novak–Tyson models [26].
Moreover, the shortcut traced out by the strong stable manifold
has recently been experimentally identified from wearable device
data and exploited to develop jet lag strategies that align with it
[32]. Here, jet lag is measured by self-reported mood scores that
show that people who appear to hit the shortcut feel “better”
according to a simple positive-negative scale. The authors propose
an algorithm based on simulations of the FJK model [13, 17] to
create a schedule for optimum re-entrainment that consists of
varying periods of light and dark each day. Their strategies rely on
knowing the location in phase space of the “optimal solution”,
i.e., the strong stable manifold of the entrainment orbit. Their first
approach is to identify the optimal solution for phase space
corresponding to the situation immediately after arrival. They
propose a light/dark schedule to move initial conditions to this
optimal solution, but find that the trajectories never reach the
optimum and, for some initial conditions, re-entrainment is not
achieved. With respect to our formulation, changing the light/dark
schedule corresponds to varying the parameter N, which leads to a
shift in the position of relevant manifold(s). The authors’ second
approach is to update the schedule to fit the optimum for the
system at the next step (N value). They show this is a superior
strategy in that it leads to faster re-entrainment for all initial
conditions. In both cases, the approach to finding the “optimal
solution” is a brute force simulation method over the phase space.
Here, we directly compute the optimal solution for high light
intensity values as the strong stable manifold of the stable fixed
point of the stroboscopic map defined by Eq. 11.

Our bifurcation analysis, as presented in Figure 7, shows the
boundaries of the entrainment region in the three-parameter space
consist of both fold and Neimark–Sacker bifurcations. In
particular, Figure 7B suggest that loss of entrainment due to a
Neimark–Sacker bifurcation in the (I, τc)-plane occurs when the
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light intensity value is high and τc is far from 24.2. In Figures 5, 6,
we show that the type of bifurcation associated with lack of
entrainment has important implications for the resulting
dynamics. A τc value close to the Neimark–Sacker bifurcation
leads to toroidal dynamics in which the phase difference between
the circadian oscillator and the external forcing is bounded,
whereas a τc value close to a fold leads to quasiperiodic
dynamics in which this phase discrepancy is constantly slipping.
We hypothesise that being close to a fold bifurcation would cause
significantly different circadian rhythm disorders compared to
being close to a Neimark–Sacker bifurcation. In particular, close
to the Neimark–Sacker bifurcation, whilst the circadian rhythm is
not entrained to the external environment, the phase difference
between the two over successive days is constrained to be within a
finite interval. Thus, we expect circadian disorders to be less severe
than in the case of the fold bifurcation in which sequential phase
differences between the circadian rhythm and the external
environment span the entire circle.

Examining the relationships between parameters for light
sensitivity G, light intensity scaling factor α0 and I in Eq. 4, we
observe that a low light intensity is equivalent to when individuals
have a low sensitivity to light. We remark here that our BVP set up
allows parameters in the model, other than the three presented, to
be varied. We would expect that the results when varying G or α0
would be similar to those we present for I. It is important to note
that the jet lag strategies identified by [32] account for differences
in an individual’s intrinsic period (τc). Importantly, they show that
personalisation to an individual’s circadian clock improves the
effectiveness of the scheduled recovery. Taken together, this
suggests that taking into account the interplay between light
intensity value (or light sensitivity) and intrinsic rhythm could
further improve jet lag strategy development and develop
personalised treatment plans for individuals with non-24 h
sleep/wake disorder.

Our approach to the set-up of the continuation problem is to
establish a multi-segment two-point boundary value problem in
AUTO [34, 35] to find and follow the periodic orbits of the two-
dimensional FJK system. This approach was facilitated by our
choice, for simplicity, of a square wave function Eq. 6 for the
light/dark forcing giving instantaneous transitions at dawn/
dusk. This multi-segment approach is similar in spirit to that
taken in [36, 37]. This approach can be readily modified to
include, for example, more realistic light protocols, such as
variations in the quality and intensity of light similar to
those studies in the green unicellular alga Ostreococcus tauri
[38, 39]. Here we choose a two-state model that switches from
complete darkness to full light, this could readily be extended in
future studies to incorporate multiple light levels such as indoor
and outdoor light regimes as well as darkness, as used in [40].
Including additional light levels as different “steps” would
correspond to having additional segments in our multi-
segment BVP with similar matching conditions at the
transition times. This multi-segment approach has limitations
and an alternative approach would be to convert the 2D
autonomous system into a 3D non-autonomous one for
implementation in AUTO. This alternative approach would
allow us to relax the condition on the light/dark forcing and

use, for example, a sinusoidal signal reflecting a more gradual
change, closer to the real light/dark cycle. Moreover, our choice
of multi-segment encoding of the model means that the time
shift parameter ts is not explicitly defined in the BVP, whereas
the alternative approach allow ts to be explicitly specified during
continuation runs. We note that to compute the manifolds for
specific values of ts as displayed in Figures 10–12, we make use
of the relationship defined in Eq. 12.

The framework we propose here can in principle be extended
to the analysis of arbitrary perturbations by computing the
invariant manifolds and periodic orbits that constitute
organising structures of the system. In Figures 11, 12 we
compare two such example perturbations in the context of
shift work, the change from night to day shift and vice versa.
This approach could be used to identify non-pharmacological
strategies for shift workers thereby minimising the risk factors for
a range of chronic diseases including cancer, metabolic syndrome
and stroke [41]. Another interesting problem to consider is to use
our approach to design “compromise” schedules for permanent
night shift workers that avoid circadian misalignment during the
work week yet also enable them to be awake during daylight hours
on weekends thereby improving quality of life [42, 43].

Our study centres around a two dimensional reduction of the
FJK model. The reduction of the original system to a planar one
facilitates the construction of the full invariant manifolds of the
system, as depicted in Figure 10B. Such construction was
achieved by first computing one dimensional manifolds of an
appropriately chosen stroboscopic map and then by taking
integrating these manifolds around the entire forcing cycle.
Advances in numerical continuation algorithms, such as
those included in the recent Matlab-based CoCo package
[44], provide functionality to compute two-dimensional
manifolds directly, so that our approach could then be used
to compute manifolds for the original three-variable FJK model
(though we remark that visualising manifolds of systems with
more than two dimensions is difficult). Given the significant
similarity between the original FJK model and our 2D variant,
we expect that similar conclusions about the role of invariant
manifolds in organising re-entrainment dynamics would be
observed in the full FJK model.

In addition to the FJK model, there exist a number of other
models that describe different aspects of circadian rhythms, such
as variability in the expression of clock proteins [45–47], or
describe the dynamics of the suprachiasmatic nucleus in a
more physiological manner [48]. It remains an open question
as to how our results might relate to such models. In this regard, it
is worth noting that dynamics in general systems can be at least
partially understood via analysis of their invariant sets and
associated manifolds. As such, whilst the specific observations
we make may not directly carry over to these different models, the
general approach is likely to still be valid. Regarding our specific
choice of system, we remark the original FJK model was
constructed using empirical data from human participants [13,
17]. We believe that this fact coupled with the focus on
simple descriptions of core macroscopic variables makes it the
ideal model for our study. One important macroscopic variable
not included in the FJK model is that of sleep duration. Even in
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the absence of variation in circadian phase, the dynamics of the
sleep/wake cycle are intricate [49]. Given the tight bidirectional
coupling between circadian rhythms and sleep/wake cycles,
incorporation of sleep as a macroscopic variable promises to
be an interesting direction for future investigation [50, 51].

It is well known that seasonality of day length affects the
circadian rhythms of humans, animals, and plants [28, 52–54].
More recently, switching between different seasonal day lengths
(such as travelling from winter to summer) has been studied by
considering the phase response curves of a heuristic phase-
amplitude model [55]. Our modelling framework presented
here could readily be adapted to identify the organising
structures, in particular, the invariant manifolds that organise
re-entrainment after sudden seasonal switches. A further model
extension, that to our knowledge has not been modelled before, is
to incorporate forcing at multiple time scales the encompass both
day length and seasonality. Additionally, on even longer
timescales, there is evidence from evolutionary biology that
human core body temperature is decreasing [56] and it is not
clear what effect this will have on circadian rhythms.

7 CONCLUSION

In this paper, we study the loss of entrainment in a two-
dimensional reduction of the forced FJK model for human
circadian rhythms. We use bifurcation theory to identify
parameter regimes in which the circadian oscillator is unable
to entrain to a 24 h cycle and identify the instabilities leading to
this phenomenon under variation of key system parameters. For
parameter regimes where entrainment is attainable, we show how
re-entrainment times are organised by the invariant manifolds of
the periodic orbits of the system. Finally, we study re-entrainment
following phase shifts of the light/dark cycle and discuss these
results in the context of shift work transitions.
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Supplementary Video 1 | Movie of the entraining trajectories following rotation from
day shift to night shift at (DS→NS) low light intensity I � 50; accompanies Figure 11
A,B. Left panel shows the projections of the periodic orbits, and their points of zero
phase, for the day shift in black and grey. The points of zero phase corresponding to
the periodic orbits for the night shift (which has a different phase of entrainment than
the day shift) are shown in orange. The unstable and (strong) stable manifolds of the
periodic orbits at the phases indicated by the orange markers are shown in red and
blue, respectively. The worker transitions from day shift to night shift when f(t) � 1→
f(t) � 0, with their instantaneous f(t) � 1→ f(t) � 0, values at this time indicated by the
first solid teal dot (to the left of the panel). Subsequent teal markers indicate the f(t) �
1→ f(t) � 0, values of the trajectory starting from this point evaluated at successive 24
h intervals. The trajectory ultimately converges to the entrained phase indicated by
the solid orange marker. The right panel shows the C coordinate of the time course
of the entraining trajectory (teal) as it converges to the stable entrained periodic orbit
of the night shift (orange). Solid markers on each trajectory indicate theC value of the
trajectory evaluated at successive 24 h intervals (corresponding to the teal markers
in the projection on the left).

Supplementary Video 2 | Movie of the entraining trajectories following rotation from
night shift to day shift (NS→DS) at low light intensity I�50; accompanies Figure 11
C,D. Left panel shows the projections of the periodic orbits, and their points of zero
phase, for the night shift in black and grey. The points of zero phase corresponding
to the periodic orbits for the day shift (which has a different phase of entrainment than
the night shift) are shown in orange. The unstable and (strong) stable manifolds of the
periodic orbits at the phases indicated by the orange markers are shown in red and
blue, respectively. The worker transitions from night shift to day shift when f(t) � 1→
f(t) � 0, with their instantaneous (A,C) values at this time indicated by the first solid teal
dot (to the left of the panel). Subsequent teal markers indicate the (A,C) values of the
trajectory starting from this point evaluated at successive 24 h intervals. The
trajectory ultimately converges to the entrained phase indicated by the solid
orange marker. The right panel shows the C coordinate of the time course of
the entraining trajectory (teal) as it converges to the stable entrained periodic orbit of
the day shift (orange). Solid markers on each trajectory indicate the C value of the
trajectory evaluated at successive 24 h intervals (corresponding to the teal markers
in the projection on the left).
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Supplementary Video 3 | Movie of the entraining trajectories following rotation from
day shift to night shift (DS→NS) at high light intensity I�1000; accompanies Figure
12 A,B. Left panel shows the projections of the periodic orbits, and their points of
zero phase, for the day shift in black and grey. The points of zero phase
corresponding to the periodic orbits for the night shift (which has a different
phase of entrainment than the day shift) are shown in orange. The stable
manifold of the periodic orbit at the phase indicated by the orange marker is
shown in blue. The worker transitions from day shift to night shift when f(t) � 1
→ f(t) � 0, with their instantaneous (A,C) values at this time indicated by the first solid
teal dot (to the left of the panel). Subsequent teal markers indicate the (A,C) values of
the trajectory starting from this point evaluated at successive 24 h intervals. The
trajectory ultimately converges to the entrained phase indicated by the solid orange
marker. The right panel shows the C coordinate of the time course of the entraining
trajectory (teal) as it converges to the stable entrained periodic orbit of the night shift
(orange). Solid markers on each trajectory indicate the C value of the trajectory
evaluated at successive 24 h intervals (corresponding to the teal markers in the
projection on the left).

Supplementary Video 4 | Movie of the entraining trajectories following rotation from
night shift to day shift (NS→DS) at high light intensity I�1000; accompanies Figure
12 C,D. Left panel shows the projections of the periodic orbits, and their points of
zero phase, for the night shift in black and grey. The points of zero phase
corresponding to the periodic orbits for the day shift (which has a different
phase of entrainment than the night shift) are shown in orange. The stable
manifold of the periodic orbit at the phase indicated by the orange marker is
shown in blue, respectively. The worker transitions from night shift to day shift
when f(t) � 1→ f(t) � 0, with their instantaneous (A,C) values at this time indicated by
the first solid teal dot (to the left of the panel). Subsequent teal markers indicate the
(A,C) values of the trajectory starting from this point evaluated at successive 24 h
intervals. The trajectory ultimately converges to the entrained phase indicated by the
solid orange marker. The right panel shows the C coordinate of the time course of
the entraining trajectory (teal) as it converges to the stable entrained periodic orbit of
the day shift (orange). Solid markers on each trajectory indicate the C value of the
trajectory evaluated at successive 24 h intervals (corresponding to the teal markers
in the projection on the left).
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