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The ability of circadian oscillators to entrain to daily 
cycles of light and temperature has been called both 
the most important and the most misunderstood prop-
erty of circadian rhythmicity (Johnson et  al., 2003). 
Entrainment implies that an endogenous oscillator has 
matched its period to that of an external periodic forc-
ing and has established a stable phase relationship 
with the forcing signal. The process of circadian 
entrainment has been studied extensively using tools 
from dynamical systems and oscillator theory 
(Ananthasubramaniam et al., 2014; Bagheri et al., 2008; 

Bordyugov et al., 2013a; Gu et al., 2012, 2013; Indic et al., 
2006; Johnson et al., 2003; Leise and Siegelmann, 2006; 
Leloup and Goldbeter, 2013; Ramkisoensing et al., 2014; 
Rand et  al., 2004; Roenneberg et  al., 2003; Serkh and 
Forger, 2014; Woller et al., 2014). Perhaps the most com-
monly used method relies on phase response curves 
(PRCs) that measure the change in the phase of an 
endogenous limit cycle oscillation (typically in constant 
darkness or DD) induced by a perturbation (typically a 
light pulse) as a function of the phase at which the per-
turbation is applied (Johnson, 1999). Alternatively, one 
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Abstract Circadian oscillators found across a variety of species are subject to 
periodic external light-dark forcing. Entrainment to light-dark cycles enables the 
circadian system to align biological functions with appropriate times of day or 
night. Phase response curves (PRCs) have been used for decades to gain valu-
able insights into entrainment; however, PRCs may not accurately describe 
entrainment to photoperiods with substantial amounts of both light and dark 
due to their reliance on a single limit cycle attractor. We have developed a new 
tool, called an entrainment map, that overcomes this limitation of PRCs and can 
assess whether, and at what phase, a circadian oscillator entrains to external 
forcing with any photoperiod. This is a 1-dimensional map that we construct for 
3 different mathematical models of circadian clocks. Using the map, we are able 
to determine conditions for existence and stability of phase-locked solutions. In 
addition, we consider the dependence on various parameters such as the photo-
period and intensity of the external light as well as the mismatch in intrinsic 
oscillator frequency with the light-dark cycle. We show that the entrainment 
map yields more accurate predictions for phase locking than methods based on 
the PRC. The map is also ideally suited to calculate the amount of time required 
to achieve entrainment as a function of initial conditions and the bifurcations of 
stable and unstable periodic solutions that lead to loss of entrainment.
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could perturb an oscillator in constant light (LL) with 
dark pulses. Such PRCs can be constructed for light or 
dark pulses of arbitrary strength and duration. 
However, for a PRC to accurately predict properties of 
entrainment to periodic light or dark pulses, the per-
turbations must be weak or brief enough that the oscil-
lator relaxes back to the DD or LL limit cycle attractor 
before the next pulse arrives. Since circadian oscilla-
tors are naturally subject to forcing in which the light 
duration is several hours followed by several hours of 
darkness, the PRC may not be ideally suited to accu-
rately determine entrainment in this context. In fact, 
we show that PRCs do not accurately predict the phase 
of entrainment in 3 different mathematical models of 
circadian clocks that are subjected to photoperiods 
with substantial amounts of both light and dark, such 
as 12-h:12-h light-dark (12:12 LD) cycles. For these LD 
cycles, the entrained solution is best thought of as a 
combination of 2 limit cycle attractors (i.e., the DD and 
LL limit cycles), rather than as a perturbation of a sin-
gle limit cycle attractor (Peterson, 1980).

In this paper, we introduce a new tool, a 1-dimen-
sional entrainment map, which is not based on per-
turbing the DD or LL oscillator. Instead, the map uses 
information on how both the 12-h light period and 
the 12-h dark period affect cycle duration as a func-
tion of the time elapsed since the lights last turned on. 
We show that the stable fixed point of the map corre-
sponds to a stable LD-entrained solution. Properties 
of the entrained solution, such as the range of entrain-
ment as a function of parameters or the speed with 
which entrainment occurs, are then inferred from 
properties of the map. We demonstrate that the map 
accurately predicts the phase of entrainment inde-
pendent of the photoperiod across a variety of differ-
ent models. Our findings are consistent with previous 
results in the literature (Bordyugov et  al., 2015; 
Granada et al., 2013) and provide a new method for 
studying high-dimensional circadian models that are 
difficult to analyze mathematically.

The entrainment map is an example of an iterated 
map, a class of dynamical systems in which time is 
treated as discrete rather than continuous (Strogatz, 
1994; Wu and Rul’kov, 1993). One-dimensional iter-
ated maps have the form

x xn n+1 = ( )Π ,  (1)

where Π  is a function that maps values from an inter-
val back into that interval. Maps can be used as mod-
els of natural phenomena where time is inherently 
discrete or as tools for analyzing continuous-time 
models consisting of ordinary differential equations 
(ODEs). The entrainment map we develop is an exam-
ple of the latter and, in principle, can be constructed 
for any of the myriad ODE models of circadian clocks 

in the literature, from detailed models of molecular 
clocks in a variety of species to phenomenological 
models of human circadian rhythms (Bordyugov 
et  al., 2013b; Forger et  al., 2007; Gonze, 2011; 
Roenneberg et  al., 2008). The maps live in lower 
dimensional spaces than the original systems, which 
facilitates geometric visualization and the under-
standing of complicated dynamics. For example, 
many circadian ODE models exhibit limit cycle oscil-
lations. These periodic solutions correspond to fixed 
points of the maps. Determining properties of these 
steady-state solutions, such as stability, is much easier 
for fixed points than for limit cycles. Furthermore, 
solution trajectories of maps are found by iterating the 
function Π  to obtain a sequence of x  values that dic-
tate the behavior of solutions of the map and, as a 
result, the corresponding ODE (Hirsch et al., 2013).

We construct entrainment maps for circadian oscil-
lators under forcing by a periodic light-dark cycle. For 
this map, the variable xn  tracks the number of hours 
that have passed in the nth light-dark cycle between 
the lights turning on (defined as x = 0) and the oscilla-
tor reaching a certain location in phase space. Both x  
and Π( )x  take values between 0 and 24, where x = 0  
and x = 24  are equivalent. Thus, Π  maps a circle onto 
itself and is referred to as a circle map. The theory of 
circle maps is well-developed and has been applied 
extensively to study cardiac rhythms and other types 
of biological oscillators (Glass, 1991; Keener and Glass, 
1984; Winfree, 2001). More generally, the search for an 
entrained solution is an example of a classic problem 
in which an oscillator is forced by an external periodic 
input. Much prior theoretical work has been done in 
the context of circadian oscillators (Bordyugov et al., 
2015; Roenneberg et al., 2003, 2010a). What is common 
to all of these studies, as well as ours, is that there exists 
a range of parameters over which the period of the 
oscillator becomes equal to that of the forcing, and 
stable one-to-one entrainment occurs.

In this paper, we focus on 3 distinct circadian oscil-
lator models of different complexity. The first is the 
Novak-Tyson (NT) model of the Drosophila molecular 
clock (Tyson et  al., 1999). This is a 2-dimensional 
model for which we provide a detailed derivation of 
the entrainment map. The other two models we con-
sider are the 3-dimensional Gonze model (Gonze 
et  al., 2005) and the 180-dimensional Kim-Forger 
model (Kim and Forger, 2012) of the mammalian 
molecular clock. For all of these models, we demon-
strate that the map accurately predicts the stable 
entrained phase relative to the underlying light-dark 
forcing. Additionally, we show that the map enables 
us to characterize, across different models, how prop-
erties such as the range of entrainment depend on 
parameters associated with the intrinsic oscillator 
and the external forcing. In this sense, the map reveals 
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certain universal properties about how different cir-
cadian models respond to changes in parameters that 
are common to all models, such as the speed of the 
intrinsic oscillator, light intensity, and photoperiod. 
In turn, this provides insights and the ability to make 
predictions about higher dimensional models that are 
not so easily gained through direct simulations.

MODEL AND METHODS

In this section we introduce the circadian clock 
models that we shall use in our study and the 
1-dimensional map that we have developed to ana-
lyze entrainment properties of such models.

The Novak-Tyson Model

The NT model (Novak and Tyson, 2008; Tyson 
et al., 1999) for the molecular circadian clock in the 
fruit fly Drosophila contains 2 state variables repre-
senting mRNA concentration ( M ) and protein ( P ) 
concentration:
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where all parameters are positive. The P  variable rep-
resents 2 proteins (PER and TIM) that form a heterodi-
mer and create a negative feedback loop by inhibiting 
transcription of their own genes. The parameter ε  is 
taken to be small, which creates a separation of time 
scales between the P  and M  variables. The parame-
ter φ  governs the rate of flow of trajectories in the 
phase plane and will directly affect the period of any 
solutions we find. The parameter kD  is the baseline 
protein degradation rate during darkness. In 
Drosophila, light is known to increase degradation of 
TIM; kL  is the added degradation rate due to light. 
The parameter k f  captures the extent of positive 
feedback due to stabilization of the protein after 
dimerization. The function f t( )  describes the light 
stimulus. In complete darkness, f t( ) 0≡ . In complete 
light, f t( ) 1≡ . When the model is subjected to a peri-
odic photoperiod, f t( )  is chosen to be a smooth cut-
off version of a periodic step function that takes on the 
value 0  during darkness and 1  during light.

Consider first the situation of either constant dark-
ness f t( ) 0≡ , or constant light, f t( ) 1≡ . In each case, 
the nullclines consist of the set of points where the 
right-hand sides of the equations in Equation (2) 
equal 0. In particular, we define P -nullclines for each 
case together with a common M -nullcline.
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Both NPD
 and NPL

 form cubic shaped curves in the 
P M−  phase plane. We sometimes use the notation 
NP  to refer to the P -nullcline when it does not matter 
whether we are referring to dark or light. The curve 
NM  is qualitatively sigmoidal shaped. Depending on 
where the P  and M  nullclines intersect, the ensuing 
fixed point(s) may be stable or unstable. Any intersec-
tion that occurs on the left or right branches of P - 
nullclines are stable, while those that occur on the mid-
dle branch will be unstable provided that ε  and kD  
are not too large. The standard set of parameters that 
we use for a single cell produces an unstable fixed 
point along the middle branch. In either constant dark-
ness or constant light, it is straightforward to use 
dynamical systems methods to prove the existence of a 
stable limit cycle (periodic orbit) solution, as discussed 
in the Results section.

The Gonze Model and the Kim-Forger Model

We also consider 2 different models of the molecu-
lar circadian clock in mammals. The Gonze model 
(Gonze et  al., 2005) is a modified version of the 
Goodwin oscillator (Goodwin, 1965) describing the 
core negative feedback loop of the circadian cock. 
There are 3 state variables that represent concentra-
tions of mRNA ( M ), protein ( P1 ), and protein in its 
active form ( P2 ) of a clock gene such as Per or Cry:
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Specifically, P2  is the nuclear form of PER/CRY 
that inhibits transcription of the clock gene. In mam-
mals, light is known to increase the transcription rate 
of Per1 and Per2 (Golombek and Rosenstein, 2010); 
thus, we have included the LD forcing in the first 
term of the dM dt/  equation. The following param-
eter values were used: νD = 0.7, νL = 0.1, k1 = 1, 
ν2 = 0.35, k2 = 1, k3 = 0.7, ν4 = 0.35, k4 = 1, k5 = 0.7, 
ν6 = 0.35, and k6 = 1.

The Kim-Forger model contains the core nega-
tive feedback loop as well as additional secondary 
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feedback loops. The model has 180 state variables 
representing nuclear and cytoplasmic concentrations 
of mRNA and protein products for several clock 
genes including Per1, Per2, Cry1, Cry2, Bmal, Npas2, 
and Rev-erb, as well as other regulatory elements. For 
a detailed description of the full model, see Forger 
and Peskin (2003) and Kim and Forger (2012). Here 
we only show the differential equations for the 2 state 
variables that receive LD forcing, which are Per1 and 
Per2 mRNA in the nucleus ( MnPo  and MnPt ), and 
the state variable that we will use to define the 
entrainment map for this model, which is BMAL pro-
tein in the cytoplasm ( B ):
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where G, McB, Cl, and BC  are state variables repre-
senting the probability of the E-box promoter being 
activated, Bmal mRNA and CLOCK/NPAS2 protein 
concentrations in the cytoplasm, and the concentra-
tion of unphosphorylated BMAL-CLOCK/NPAS2. 
The parameters trPoD  and trPtD  are basal transcrip-
tion rate constants in darkness, trL  is additional 
transcription due to light, umPo  and umPt  are deg-
radation rate constants, and tmc  is the rate constant 
for folding and nuclear export of mRNA. Finally, the 
parameters tlb, ub, cbin, and uncbin  are rate con-
stants for BMAL translation, BMAL degradation, and 
binding and unbinding of BMAL to CLOCK/NPAS2. 
We used the parameter values given in Kim and 
Forger (2012), with trPoD = 25.9201, trPtD = 44.854, 
and trL = 10.

For all 3 of these models, we will show via simula-
tion that the 1-dimensional entrainment map yields 
accurate predictions for the phase of entrainment.

Effects of Sensory Input: Light and Darkness

We shall be interested in the response to 3 different 
scenarios: constant darkness, constant light, and peri-
odic switching between the two with a prescribed 
photoperiod. We will show that over a wide range of 
parameters, the models produce stable periodic solu-
tions in constant darkness, referred to as DD, or in 
constant light, denoted LL. We denote the “free-run-
ning” period of the DD oscillator as τ. In the case of 
periodic forcing, we follow a protocol that is often 

used in experiments. Namely, we will study the 
entrainment of oscillators to a periodic signal that 
models a photoperiod of a 24-h cycle consisting of an 
N  hour “light” interval (L) followed by a 24- N  hour 
“dark” interval (D). When an oscillator is subjected to 
a light-dark photoperiod (LD), depending on param-
eters, it may entrain to the 24-h forcing. By entrain we 
mean that the solution is periodic and that it has a 
period of 24 h. If these conditions are met, we call the 
ensuing periodic solution an LD-entrained solution.

To consider an oscillator subjected to periodic forc-
ing of N  hours of light followed by 24 −N  hours of 
darkness, we allow f t( )  to vary periodically between 
0 and 1. In our simulations, f t( )  is a rectangular wave 
with instantaneous transitions. When analyzing the 
periodically forced system, we consider f t( )  to be a 
smooth approximation of a rectangular wave.

The Entrainment Map ΠΠ( )x

The entrainment map Π( )x  is the primary tool we 
will use to understand the properties and conse-
quences of phase-locking. To define Π( )x , we choose 
a Poincaré section P  as an n −1 dimensional hyper-
plane that intersects a point on the LD cycle. To define 
a hyperplane, we only need to specify the value of 1 
of the variables and the direction of the flow as it 
crosses the hyperplane. For example, in the 2-dimen-
sional NT model, P  is a 1-dimensional line segment 
that intersects the LD-entrained solution chosen 
along the left branch of NP  at M = 0.44  where 
dM dt/ > 0. This is a natural location to place P  since 
the flow forces trajectories to enter a neighborhood of 
that branch. We note that the method still works if we 
choose P  to lie along a different portion of the LD 
cycle, for example, away from the left branch, as dis-
cussed in the Supplementary Material, Section R2. In 
the Gonze and Kim-Forger models, there is no natu-
ral location to choose for the Poincaré section. We 
choose the section in these cases by specifying a  
variable that does not receive the light-dark forcing. 
For the 3-dimensional Gonze model, P  is a 2- 
dimensional hyperplane chosen at P1 = 0.35  where 
dP dt1 / > 0. For the 180-dimensional Kim-Forger 
model, P  is a 179-dimensional hyperplane chosen at 
B = 20  where dB dt/ > 0. Assume that the oscillator 
has an initial condition lying on the Poincaré section. 
We define x  to be the amount of time that has passed 
since the beginning of the most recent LD cycle. When 
the trajectory is again on P , we define the map Π( )x  
to be the amount of time that has passed since the 
onset of the most recent LD cycle. The domain and 
range of Π( )x  are the set [0, 24] . The domain is con-
sidered to be periodic, where x = 0  and x = 24  are 
equivalent. The Poincaré map relates the value of x  
at one cycle to its value at the next; x xj j+1 = ( )Π  for 
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j ≥ 0. Unless otherwise noted, we limit our discus-
sion of the properties of the map to parameter sets 
where both the LL and DD limit cycles exist. Details 
on how we conducted the numerical simulations to 
construct the map are provided in the Supplementary 
Material, Section M1.

The map Π( )x  can be decomposed in the following 
way. Define a return map ρ( )x  that measures the time 
a trajectory starting on P, x  hours into an LD cycle, 
takes to return to P . Then Π( ) = ( ) 24x x xρ + mod . 
Because of the mod operation, it is not readily clear 
whether the trajectory returns to P  in the same LD 
cycle in which it started or in a subsequent one.  
To clarify this point, note that if ρ( ) < 24x x− , the tra-
jectory will return back to P  within the same LD cycle 
in which it started. Thus, Π( ) = ( )x x xρ + . If 
24 < ( ) < 48− −x x xρ , then the trajectory returns in the 
next LD cycle and Π( ) = ( ) 24x x xρ + − . In general, we 
can write 24 < ( ) < 24( 1)k x x kρ + + , for k = 0,1, 2,!  
and Π( ) = ( ) 24x x x kρ + − . The case k = 0 corresponds to 
the trajectory returning to P  in the same LD cycle it 
started in, k = 1  in the next cycle, k = 2  in the subse-
quent cycle, and so on. See Figure 1 for an illustration.

The map ρ( )x  measures the time it takes a trajec-
tory leaving P  to return to it. It has a periodic 
domain [0, 24], and its range lies in the set of positive  
numbers. It has several generic properties: ρ( )x  is 
continuous (since the forced vector field of Equation 
(2) is smooth), ρ( )x  is periodic at its endpoints 
ρ ρ(0 ) = (24 )+ −  (since the domain is periodic), and 
ρ( )x  is decreasing on a subinterval of its domain (as 
shown in the Results section). 

A stable fixed point of the map Π( )x , denoted xs, 
corresponds to a one-to-one entrained solution and 
determines the phase of locking. A stable fixed point 
satisfies 2 conditions, x xs s= ( )Π  and | ( )|< 1′Π xs . 
Both conditions can be checked by plotting the map 
and determining whether and with what slope the 
graph intersects the diagonal. When a stable, phase-
locked solution exists, the map Π( )x  is ideally suited 
to calculate the time to approach the stable solution 
starting from any initial condition. If xs  is a stable 
fixed point of the map and { }xj  is a sequence of iter-
ates of the map, we say that the solution is entrained 
if there exists m, such that for all j m≥ , | |< 0.5x xs j− . 
Given an initial condition x0 , we use the map to 
determine m  and thereby determine the time to 
entrainment. We will show by comparison to direct 
simulations of the full system that this method is 
quite accurate.

There is a considerable amount of flexibility in how 
the Poincaré section is chosen. This is because of a 
basic theoretical result of smooth differential equa-
tions: namely, that solution trajectories depend contin-
uously on initial conditions. To build the map Π( )x , 
for each x , we start with an initial condition that lies 
on the intersection of P  and the LD-entrained solu-
tion (e.g., in the Gonze model at the value M = 0.21, 
P1 = 0.35, and P2 = 1.73 ). Because the value of x  is 
not necessarily the fixed point xs, the ensuing trajec-
tory is not the entrained solution. But the theory of 
smooth dynamical systems guarantees that the solu-
tion trajectory will lie close to the LD-entrained solu-
tion for a finite amount of time. The terms close and 
finite can be made mathematically precise, but for our 
purposes it is enough to guarantee that the trajectory 
again crosses P  in a neighborhood of the crossing 
point of the entrained solution. This basic theoretical 
fact is what allows the entrainment map to be con-
structed for high-dimensional models for which the 
LD-entrained solution has first been numerically 
computed. Different choices of the Poincaré section 
will lead to different entrainment maps. But for any 
choice, the ensuing LD-entrained solutions will all 
have the same phase of entrainment, as discussed in 
the Supplementary Material, Section R2.

The entrainment map is defined by setting x = 0  
as the reference phase with respect to the onset of 
lights in a 24-h light-dark cycle. This is in contrast to 

Figure 1. Schematic that defines x, ρρ( )x , and ΠΠ( )x  in various 
cases. In each panel, the solid vertical lines denote 2 consecutive 
moments in time when the oscillator crosses the Poincaré section 
P . The square wave denotes f t( ), which varies between 0 and 
1, and the LD photoperiod is shown at the bottom of the figure. 
The time x  is measured as the distance in time from the start of 
the first light pulse (when f t( )  increases to 1) to the first cross-
ing of P, and ρρ( )x  is the distance in time between crossings of 
P . The value ΠΠ( )x  measures the distance in time from the start 
of the most recent onset of lights to the next crossing of P . The 3 
panels shown correspond to the 3 possible scenarios that arise in 
defining the entrainment map.
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PRC-based methods, where the reference phase is 
typically assigned to a point along the DD oscillator. 
Although it may not seem that assigning the refer-
ence phase to a point on the underlying light-dark 
forcing instead of DD or LL makes much of a differ-
ence, we will show that doing so allows us to use 
information from the DD, LL, and LD-entrained solu-
tions to construct the map. Additionally, the entrain-
ment map allows the light pulse (or the dark pulse) to 
be split up so that it appropriately represents the rela-
tionship of the oscillator to the ongoing light-dark 
cycle and not just as a single pulse at a predetermined 
phase as in a PRC. As a result, we will show that for 
all the models we tested, the map ends up yielding a 
more accurate prediction about phase locking than 
the PRC.

RESULTS

We begin by analyzing the NT model. Many of the 
details of the phase plane analysis can be found in the 
Supplementary Material. We then turn to the Gonze 
and Kim-Forger models and show that the entrain-
ment map also works well in these higher-dimen-
sional settings.

LD-Entrained Oscillations in the Novak-Tyson 
Model

When f t( ) 0≡ , Equation (2) produces a limit cycle 
corresponding to a DD oscillator (black dashed curve 
in Fig. 2A). This stable limit cycle exists due a simple 
application of the Poincaré-Bendixson theorem. 
Namely, one can build a bounded, positively invariant 

region that surrounds the single fixed point that lies on 
the middle branch of NM. Since this fixed point is 
unique and unstable, the Poincaré-Bendixson ensures 
the existence of a stable limit cycle. When f t( ) 1≡ , the 
P -nullcline shifts up in phase space, but the fixed point 
remains on the middle branch. Again the Poincaré-
Bendixson theorem applies, proving the existence of 
the LL limit cycle (dashed red curve in Fig. 2A). Note 
that the DD limit cycle has a larger amplitude in the P  
direction. This is a consequence of the difference in the 
P -nullcline between the DD and LL cases. Also note 
that the 2 limit cycles share a common fast-slow struc-
ture that allows them to largely overlap near the left 
branch of NP. Indeed, as ε → 0, Equation (2) becomes 
singularly perturbed and portions of the LL and DD 
trajectories would lie on the left and right branches of 
NP. For any φ, the period of the LL limit cycle is less 
than that of the DD limit cycle (the opposite is true for 
the Gonze and Kim-Forger models, as discussed in the 
section on higher dimensional models). This is a result 
of the faster dynamics in the LL case due to NPL

 being 
higher in the phase space than NPD

.

In the presence of light-dark forcing, the ensuing 
trajectory spends its time in phase space approaching 
the DD cycle during darkness and the LL cycle dur-
ing light. This idea was noted in earlier work by 
Peterson (1980) (Johnson et  al., 2003; Pittendrigh, 
1981). In some sense, the trajectory uses the stable 
structure of the DD and LL limit cycles to transiently 
approach the appropriate one during relevant time 
intervals. For this planar model, this back and forth 
serves to bound where in phase space the trajectory 
can lie at any moment in time. The LD-entrained 
solution is shown in Figure 2A. Note that the 
entrained solution tracks the DD limit cycle for a 

Figure 2. (A) The DD (dashed black), LL (dashed red) and LD (solid red-black) solutions of the NT model are shown in the phase plane. 
The LD-entrained solution overlaps the DD oscillator’s trajectory during darkness (black) and then deviates from it near P = 4  when the 
lights turn on (red). Trajectories move clockwise in the plane. Open circles denote hourly intervals. The green horizontal line segment is 
P . The point q  is the intersection of the LD-entrained trajectory with NPL

 and is referred to in the Supplementary Material, Section 
R1. (B) Time courses of the P  (solid) and M  (dashed) variables. The free-running period of the DD oscillator ( f t( ) 0≡≡  [blue line], top 
trace) is longer than that of the LL oscillator ( f t( ) 1≡≡ , middle trace). Entrainment to a 24-h periodic 12:12 forcing f t( )  (bottom trace) 
results in an LD-entrained oscillation.
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portion of its trajectory and then deviates from it near 
P = 3.7. From that point, the trajectory is attracted 
toward the LL limit cycle, although it reaches the left 
branch of the P -nullcline prior to entering a neigh-
borhood of the LL cycle. This is because the rate of 
attraction to the LL limit cycle is not overly large. 
Open circles along the LD-entrained solution denote 
hourly intervals. Figure 2B shows time traces of the 
DD, LL, and LD-entrained solutions. The latter addi-
tionally shows the relationship of the entrained solu-
tion to the light-dark pulse. For the parameters used in 
the simulation, the peak value of M  happens to occur 
near the beginning of the dark period. The entrain-
ment map will help to explain why this is the case.

Let us consider a specific set of parameters  
referred to as the canonical set for the NT model 
( φ ε= 2.1, = 0.05, = 0.05, = 1, = 0.05k k kD L f  and a 
12:12 photoperiod). Figure 3A shows an annotated 
phase plane of the LL and DD cycles for this set of 
parameters. On the respective cycles, solid dots 
depict hourly intervals. The total length of time of the 
LL cycle is 21.64 h, and that of the DD cycle is 28.9 h. 
The 2 cycles effectively overlap along the left branch 
of NP . They also intersect near P = 1.5 , M = 0.65. 
Call this point cp .  To facilitate the construction of 
Π( )x , let us first consider ρ( )x  and explain why it has 
an interval of points on which it is decreasing. Let xL  
be the time it takes a trajectory to evolve along the LL 
cycle from P  to cp  and xD  the time along DD  
between these 2 objects. For the case of φ = 2.1 , xL = 7  
and xD = 6.3 . Define x xL1 = 12−  and x xD2 = 24 − . 

Let us consider the trajectory that has initial condi-
tion x1. This trajectory evolves along the LL cycle for 
xL  until it reaches cp. At this point, the lights switch 
off and the trajectory now must follow the DD cycle 
for 12 h. The length of time of the DD cycle between 
cp  and P  is 22.6 h. Thus, when the lights turn back 
on, the trajectory is very far from P. In contrast, the 
trajectory with initial condition x2  travels for xD  
hours on DD to cp. From here it travels 12 h on the LL 
cycle. The length of time on LL from cp  to P  is 14.6 h. 
Thus, after 12 h on LL, the trajectory is very close to P.
If r xi( )  denotes the remaining time for each trajectory 
to reach P, it is clear that r x r x( ) > ( )1 2 . Given that xL  
is close to xD , it follows that ρ ρ( ) > ( )1 2x x .  The conti-
nuity of ρ( )x  then implies there must be a subinterval 
of ( , )1 2x x  on which ρ( )x  is decreasing. Note that the 
actual interval on which ρ( )x  is decreasing may in fact 
contain ( , )1 2x x  rather than be contained in it. Because 
of periodicity, ρ( )x  must also be increasing over a dif-
ferent interval(s). Figure 3B shows ρ( )x  for the case 
φ = 2.1. Note that the curve is qualitatively a cubic 
with a single interval over which it is decreasing. This 
interval contains ( , )1 2x x . Since ρ( )x  is continuous on 
a closed interval, it attains its maximum and minimum 
values. It is fairly easy to get a bound on these values. 
The upper bound is attained near x1  and is obtained 
by taking the LL cycle from P  to cp  and the DD cycle 
from cp  back to P. This yields a time of 29.6 h. The 
lower bound occurs near x2  and is obtained by tak-
ing DD from P  to cp , then LL back to P , yielding a 
time of 20.9 h. This yields a bound on d x dxρ( )/  on 

Figure 3. (A) DD (dashed black) and LL (dashed red) limit cycles with open circles indicating hourly intervals starting at P . cp  is an 
intersection point of these 2 limit cycles. Times along the DD and LL limit cycles between P  and cp  are indicated as xD and xL. The 
orange lines are located 12 h in time along the DD and LL limit cycles from the point cp. The times r x( ) = 8.161  h and r x( ) = 2.742  h 
are numerically computed as the remaining time it takes the respective trajectories (magenta and blue) to return to P . (B) Numerically 
computed ρρ( )x . Solid and open dots depict xs  and xu. (C) Numerically computed ΠΠ( )x . Solid and open dots depict crossings with the 
diagonal and correspond to the stable and unstable phase locked solutions xs  and xu. (D) Stable (solid) and unstable (dashed) LD 
limit cycles corresponding to xs  and xu. The LL (light gray, smaller amplitude) and DD (light gray, larger amplitude) solutions are 
shown for comparison.
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( , )1 2x x  as (20.9 29.6)/(17.7 5) = 0.71> 1− − − − . Note 
from Figure 3B that along the decreasing portion, 
there exists a unique value x x xs ∈ ( , )1 2  for which 
ρ( ) = 24xs . There is also another value xu  along the 
increasing portion of ρ( )x  for which ρ( ) = 24xu . 
Although it is obvious from our simulation results 
that xs  and xu  exist, analytically proving this fact is 
beyond the scope of this paper.

In Figure 3C, we show the graph of the map Π( )x . 
Note that xs  and xu  are fixed points of this map. 
Further, ′ ′ +Π ( ) = ( ) 1 > 0x xρ  since − ′1< ( )ρ x , imply-
ing that the graph of Π  is increasing wherever it is 
continuous. It has a discontinuity whenever ρ( )x x+  
passes through a multiple of 24. Finally, note that 
| ( )|< 1′Π xs , implying that xs  is a stable fixed point, 
whereas ′Π ( ) > 1xu , implying that xu  is an unstable 
fixed point. The stable fixed point xs  corresponds to 
a stable LD-entrained solution and is shown in Figure 
3D. The stable fixed point occurs at xs = 10.2, which 
means that when the LD-entrained solution starts on 
P , it initially experiences 1.8 h of light. This is fol-
lowed by 12 h of darkness, where the trajectory tracks 
the DD limit cycle. After this time, the trajectory is 
again subject to conditions of light, and it can be seen 
that the trajectory deviates from the DD limit cycle. 
Similarly, xu  corresponds to an unstable LD-entrained 
solution, which is also shown in Figure 3D. The value 
xu = 20.5, so it initially experiences about 3.5 h of dark-
ness when starting on P  before then experiencing 12 
h of light and then subsequent darkness. In some 

Figure 4. The entrainment map ΠΠ( )x  changes systematically as intrinsic (A, B) and extrinsic (C, D) model parameters are varied. (A, 
B) Increasing the intrinsic speed of oscillators by (A) increasing φφ  or (B) decreasing kf  moves the stable fixed point of the map to the 
left and leads to entrained oscillators that encounter light earlier in the subjective day. Loss of entrainment occurs when the curves do 
not intersect the diagonal. (C) Increasing kL  also moves the stable fixed point of the map to the left, corresponding to increased light 
intensity advancing the phase of entrainment. The increased concavity of ΠΠ( )x  as kL  increases suggests that brighter light decreases the 
amount of time required to reach stable entrainment. (D) Changes in light duration (N ) have only a minor effect on the location of the 
stable fixed point of the map, suggesting that the photoperiod does not significantly affect the phase of entrainment for these parameter 
values. However, the fixed points do undergo saddle-node bifurcation if the light duration is too short or too long, corresponding to loss 
of entrainment in extreme photoperiods.

sense, for this set of parameters, its trajectory experi-
ences light and darkness at opposite locations in 
phase space relative to the solution associated with 
xs. Further consequences of the existence of xs  and 
xu  are explored below when we discuss the dynam-
ics of entrainment.

Dependence of ΠΠ( )x  on Parameters

To study how the map depends on parameters, we 
start with the canonical set of parameters and system-
atically vary one at a time. We begin with the param-
eter φ, which determines the intrinsic period of the 
oscillator by controlling the rate of evolution of both 
the P  and M  variables. Larger φ  implies a faster 
oscillator. If φ  is too large, however, then the intrinsic 
period of the circadian clock is too small (much less 
than 24) and phase-locking with a 24-h forcing will 
not be possible. The same conclusion occurs when φ  
is too small and the circadian clock is too slow. Thus, 
there exists an interval ( , )φ φmin max  such that stable 
one-to-one entrainment occurs for φ  lying in that 
interval. This is a standard result from the forced 
oscillator literature; see Glass (1991) for an example.

Supplementary Figure S1 shows that ρ( )x  shifts 
down when φ  is increased. This makes sense as faster 
dynamics imply smaller transit times and so ρ( )x  
should be smaller. In addition, ρ( )x  also shifts to the 
right, as explained in the Supplementary Material, 
Section R1. Figure 4A shows the map Π( )x  for several 

 by guest on November 21, 2016jbr.sagepub.comDownloaded from 

http://jbr.sagepub.com/


606 JOURNAL OF BIOLOGICAL RHYTHMS / December 2016

different choices of φ. As φ increases, the curves shift 
down and to the right, the discontinuity moves to the 
right, and the stable fixed point xs  moves down and 
to the left. Biologically, this means that faster intrinsic 
oscillators encounter light earlier in the subjective 
day when entrained than do slower intrinsic oscilla-
tors. In other words, fast intrinsic oscillators have 
advanced phases of entrainment (morning larks) and 
slow intrinsic oscillators have delayed phases of 
entrainment (night owls) (Bordyugov et  al., 2015). 
Note that as φ  increases, the value of xs  increases 
from around 5 h at φ = 1.865  to 15 h at φ = 2.506. The 
value φmin = 1.865  corresponds to the saddle node 
bifurcation where the map lies above and tangent to 
the diagonal; φmax = 2.506  corresponds to a second 
saddle node bifurcation that occurs when the map lies 
below and tangent to the diagonal. The interval 
( , )φ φmin max  is called the φ -range of entrainment. To 
understand the path through which entrainment is 
lost, note that as φ  approaches φmin  from above or 
φmax  from below, the fixed points xs  and xu  merge in 
a saddle-node bifurcation. This merging corresponds 
to a saddle-node bifurcation of periodic orbits in 
phase space, as described in Supplementary Material, 
Section R1.

The parameter k f  is associated with positive feed-
back in the accumulation of protein due to inhibition 
of protein degradation (Novak and Tyson, 2008; Tyson 
et al., 1999). Increasing k f  moves the P -nullcline up 
in the phase space. However, this effect is much more 
pronounced on the left branch of the P -nullcline. As 
a result, the dynamics slow down near the left branch, 
more than they speed up away from it, resulting in a 
net slower speed. This causes Π( )x  to shift up and to 
the left and the stable fixed point xs  to move down 
and to the right (Fig. 4B). Thus, increasing the amount 
of positive feedback slows down the intrinsic oscilla-
tions (consistent with recent findings in other circa-
dian models; Ananthasubramaniam and Herzel, 2014) 
and leads to entrained clocks encountering light later 
in the subjective day. When k f  increases to 1.27, the 
fixed points xs  and xu  merge at a saddle node bifur-
cation, indicating that too much positive feedback can 
lead to loss of entrainment. As k f  decreases, the fixed 
point along the middle branch of NP  eventually 
becomes stable, causing the disappearance of the LL 
oscillation at k f = 0.88  and DD at k f = 0.70. Note, 
however, that for 0 < < 0.88k f , even though we no lon-
ger have self-sustained LL and DD oscillations, it is 
still possible for the system to be driven by the forcing 
to exhibit 24-h rhythms. Mathematically, this occurs 
because in this range of k f , the model reduces to driv-
ing a stable fixed point with the 24-h forcing. The 
ensuing limit cycle is relatively small in amplitude 
and lies in a neighborhood of the intersection of the 
NP  and NM  nullclines. From a circadian point of 

view, this is an example of “masking” rather than 
entrainment (Mrosovsky, 1999).

Understanding the effect of changes in kL  and N  
is somewhat more complicated than the changes due 
to φ  and k f . The reason is that changes in kL  dramati-
cally affect the right branch of NPL

, while changes in 
N  affect where in phase space the LD-entrained 
oscillator experiences conditions of light or dark. As a 
result, their respective effects on the speed of the 
LD-entrained oscillator are less uniform than with 
the intrinsic parameters.

Increases in light intensity are modeled by increas-
ing kL. For small values of kL, entrainment is not pos-
sible, since the forced oscillator will still be too slow. 
Thus, there is a minimum strength of kL = 0.029  
needed to entrain. Over a range of values, increasing 
kL  speeds up the oscillations, since in general, the 
dynamics under lights are faster than during dark. 
Figure 4C shows the effect of changing kL  on the map 
Π. Because increases in kL  speed up the dynamics, 
the map shifts down and to the right (although there 
is small region near x = 20  where this is not true for 
the larger values of kL ) and the stable fixed point 
moves to the left. This corresponds to increased light 
intensity advancing the phase of entrainment. With 
our canonical parameter set, the intrinsic oscillator 
has a long DD period ( τ > 24 ) and a delayed phase of 
entrainment (i.e., a night owl). Thus, this result is con-
sistent with the use of bright light therapy to treat 
patients with delayed sleep phase syndrome (Dodson 
and Zee, 2010). For this figure, we had to lower the 
Poincaré section to M = 0.4  to guarantee that for any 
initial condition of the map, the ensuing trajectory 
crossed P  in the first cycle of its oscillation. Note that 
this results in xs = 9.76  and xu = 20.0  for the canoni-
cal case. Increased values of kL  cause the linear por-
tion of the equation that determines NPL

 to dominate. 
In this case, NPL

 can become monotone increasing 
and nearly linear, which produces a stable fixed point 
at the intersection of NM  for kL = 0.089. Thus, the LL 
limit cycle will fail to exist. Observe that for kL > 0.089,
although the LL oscillation fails to exist, the 
LD-entrained solution will continue to exist. For this 
case, during the light portion, the trajectory tracks the 
left branch of NPL

 toward the stable fixed point. This 
fixed point prohibits the trajectory from leaving NPL

 
and, as a result, puts an upper bound on how fast the 
oscillator can evolve. When the lights turn off, the 
nullcline switches to NPD

, which is cubic shaped, and 
the trajectory circles the unstable intersection point of 
NPD

 and NM  before returning the left branch of NPD
. 

Thus, for arbitrarily large values of kL, oscillations 
persist, such that increasing the intensity of light can 
speed up the oscillations only to a certain extent and 
never too fast to disrupt entrainment.
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Figure 4D shows how the map Π(x) depends on 
the photoperiod N N: 24 −  (LD). Increasing N  
means that the oscillator is exposed to more light. 
Generally, this does speed up the dynamics. This fact 
is reflected by the discontinuity xd  moving to the 
right as N  increases, similar to how it moves for all 
the other parameter variations that speed up the 
dynamics. What differs with changes in N  from 
other cases is that the map as a whole does not shift 
down and to the right. Entrainment continues to dis-
appear through saddle node bifurcations if the LD 
forcing is too heavily skewed toward either the light 
or dark intervals. When N  is large, the photoperiod 
contains too long an interval of light. The oscillator 
becomes too fast and loses the ability to entrain in the 
same way that entrainment is lost when φ  increases. 
In particular, the left part of the map Π( )x  shifts 
down and to the right with increases in N  just as it 
does with increases in φ. The right part of the map 
shifts up when N  is decreased and the dark interval 
dominates. In that case, the oscillator eventually 
becomes too slow to entrain, similar to when φ  is 
decreased. Further details explaining why the map 
behaves in this way are provided in the Supplementary 
Material, Section R1.

Dynamics of Entrainment

Having understood the situations that lead to the 
existence of the LD-entrained stable and unstable 
solutions, let us now turn to understanding some 
aspects of the transient dynamics of trajectories that 
start with initial conditions that lie off of these limit 
cycles. The most straightforward way to do this is to 
use the map Π  to track the transient dynamics asso-
ciated with an initial condition x0. This will allow us 
to make comparisons to a direct simulation in which 
we start an oscillator on the Poincaré section P, x0  
hours into an LD cycle.

For the map x xn n+1 = ( )Π , a cobweb diagram from 
any initial condition x0 ≠ xu shows that the trajectory 
converges to the stable fixed point xs. We can readily 
determine 2 characteristics of entrainment: the time 
to entrainment and the direction of entrainment. In 
the Methods section, we defined a solution to be 
entrained if there exists m, such that for all j m≥ , 
| |< 0.5x xs j− . The integer m  depends on x0  and 
refers to the number of iterates needed for the condi-
tion to hold from any given initial condition x0. We 
can calculate the time to entrainment in the following 
way. In the cobweb diagram, at each iterate, the tra-
jectory hits either the upper or lower branch of Π. Let 
xd  denote the value of the discontinuity of the map. 
Depending on the location of the discontinuity xd, the 
time ρ( )x  associated with that iterate will differ (see 
the Supplementary Material, Section R2, for details). 

The direction of entrainment refers to whether the 
cobwebbed iterate moves to the left or the right. 
When x xn n+1 > , then the iterate moves to the right, 
and the phase of the oscillator with respect to the 
onset of the lights is larger. Thus, we call this a phase 
delay. Alternatively, we obtain a phase advance when 
the iterate moves to the left when x xn n+1 < . Note, 
however, that transitions between branches follow a 
different rule. If xd > 12, then a transition from the 
lower branch at one iterate to the upper branch at the 
next iterate is considered a phase delay, even though 
x xn n+1 < . This is because this type of iterate is equiv-
alent to more than 24 h passing before the return to 
P . If xd < 12, then the transition from upper branch 
to lower branch is considered a phase advance even 
though x xn n+1 > , since this type of iterate implies 2 
crossings within one 24-h cycle. Finally, observe that 
the unstable fixed point xu  demarcates which initial 
conditions lie on trajectories that entrain through 
phase advancing or phase delaying.

To study a specific example, we return to the map 
associated with the canonical set of parameters. Here 
xs = 10.2, xu = 20.5, and xd > 12. Let us choose an ini-
tial condition x0 = 20.2. This point lies to the left of 
xu , so under the cobweb dynamics, it will move to 
the left and converge to xs  from above, thereby phase 
advancing (green trajectory of Fig. 5A). Comparing to 
direct simulations, we find that the entrainment time 
is 158.281  (6.6 days), which matches very well with 
the predictions of the map (157.247 h). As another 
example, choose x0 = 21.2 , which lies to the right of 
xu. Now the iterates of the map move to the right, hit 
the lower branch of Π , and then are cobwebbed back 
to a smaller value of x, from where they continue 
moving right (magenta trajectory in Fig. 5A). In this 
case, the oscillator entrains through phase delaying. 
From the map, we find the entrainment time to be 
180.775 h (7.5 days) and from direct simulations to be 
180.767 h. In Figure 5B, we show the time traces for 
solutions with each of these 2 initial conditions. Note 
that the green trajectory phase advances, while the 
magenta trajectory phase delays, consistent with the 
predictions of the map. Explicit values calculated 
from iterates of the map and direct simulations are 
shown in Tables S1 and S2 in the Supplementary 
Material, Section R2.

The map allows us to easily calculate entrainment 
time for any initial condition, for a range of parame-
ters. For example, to see how light intensity affects 
entrainment time, we varied the initial conditions 
between 0 to 24 for 3 different values of kL; see Figure 
6 (also see the Supplementary Material, Section R2, 
which shows how choosing a different Poincaré sec-
tion affects entrainment time). The solid curve 
denotes the canonical case kL = 0.05 , while the 
dashed and dotted curves are for kL = 0.03  and 0.08, 
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respectively. As expected, for each curve, initial con-
ditions that start in a neighborhood of xs  (local min-
ima of curve) take no time to entrain, while those in 
a neighborhood of xu  take the longest. Note that xs  
and xu  change as a function of kL , as can be seen 
from Figure 4C. Further note that stronger light 
( = 0.08)kL  leads, on average, to the shortest entrain-
ment times, as can be observed by noting that the 
dotted curve lies on average below the others. This 
result can be predicted based on how the shape of 
Π( )x  changes with kL. Observe from Figure 4C that 
as kL  increases, the map has a region where the slope 
becomes smaller (roughly between x = 4  and x = 16 ) 
and a region where the slope and concavity increase 
(roughly between x = 16  and x = 20 ). It is in the 
region x = 10  to 20  that entrainment time dramati-
cally decreases for kL = 0.08. The reason is that iter-
ates of the map use this sharp change in slope to 
make bigger advances toward the fixed point. This 
suggests that the amount of time required for a circa-
dian oscillator to reentrain following a phase shift in 
the light-dark cycle, for example, after rapid trans-
meridian travel, will depend on light intensity with 
brighter light resulting in less jetlag.

Figure 5. Entrainment maps systematically reveal entrainment dynamics such as whether entrainment will occur through phase 
advances or phase delays. (A) Cobweb diagram showing convergence to xs  starting from 2 different initial conditions x0 = 20.2  (green 
trajectory) and x0 = 21.2  (magenta trajectory). The former entrains by phase advancing, the latter by phase delaying. (B) The approach to 
the stable cycle shown in the t  versus P  plane. Green and magenta traces correspond to the same values as in part A.

Figure 6. Time to entrain depends on light intensity and the 
proximity of initial phase to the stable and unstable fixed points. 
Larger values of kL , on average, lead to faster entrainment. For 
each case, the minimum entrainment time of 0 occurs for ini-
tial conditions in a neighborhood of xs  and the maximum in a 
neighborhood of xu  ( xs = 13.9, 9.5, 7.6  and xu = 17.2,20.0,20.6  
for kL = 0.03,0.05,0.08, respectively).

Relating ΠΠ( )x  to a PRC

The phase response curve of an oscillator mea-
sures the change in asymptotic phase experienced 
when a perturbation is given to an oscillator along 
different parts of its limit cycle. In the context of our 
problem, we shall construct the PRC using a light 
pulse of length N  hours with kL = 0.05. Specifically, 
start with a DD oscillator on the Poincaré section P. 
Allow it to evolve for y  hours along the DD limit 
cycle and then perturb it by introducing a light pulse 
of N  hours. We define

Z y k yk k( ) = ( )τ τ− ,  (6)

where τ  is the free running period of the DD oscilla-
tor and τk y( )  is the time when the perturbed oscilla-
tor crosses P  for the kth time. At each cycle, the 
quantity Z yk ( )  measures the deviation of the transit 
time of the perturbed oscillator from the DD oscilla-
tor. Z yk ( )  is often called the kth-order PRC. Here, 
phase 0 is chosen as a point on the DD oscillator and 
thus the perturbed phase is defined relative to the DD 
oscillator itself. In general, such PRCs are typically 
used when 2 conditions are met: The duration N  of 
the light pulse is small, and the magnitude kL  is not 
too large. These conditions imply that the effect of the 
light pulse is felt within the current or subsequent 
cycle to when it is applied and that the oscillator 
returns quickly to its intrinsic limit cycle thereafter, 
albeit with a potentially different phase. Both in the-
ory and, as we will show, in practice, these conditions 
limit the applicability of using PRCs to determine 
phase-locking.

The map Π( )x  can be directly compared to Z yk ( )  
provided that both functions have the same domain. 
First, note that the domain of Zk  is the interval [0, ]τ , 
while the domain for Π  is [0, 24]. Thus, the 2 func-
tions can be compared only when τ = 24  or by trun-
cating the domain of Zk  (if τ > 24 ) or Π  (if τ < 24 ). 
To consider a case of τ = 24, we set ε = 0.01  and 
φ = 8.07. In turn, this implies that τ ρ1( ) = ( )y x  and 
x y+ = 24, as shown in Figure S3 of the Supplementary 
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Material, Section R3. Substitute into Equation (6) for 
k = 1  to obtain

Z y yΠ ( ) = (24 ).τ ρ− −  (7)

The subscript on the PRC in this case indicates that 
this function is obtained from our map Π  rather than 
directly through simulation. Additionally, it is conve-
nient to leave Z yΠ ( )  expressed in terms of ρ(24 )− y  
rather than in terms of Π  so that we can avoid the 
mod operation.

In Figure 7A, we show the results of directly com-
puting the PRCs Z y1( )  and Z y2( )  for N = 1  and 
τ = 24  with the map-based PRC Z yΠ ( ). Note that 
because the effect of a single light pulse wears off 
relatively quickly, Z y Z yk k+1( ) = ( )  for k ≥ 2 . A stable 
phase-locked solution will occur where the PRC has a 
root with negative slope. All 3 PRCs quantitatively 
agree with one another, although it is difficult to dis-
cern that the PRC is non-zero for small and large val-
ues of y. In Figure 7B, we show the results for a case 
where the duration of the light pulse is not small, spe-
cifically N = 12 . Note here that Z y1( ), Z y2( ), and 
Z yΠ ( )  differ quantitatively for larger values of y. In 
particular, all 3 have different stable roots. By com-
parison to direct simulations, the roots predicted by 
Z y1( )  and Z y2( )  are incorrect, whereas the root pre-
dicted by the map-based Z yΠ ( )  is correct.

The preceding example of N = 12  allows us to 
illustrate the primary difference between the entrain-
ment map Π  and the PRC, as well as the limitations 
of the latter. In Figure 8A, we show schematic dia-
grams of the case where y  is chosen as the root of 
Z yΠ ( )  ( y = 18.522 ), which depicts where in time the 
oscillator is subjected to light. Figures 8B, 8C, and 8D 
show trajectories in the phase plane. In Figure 8A, the 
first solid line of each schematic denotes t = 0  and 
represents the trajectory starting on the Poincaré sec-
tion P . For the map Π( )x , x y= 24 −  is small (since 
y  is large), and thus the trajectory starts out with the 
lights on. In the phase plane, the trajectory will follow 
the LL cycle for 12− x  hours, before then following 

the DD dynamics for 12 h. After that time, the trajec-
tory will again be subjected to light during the 
remaining time x  it takes to return back to P. Thus, 
when constructing the entrainment map Π, the light 
pulse is allowed to be split up over different portions 
of the cell’s trajectory, as shown in Figure 8B. In con-
trast, when constructing the PRCs Z y1( )  and Z y2( ), 
the light pulse is never split up. In the phase space, 
the trajectory now traverses along DD for y  hours 
before the lights turn on. Thus, in comparison to the 
Π -based trajectory, it is in a very different location in 
phase space when the LL dynamics come into play. 
The first crossing of P  yields Z y1( ). As can be seen 
from Figure 8C, the oscillator has received only a 
small portion of the light pulse to this point, but it 
receives the light in a region of phase space that 
speeds up its oscillation. The second solid orange line 
in Figure 8A shows where the oscillator is relative to 
the light cycle at the moment it again crosses P. The 
light gray lines show 24-h intervals and represent 
where the oscillator would have been in the absence 
of light input. Thus, Z y1( ) > 0. After this point, the 
trajectory receives the remaining portion of light 
shown in Figure 8D but is actually in a region of 
phase space where the added light slows it down 
(lower schematic of Fig. 8A). In fact, it is slowed down 
so much that at the second crossing of P , Z y2( ) < 0.

When the intrinsic period of the DD oscillator is dif-
ferent than 24 h, then we must restrict the domain of 
Z yk ( )  or Π( )x  to be able to directly compare them. 
Alternatively, we can simply compare the predictions 
regarding the phase of locking made by the map Π( )x  
versus those made by either Z y1( )  or Z y2( ). We did so 
over a set of φ  values (from φ = 5.5  to 8.25, with 
ε = 0.01) that span a range of intrinsic periods τ  from 
23.5 to 35.2. In all cases, when compared to direct sim-
ulations, the predictions made by the map Π  were 
more accurate than those made via the PRCs; for 
details, see Table S3 in the Supplementary Material, 
Section R3. We also checked the accuracy of the pre-
dicted phase of entrainment for an alternative PRC 
construction protocol that was based on detecting 

Figure 7. The PRC fails to accurately predict the phase of entrainment for long light pulses, whereas the entrainment map is accurate 
for light pulses of any length. (A) For a short light pulse ( N = 1), Z1, Z2, and ZΠΠ  all agree with one another. (B) For a longer light pulse 
( N = 12), only ZΠΠ  correctly predicts the value of the root computed by direct simulation (solid dot at y = 18.522).
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peaks of the P variable rather than crossings of a 
Poincaré section. Specifically, we perturbed the canon-
ical DD oscillator ( φ ε= 2.1, = 0.05 ) with light pulses 
( kL = 0.05 ) and then measured the phase shift of the 
peak time in the sixth cycle after the perturbation. The 
PRC predicted the entrained phase correctly (within 
2-min accuracy) for N = 12  but was off by more than 
30 min for N = 16. In contrast, the entrainment map 
predicted the entrained phase correctly (within 1 sec-
ond accuracy) in both cases.

Higher Dimensional Models

We now show that the entrainment map can be 
defined in higher dimensional settings by construct-
ing maps for the Gonze and Kim-Forger models. In 
each of these cases, the Poincaré section is chosen at 
a fixed value of a variable that does not receive the 
light-dark forcing f t( )  as described in the Methods 
section. Note that in addition to being of different 
dimensionality, these models also differ in the man-
ner in which light enters the equations. In the fly 
model (NT), light increases the rate of protein degra-
dation, whereas in the mammalian models (Gonze 
and Kim-Forger), light increases the rate of mRNA 
transcription. These distinct effects of light lead to 
contrasting relationships between DD and LL 
dynamics across the models. Specifically, the LL limit 
cycle has a shorter period than the corresponding 
DD limit cycle in the NT model but a longer period 
than the corresponding DD limit cycle in the Gonze 

and Kim-Forger models. Despite these differences in 
the behavior of these models under constant dark 
and constant light conditions, we find that the 
entrainment maps for these models share some com-
mon features and are able to accurately capture the 
effects of light-dark forcing in all 3 cases.

Figures 9A and 9B show the entrainment maps for 
3 different values of the intrinsic periods of the respec-
tive models. Although it is difficult to see, note that as 
the intrinsic oscillator speeds up (increasing φ ), the 
maps move the same way as they did in the NT 
model. Namely, the entrained phase shifts to an ear-
lier part of the light-dark cycle. The maps for both 
models also share with the NT maps the property of 
having 1 point of discontinuity. This commonality 
across the 3 models, together with those discussed 
below, suggests that the entrainment map provides a 
robust method for finding universal properties of cir-
cadian oscillators.

In Figures 9C and 9D, we show how the maps 
behave in response to increases in light intensity ( νL  
in the Gonze model and trL  in the Kim-Forger model). 
In both models, as light is increased, the phase of 
entrainment does not change much. Instead, at vari-
ous places, the concavity of the map increases. As 
these properties were also found in the NT model 
(Fig. 6), we would predict that stronger light leads to 
faster entrainment in both of these models just as it 
did in the NT model.

In Figures 9E and 9F, the PRCs Z yΠ ( ), Z y1( ), and 
Z y2( )  are shown for a 12:12 photoperiod. What is 
interesting about these graphs is how poorly the 

Figure 8. Comparison of how the light pulse affects the calculation made by the various PRCs. (A) Schematic showing where in time 
the oscillator crosses P  (solid blue, orange, and green) and where the reference oscillator does for Z1  and Z2  (solid gray). The por-
tion of the light pulse that is used in the calculation is shown in solid in each case. (B-D) Each panel shows where in phase space the 
light pulse affects the oscillator. (B) Effect of light pulse is split up in time, t = 0  to t = 6.52 , and then again from t = 18.52  to t = 24 . 
(C) The light pulse is only felt at the end of the oscillation from t = 18.52  to t = 23.72. (D) The light pulse is only felt during t = 23.72  
to 30.52.

 by guest on November 21, 2016jbr.sagepub.comDownloaded from 

http://jbr.sagepub.com/


Diekman, Bose / ENTRAINMENT MAPS 611

conventional PRCs Z1 and Z2 perform in predicting 
the entrained phase (red dots). Z1  fails to produce an 
entrained phase for the Gonze model while produc-
ing a set of nonunique solutions for the Kim-Forger 
model. Z2  is quantitatively incorrect for both mod-
els. The reason why the conventional PRC fails is 
because it is calculated using a perturbation of the 
DD limit cycle. In contrast, the entrainment map 
based PRC, ZΠ , perturbs off of the LD-entrained 
solution and produces an accurate prediction. For the 
Gonze model, it is possible to see that the DD and 
LD-entrained solutions lie in very different regions of 
phase space (see Suppl. Fig. S5). So the fact that the 
PRC and map-based predictions are different is not 
surprising. For the Kim-Forger model, it is nearly 
impossible to tell where in phase space the DD and 
LD-entrained solutions lie. But we would infer that 
they are not near one another.

DISCUSSION

Circadian rhythms enable organisms to appropri-
ately align physiological and behavioral processes 
with the 24-h environmental cycles conferred by the 

earth’s daily rotation. Rhythms persist when the 
organism is isolated from external time cues; how-
ever, in constant conditions the period of circadian 
oscillators is typically not exactly 24 h. For example, 
the average human circadian rhythm is 24.2 h while 
that of mice is 23.5 h (Ripperger et al., 2011). These 
oscillators are subject to periodic external forcing 
such as the light-dark cycle that adjusts the phase of 
the rhythm and entrains them to a period of 24 h. The 
entrained rhythm must have the proper phasing with 
respect to external events in order for the circadian 
system to confer a selective advantage to the organ-
ism (Ben-Shlomo and Kyriacou, 2002). Two impor-
tant questions arise: Under what conditions do 
circadian oscillators phase-lock to external forcing, 
and when they do what determines the phase of 
entrainment?

In this paper, we have developed a new method to 
determine the phase-locking properties of a circadian 
oscillator relative to a 24-h light-dark cycle. We 
derived an entrainment map Π( )x  for a 2-dimen-
sional NT model of the Drosophila molecular circa-
dian clock and then showed that the map can be 
similarly derived for the 3-dimensional Gonze and 
the 180-dimensional Kim-Forger models of the mam-
malian molecular circadian clock. In particular, if the 

Figure 9. Entrainment maps and PRCs for the Gonze model (left) and Kim-Forger model (right). (A and B) Variations in the maps due 
to changes in the intrinsic period of the oscillators. As with the NT model Figure 4A, the map shifts down and to the right for faster 
intrinsic oscillators. (C and D) Stronger light affects entrainment. There is not much difference in the phase of entrainment but a pro-
nounced difference in the concavity of the map, which will lead to faster entrainment. (E and F) Comparisons of the PRC generated from 
our map, Z yΠΠ ( ), versus those generated from perturbations of the DD limit cycle. The red dot is the entrained phase calculated via direct 
simulation.
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oscillator lies on a Poincaré section P  and x  is the 
time from the onset of the most recent light-dark 
cycle, Π( )x  is measured when the oscillator first 
returns to P  and predicts the time from the begin-
ning of the most recent light-dark cycle. A fixed point 
of the map corresponds to a phase-locked LD-entrained 
solution. In all models, for canonical sets of parame-
ters, we showed that the map typically has 2 fixed 
points, xs, which is stable, and xu, which is unstable. 
Further, since x = 0  corresponds to where the lights 
turn on (nominally 0700 h), knowing the value of xs  
allows us to determine where along the trajectory in 
phase space the lights turn on and off. For example, in 
the NT model with the set of parameters that corre-
sponds to an intrinsic period τ = 27.6  (canonical 
parameter set with φ = 2.2 ), the LD-entrained solu-
tion has the lights turn on 14 h before M  reaches its 
maximum value. This is consistent with biological 
findings that the highest mRNA levels for Per, an 
important gene in the Drosophila circadian clock, are 
found 2 h after lights off in a 12-h:12-h light-dark 
cycle (Young, 1989).

Using the entrainment map allowed us to under-
stand and predict the effects of parameter changes in 
the model. Indeed, parameters that have similar 
effects influence the entrainment map in the same 
way across all 3 models. For example, increasing φ  
decreases the intrinsic period of the oscillators. In all 
cases, the entrainment map Π( )x  shifts down and to 
the right, moving the stable fixed point xs  to smaller 
values. The analysis also revealed several interesting 
roles for the unstable fixed point xu. First, xu  sepa-
rates the set of initial conditions x0  that entrain via 
phase advance or phase delay. Second, initial condi-
tions that are in a neighborhood of xu  took the lon-
gest to entrain, largely independent of the direction 
of entrainment. Third, loss of entrainment could 
occur due to changes in parameters through a ste-
reotypical saddle-node bifurcation when xs  and xu  
merge. Some changes in parameters, however, never 
lead to a loss of entrainment: in particular, increases 
in light intensity ( kL  in NT, νL  in Gonze, and trL  in 
Kim-Forger). Fourth, the existence of xu  implies the 
existence of an unstable entrained periodic solution. 
As shown in Figure 3D, this unstable limit cycle is 
smaller in amplitude than its stable counterpart. It 
is also shifted by a distance of roughly | |x xs u−  in 
terms of when it experiences light relative to the sta-
ble limit cycle. For the canonical set of parameters, 
this implies that when the unstable limit cycle is 
experiencing light, the stable limit cycle is experienc-
ing dark, and vice versa. Thus, the solutions are 
effectively 180° out of phase. As φ  changes and the 
system nears a saddle-node bifurcation, the differ-
ence in phases between the stable and unstable solu-
tions shrinks (eventually going to 0) and entrainment 

occurs mostly through phase advance if x xs u>  or 
phase delay if x xs u< .

The basic idea behind constructing an entrainment 
map for any particular model is quite general. 
Namely, in the phase space of the model, choose a 
Poincaré section along a point of the LD-entrained 
solution. Then compute the map Π( )x  by taking ini-
tial conditions that lie at the intersection of the map 
and the LD-entrained solution and measure the 
return time to the Poincaré section. Π( )x  is then the 
amount of time that has passed since the onset of 
lights in the most recent light-dark cycle. As such, the 
entrainment map will always be 1-dimensional. What 
will vary is the dimensionality of the Poincaré section 
P. As our simulations have shown, even when the 
Poincaré section is high dimensional, as in the Kim-
Forger model, the entrainment map very accurately 
predicts the stable phase of entrainment. In these 
high-dimensional cases, the map has the added 
advantage that effects of changes in parameters are 
more easily predicted because these changes are ste-
reotypical across models.

Comparison to Prior Work

There are 2 major paradigms for entrainment in 
the circadian field: discrete (or nonparametric) 
entrainment and continuous (or parametric) entrain-
ment (Roenneberg et al., 2010a). The former is based 
on the idea of a free-running oscillator, DD for 
example, experiencing discrete phase shifts in 
response to perturbative inputs along its limit cycle 
and in particular light-dark transitions. This 
approach has led to methods based on the PRC and 
does not explicitly take into account the periodic 
nature of the forcing signal. The second paradigm 
assumes that entrainment occurs through continu-
ous adjustments to the speed of the oscillator and 
involves a velocity response curve (VRC) (Beersma 
et  al., 1999; Rand et  al., 2004; Taylor et  al., 2010, 
2014). The VRC characterizes regions in the circa-
dian phase space where the speed of the oscillator 
increases or decreases as a function of a change of 
parameter—for example, light intensity. It can be 
thought of as the variational derivative of the phase 
with respect to a parameter of interest. This approach 
is categorized as being continuous, rather than dis-
crete, because it assumes that light affects the oscil-
lator throughout the circadian cycle and not just at 
light-dark transitions. Both PRC- and VRC-based 
methods are fundamentally based on using the iso-
chron structure of the underlying DD oscillator to 
determine the change in phase. The phase of these 
oscillators is defined relative to a reference point on 
the DD oscillator itself.
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Our approach to studying entrainment is differ-
ent than these methods in that we view the periodic 
24-h light-dark forcing as being the underlying 
rhythm that sets the reference point for determining 
phase. Namely we assign the time at which lights 
turn on as the reference x = 0  and do not separately 
define a phase for the DD or LL oscillators. We deter-
mine how a circadian oscillator with a prescribed 
initial condition relative to lights-on adjusts its 
dynamics over a periodic 24-h light-dark cycle. By 
considering the 24-h range of possible initial con-
ditions, we obtain the entrainment map Π( )x . 
Depending on the initial condition, Π( )x  is calcu-
lated by splitting up either the light or dark pulse 
over the course of 1 or more 24-h cycles. For exam-
ple, with 12:12 LD forcing, since x = 0  corresponds 
to lights-on, the initial condition x0 = 4  leads to a 
computation that starts with the oscillator at P  and 
imposes 8 h of light, followed by 12 h of dark and 
then 12 h of light and so on. The value Π(4)  is deter-
mined when the trajectory first returns to P  inde-
pendent of whether this time took less than, more 
than, or the same as 24 h. If, for example, x0 = 19, 
then initially 5 h of dark would be imposed followed 
by 12 h of light, then 12 h of dark, and so on. In the 
former case, the light pulse would be split up; in the 
latter, the dark pulse would be split up. In contrast, 
PRC- and VRC-based methods only use a single 
light pulse, and often after imposing too long a dark 
duration (because they perturb off of DD condi-
tions), which can lead to only a portion of the light 
pulse being taken into account by the time the oscil-
lator returns to its reference phase.

The entrainment map is similar in spirit to the cir-
cadian integrated response characteristic (CIRC), 
proposed by Roenneberg et al. (2010b), in that both 
approaches attempt to take into account the periodic 
nature of the light-dark forcing. Common to all 
approaches is the need for a well-defined oscillatory 
solution that can be described as a limit cycle in an 
appropriate phase space. In most cases, this is the DD 
limit cycle. The entrainment map, in addition, uses 
the structure of the LL limit cycle to help define its 
properties. This is closely related to the suggestion by 
Peterson (1980), who noted that an LD-entrained 
solution at some moments in its cycle tries to approach 
the stable DD cycle and at other moments approaches 
the LL cycle. Our analysis involving Π( )x  does not 
explicitly incorporate a VRC. However, it does use 
the fact that changes in parameters differentially 
affect the speed with which a trajectory evolves in 
different regions of phase space. For example, we 
showed how changes to intrinsic parameters φ  and 
k f  of the NT model had a more uniform effect on 
speed compared with those associated with the inten-
sity kL  and duration N  of the light pulse.

These points of difference and commonality aside, 
the entrainment map is simply a tool to make predic-
tions about the phase-locking properties of a circa-
dian oscillator. As a result, the findings obtained 
through its use should qualitatively match prior find-
ings that use other methods that themselves match to 
empirical data. In Bordyugov et al. (2015), the authors 
derive conditions on entrainment and its dependence 
on parameters in an abstract setting of the Kuramoto 
phase oscillator model (Kuramoto, 1984). They then 
test the predictions made by the phase model on a 
modified Goodwin model of gene regulation with 
solely negative feedback (i.e., the Gonze model; 
Gonze et al., 2005) and on a 19-dimensional molecu-
lar clock model (Relogio et al., 2011). They consider a 
2-dimensional parameter space consisting of the mis-
match between the free-running period of the intrin-
sic oscillator and the period of the forcing and the 
relative strength of zeitgeber input to the oscillator 
amplitude. Their primary finding is that the one-to-
one phase-locked solutions form a wedge-like struc-
ture (Arnold tongue) in this space and that the range 
of stable phases that exist within this wedge can span 
as much as 12 h. In particular, for weak zeitgebers, the 
12-h span is achieved over a relatively small span of 
mismatches in the periods. As relative zeitgeber 
strength is increased, a larger range of period mis-
match is needed to achieve the 12-h span of stable 
phases. This result is based on some earlier work of 
Granada and Herzel (Granada et al., 2013) that estab-
lished the so-called 180° rule, which is another way to 
say that the range of stable phases spans 12 out of 24 
h. Our results are very similar. For example, in Figure 
4A, different values of φ  correspond to different free-
running periods of the DD oscillator. Since we held 
the forcing period constant at 24, changes in φ  cor-
respond to changing the period mismatch, or equiva-
lently to considering a horizontal slice of the Arnold 
tongue in Figure 1A of Bordyugov et al. (2015). We 
see from Figure 4A that the range of stable phases 
spans roughly an 11-h range (xs≈15.8 when φ = 1.865  
to xs≈4.8 when φ = 2.506 ). Using the entrainment 
map, we could also create a 2-parameter Arnold 
tongue representation, say for φ  and kL. To do so, we 
would combine results from Figures 4A and 4C. The 
Arnold tongue would also be wedged-shaped in the 
φ− kL  space. For fixed kL, a horizontal slice is obtained 
by varying φ  between φmin  and φmax, as discussed 
above. For fixed φ, a vertical slice of the Arnold tongue 
could be obtained from Figure 4C, which shows that 
entrainment is lost when kL  decreases (creating a 
lower edge of the Arnold tongue) but persists as kL  
increases.

Granada and Herzel (2009) studied how the time 
to entrainment is affected by various parameters. 
One of their main findings, derived for an abstract 
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Poincaré oscillator and then applied to a Goodwin 
model, is that larger relative zeitgeber strengths leads 
to faster average entrainment. Their study was spe-
cifically designed to minimize the impact of different 
initial conditions of the oscillators. In our work, we 
can use the entrainment map to quickly calculate the 
entrainment time for any initial condition for any 
fixed set of parameters. Figure 6 shows results for dif-
ferent values of kL, which is our equivalent to zeitge-
ber strength. As can be seen from that figure, increases 
in kL  do result in an average faster entrainment. This 
can be concluded by visual inspection that the area 
under the curves decreases as kL  increases. Our work 
additionally suggests that initial conditions that lie in 
a neighborhood of the unstable fixed point can take 
arbitrarily long times to entrain.

From a more mathematical point view, since Π( )x  
is a circle map, our findings are consistent with the 
vast literature on forced oscillator models. In the gen-
eral theory, when a specific parameter is varied, the 
forced system transitions through a series of different 
phase-locked (called m n:  solutions) and quasi-peri-
odic (often called dense orbits) states. The m n:  solu-
tions are actual periodic solutions of the map. These 
types of solutions occur when the mismatch between 
the intrinsic oscillator period and the forcing period 
leads to a rational rotation number, roughly defined 
as the ratio of oscillator period to forcing period. 
Dense orbits arise when the rotation number is irra-
tional. These results are a consequence of Denjoy’s 
theorem on circle maps and subsequent work of 
Arnold and many others (Arnold, 1965; Glass, 1991; 
Keener and Glass, 1984). Prior work shows that under 
certain assumptions, the rotation number varies con-
tinuously with a parameter of interest and that there 
exist parameter intervals over which different m n:  
solutions can be found. In our case, we focused on 
one-to-one phase locking, showing that there is an 
interval ( , )φ φmin max  for stable entrainment. We did 
not exhaustively explore the existence of dense orbits 
or other solutions with rational rotation numbers, but 
we expect those to exist. Circle maps are also widely 
used in other contexts such as cardiac dynamics and, 
more generally, any process that involves clocking 
(Winfree, 2001). In such cases, a phase transition 
curve (PTC) is used to build a map to predict the 
effect of periodic forcing. The PTC measures the nor-
malized phase of resetting as a function of the nor-
malized stimulus phase. By normalized we mean that 
phase values lie between 0 and 1. The associated map 
at each cycle then measures the new phase as a func-
tion of the old. The PTC, therefore, is constructed 
using the PRC. Thus, PTCs face the same limitations 
in their use that PRCs do and can make predictions 
that are not borne out by a direct simulation or exper-
iment; see Glass et al. (2002).

Future Directions

In this paper we have focused on light-dark forc-
ing since it is the dominant zeitgeber for circadian 
clocks. However, the entrainment map can readily be 
extended to nonphotic entraining signals, such as 
temperature cycles, and perhaps give insight into 
how the circadian system integrates information 
from multiple environmental signals occurring 
simultaneously. The ease with which time to reen-
trainment can be calculated and visualized for differ-
ent initial conditions by cobwebbing makes the map 
a useful tool for investigating jetlag scenarios. The 
map may also prove to be an effective tool for study-
ing entrainment and synchronization in networks of 
coupled oscillators.

Entrainment maps of detailed molecular clock 
models such as Kim-Forger can be used to generate 
hypotheses about how specific mutations or other 
manipulations of clock components affect entrain-
ment and to make predictions regarding entrainment 
mechanisms that can then be tested experimentally. 
One interesting question to explore using entrain-
ment maps is the effect that different proposed mech-
anisms of transcriptional regulation (such as protein 
sequestration and Hill-type repression) have on 
entrainment properties (Kim et al., 2014; Kim, 2016).

Beyond circadian oscillator models, we believe 
that entrainment maps can also be successfully con-
structed based on data from real organisms or experi-
mental preparations. To illustrate our suggested 
protocol, we consider the cyanobacterial circadian 
clock, for which the phosphorylation status of the 
protein KaiC is a convenient phase marker both in 
vivo and in vitro (Kim et al., 2015). To construct phase 
response curves for in vivo cultures, experimentalists 
maintain the cultures in constant light and then 
expose them to 4-h dark pulses at different phases 
and measure the resulting phase shift (Kim et  al., 
2012). To construct an entrainment map, we would 
instead maintain the cultures under a 12:12 LD cycle. 
The minimum of the KaiC phosphorylation wave-
form will play a role analogous to the Poincaré sec-
tion P . Once the culture is entrained, there will be a 
stable phase relationship between the onset of lights 
and the minimum of the KaiC phosphorylation 
rhythm. This gives us one data point for the map, 
namely the stable fixed point x x= ( )Π . To obtain 
other data points, we will measure how the entrained 
oscillator responds to phase shifts in the LD cycle. 
Specifically, in one cycle we will extend the light or 
dark duration by a certain number of hours and then 
record the time of 2 subsequent minima of the KaiC 
phosphorylation waveform. This will give us an 
ordered pair ( , ( ))x xΠ . In fact, each KaiC phosphory-
lation minimum observed until the culture reentrains 
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will give us one additional data point for the map. 
Once the culture has reentrained, we can repeat the 
experiment with a different phase shift of the LD 
cycle to sample other areas of the map. Alternatively, 
the experiment can be done in parallel rather than 
serially by dividing the cyanobacterial culture into a 
population of subcultures and applying different LD 
phase shifts to each subculture.
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Supplementary Online Material — Entrainment maps: A new tool

for understanding properties of circadian oscillator models

Casey O. Diekman⇤ Amitabha Bose†

Section M1: The Entrainment Map ⇧(x)

Pseudocode algorithm for computing the map

Suppose the trajectory is on the Poincaré section P with coordinates along the LD limit cycle. Set
t = 0 and choose x0 2 [0, 24) as the amount of time that has passed since the beginning of the
most recent LD cycle, where N and 24�N are the number of hours of light and dark in each LD
cycle (typically N = 12). We wish to find x1 = ⇧(x0), the amount of time that has passed since
the beginning of the most recent LD cycle when the trajectory first returns to P. To do this, we
solve the ODEs (integrating forward in time) and record the time t when the trajectory crosses P
according to the following algorithm:

IF x0 < N

1. impose L for N � x0 hours

2. then impose D for 24�N hours

• IF trajectory reaches P at t < 24� x0, THEN set x1 = t+ x0

• ELSE impose L for N hours

– IF trajectory reaches P at t < 24� x0 +N , THEN set x1 = t+ x0 � 24

– ELSE impose D for 24�N hours

⇤ IF trajectory reaches P at t < 48� x0, THEN set x1 = t+ x0 � 24

⇤ ELSE impose L for N hours

· IF trajectory reaches P at t < 48� x0 +N , THEN set x1 = t+ x0 � 48

IF x0 � N

1. impose D for 24� x0 hours

2. then impose L for N hours

• IF trajectory reaches P at t < 24� x0 +N , THEN set x1 = t+ x0 � 24

• ELSE impose D for 24�N hours

⇤
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102; diekman@njit.edu

†
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102; bose@njit.edu
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– IF trajectory reaches P at t < 48� x0 THEN set x1 = t+ x0 � 24

– ELSE impose L for N hours

⇤ IF trajectory reaches P at t < 48� x0 +N THEN set x1 = t+ x0 � 48

⇤ ELSE impose D for 24�N hours

· IF trajectory reaches P at t < 72� x0 THEN set x1 = t+ x0 � 48

The simulations were performed in MATLAB R2015a using the ODE solver ode15s with absolute
and relative tolerances of 10�8.

Section R1: Dependence of ⇧(x) on parameters

Explaining how ⇢(x) and ⇧(x) depend on �

Figure S1 shows ⇢(x) for various values of �. In general, the curves shift down and to the right as
� is increased. We give a simple explanation for why this occurs. Consider �1 < �2; to be definite
let �1 = 2.1 whose corresponding trajectory in phase space is already plotted in Fig. 1A of the
main text. Choose the point q as the intersection point of the DD cycle with N

PL near P = 3.2;
see Fig. 1A. Denote the time from P to q along the DD cycle as x

�1 . From the annotated phase
plane shown in Fig. 1A, we note that this time is less than 12 hours. For a larger �2, because of
faster dynamics the corresponding time from P to q (denoted x

�2) is smaller. Define x1 = 24�x

�1

and x2 = 24� x

�2 . Thus x1 < x2. After the trajectories reach q, they will travel back towards P,
initially under 12 hours of light and then in darkness, if needed. Define q(x

i

) to be the respective
times from q to P. Note that as long as the trajectories are in the light cycle, they follow the same
one-dimensional path back to P . If they both reach P during the L interval, then q(x1) > q(x2)
since the dynamics are slower for x1. Omitting the details, the same conclusion will hold if one or
both do not reach P in the L interval, but instead in the next D interval. Thus if x1 < x2, then
⇢(x1) = x

�1 + q(x1) > x

�2 + q(x2) = ⇢(x2). Therefore the curve ⇢(x) shifts down and to the right.
Note that x

u

and x

s

, which denote crossings of ⇢(x) with 24, occur respectively on increasing and
decreasing portions of ⇢(x). As � increases x

u

moves to the right and x

s

to the left. At � = 2.3, x
u

passes through the boundary x = 24 and then, by periodicity, emerges from the x = 0 boundary.
The points eventually merge at � = 2.506 which corresponds to �

max

. In the opposite direction, as
� is decreased, x

s

and x

u

merge when � = 1.865 which corresponds to �

min

.
The above findings lead to the following general set of properties describing how ⇧ depends on

�. These properties are not unique to the NT model but also apply to the Gonze and Kim-Forger
models.

(C1) There exists �

min

< �

max

such that for any � 2 (�
min

,�

max

), ⇧ has a unique stable fixed
point, x

s

and a unique unstable fixed point, x
u

. �

min

is the value of � at which these fixed
points are created through a saddle-node bifurcation, �

max

is where these fixed points are
destroyed through a di↵erent saddle-node bifurcation.

(C2) There exists a value �

c

2 (�
min

,�

max

), such that if � 2 (�
min

,�

max

) and � 6= �

c

, ⇧ has
exactly one point of discontinuity. When � = �

c

, the map is continuous and x

u

= 0 or
equivalently 24.

(C3) If x
d

is the point of discontinuity, then lim
x!x

�
d
⇧(x) = 24 and lim

x!x

+
d
⇧(x) = 0
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Figure S1 : The curve ⇢(x) shifts down and to the right as � increases. When � is too small or
large, the curve no longer intersects ⇢ = 24 indicating loss of entrainment.

(C4) The discontinuity x

d

increases as � increases; it passes through the border x = 24 as �

increases through �

c

and then emerges from the opposite border x = 0.

(C5) When � 6= �

c

, the map is periodic at the endpoints of its domain; ⇧(0) = ⇧(24�). When
� = �

c

, then ⇧(0) = 0, ⇧(24�) = 24 and thus ⇧(0) = ⇧(24�)� 24

(C6) ⇧ is increasing on intervals where it is continuous.

The properties of ⇧(x) are straightforward to understand. Note ⇧(x
s

) = ⇢(x
s

) + x

s

mod 24.
Since ⇢(x

s

) = 24, ⇧(x
s

) = x

s

, and similarly for x

u

. Therefore C1 follows. C3 occurs whenever
⇢(x) + x equals a multiple of 24. Since this quantity is increasing (⇢0(x) + 1 > 0), the limits from
above and below follow, as does C6. Properties C2, C4 and C5 are all related to how ⇢(x) depends
on �. Namely, since ⇢(x) moves down and to the right with increasing �, the map ⇧(x) must also
behave similarly. This implies that the discontinuity moves to the right as � increases. For large
enough � (fast enough oscillator), the trajectory can return to P within the same LD cycle as it
started. In this case the discontinuity x

d

occurs for small values of x and has e↵ectively passed
through the x = 24 border for the value �

c

. At that value �

c

, the map is continuous. The map is
periodic since ⇢(x) is periodic and x = 0 is equivalent to x = 24.

Explaining the saddle-node bifurcation of periodic orbits

When � increases through �

max

or decreases through �

min

, the fixed points x
s

and x

u

merge at a
saddle-node bifurcation. This merging corresponds to a saddle-node bifurcation of periodic orbits
in phase space as shown in Fig. S2. The dashed curves in each panel correspond to the unstable
limit cycle, while the solid curves are the stable limit cycles. In each case, red denotes lights on
and black lights o↵. The unstable limit cycle was obtained by first finding the value of x

u

from
the map. We then ran a direct simulation for the equivalent of one 24 hour LD cycle in which

3



the trajectory was started on P and subjected to 12 � x

u

of light if x
u

< 12 or 24 � x

u

of dark if
x

u

> 12. Note that as � decreases, the intrinsic oscillations of LL and DD will slow down. Thus in
order to entrain, the trajectory needs to speed up as much as possible. This is why the bifurcation
in phase space occurs near the LL cycle which is faster than the corresponding DD cycle; Fig. S2C.
Alternatively, when � increases, the intrinsic DD and LL oscillators get progressively faster. To
entrain, the forced trajectory needs to be as slow as possible which is achieved nearer to the DD
oscillation; Fig. S2D.
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Figure S2 : Approaching saddle-node bifurcation of limit cycles as the intrinsic oscillator becomes
slower (left, � = 1.9 to 1.87) or faster (right, � = 2.4325 to 2.5). The LL (inner grey) and DD
(outer grey) cycles are shown in each panel. Stable limit cycles shown with solid curves , unstable
ones with dashed curves. Red denotes lights on x = 0 to x = 12 and black denotes lights o↵ x = 12
to x = 0. A. and C. As � decreases, the stable and unstable limit cycles merge near the LL cycle.
B. and D. As � increases, those limit cycles merge near the DD cycle.

Explaining how ⇧(x) depends on the photoperiod

Di↵erent parts of the map ⇧(x) shift up or down depending on whether N is increased or decreased.
To understand why the map behaves this way, let us first take the initial condition x0 = 5 and
compare in the P �M phase plane the behavior of the ensuing solution trajectory for three cases,
N = 8, 12, and 16. Consider the N = 12 case. Because x0 = 5, the trajectory will initially
experience 7 hours of light. This will place the trajectory at the point c

p

(see Fig. 3A). From here,
the trajectory will follow the DD cycle for 12 hours, leaving it no more than 10 hours away from
P. Indeed, from Fig. 4D, we see that ⇧(5) ⇡ 8.5. Now consider N = 16. Here the trajectory will
initially experience 11 hours of light. That is it will travel for 4 hours more along the LL limit
cycle from the point c

p

than the N = 12 trajectory. From here the trajectory flows under dark
dynamics for 8 hours. At this time, because it had a longer duration of light and a shorter duration
of darkness relative to the 12:12 case, the trajectory is now closer to P than the N = 12 trajectory.
As a result it should be less than 8.5 hours away, and we see that ⇧(5) ⇡ 7. Thus this portion of
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Direct simulation Entrainment map
t t

ref

� t x

n

x

n+1 x

s

� x

n+1 ⇢(x
n

)
P

⇢(x
n

)
23.450 -9.450 20.244 19.591 -9.347 23.347 23.347
45.165 -8.165 19.591 18.193 -7.949 22.601 45.949
67.465 -5.465 18.193 15.389 -5.145 21.197 67.145
88.888 -2.888 15.389 12.932 -2.688 21.543 88.688
111.380 -1.380 12.932 11.504 -1.260 22.572 111.260
134.631 -0.631 11.504 10.819 -0.572 23.312 134.572
158.281* -0.281 10.819 10.491 -0.247 23.676 158.247**

Table S1 : Time to reach stable entrained solution (x
s

= 10.244) calculated by direct simulation⇤

and by iterating the map⇤⇤ from initial condition x0 = 20.244. For this case the oscillator entrains
through phase advances as can be seen by noting the negative sign of the di↵erence x

s

� x

n+1.

the map has in fact shifted down for increased N . Next, let us consider the case of N = 8 with
x0 = 5. Now the trajectory initially gets only 3 hours of light and then must experience 16 hours
of darkness. Since the time x

D

= 6.3 (see Fig. 3A), the trajectory needs roughly 3.3 more hours to
reach c

p

. From there it still has 12.7 hours to travel on DD. Note that the N = 12 trajectory had
to travel for 12 hours on DD from the point c

p

. So the value of ⇧(5) for the N = 8 photoperiod will
be just smaller than that value for N = 12. This is again confirmed by inspection of Fig. 4D which
shows that ⇧(5) ⇡ 8 for N = 8. Therefore this portion of the map does not shift in a stereotypical
way. A similar argument using x0 = 17.7 explains why the right part of the map shifts up for
decreasing N , but does not shift much, if at all, for increasing N .

Section R2: Computations using entrainment maps

Dynamics of Entrainment

The map can be used to easily calculate entrainment time. An iterate landing on a particular branch
(upper or lower) corresponds to a certain amount of time ⇢(x). This depends on the location of
the discontinuity x

d

. In particular, if x
d

< 12,

⇢(x
n+1) =

⇢
x

n+1 � x

n

iterate lies on upper branch
x

n+1 � x

n

+ 24 iterate lies on lower branch,
(1)

whereas if x
d

> 12

⇢(x
n+1) =

⇢
x

n+1 � x

n

+ 24 iterate lies on upper branch
x

n+1 � x

n

+ 48 iterate lies on lower branch.
(2)

For example, to calculate the entrainment times shown in Fig. 5 with x0 = 20.244, note
that x

u

= 20.5, x

s

= 20.244, all iterates hit the upper branch, and x

d

> 12, so equation (2)
implies that ⇢(x

n+1) = x

n+1 � x

n

+ 24. We compute the values x

j

for integer j � 1 by iterating
the map numerically. First, we construct the map ⇧(x) for a grid of evenly spaced points x =
0, 0.1, 0.2, . . . , 24 through direct simulations as described in Supplementary Material Section M1.
To obtain values of ⇧(x) for x values that are not grid points, we simply round x to the nearest
grid point value. If more accurate entrainment time estimates are needed then the map can be
computed over a more finely spaced grid of x values. We find that the total time to entrainment
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Direct simulation Entrainment map
t t

ref

� t x

n

x

n+1 x

s

� x

n+1 ⇢(x
n

)
P

⇢(x
n

)
24.734 12.266 21.244 21.882 -11.638 24.638 24.638
50.268 10.732 21.819 23.355 -13.111 25.473 50.111
77.131 7.869 23.355 2.176 8.068 26.821 76.932
104.943 4.057 2.176 6.023 4.222 27.847 104.779
131.526 1.474 6.024 8.685 1.559 26.663 131.441
156.435 0.565 8.685 9.655 0.589 24.970 156.411
180.767* 0.233 9.655 10.019 0.225 24.364 180.775**

Table S2 : Time to reach stable entrained solution (x
s

= 10.244) calculated by direct simulation⇤

and by iterating the map⇤⇤ from initial condition x0 = 21.244. For this case the oscillator entrains
through phase delays, as can be seen by noting the positive sign of the di↵erence x

s

� x

n+1.

is 158.247 hours (6.6 days); see Table S1. To compare with direct simulations, start with an
initial condition on P subjected to 3.8 hours of darkness. From this point forward, we subject
the perturbed oscillator to 12:12 LD and keep track of the times at which it hits the section as t

j

for integer j � 1. Concurrently, we also keep track of the times at which an entrained reference
oscillator would hit P as t

refj = t

ref0 +24(j� 1), where the first crossing of the reference oscillator
is given by t

ref0 . This value is calculated on a case-by-case basis. Namely, for x
d

< 12, if x0 < x

u

,
then t

ref0 = �x0 + x

s

. Whereas if x0 > x

u

, then t

ref0 = 24� x0 + x

s

. For x
d

> 12 if x0 < x

u

, then
t

ref0 = 24 � x0 + x

s

. Whereas if x0 > x

u

, then t

ref0 = 48 � x0 + x

s

. When the magnitude of the
time di↵erence between the section crossings of the perturbed and reference oscillators is less than
0.5 hours, we consider the oscillator to be entrained. Table S3 shows results when x0 = 21.244
which is the to right of x

u

. From the map, we find entrainment time to be 180.775 hours (7.5 days)
and from direct simulations 180.767 hours.

Comparison to results using a di↵erent Poincaré section

Choose a new Poincaré section, P⇤, at M = 0.44, dM/dt < 0 which is near the maximum value of P
along the LD-entrained solution. The section P⇤ is located 9.669 hours later along the LD-entrained
solution than the section P chosen in the main text. Fig. S3A shows the entrainment maps for
P and P⇤. Note that the stable fixed point of the new map is x

s

= 19.913, which is exactly 9.669
hours later than the value 10.244, which was the fixed point of the original map. Thus, as must
be the case, the phase relationship between the light-dark cycle and the LD-entrained solution
is the same independent of the Poincaré section that is chosen. What will di↵er is the time to
entrainment for initial conditions associated with either map. This is because an initial condition
x0 chosen for the maps corresponds to an initial condition lying on P for the original map and P⇤
for the new one. These points lie in di↵erent regions of the (P,M) phase space and would therefore
not be expected to have similar entrainment times as shown in Fig. S3B. For example, consider
x0 = 12, which corresponds to the transition from light to dark in a 12:12 LD cycle. A trajectory
starting at P entrains relatively quickly (46.63 hours) through phase advances (green cobweb in
Fig. S3A), whereas a trajectory starting at P⇤ takes longer to entrain (103.69 hours) and does so
through phase delays (magenta cobweb in Fig. S3A). The fact that the trajectory starting at P
entrains more quickly is not surprising since x0 is closer to the stable fixed point of the P map
(x0 � x

s

(P) = 1.756) than it is to the stable fixed point of the P⇤ map (x0 � x

s

(P⇤) = �7.913).
An initial condition for the P map that would be equivalent to x0 = 12 for the P⇤ map is one that
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is 7.913 hours earlier than x

s

(P), i.e. x0 = 2.331. A trajectory starting at P with this x0 entrains
through phase delays with the same entrainment time (103.69 hours) as does x0 = 12 for the P⇤
map (cyan cobweb in Fig. S3A). In general, we can align initial conditions x0 for di↵erent maps in
the following way:

x̂ =

8
<

:

x0 � x

s

+ 24 if x0 < x

s

� 12
x0 � x

s

if x0 2 [x
s

� 12, x
s

+ 12]
x0 � x

s

� 24 if x0 > x

s

+ 12
(3)

where the normalized initial conditions x̂ have domain [�12, 12]. Figure S3C shows that after
alignment of initial conditions, the entrainment time curves for the two di↵erent Poincaré sections
nearly overlap. This indicates that initial conditions that start with the same relative o↵set from the
entraining light-dark cycle will have similar, but not identical, entrainment times. The entrainment
times are not identical because the choice of a section specifies the phase along the LD-entrained
solution at which the perturbation that the oscillator must re-entrain from occurs, and in general
we would not expect the same perturbation applied at di↵erent points on the LD-entrained solution
to yield exactly the same entrainment time. Figure S3D shows that all trajectories converge to the
same LD-entrained solution with the same phase of entrainment regardless of where the Poincaré
section is located.

Section R3: Relating ⇧(x) to a PRC

Figure S4 shows the relationship between ⇧(x) and Z1(y) for the case when ⌧ = 24. Table S3 shows
a comparison between the predicted phase of entrainment from the map versus direct simulation.
The three columns on the right show the error in minutes for the predictions provide by ⇧, Z1 and
Z2. The error using the maps is negligible. The errors associated with Z1 and Z2 are larger, though
they improve as ⌧ increases. The reason that the prediction for Z1 improves for larger ⌧ is that
because of the longer period, the time when the light is felt by the trajectory shifts. For example,
when ⌧ = 24, the light pulse e↵ects the solutions as the locations shown in Fig. 8. As the period
increases, the location at where the trajectory experiences light shifts counterclockwise. This means
that in the calculation of Z1, increasingly more of the 12 hours of light are used. At ⌧ = 29.79,
the prediction made by Z1 is determined using 8 hours of light. The other 4 hours of light that
are used by ⇧ to determine its prediction occur in a region of phase space (near the left branch of
N

P

) where the oscillator has roughly the same speed in both light and dark. Thus we expect the
prediction made by Z1 to converge to that made by ⇧. That Z2 also makes a better prediction as
⌧ increases is mostly due to the improved accuracy of Z1. For large enough ⌧ , there would be no
light pulse during the second cycle of the oscillation and thus there would be no additional change
in phase. That is for ⌧ large enough Z1(y) = Z2(y). Finally, we explain why Z1 fails to make a
prediction when ⌧  24. For smaller ⌧ , the fixed point x

s

is smaller (near 5), which in turn means
that the corresponding value y is large (near 19). For ⌧ < 24, the PRC needs to be negative near
the fixed point in order to slow the oscillation. But when y is large, the lights turn on in a region
of the left branch of N

P

, where it has little e↵ect. Thus Z1(y) ⇡ 0 for y > 19 and there is no
predicted fixed point.

Section R4: Higher dimensional models

Figure S5 shows the three-dimensional phase space of the Gonze model. The main point to note here
is that the DD and LL limit cycles do not lie anywhere near the LD limit cycle. The entrainment
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Figure S3 : Map predictions of entrainment phase and time to entrainment are consistent across
di↵erent Poincaré sections. A. Entrainment map based on the original section P (blue) and a new
section P⇤ (orange) with stable fixed points at x

s

(P) = 10.244 and x

s

(P⇤) = 19.913 (solid black
dots). The green and magenta orbits show iterates starting at initial condition x0 = 12 for the P
and P⇤ maps, respectively. The cyan orbit shows iterates of the P map starting at x0 = 2.331,
which is the same distance from x

s

(P) as x0 = 12 is from x

s

(P⇤). B. Entrainment time curves
showing that the magenta and cyan orbits, which have the same relative o↵set from the entraining
light-dark cycle, take the same amount of time to entrain. The green orbit, which has a smaller
relative o↵set, entrains more quickly. C. The entrainment time curves for the two di↵erent sections
largely overlap after aligning initial conditions based on the relative o↵set from the entraining light-
dark cycle. D. Time course of M variable showing that trajectories starting at di↵erent Poincaré
sections converge to the same LD-entrained solution. The green and magenta solutions start with
x0 = 12 on P and P⇤ respectively, and the cyan solution starts on P with x0 = 2.331 (time traces
for each case begin with appropriate o↵set from the start of the LD cycle). The solid black trace
is the reference solution entrained to the LD forcing shown below in blue. Note that the magenta
and cyan solutions have very similar times to entrainment, through phase delay, as predicted by
the map.

map uses a Poincaré section along the LD trajectory as shown, whereas the PRC would perturb
o↵ of the DD cycle. The ensuing trajectories should therefore be expected to provide di↵erent
phase-resetting predictions.
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Figure S4 : Schematic showing the relationship between ⇡(x), ⇢(x), and the PRC for the case
⌧ = 24. Solid red lines depict where in time the oscillator crosses the Poincaré section P. Dashed
line is the location in time where the reference oscillator crosses the section.

Predicted phase of entrainment Error (minutes)

� ⌧

Direct
simulation

Entrainment
map ⇧

PRC Z1 PRC Z2 ⇧ Z1 Z2

8.25 23.5 4.711 4.709 - 5.354 0.12 - 38.6
8.15 23.8 5.250 5.250 - 5.936 0.04 - 41.1
8.07 24.0 5.478 5.479 - 6.189 0.02 - 42.7
8 24.2 5.644 5.644 5.166 6.373 0.02 28.7 43.7
7.5 25.8 6.588 6.588 6.349 7.393 0.01 14.3 48.3
7 27.7 7.455 7.455 7.269 8.120 0.01 11.2 39.9
6.5 29.8 8.388 8.388 8.320 8.588 0.00 4.1 12.0
6 32.3 9.757 9.757 9.756 9.757 0.01 0.01 0.04
5.5 35.2 12.424 12.424 12.424 12.424 0.01 0.01 0.01

Table S3 : Comparison of entrainment map and PRC accuracy in predicting phase of entrainment
for a range of ⌧ values with ✏ = 0.01. In all cases, the entrainment map makes accurate predictions,
while those made by the PRCs are inaccurate (except for larger values of ⌧ as explained in the
text.)
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P

Figure S5 : Limit cycles of the Gonze model. DD (dashed black), LL (dashed red), and LD (solid
red/black) trajectories in the three-dimensional phase space. A patch of the Poincaré section P (a
two-dimensional hyperplane) is shown in green, defined as P1 = 0.35 with P increasing.
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