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Abstract Hugh Wilson has proposed a class of models that treat higher-level deci-
sion making as a competition between patterns coded as levels of a set of attributes
in an appropriately defined network (Cortical Mechanisms of Vision, pp. 399417,
2009; The Constitution of Visual Consciousness: Lessons from Binocular Rivalry, pp.
281-304, 2013). In this paper, we propose that symmetry-breaking Hopf bifurcation
from fusion states in suitably modified Wilson networks, which we call rivalry net-
works, can be used in an algorithmic way to explain the surprising percepts that have
been observed in a number of binocular rivalry experiments. These rivalry networks
modify and extend Wilson networks by permitting different kinds of attributes and
different types of coupling. We apply this algorithm to psychophysics experiments
discussed by Kovécs et al. (Proc. Natl. Acad. Sci. USA 93:15508-15511, 1996),
Shevell and Hong (Vis. Neurosci. 23:561-566, 2006; Vis. Neurosci. 25:355-360,
2008), and Suzuki and Grabowecky (Neuron 36:143-157, 2002). We also analyze
an experiment with four colored dots (a simplified version of a 24-dot experiment
performed by Kovacs), and a three-dot analog of the four-dot experiment. Our algo-
rithm predicts surprising differences between the three- and four-dot experiments.
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1 Introduction

In standard binocular rivalry experiments, the left and right eyes of the subject are
presented dissimilar images, and the subject’s perception alternates between the two
presented images [1]. Perceptual alternation has often been modeled as competition
between two units, each representing a percept, with reciprocal inhibition between the
units (cf. [2-6]). The point of those models is to analyze the dynamics of alternation
assuming a set of percepts, rather than predicting the form of the percepts. In contrast,
the goal of our analysis is to predict the form of percepts, and not the precise dynamics
of alternation. To do this, we use symmetry-breaking and an extension of a class of
network models proposed by Wilson [7], which we call rivalry networks. Our analysis
is model-independent; that is, we concentrate on the network architecture and not on
specific equations associated with the networks.

Wilson networks generalize binocular rivalry models to multiple competing pat-
terns [7, 8]. Originally intended as a model of deliberative decision making, these
networks embody aspects of conscious brain processes that have been discussed pre-
viously by many other researchers, such as Tononi and Edelman [9], Dehaene et al.
[10, 11], and Crick and Koch [12]. A Wilson network consists of a set of attributes
relevant to a given decision, with reciprocal inhibition among the nodes associated
with each attribute. A pattern consists of one node from each attribute, with excita-
tory coupling among nodes in a learned pattern. In [13], we showed that Wilson net-
works could be constructed to represent the binocular rivalry experiments of Kovacs
et al. [14], and that certain states of these Wilson networks corresponded to the un-
expected percepts observed in [14]. This result suggested that Wilson networks can
help classify and predict percepts for binocular rivalry experiments. In this paper, we
expand and modify the ideas in [13] to demonstrate that Wilson-type models can be
constructed in an algorithmic way for several binocular rivalry experiments in the
literature, and that these models seem to explain the surprising percepts observed in
these experiments. Using these models we also predict percepts for several binocular
rivalry experiments that have yet to be performed.

Our algorithm has three parts. First, we generalize Wilson networks by introduc-
ing different types of nodes (attributes) and different types of excitatory couplings
(based on features). An example of attributes of the same type is the color of discs
at different geometric locations. An example of different attribute types is the color
of a disc and the direction of a grating pattern in that disc. Features are properties
of pairs of nodes, such as the geometric distance between two discs. We use features
(which are based on Hebbian learning) to determine whether coupling between pairs
of nodes are assumed to be the same or not. It is the systematic use of features, and
hence of multiple types of excitatory coupling, that makes our symmetry-breaking
analysis possible. Second, we use network symmetries to identify the maximal fu-
sion states (see Definitions 1 and 2) of the network. Finally, we classify the types of
fusion-breaking Hopf bifurcation from maximal fusion states; that is, Hopf bifurca-
tions that lead to non-fusion states. The resulting periodic states lead to alternation
in network patterns that we interpret as predictions of the alternations in perception
a subject would be likely to experience. We claim that for Hopf bifurcation to lead
to alternation between percepts, the bifurcation must take place from a fusion state.
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Fig. 1 Architecture for a Wilson network. a Inhibitory connections between nodes in an attribute column
are denoted by lines with rectangular ends. b Excitatory connections in a learned pattern are denoted by
lines with arrowheads

Furthermore, the expectation that fusion states exist depends on network architecture
(specifically on network symmetry). This point is discussed in Sect. 2.1.

We demonstrate this procedure on the monkey-text experiments of Kovéacs et al.
[14], the geometric rivalry stimuli experiments in Suzuki and Grabowecky [15], and
the color misbinding experiments of Shevell and Hong [16, 17]. The types of periodic
solutions that come from fusion-breaking bifurcations in the rivalry networks we con-
struct are consistent with the surprising percepts reported in these experiments. More-
over, we make testable predictions about the states that we expect to be perceived in
colored-dot experiments that have yet to be performed. We predict qualitatively dif-
ferent sets of percepts for three colored-dot and four colored-dot stimuli. In particular,
for the four-dot experiments, the predictions from our theory include simple alterna-
tion between the presented stimuli, as one would intuitively expect to occur. However,
for certain three-dot experiments, our theory predicts that such alternation should not
occur generically (see Sect. 6.3).

1.1 Wilson Networks

Wilson networks, as codified in [18], are made up of attribute columns, with each
column containing a set of nodes corresponding to levels of that attribute. Patterns
correspond to the choice of one level in each attribute column. Wilson assumes that
the nodes in a column are all-to-all connected by inhibitory couplings and that the
network has a set of learned patterns. The nodes in a learned pattern are assumed,
based on Hebbian learning, to be all-to-all coupled by excitatory connections. See
Fig. 1 for an example of a five-attribute three-level Wilson network with one learned
pattern.

Wilson assumes that these networks can have multiple learned patterns and that
rivalry is represented by solutions that alternate between learned patterns. In [13] we
observed that network periodic solutions can exhibit patterns that were not learned,
which we call derived. We proposed that the unexpected percepts in many binoc-
ular rivalry experiments exist because the dynamics of associated Wilson networks
lead naturally to particular derived patterns. As noted, in this paper we generalize
the definition of Wilson networks to rivalry networks, which include detail that was
left out of the discussion in [13], and which is needed to systematically determine
networks for binocular rivalry experiments. In doing so we use the theory of coupled
cell networks developed in [19, 20].
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Wilson networks [7, 8] consist of a rectangular grid of nodes with n attribute
columns, m levels in each column, and ¢ learned patterns. There is some leeway in
choosing differential equations associated to a given Wilson network. Wilson [7] and
others assume that the nodes are neurons or groups of neurons and that the important
information is captured by the firing rate of the neurons. In these models each node
(i, j) has a state space x;j = (x;, x/1), where x/> is an activity variable (representing
firing rate) and xil}' is a fatigue variable. Coupling between nodes is given through a
gain function G. Specifically, for level i in attribute j we have the system

> k=8 Y -],

q—>ij rjij (1)

8)‘65 = —xﬁ —i—g(l,-j +w
p

cH __ F H

where — indicates an excitatory learned pattern connection and - indicates an in-
hibitory connection. The parameters are: reciprocal learned pattern excitation be-
tween nodes w > 0, reciprocal inhibition between nodes > 0, the external signal
strength /;; > 0 to nodes, the strength of reduction of the activity variable by the fa-
tigue variable g > 0, and the ratio of time scales & < 1 on which *Z and % evolve.
The gain function G is usually assumed to be nonnegative and nondecreasing, and is
often a sigmoid.

In this paper we assume only that each node (i, j) has an activity variable A;; € R.
The activity variable is just the coordinate xg. in (1), but in general it might be a
function of the state space variables A;; = A;(x;;). As indicated, this function is
assumed to be the same for each level of an attribute column. The choice of level i in
an attribute column j occurs when A;; > Ay; for all k # i. A percept is assumed to
be dominant when the activity variable of each node associated with the pattern is a
unique maximum within its attribute column.

1.1.1 Fusion States

Definition 1 A fusion state is one where the maximum of the A;; in some column
occurs simultaneously in more than one level.

For general systems of differential equations we would not expect fusion states to
be important. Specifically, suppose a system had a fusion equilibrium. Then one can
always perturb the differential equation slightly so that the fusion equilibrium moves
to a state where the maximum value of A;; in each column is unique; that is, fusion
states are destroyed by small perturbations. However, network architecture, usually
through its symmetries, can force the existence of structurally stable fusion states.
More precisely, let ¥ be a set of network symmetries. Then the fixed-point subspace
of X,

Fix(X)={X:0X=Xforallo € X},

is well known [20, 21] to be a flow-invariant subspace of the state space of the net-
work admissible differential equations. So it is not surprising to find solutions (equi-
libria or periodic solutions) in Fix(X"), since those fusion solutions cannot be gotten
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rid of by perturbation. If one of the symmetries maps one node in an attribute column
to another node in that same column, then the corresponding fixed-point subspace
can have fusion states that cannot be destroyed by perturbation of the differential
equation.

Definition 2 Let I" be the group of network symmetries for a fixed network. We call
states in Fix(I") maximally fused states.

Those Hopf bifurcations that can lead to a non-fused periodic solution from a max-
imally fused equilibrium are called fusion-breaking Hopf bifurcations. Since such bi-
furcations usually lead to periodic solutions with nonzero phase shifts between the
previously fused nodes, these bifurcations lead to rivalrous solutions.

Note that modeling alternation between percepts (patterns) in networks of differ-
ential equations requires finding periodic solutions that alternate periods of domi-
nance; that is, for part of the trajectory one set of nodes has maximum activity and
during another part of the trajectory a different set of nodes has maximum activity.
Thus, during the trajectory there must be times when the activity of multiple nodes
are equal. A small amplitude periodic solution obtained via Hopf bifurcation can have
this property only if the equilibrium from which the bifurcation takes place is a fusion
equilibrium. We assume, as is standard in bifurcation theory in the presence of sym-
metry, that the states that are most likely to be observed are spawned by bifurcation
from a maximally fused (or symmetric) state.

1.2 The Structure of the Paper

In this paper we discuss several binocular rivalry experiments. For each experiment
we formulate a rivalry network, compute the fusion-breaking Hopf bifurcations, and
discuss the derived percepts. Specifically, we discuss rivalry models for the conven-
tional and scrambled monkey-text experiments of Kovacs et al. [14] in Sect. 2; the
geometric shapes of Suzuki and Grabowecky [15] in Sect. 3; and the color misbind-
ing experiments of Shevell et al. [16, 17] in Sect. 4. The Shevell experiments require
having rivalry networks with two types of nodes. In Sects. 5 and 6, we analyze ex-
periments with three or four colored dots, which are analogs of the 24 colored dot
experiments in Kovdcs et al. [14]. Summaries of our predictions are given in Sect. 7.
This analysis requires the use of features; that is, of several types (or strengths) of
excitatory coupling.

We give a formal definition of rivalry networks in Sect. 8 and summarize our
approach to rivalry-driven percepts in Sect. 9.

2 Monkey-Text Experiments

In a standard rivalry experiment, the subject is shown two images (such as those in
Fig. 2) simultaneously; one image is shown only to the left eye, while the other image
is shown only to the right eye. The subject is then asked what he or she observes.
Typically the subject perceives the two images alternating in time. The perceived
images are called percepts.
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Fig. 2 A standard rivalry
experiment from Blake and
Logothetis [1]

2.1 A Symmetry Analysis of Standard Rivalry

Much of the modeling of standard rivalry assumes that there are two units: one for
each of the percepts. Moreover, the two units have reciprocal inhibitory coupling, as
in Fig. 3. The model equations are usually assumed to have the form

a= f(a,b),

. 2)
b= fb,a).

Suppose that (2) has a winner-take-all state; that is, an equilibrium where a # b.
Generically, we may assume that either a® > bf or af < bE. Let us assume the
former so that the percept a is what is perceived. Then Hopf bifurcation from this
equilibrium will lead to a small amplitude periodic state where a” (r) > bE (¢) for
all ¢. Thus, the perceived state will still be the constant perception of percept a; there
will not be any alternation. Indeed, the only way that Hopf bifurcation can lead to
percept alternation is if that Hopf bifurcation is from a fusion state where a = b. It
is then fair to ask why in a given model (a specific choice of f in (2)) it would be
reasonable to assume that there is a fusion equilibrium. The reason is symmetry.

Equations (2) have p symmetry, where p(a, b) = (b, a) permutes the two units.
Observe that

Fix(0) = {(a.0) : pla. b) = (a. )} = {(@. a)};

that is, the fixed-point subspace of p consists of fusion states (those states for which
b = a). A standard fact from dynamical systems with symmetries is that fixed-point
subspaces are flow-invariant (cf. [21]), and this fact can be checked directly for (2).
It is therefore a reasonable hypothesis that a model like (2) has a fusion equilibrium.

Note that p has order two (applying p twice leads to the identity). We denote the
group of symmetries consisting of p and the identity by Z; or sometimes by Z(p).

1

O

Fig. 3 Network for standard rivalry. Symmetry group is I’ =Z;
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Due to the Z, symmetry, there are two types of Hopf bifurcation from a fusion state
in (2); one leads to periodic fusion states (a(¢),a(t)), and the other to T -periodic
solutions of the form

b(t) :a(l + %) A3)

Such periodic solutions will have the two percepts alternating periods of dominance
and are thought to model the rivalry state. Observe that the Jacobian of (2) at a fusion

state has the form
_(* P
1= (3 %)
and that J has invariant subspaces

ve=(4) wma vo=(2).

Moreover, J acts as multiplication by o + 8 on V™ and as multiplication by « — 8
on V™. Thus, the eigenvalues of J are the eigenvalues of « + B and the eigenvalues
of o — B. If the critical eigenvalues for J are associated to o + 8, then Hopf bifur-
cation will lead to the fusion states (a(t), a(z)); if the critical eigenvalues for J are
associated to o — 8, then Hopf bifurcation will lead to the non-fusion states (3).

We find it convenient to use the notation

apg(t) =a(t+0T).

Then the two types of periodic solution that can be obtained by Hopf bifurcation from
a fusion state have the form

ao

ao

ap
(a1/2> ' @

Thus, there is only one fusion-breaking Hopf bifurcation and that bifurcation leads to
alternation between the two learned images.

and

2.1.1 A Short Summary of Hopf Bifurcation in the Presence of Symmetry

Our discussion of Hopf bifurcation in the presence of Z, symmetry is actually quite
general. Observe that the symmetry p acts trivially on V' and as multiplication by
—1on V™. These two subspaces correspond to the trivial one-dimensional irreducible
representation of Z, and the nontrivial one-dimensional representation of Z.

For a general group I there is a type of Hopf bifurcation that corresponds to
each type of irreducible representation V. The general theory of Hopf bifurcation in
the presence of symmetry as well as the results of these bifurcations for a number of
groups I and their irreducible representations can be found in [21, 22]. The examples
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Fig.4 From [14]. a Learned
images in monkey-text rivalry
experiment. b Learned images
in scrambled monkey-text
experiment

(b)

worked out in these references include all of the groups that appear in this paper. The
symmetry groups that will appear in this paper are Z,, D,, and D, & Z,, where D,
is the symmetry group of the 2n symmetries of a regular n-gon (a rectangle when
n = 2, an equilateral triangle when n = 3, and a square when n = 4). Note that the
symmetries of a rectangle are generated by two reflections; thatis, D) =Z, ®Z,. All
of these groups will appear as permutation symmetries of a network. For example,
D3 will appear as the permutation group of a ring of three identical nodes.

Finally, if a symmetry y € I" acts trivially on V, then all solutions x(¢) corre-
sponding to the associated Hopf bifurcation will satisfy yx(z) = x(¢). Moreover, if a
symmetry y € I" acts as multiplication by —1 on V/, then all T -periodic solutions x (¢)
corresponding to the associated Hopf bifurcation will satisty yx(¢t) = x(t + 7/2).
If y permutes nodes in the same attribute column, then the first result leads directly
to fusion states and the corresponding Hopf bifurcation is not fusion-breaking.

2.2 Conventional Monkey-Text Experiment

Kovécs et al. [14] describe two rivalry experiments based on the images of a monkey
and a jungle scene with text shown in Fig. 4a. In the conventional experiment, the
subject is presented these two images. In the scrambled experiment, the subject is
presented images that have been reassembled from subdivisions of the original im-
ages (see Fig. 4b). These experiments were discussed in [13], where the surprising
results of the scrambled experiment were shown to correspond to derived patterns in a
Wilson network. In this section we give a different derivation of the Wilson network,
one that is algorithmic and generalizes to other experiments.
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(a) (b)

Fig. 5 a Distinct areas in scrambled monkey-text experiment. b Two-attribute two-pattern Wilson net-
work for scrambled monkey-text experiment with reciprocal inhibition in attribute columns and reciprocal
excitation in learned patterns. The symmetry group is I” =D

The conventional monkey-text experiment is a standard rivalry experiment. In this
experiment there is one attribute (the image) and it has two levels (monkey and text).
There is no excitatory coupling in the network and the network is the one shown in
Fig. 3. As expected, the subjects in this experiment report alternation between the
monkey image and the fext image.

2.3 Scrambled Monkey-Text Experiment

The scrambled monkey-text images are formed by cutting the monkey and the text
images into six pieces each and then assembling new images by alternating the cut
pieces from the two original images. The two scrambled images are formed as fol-
lows. The first learned image has monkey in the blue areas of the rectangle in Fig. Sa
and fext in the white areas and the second learned image has fext in the blue areas and
monkey in the white areas.

We form a Wilson network with two attributes (the image type in the blue area and
the image type in the white area). Each attribute has two levels: monkey and text. We
assume that the levels all have the same type and that there is just one type of excita-
tory coupling. These assumptions lead to the Wilson network in Fig. 5b, whose nodes
are labeled 1, 2, 3, 4 and whose corresponding state space is (x1, x2, x3, Xx4) where
Xj € RX. This network has symmetry group I" =D (p, k) where the permutation p
swaps rows and the permutation « swaps columns. Specifically,

p=(12)34),
k= (13)24).

Since D, acts transitively on the nodes, the maximal fusion states satisfy x; = xp =
X3 = X4.

@ Springer
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Symmetry permits four types of symmetry-breaking Hopf bifurcations from a
maximal fusion state, and their associated center subspaces have the forms in (5):

Vit ={(@,a,a, a)} p=1=« fusion,

vt =I(a,a,—a,—a)} p=1,k=—1 -{usion,
{ } 5

V-t = {(a, —a,a, —a)} p=—1,k=1 rivalry: derived,

V== {(a, —a, —a, a)} p=—1l=« rivalry: learned.

Those isotypic components for which p acts trivially on the center subspace lead
to periodic fusion states. There are two bifurcations where p acts nontrivially: V—F
where « acts trivially (which leads to rivalry between the learned scrambled states)
and V™~ where « acts nontrivially (which leads to rivalry between the unscrambled
states). The periodic solutions corresponding to these bifurcations have the form

agp agp ap a2
ayjy aipn aijpp ao )’
Our algorithm indicates that these two types of periods of alternation are possible.

One type is a period of alternation between the scrambled images and the other type
is a period of alternation between the reconstructed conventional images.

2.4 Comparison with the Results in [13]

In a previous paper [13], we showed that the scrambled experiment could be under-
stood using the network in Fig. 5b. However, when one uses the rate equations (1),
rivalry solutions between the derived patterns can never be stable at bifurcation. We
addressed this point by adding a second form of excitatory coupling, which we called
lateral coupling, to the network. We no longer believe that stability is a crucial is-
sue, since we do not know what the equations that correspond to a rivalry network
should be. Here, we focus on the existence of patterns of alternation and there-
fore have no need to introduce lateral coupling. These results depend only on net-
work structure and not on specific model equations; that is, these results are model-
independent.

3 Rivalry Between Geometric Shapes

Suzuki and Grabowecky [15] report results of four different rivalry experiments, all
of which have a common description. The left eye and right eye images are each split
into a left-half image and a right-half image. The surprising percepts are ones that
group the left-half of the left eye image with the right-half of the right eye image
and the right-half of the left eye image with the left-half of the right eye image.
The images presented in two of the four experiments are shown in Fig. 6a, and the
corresponding surprising percepts are shown in Fig. 6b.

It is not clear why the brain divides the images into left halves and right halves,
yet that is what appears to be happening. Note that the Wilson network for the Suzuki
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L-eye R-eye

) $

Fig. 6 Percepts for Suzuki and Grabowecky [15]

and Grabowecky [15] experiments is isomorphic to the Wilson network for scrambled
monkey-text experiment in Fig. 5b. The network has two attributes (left-half image
and right-half image) and two levels (the geometric shape on the appropriate side).

There are two questions that arise when modeling a rivalry experiment: what are
the states (i.e. the form of the percepts), and what is the dynamics of switching among
percepts? In this paper we are focused on the former, which depends on network
structure and not on specific model equations. However, Suzuki and Grabowecky [15]
described an interesting property of rivalry dynamics that we would like to comment
on. In their experiments, subjects exhibited a bias in the transitions among states
called perceptual trapping. For example, consider the hourglass—diamond—chevrons
set shown in the bottom row of Fig. 6. Whichever pair of images the subjects were
shown (either the hourglass—diamond pair of Fig. 6a, or the chevron pair of Fig. 6b),
the perceived shape alternated between the hourglass and the diamond and between
the two chevrons more often than would be expected if the transitions among the
four perceived images were random. Transitions between these pairs, i.e. from an
hourglass or a diamond to a chevron or vice versa, occurred less often. Although
this trapping phenomenon is not captured explicitly by our model, it is consistent
with our observation that there are two different types of symmetry-breaking Hopf
bifurcation that lead to rivalry in two-attribute two-level networks such as Fig. 5b.
Alternation between the rivalry associated with each of these bifurcations could occur
if stochastic effects were included in the model. If the noise-induced alternations
occurred on a slower time scale than the oscillations arising from Hopf bifurcation,
then overall the dynamics would resemble perceptual trapping.

4 Color Misbinding
Shevell et al. [16, 17] show that rivalry between images that have static gratings of
different colors can lead to color misbinding: percepts with gratings comprised of one

color from each of the learned patterns. This experiment enables us to explore the use
of rivalry networks with more than one attribute type.
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REPORTED PERCEPTS

s|lece®

Left Eye Right Eye Color Color
Monocular Monocular Misbinding Misbinding

(a) (b)

Fig. 7 Visual stimuli (a) and reported percepts (b) in Shevell et al. [17]

4.1 Two Grating Directions

In the rivalry experiment of Shevell et al. [17], the subjects are presented the images
in Fig. 7a and report the percepts shown in Fig. 7b.

We propose a rivalry network with three attributes: one grating direction and two
colors (one in the top/left and one in the bottom/right). The grating direction has two
levels (horizontal and vertical) and the color attributes have three levels (pink, gray,
green). We assume that there is one type of excitatory coupling from grating direction
to color and another from color to color.

The network symmetry group is I" = D> (7, p) where p swaps appropriate rows in
each column and where t swaps nodes in the two color attribute columns. Specifically

T=A6)(5738),
p=(12)45)67),
ot = (12)(38)(47)(56).

The maximal fusion states are indicated by color in Fig. 8. They have nodes 1 and 2
equal; nodes 3 and 8 equal; nodes 4, 5, 6 and 7 equal, as in

b ¢
a

c c
a

c b

There are four one-dimensional irreducible representations of D». If either p or
pT acts trivially on the representation, then x| = x> and the corresponding percepts
exhibit fusion in the gratings. Since we are looking for fusion-breaking solutions,
we can focus on the one irreducible representation where p and pt act as minus the
identity and t acts trivially. The corresponding isotypic component has the form

0 vy
X
y -y
—X
-y 0
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Fig. 8 Rivalry network for

Shevell et al. [17] experiment.

This network has two types of

nf)des. (corresponding to grating vertical
direction and color), two types

of inhibitory coupling (one for

each kind of node), and three
types of excitatory coupling

1
1
(one connecting two color
nodes, one connecting a color horizontal
node to a grating node, and one
\

connecting a grating node to a
color node)

pink

gray

grating direction green

I /,
.
.
‘/

left / top color  right / bottom color

Note that since T implies that x3 = xg and pt implies that x3 = —xg, it follows that
x3 = xg = 0 for states in the isotopic component. Hopf bifurcation corresponding to
this representation leads to periodic solutions of the type

uyp Yo
X0
X(1) = Yo yipls (6)
X1,2
Y2 U

where u(t) has twice the frequency of x(¢) and y(¢) since T implies u1/2 = ug. If
|y| > |u| (that is, bifurcation is from a fusion state where ¢ > b), then the percepts
will alternate between pink/gray and gray/green; that is alternation between learned
images. In fact, the alternation is predicted to be somewhat more complicated; the
moments in time when horizontal and vertical gratings alternate are different from
the moments in time when the colors alternate. Shevell et al. [17] report the different
percepts but not the order in which the percepts alternate.

On the other hand, if |y| < |u| (that is, bifurcation is from a fusion state b > ¢),
then the percept will be green/pink, which corresponds to color misbinding. Here,
there is no alternation of colors, but there is still alternation in grating direction. Thus,
the surprising color misbinding in [17] seems also to be a product of the rivalry net-
work structure.

4.2 One Grating Direction

In the rivalry experiment of Hong and Shevell [16], the two stimuli presented to the
two eyes are the ones in Fig. 9. The surprising percept is a grating colored orange and
blue.

The rivalry network that we propose for the Hong—Shevell experiment has two
attributes (left color and right color) and each attribute has three levels (orange, gray,
and blue). There is one type of excitatory coupling. See Fig. 10.

The symmetry group of this network is I" = D, that is generated by the transpo-
sitions p = (1 3) and t = (4 6). The maximal fusion states have nodes 1 and 3 equal
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Fig. 9 Hong and Shevell [16]
stimuli LEFT EYE RIGHT EYE

W

Fig. 10 Network for Hong and
Shevell [16] experiment
orange

-]

gray

blue

left color right color

and nodes 4 and 6 equal. There are four types of Hopf bifurcation of D,. However, if
either p or 7 acts trivially then Hopf bifurcation leads to a fusion state. It follows that
there is only one relevant Hopf bifurcation from fusion and that bifurcation leads to
states of the form

ap  bo
co do
aip bip

where c¢g = c1,2 and dy = dy /». There are four possible percept alternations.

e co > ap, dy > by: the percept is an all gray image.

e co > ap, dy < bp: the percept alternates gray-orange and gray-blue.

e co < ag, dp > bo: the percept alternates orange-gray and blue-gray, which is just
alternation between the original stimuli.

e co < ap,do < by: the percept alternates orange, orange-blue, blue, and blue-orange.
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(a) conventional ) scrambled

Fig. 11 Learned images in colored-dot experiments of [14]

5 Four Colored-Dot Experiments

The images used in the colored-dot experiments of Kovdcs et al. [14] are shown in
Fig. 11. In the conventional experiment, the image with all red dots is shown to one
eye and the image with all green dots is shown to the other eye. In the scrambled
experiment, the images shown to each eye contain a mixture of green and red dots as
in Fig. 11b. The scrambled dots experiment leads to rivalry between the scrambled
images and to rivalry between single color dot percepts, as might be expected from
the scrambled monkey-text experiment. However, the conventional dots experiment
leads to another unexpected result: rivalry between mixed-color percepts (such as
the images in Fig. 11b), in addition to rivalry between the single colored dot images
(Fig. 11a).

In their review article, Tong et al. [23] suggest focusing on the four centrally lo-
cated dots in these images and describe the Kovécs et al. experiments in these terms.
We discussed these experiments in [13], where we used a notion of lateral coupling to
propose Wilson-type networks that could help explain the surprising outcomes. Here
we propose a different mechanism for deriving rivalry networks for the conventional
and scrambled dot experiments, one based on features that lead to different types of
excitatory couplings within learned patterns. This approach creates networks that are
different from the ones proposed in [13] (though they have the same symmetries). It
has the advantage of being consistent with Hebbian learning and with all of the other
examples discussed in this paper. We return to these points below. These modeling
results can be thought of as predictions, since to our knowledge these experiments
have not been performed.

We note that the suggestion in [23] to focus on the four central dots is somewhat
arbitrary. Other choices of a square of four dots lead to different configurations and
different rivalry networks. Indeed, up to symmetry, there are four different types of
four-dot experiments, all of which can be found within the Kovdcs et al. experiments:
conventional pure color, scrambled diagonal, scrambled adjacent, and scrambled
unbalanced. See Fig. 12 where the left eye and right eye images for each of the four
different experiments are shown.

5.1 Four-Dot Networks and Their Symmetries

We assume that the four-dot experiments each have four attributes: the color of the
dots at the four geometric positions: upper left (UL), lower left (LL), lower right
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(b) scrambled diagonal

(c) scrambled adjacent (d) scrambled unbalanced

(a) conventional pure color

Fig. 12 Learned images for two-color four-dot experiments

(LR), upper right (UR). Each attribute has two levels: red and green. Each of the four
experiments leads to a different rivalry network, though the first two networks are
isomorphic and have the same group of symmetries. See Fig. 13. We show that the
expected percepts in the conventional and scrambled diagonal networks are the same,
which is consistent with the Kovacds et al. 24-dot experiments; whereas we expect per-
cepts for the other two experiments to be different. We discuss each network in turn.

Conventional pure color (D4 x Zo(p) symmetry): The two learned patterns consisting
of all red and all green dots, respectively, are shown in Fig. 12a. The conventional
four-dot network has two types (or strengths) of excitatory coupling, one for adjacent
dots and one for diagonal dots. These coupling types are indicated in Fig. 13a by
solid and dashed lines with arrows. This is an example of a feature; couplings are the
same only if the dots are equidistant. See Definition 4(d).

The conventional network has symmetry group D4 x Z>(p), where the symmetry
group of a square D4 permutes the attribute columns and the permutation

p=012)34)(56)(78)

swaps the upper and lower rows. We represent a point in phase space by the 2 x 4

matrix
X1 X3 X5 X7
( > , (7
X2 X4 Xe¢ X8
where x; € RX. Since the symmetry group acts transitively, the maximal fusion states
have all nodes equal:
X x x X
. 8
(x X X x) ®)

Note that if we assume a standard rate equation model (1) for this eight-node network,
then the equations corresponding to a single node j will be a two-dimensional system
of equations with state variables x i E and x . Thus k = 2 and the state space indicated
in (7) is 16-dimensional.
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(a) conventional pure color

' 5
o#c ¢
. e

I}

LL LR LL LR

(c) scrambled adjacent (d) scrambled unbalanced

Fig. 13 Rivalry networks for two-color four-dot experiments. Solid lines with arrowheads indicate ex-
citatory coupling between adjacent dots, and dashed lines with arrowheads indicate excitatory coupling
between diagonal dots

Scrambled diagonal (D4 x Zy(p) symmetry): Rivalry between the images in Fig. 12b
leads to the network in Fig. 13b, which has four attributes, two levels, and two types
of excitatory coupling, just as in the conventional four-dot experiment. The symmetry
group and the maximally fused points are identical to those in the conventional four-
dot network.

Scrambled adjacent (D2(k, 1) X Z3(p)): Rivalry between the images in Fig. 12¢
leads to the network in Fig. 13c. This network has three types of excitatory cou-
plings connecting the nodes in learned patterns. These types are distinguished by the
features of equal color and equal distance. The symmetry group of this network is
D (x, T) X Z2(p), where the nonidentity elements in D, are

k=(13)E7N2H68),
T=(17)35)28)(46),
kTt =(15)(26)(37)(48).

This symmetry group acts transitively on the network nodes; thus all node coordinates
are equal in the maximal fusion states as in (8).
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Scrambled unbalanced (Z;(c) x Zy(p)): Rivalry between the images in Fig. 12d
leads to the network in Fig. 13d, which has four types of excitatory couplings con-
necting the nodes in learned patterns. As in the previous network, these types are
distinguished by the features of equal color and equal distance. The symmetry group
of this network is Z, (o) x Z,(p) where

o=(15)(26).

The maximal fusion states for this network have the form

Xy x z
x y x zJ)°
5.2 Hopf Bifurcation and Isotypic Components

Suppose that a group I" acts on a vector space V with an irreducible subspace W.
Then an isotypic component of that action is the sum of all representations of I”
in V that are isomorphic to W. The theory of equivariant Hopf bifurcations states
that such bifurcations occur generically with a center subspace in one of the isotypic
components of the symmetry group acting on phase space. Moreover, there can be
a Hopf bifurcation type for each isotypic component. See [21, Chap. XVI] or [22,
Chap. 4].

As an example of isotypic components, consider the conventional network with
I' =D4 @ Zy(p) symmetry and 8k-dimensional state space V given in (7). It is
straightforward to check that

V=VieV eV, eWw,

where
X X X X _ X —-x x —x
—X —X —Xx —X —-X x —x x

N IR
X -y X y X y z u

Specifically note that dim V1+ = dim Vi = k, dim V, = 2k, and dim W = 4k, and
these dimensions add up to dim V = 8k. Also note that each summand is invariant
under the action of I" and the first three are isotypic components. In fact, we could
have decomposed W itself into three isotopic components, but we chose not to since
the symmetry p acts trivially on W, for reasons that we now explain.

In our theory we consider only those Hopf bifurcations that can lead to non-fusion
periodic states. Note that the transposition p is a symmetry for all of the networks in
Fig. 13 and that p either acts trivially on an isotypic component or as multiplication
by —1. In the former case, all bifurcating periodic states have the form

_(x1(®) x3() x5(t)  x7(1)
X“"(xl(r) (@) xs) x7(t)>’
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Table 1 Isotypic components corresponding to representations where p acts as —1 in the four-dot net-
works
Experiment Symmetries % Subspace Kernel
Conventional 4-dot D4 ®Zy(p) Vl+ ( xx Xx XX Ax) Dy
— X —X X —X
i (—x X —x x )
X y —x-—y
V2 (7)5 -y x y ) 1
Scrambled diagonal Dy ® Z>(p) v (_XX *; _xx ;X) Dy
— X X X X
Vl (—,\ —X —Xx —x)
Xy —x-y
VZ (7)5 -y Xy ) 1
Scrambled adjacent Do(k, 1) ®Zy(p) Vi (jx L jx ) D;
& (L5700 Z:(x)
V3 (a5 Zy(v)
Vs (jx _xx xx xx) 2y (k)
Scrambled unbalanced Z5(0) ® Zo(p) v (" f 55 Z5(0)
0-x0
V2 (000 Z)(op)

all of which are fusion states. Hence, we need only identify those isotypic components
for which p acts as multiplication by —1. These bifurcations all lead to T -periodic
solutions of the form

X(t):( x1(1) x3(1) xs5(1) x7(1) )
xl(t+%) X3(Z+%) xs(t+§) X7(l‘+%) ’

The isotypic components where p acts as minus the identity are listed in Table 1
for each of the four networks. There are three such isotypic components for each of
conventional and scrambled diagonal networks. The first two (VIJr and V") lead to
the percepts in Figs. 12a and 12b; however, they interchange the learned and derived
percepts in these two experiments.

The third bifurcation type V, leads to three types of solutions: rivalry with adja-
cent dots of the same color such as in Fig. 12c, a fusion state as in Fig. 14a, and most
interestingly a rotating wave state as in Fig. 14b. More precisely, the three solution

types have the form
apy ag aip aip ap by aip bo
ayp a2 ap  ap a2 by ap by
adjacent dots rivalry fusion
ap a4 a4 azj4
a2 aza ag 4l
rotating wave

where b is twice the frequency of a. See the discussion of Hopf bifurcation with Dy
symmetry in [21]. We can describe the percepts associated with these bifurcations
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® O
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Fig. 14 New patterns of oscillation predicted by a V,~ Hopf bifurcation for the conventional four-dot
experiment: fusion (a) and rotating wave (b)

more simply. The only non-fusion states are scrambled adjacent states, where the two
red dots can be in any of the four orientations.

Scrambled adjacent network: The isotypic components where p acts nontrivially are
listed in Table 1. The alternations predicted by each of the associated Hopf bifurca-
tions are as follows: V| yields Fig. 12a; V; yields Fig. 12c; V3 yields Fig. 12c rotated
by 90°, and V4 yields Fig. 12b.

Scrambled unbalanced: There are two possible isotypic components where p acts
nontrivially and either o acts trivially or o acts nontrivially. See Table 1. The solu-
tions corresponding to V; have x3(¢) and x7(¢) oscillating at double frequency. How-
ever, these states are fusion states, as shown in Fig. 14b. The exact temporal ordering
of percepts corresponding to Vj solutions is complicated to explain. However, the
percepts themselves are straightforward. The colors of dots UL and LR are always
the same and alternate between red and green. The colors of the dots LL and UR also
alternate between red and green, but the times of the alternations can be different.
The result is that all eight four-dot percepts where the UL and LR dots have the same
color can appear in a V; solution type.

5.2.1 Comparison with the Four-Dot Experiment Analysis in [13]

The analysis of the conventional and scrambled diagonal 4-dot experiments pre-
sented here is related to, but definitely different from, the one that we gave in [13].
In [13], we followed Wilson [7] by assuming that all excitatory couplings between
attribute nodes in the learned patterns were the same. This is a reasonable hypothesis
but it leads to the conclusion that the symmetry groups of both 4-dot experiments are
S4 X Z(p); that is, permuting the attribute columns arbitrarily is permitted. Fusion-
breaking Hopf bifurcation with S4 symmetry does not lead easily to the existence of
alternation between the pure-color images in the scrambled 4-dot experiment. How-
ever, in [13], when we added a second type of coupling between nodes representing
the same color, which we called lateral coupling by analogy with the known archi-
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(a) conventional pure color (b) scrambled

Fig. 15 Learned images for two-color three-dot experiments

oo oo
© @
oo oo
. ©

(a) conventional (b) scrambled

Fig. 16 Rivalry networks for two-color three-dot experiments. Solid lines with arrowheads indicate ex-
citatory coupling between dots of the same color, and dashed lines with arrowheads indicate excitatory
coupling between dots of different colors

tecture of the primary visual cortex, then the symmetry group in the scrambled 4-dot
experiment is (the desired) D4 x Z>(p). We now see that this change in symmetry
is better achieved by assuming that the excitatory couplings in our networks are the
same only when certain features are preserved, which is consistent with Hebbian
learning.

6 Three Colored-Dot Experiments

Experiments using three rather than four colored dots should be simpler to perform.
Moreover, there are only two types of such experiments: the conventional experiment
where the left eye is shown three red dots and the right eye three green dots (Fig. 15a),
and the scrambled experiment where the left eye is shown two red dots and one green
dot and the right eye is shown the complementary pattern (Fig. 15b). Our models
for these two experiments predict different percepts, as we now explain. The pure-
color three-dot experiment is analogous to the pure-color four-dot experiment and
the scrambled three-dot experiment is analogous to the scrambled unbalanced four-
dot experiment.

The networks for the two three-dot experiments are shown in Fig. 16. The three
attributes in these experiments are the colors of the dots at the three geometric posi-
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tions upper left (UL), lower left (LL), and right (R). The two levels for each attribute
are the colors red and green.

There is only one type of excitatory coupling in the pure-color experiment Fig. 16a
and its symmetry group is D3 x Zy(p). Note that D3 permutes the three attribute
columns arbitrarily and

p=(12)34)(506).

There are two types of excitatory couplings in the scrambled experiment Fig. 16b
suggested by the color feature. The symmetry group of this network is Z (k) x Z2(p)
where

k=(13)24).
6.1 Hopf Bifurcation and Isotypic Components

As in the four-dot networks we consider only those Hopf bifurcations from a maximal
fusion state that can lead to non-fusion periodic states. The states are denoted

X1 X3 X
X = < 1 3 5> )
X2 X4 X6
In the conventional experiment the group acts transitively and the nodes 1-6 are equal

in the maximal fusion state, whereas in the scrambled experiment the group does not
act transitively and a maximal fusion state has the form

a a b
a a b)’
As in the four-dot experiments the transposition p either acts trivially on an iso-
typic component or as multiplication by —1. Bifurcations in the former case lead to

fusion states. Hence, we need only identify those isotypic components for which p
acts as multiplication by —1 and these bifurcations all lead to 7 -periodic solutions of

the form
o x@® x3(t) xs5()
X(’)‘<x1<t+§) x50+ 1) xs(r+§))'

The conventional and scrambled networks each have two isotypic components
where p acts as minus the identity. These components are listed in Table 2.

6.2 Three-Dot Conventional Experiment
There are two types of fusion-breaking Hopf bifurcations corresponding to the two
irreducible representations of D3 x Zy(p) with p acting as multiplication by —1.

The 1D trivial irreducible representation V; of D3 leads to standard learned pattern
rivalry between the pure-color images in Fig. 15a. That is, the corresponding periodic

solutions have the form
X0 X0 X0 )
xXi2 X2 Xi2)°
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Table 2 Isotypic components corresponding to representations where p acts as —1 in the three-dot net-
works

Experiment Symmetries % Subspace Kernel
. X X X
Conventional 3-dot D3 ®Z>(p) Vi (7)( e 7x) Ds
X y —x—y

V2 (—x -y x+y ) 1

Scrambled unbalanced Z> (k) ®Zy(p) V] ( _xx _XX _)y) Z)(x)
—x0
V2 (_xx :0) Z5(kp)

telelelete

(a) rotating wave

(b) in-phase (c) out-of-phase

Fig. 17 Percepts obtained from a symmetry-breaking V, Hopf bifurcation

The 2D irreducible representation V, leads to three solution types: rotating waves,
two nodes in phase with the third node phase-shifted from the other two, and two
nodes out of phase with the third node fused. We produce pictures representative of
the periodic solutions obtained via Hopf bifurcation by using the functions

xg(t) = cos(2m (1 4 6)),
yo () = cos(2m(t + 6 — 0.2)), (10)
zo(t) = cos(4m(t +6 —0.2)).

e Rotating wave:

X0 X2/6 X4/6 an
X3/6  X5/6 X1/6)
e Two dots in-phase:
X0 X0 Yo (12)
X2 X12 Yyi2)°

Symmetry does not force x(#) and y(¢) to have identical phase-shifted wave forms.
Thus, typically, there will be a nonzero phase shift in color switching between
nodes 1 and 3 (see Fig. 17b). More precisely, observe in Fig. 18 that the times
when color alternation occurs need not be the same in the two waves.
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Fig. 18 Example wave forms
x(t) and y(t) produced
using (10)

—_

x(t)
=)

0 0.5 1 1.5 2
t
1,
= /
B
-1
0 0.5 1 1.5 2
t
e Two dots out of phase:
X0 X12 20 (13)
Xi2 X0 212

Since z has double frequency, zo = z1,2; so this final state is a partial fusion state
as in Fig. 17c.

6.3 Three-Dot Scrambled Experiment

In the two Hopf bifurcations from a maximal fusion state where p acts nontrivially
(as multiplication by —1), « acts trivially in one and nontrivially in the other. These
bifurcations lead to rivalry or partial rivalry.

e K acts trivially:

(xo X0 y()). (14)
X1/2 X172 Y12

This solution is similar to “rivalry” between the two learned patterns, but it gener-
ically will have derived patterns in between. The times when the like-colored dots

switch are different due to the phase shift between xg and yg. This time-periodic
solution is the same as the one in Fig. 17b.

e K acts nontrivially:
X0 X172 20 (15)
X2 X0 z212)°

In this solution, the third node is fused, and the solution is the same as the one in
Fig. 17c.

In short, the only expected non-fusion percepts in the unbalanced scrambled case
are the percepts in Fig. 17b. In particular, we do not expect simple alternation between
the two learned patterns.
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7 Summary of Colored Dot Experiments and Predictions

There are four different two-color four-dot experiments where the pictures shown
to the right and left eyes have red and green dots interchanged; see Fig. 12. There
are just two such two-color three-dot experiments shown in Fig. 15. Our theoretical
analysis leads to interesting differences between these experiments.

(1) Our theory suggests that the expected percepts for the first two four-dot rivalry
experiments (conventional pure-color Fig. 12a and scrambled diagonal Fig. 12b)
are identical.

(2) Both conventional and scrambled diagonal four-dot experiments admit the pos-
sibility of a discrete rotating wave (Fig. 14c), whereas the other two four-dot
experiments do not.

(3) Suppose the single red dot in the four-dot scrambled unbalanced experiment
(Fig. 12d) occurs in the UR position. Then all percepts should have the same
color in the UL and LR positions. The scrambled unbalanced experiment is the
only one of the four-dot experiments where simple alternation between the two
learned patterns is unexpected.

(4) The conventional pure-color three-dot experiment (Fig. 15a) leads to simple al-
ternation between (learned pattern) pure-color percepts, but it does not lead to
simple alternation between mixed-color percepts. It can also lead to discrete ro-
tating waves.

(5) The unbalanced scrambled three-dot experiment (Fig. 15b) is not predicted to
lead to alternation between either pure-color or mixed-color percepts (the learned
patterns). This experiment is also not expected to lead to rotating waves.

(6) The unbalanced scrambled three-dot experiment is expected to lead to mixed-
color percept alternation occurring with pure-color percepts in between (see
Fig. 17b). In this alternation the color of dots UL and LL should be the same.
This experiment could also lead to percepts where UL and LL alternate with
opposite colors and R has an indefinite color (fused state).

8 Definition of a Rivalry Network

The possibility that there may be several types of attributes (see the network for the
Shevell et al. [17] experiment in Fig. 8) and several types of excitatory couplings
(see the networks for the four-dot experiments in Fig. 12 as well as the network
in Fig. 8) are the two principal differences between Wilson networks and rivalry
networks. These generalizations seem to be necessary to explain the percepts found in
the experiments that we have described. The need for additional coupling types was
discussed in [13], where we introduced lateral couplings. Here we describe a simpler
way of introducing multiple excitatory couplings, based on Hebbian learning, which
we formalize through the definition of a feature below.

Following [19] a coupled cell network consists of a collection of nodes or cells C,
a collection of arrows or edges &, equivalence classes of cells, and equivalence classes
of edges.
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Definition 3 A Wilson network is a coupled cell network satisfying the following:

(a) The nodes are partitioned into a disjoint union of m attribute columns; that is,
C=AU---UA,,

where all nodes in an attribute column are cell equivalent. A node in an attribute
column is a level of that attribute.

(b) A pattern is a choice of one node from each attribute. There is a distinguished
collection of learned patterns; all other patterns are called derived.

(c) There are two types of arrows: inhibitory and excitatory.

e Each pair of nodes in the same attribute column is connected by a single in-
hibitory arrow.

e Each pair of nodes in the same learned pattern is connected by a single excita-
tory arrow. (If a pair of nodes is in p patterns, then that pair will be connected
by p arrows.)

Inhibitory arrows and excitatory arrows are not arrow equivalent.

Wilson network discussion: An attribute could be the color of a dot and the levels
the possible colors. In binocular rivalry experiments, the network has two different
learned patterns. In the language of [19], Wilson considers networks where all nodes
are cell equivalent, all inhibitory arrows are arrow equivalent, and all excitatory ar-
rows are arrow equivalent. Rivalry networks need not have these properties.

Definition 4 A rivalry network is a Wilson network such that:
(d) Attribute columns partition into attribute equivalent columns such that

e Nodes are cell equivalent if and only if they are in attribute equivalent columns.

e Inhibitory arrows are arrow equivalent if and only if they are associated with
equivalent attributes.

e Attribute equivalent columns have the same number of levels.

(e) A feature is defined on pairs of nodes in a subset of attribute columns. Two exci-
tatory arrows i and j are arrow equivalent if and only if the features associated to
the head and tail nodes of i are identical to the features associated with the head
and tail nodes of j.

Rivalry network discussion: In Fig. 8 there are two types of attribute columns: those
associated with colors and those associated with grating directions. Partitioning at-
tribute columns into types admits the possibility of cell inequivalent nodes and arrow
inequivalent inhibitory arrows. Features admit the possibility of arrow inequivalent
excitatory arrows. Here are two examples of features:

(1) The level feature identifies pairs of nodes in two attribute equivalent columns as
either having the same level or having a different level. For example, suppose A
is the attribute column defining the color of dot k. Then the level feature identifies
pairs of levels in columns A and A; as either having the same color or having
different colors.
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(2) The color dot experiments have a distance feature that assigns to any pair of
nodes the geometric distance between the associated dots. Thus two excitatory
arrows can be equivalent only if their head and tail nodes correspond to equidis-
tant dots.

We have presumed that Hebbian learning strengthens excitatory connections between
nodes with the same feature, so that in the end the strength of excitatory connections
between pairs of nodes can be identical only if those pairs have the same set of fea-
tures.

9 Conclusion

It requires some thought to define a rivalry network for any particular rivalry exper-
iment. We have shown here that reasonable descriptions of rivalry networks for a
variety of experiments lead (via the use of fusion-breaking Hopf bifurcations) to the
prediction of the percepts that are perceived in these experiments. To our knowledge,
the form of percepts have not previously been predicted.

Periodic states that are near Hopf bifurcation can exhibit alternation only if that
Hopf bifurcation is from a fusion state. If not, the activity of one oscillating node
would be bigger than the activity of other oscillating nodes for all time and alternation
would not occur. It follows that alternation obtained from small amplitude periodic
solutions can only occur robustly in a model network when fusion states are struc-
turally stable in that network. For this reason, we propose that the structure inherent
in rivalry networks that leads to fusion states is required to describe alternation.

Several of the rivalry experiments we have discussed exhibit interocular grouping,
that is, components of the left eye and right eye images are combined to achieve a
single coherent percept [24, 25]. Such groupings occur when learned images can be
naturally subdivided and reassembled in other forms. The subdivision process seems
to be captured by the attributes and their types (which define node types) and the fea-
tures (which define excitatory coupling types), as has been shown in the experiments
considered here. Together the attributes and features define the rivalry networks and
their symmetries. The mathematics of symmetry-breaking Hopf bifurcation leads to
an enumeration of the likely ways that the subdivisions can be reassembled, that is,
to a set of interocular groupings associated with percepts.

The choice of a network for a rivalry experiment is not unique. For example, in
Sect. 2 we choose to model the monkey-text experiment with a two-attribute net-
work. A possible alternative network is one with six attributes, corresponding to the
six distinct areas shown in Fig. 5a (without grouping them into blue and white re-
gions). This leads to a 12-node network as a model for this experiment, rather than
the 4-node network of Fig. 5b. However, there is a relationship between these two
networks. The larger network has a guotient network on a flow-invariant subspace
that is isomorphic to the network in Fig. 5b (see [20] and Sect. 5 of [13]). Thus, the
bifurcations in the smaller model are a subset of the bifurcations in the larger model.
The solution types discussed in Sect. 2 for the smaller model will also appear in the
model with a more refined geometry, however, the larger model can also exhibit other
more complicated dynamics not found in the simpler model. In summary, choosing
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an appropriate network for a given experiment involves trade-offs and is an iterative
process.

We focused here on predicting the form of percepts, which depends on network
structure but not on specific model equations. A combined study of specific equations
on specific networks, analogous to the work of [3, 4] on two-unit models, can be
contemplated.
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