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Abstract
Silent hypoxemia, or “happy hypoxia,” is a puzzling phenomenon in which patients who have contracted COVID-19 exhibit
very low oxygen saturation (SaO2 < 80%) but do not experience discomfort in breathing. The mechanism by which this
blunted response to hypoxia occurs is unknown. We have previously shown that a computational model of the respiratory
neural network (Diekman et al. in J Neurophysiol 118(4):2194–2215, 2017) can be used to test hypotheses focused on changes
in chemosensory inputs to the central pattern generator (CPG). We hypothesize that altered chemosensory function at the
level of the carotid bodies and/or the nucleus tractus solitarii are responsible for the blunted response to hypoxia. Here, we
use our model to explore this hypothesis by altering the properties of the gain function representing oxygen sensing inputs to
the CPG. We then vary other parameters in the model and show that oxygen carrying capacity is the most salient factor for
producing silent hypoxemia. We call for clinicians to measure hematocrit as a clinical index of altered physiology in response
to COVID-19 infection.

Keywords Silent hypoxemia · Breathing control · Central pattern generator · Computational modeling · COVID-19 ·
Polycythemia · Sensory feedback

1 Introduction

1.1 Background

The globalCOVID-19 pandemic led to over 1,003,000 deaths
in the USA, and over 6,881,000 worldwide, from its onset in
late 2019 through March, 2023 (Johns Hopkins University
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Coronavirus Research Center 2023). COVID-19 can cause
profoundly low levels of oxygen in the blood (hypoxemia)
with near normal arterial carbon dioxide (PaCO2) levels.
Although some individuals with COVID-19-induced hypox-
emia experience dyspnea (breathing discomfort), many do
not (Dhont et al. 2020). During surges of the pandemic,
patients arriving at already overcrowded emergency rooms
(ERs)whowere not in obvious respiratory distresswere often
triaged (Dhont et al. 2020). However, some of these patients
may have had reduced oxygen saturation despite their lack
of dyspnea (Simonson et al. 2021; Berezin et al. 2021; Chan-
dra et al. 2020). This subpopulation of COVID-19 patients
present with a novel condition known as silent hypoxemia or
“happy hypoxia” (Simonson et al. 2021).

Silent hypoxemia can result in tachypnea (rapid, shallow
breathing), and with severe hypoxemia, changes in ventila-
tion can occur (Easton et al. 1986; Easton and Anthonisen
1988), but in general there is an absence of increased alveolar
ventilation (Dhont et al. 2020). The mechanism underlying
this condition is poorly understood but has been hypothe-
sized to depend upon high expression levels of angiotensin
converting enzyme 2 (ACE2) in the lungs, carotid body,
and, perhaps, in the central breathing control circuitry within
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the medulla oblongata (Simonson et al. 2021). ACE2 is the
cellular entry point for SARS-CoV-2 (Yuki et al. 2020).Addi-
tionally, recent work has shown that there is a shift in the
oxyhemoglobin dissociation curve1 in COVID-19 patients
(Vogel et al. 2020; Ceruti et al. 2022). Since carotid body
chemoreceptors respond to both low O2 and high CO2, a
primary problem in these patients may be dysregulation of
these sensors and chemosensory reflexes in general. COVID-
19 infection has been shown to increase ACE2 expression,
leading to changes in sensitivity to bothCO2 andO2; changes
in blood gases lead to a concomitant change in activity within
the nucleus tractus solitarii (NTS). Recent work has shown
that ACE2 is present within the carotid bodies of humans
(Porzionato et al. 2021; Villadiego et al. 2021) and there is
evidence of altered chemosensation across multiple systems
with SARS-CoV-2 infection (Caretta and Mucignat-Caretta
2022).The absenceof dyspnea—even thoughpatients exhibit
low oxygen saturation—suggests that changes in carotid
body inputs to the NTS are a key feature of SARS-CoV-2
infection. Additionally, there may be changes in NTS activ-
ity that contribute to the blunted ventilatory response but this
has not yet been reported.

1.2 Altered chemosensory function and silent
hypoxemia

After four years of the COVID-19 pandemic and ongo-
ing endemic infection, a few key pathophysiologies have
become apparent. First, ACE2 expression is correlated with
the location and severity of infection (Zou et al. 2020).
BecauseACE2 is, based on current knowledge, themain vec-
tor bywhich SARS-CoV-2 enters the body’s cells, changes in
ACE2 expression should have an impact on the severity and
time course of COVID-19 symptoms. Second, changes in
NTS signaling may play a key role in altering the normal,
physiological response to changes in oxygenation during
COVID-19, and that information may be carried by the glos-
sopharyngeal nerve (innervating the carotid body) or lung
afferents via the vagus nerve. Information sensed at the
carotid bodies (and lung interoceptors) ultimately reaches the
NTS via the vagus and glossopharyngeal nerves. From the
NTS, these signals are distributed to local visceral integration
circuits within the medulla, including the cardivascular con-
trol regions (rostral and caudal in the ventralmedulla) and the
preBötzinger complex and associated regions of respiratory
control within the brainstem.

Based on the clinical observations reported so far, it
appears that there is a change in gain in the pathway from
carotid body, to NTS, to the breathing rhythm generator and

1 The oxyhemoglobin dissociation curve gives the steady-state fraction
of hemoglobin capacity occupied by oxygen, as a function of oxygen
tension in the blood.

pattern formation network. These observations in patients
have provided the motivation for us to focus on assessing the
effect of changes in sensitivity/gain in this signaling path-
way. This change in gain may be more prevalent in any one
of these circuit elements and further work needs to be done
to determine the exact mechanism bywhich sensitivity of the
control circuit is impacted.

Given the low partial pressure of oxygen in arterial blood
(PaO2) of patients infected with SARS-CoV-2 virus (Sartini
et al. 2020;Chen et al. 2020) and the high expression ofACE2
in the carotid bodies, it is likely that altered chemosensory
reflexes play a central role in the symptoms and outcomes
seen in COVID-19 patients (Porzionato et al. 2021, 2020). In
light of this data, we hypothesize that altered chemosensory
function at the level of the carotid bodies and/or the NTS are
responsible for this blunted response to hypoxia.

1.3 Overview of our approach

We use a previously published computational model of
respiratory control (Diekman et al. 2017) to explore this
hypothesis by altering the properties of the gain func-
tion representing oxygen sensing inputs to the respiratory
central pattern generator (CPG). As reviewed in Sect. 4,
there are several respiratory control models featuring sen-
sitivity to hypercapnia, which under normal circumstances
plays the leading role in regulating breathing effort, and
few models based on hypoxia-driven chemosensory feed-
back. Because hypoxia seems to coexist with normal CO2

levels in silent hypoxemia, we base our investigation on
a closed-loop respiratory control model focused on blood
oxygen regulation. The respiratory control model studied
in Diekman et al. (2017) has seven dynamical variables:
voltage of a central pacemaker cell, together with one fast
and one slow gating variable; diaphragm muscle activa-
tion; lung volume; partial pressure of O2 in the lung; and
partial pressure of O2 in the bloodstream. Regulation of
the endogenous breathing rhythm occurs through hypoxia-
sensitive chemosensory feedback in the model. Thus, we
refer to this system as the 7D-O2 model. The 7D-O2 model
strikes a balance between simplicity, in order to preserve ana-
lytic transparency, and complexity, in order to capture the
phenomenon of interest. See Sect. 4 for further discussion
about the realism/tractability trade-off in modeling respira-
tory control.

In this paper, we use the 7D-O2 model to explore our
hypothesis by altering the properties of the gain function rep-
resenting oxygen sensing inputs to the CPG. We then vary
other parameters in the model, and show that oxygen car-
rying capacity is the most salient factor for producing silent
hypoxemia.We exploit the presence of a small parameter (the
Henry’s Law constant) in the expression for the O2 saturation
curve to provide a mathematical explanation for the effect of
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Fig. 1 Schematic of the 7D-O2 model. Bursts of action potential fir-
ing (V , mV) in the respiratory central pattern generator (CPG) drive
a pool of motor neurons (α, dimensionless), leading to expansions of
lung volume (volL, L) and increases in lung and blood oxygen (PAO2
and PaO2, mmHg). Through a chemosensory pathway (gtonic, nS), the
blood oxygen level affects the amount of excitatory current sent to the
CPG, thereby closing the control loop (red arrow). Time (t , seconds)

is the horizontal axis for all traces. The seven parameters shown in
blue (chemosensory feedback parameters φ, θg, and σg, see Methods;
hemoglobin concentration [Hb]; base lung volume vol0; time constant
τLB; and metabolic demand parameter M) are varied in this study to
model silent hypoxemia. Redrawn, with modifications, from Diekman
et al. (2017)

changing the hemoglobin concentration (hematocrit) in the
model.2.

Figure 1 shows a schematic of the 7D-O2modelwith com-
ponents representing CPG membrane potential (V ), motor
pool activity (α), lung volume (volL), lung oxygen (PAO2),
blood oxygen (PaO2), and chemosensation (gtonic). The
model has a closed-loop structure since an excitatory current,
Itonic, depends on PaO2 and is an input to the CPG compo-
nent (red arrow). In this model, the rate of metabolic demand
for oxygen from the tissues is represented by the parameter
M . If metabolic demand is low ormoderate (M < 1.2×10−5

ms−1), then the model exhibits a stable eupneic rhythm with
CPG bursting activity driving fluctuations in lung volume
that bring in a sufficient amount of oxygen to maintain PaO2

in the normoxia range (see the “plateau” region of the PaO2

versus M curve shown in Fig. 2a and the traces in the left
panel of Fig. 2b.) However, if metabolic demand is too high
(M > 1.2×10−5), then the model exhibits a form of tachyp-
nea that transitions to tonic CPG bursting activity that does
not drive the lungs to effectively maintain PaO2 in the nor-
moxia range (see the “collapse” region of Fig. 2a and the
right panel of Fig. 2b).

2 Model code is available in ModelDB at: https://modeldb.science/
2015954.

In silent hypoxemia, we would expect to observe a lower
height for the plateau region of the PaO2 versus M curve,
since these patients display abnormally low PaO2 despite
minimal changes in minute ventilation. There are three pos-
sibilities regarding the collapse region in silent hypoxemia
patients: the collapse point could shift to a lower M value
(as illustrated in Fig. 2c), stay at the same M value (as in
Fig. 2d), or shift to a higher M value (as in Fig. 2e). Due
to an acute disease-induced reduction in steady-state PaO2,
it seems plausible that there would be a decrease in toler-
ance of higher metabolic demand. Therefore, we explored
parameter space to see if the closed-loop model is capable of
producing PaO2 versus M curves with shapes similar to the
hypothetical curve shown in Fig. 2c.

2 Methods

In this section, we will briefly describe the 7D-O2 model.
For a full description of the nonlinear system of seven ordi-
nary differential equations specifying the model, see the
“Appendix A.1”.
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Fig. 2 Dynamics of 7D-O2 model and hypothetical silent hypoxemia
PaO2 versus M curves. a Average blood oxygen PaO2 as a function of
metabolic demand (M) in the original 7D-O2 model. There is a plateau
region at low M values for which normoxia (green shading) is main-
tained, and a collapse point at approximately M = 1.2 × 10−5 ms−1

beyond which severe hypoxia occurs. In a model of silent hypoxemia,
it seems clear that the plateau portion of the curve should shift lower
(maroon arrow pointing down), but it is not as clear whether the collapse

point should remain in the same location or shift horizontally (maroon
arrows pointing left and right). b Variables of the 7D-O2 model for M
values in the plateau region (left column) or after the collapse point
(right column). c–e Hypothetical silent hypoxemia models (red) with a
lower plateau and a collapse point shifted to a lower M value (c), in the
same location (d), or shifted to a higher M value (e) compared to the
7D-O2 model (black)

2.1 Quantitative modeling approach

Quantitative modeling has helped elucidate principles of
normal and pathological functioning of the respiratory sys-
tem, although its fundamental mechanisms remain debated.
Mathematical models can be particularly helpful for generat-
ing experimentally testable hypotheses. A variety of models
have been developed for the respiratory CPG (Butera et al.
1999a, b; Del Negro et al. 2002; Rubin 2008; Del Negro and
Hayes 2008; Rubin et al. 2009; Phillips and Rubin 2019;
Phillips et al. 2022), for chemosensory feedback-based reg-
ulation schemes (Grodins et al. 1954; Khoo et al. 1982;
Cherniack and Longobardo 2006), and for cardiopulmonary
gas exchange (Ben-Tal 2006). See Molkov et al. (2017) and
Lindsey et al. (2012) for a review. A smaller number of pub-
lished models represent closed-loop control incorporating a
conductance-based CPG, muscle dynamics, gas exchange,
and sensory feedback (Ben-Tal and Smith 2008; Park et al.

2012; Molkov et al. 2014). Of these, several focus on hyper-
capnia (excessive CO2) as the regulatory pathway. In order
to generate hypotheses about silent hypoxemia, we chose
to work with a conductance-based CPG model with O2

chemosensation as the sensory feedback pathway closing the
control loop. To our knowledge, our previously published
model (Diekman et al. 2017) is the only model meeting
these criteria. Aspects of it have been experimentally vali-
dated (Diekman et al 2022; Diekman et al. 2018). Like any
model, this model fails to represent all aspects of the control
system. We have not included CO2 sensing in our model due
to the high diffusion rates of CO2 when compared to O2 in
the lung (West 2008) and evidence showing that CO2 is≤ 35
mmHg in patients presentingwith silent hypoxemia (SH) and
minimal tachypnea (Chandra et al. 2020; Alamé et al. 2022).
Additionally, we do not explicitly include rapidly adapting
(RAR) or slowly adapting (SAR) lung mechanoreceptors in
the model—lung volume is present in the model and repro-
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duces inspiratory drive in much the same way that SARs do
in vivo. Nevertheless, in spite of these limitations, the model
suffices to generate testable hypotheses that could be pursued
by the clinical community.

The 7D-O2 model is a closed-loop respiratory control
model that comprises a well-established conductance-based
central rhythm generator (the Butera–Rinzel–Smith model
(Butera et al. 1999a; Diekman et al. 2017)) with a voltage
variable V , a fast gating variable (delayed-rectifier potassium
current activation, n), and a slow gating variable (persis-
tent sodium current inactivation, h). The output of the BRS
model cell, namely the voltage, drives a motor pool activa-
tion variable, α, that in turn drives expansion of the lungs.
The lung volume (volL), the partial pressure of oxygen in the
lungs (alveolar pressure, PAO2), and the partial pressure of
oxygen in the bloodstream (PaO2) complete the model vari-
ables. The BRS cell includes an excitatory current driven by
a tonic conductance that is regulated by chemosensory feed-
back, closing the control loop. When the tonic conductance
assumes intermediate values, the BRS cell exhibits bursting
activity, consistent with eupnea (normal steady breathing). If
blood O2 levels are significantly reduced, the tonic conduc-
tance increases, which can trigger a transition into a rapid,
tonically firing “beating” regime, analogous to tachypnea
(pathologically rapid shallow breathing). If blood O2 levels
are significantly increased, the tonic conductance decreases,
which can push the BRSmodel cell into a stable resting fixed
point at, which Butera et al. called the “quiescent” regime
(Butera et al. 1999a). The 7D-O2model includes ametabolic
demand parameter, M , regulating the rate at which oxygen is
removed from the bloodstream to the tissues. As the “pheno-
type” or “physiology” of the model, we take the steady-state
value of PaO2 as a function of M . For the original model
as presented in Diekman et al. (2017), the PaO2-vs-M curve
shows a plateau near 100mm Hg (normoxia) that collapses
to a critically hypoxic state when M increases past a high
threshold (Fig. 2a). As we varied the original parameters
to investigate possible mechanisms of silent hypoxemia, we
monitored the height of the normoxia plateau, and the loca-
tion of the collapse point.

Simulations were conducted usingMATLAB v. 2020B on
the NJIT high-performance computing cluster. Code corre-
sponding to the 7D-O2 model is posted on Github at https://
github.com/ModelDBRepository/229640 and on ModelDB
at https://modeldb.science/229640. Code corresponding to
the silent hypoxemia model developed here is available at
https://modeldb.science/2015954.

2.2 Relatingmodel parameters to potential silent
hypoxemiamechanisms

The mechanism by which COVID-19 leads to sustained
hypoxemia in the absence of dyspnea is currently unknown.

The minimalist model of Diekman et al. (2017) includes
a number of key parameters that are plausible targets for
modification to mimic the effects of COVID-19-infection on
respiratory control.

Oxygen carrying capacity is a key variable in pulmonary
mechanics. Repeated bouts of intermittent hypoxia, as seen
in obstructive sleep apnea, can increase HIF-1α signaling,
with a subsequent increase in erythropoietin, and an increase
in hemoglobin and erythrocytes. Similar changes are seen in
conditions that result in chronic hypoxemia and hypercap-
nia, such as cardiovascular disease, obstructive sleep apnea,
and chronic obstructive pulmonary disease (Mauad et al.
2021; Paquette et al. 2021; Li et al. 2019). Many of the
patients presenting with silent hypoxemia have pre-existing
conditions and comorbidities that are likely to increase hema-
tocrit and this increase in oxygen carrying capacity may
blunt chemoreceptor responses—exacerbating the “happy
hypoxia” phenomenon. Unfortunately, no current literature
quantifies hematocrit in these patients.

Motivated by these observations, we systematically var-
ied (plus orminus 20%) the following parameters that control
the saturating effect of hypoxia-sensitive chemosensory feed-
back to the central pattern generator: σg, which controls the
slope of the sensory feedback curve at maximum sensitivity
(gain at threshold); θg, which controls the threshold activa-
tion value for sensory feedback (50% activation point); and
φ, which controls the maximum sensory feedback drive at
full activation.

Lung volume is a key determinant of mechanosensory
feedback to the NTS and the CPG. Our model incorporates
lung volume and allows us tomonitor changes in lung volume
in response to changes in central drive for breathing. This also
allows us to monitor lung volume as an outcome measure to
determine if the CPG is actually causing lung inflation in a
way that assures sufficient gas exchange to sustain life when
extrapolated to animal models or human subjects.

Ventilation/perfusion matching is a key drive for respi-
ration. In mammals, the interplay between cardiovascular
and respiratory control is essential for ensuring that suffi-
cient oxygen is delivered to the body and CO2 is removed
via the lung. We have included a time constant for O2 trans-
port between the lung and blood which allows us to simulate
changes in diffusion and dwell time within the lung that cor-
relate with diseases such as chronic obstructive pulmonary
disease (COPD) and lung fibrosis. Oxygen consumption
and CO2 production are key elements for determining how
changes in breathing can match metabolic demand. We have
included a simplified treatment of metabolism in the model.
As a “biomarker” to test the model behavior, for all parame-
ter sets we varied the metabolic demand parameter M across
a range of values. We have not included CO2 in this model,
because CO2 diffuses up to 20 times faster than O2 (West
2008) and patients with SH do not appear to be hypercap-
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nic since there is very little change in breathing rate—CO2

is a potent stimulator of minute ventilation and hypercap-
nia results in pronounced increases in breathing frequency
(Moosavi et al. 2003; Parshall et al. 2012;Nakanoet al. 2015).

Additionally, we vary the hemoglobin concentration to
mimic the effect of chronic hypoxia seen in humans living in
hypoxic environments which can include mountain dwellers
(Hancco et al. 2020), individuals with severe obstructive
sleep apnea (Li et al. 2019), or other cardio-respiratory dis-
orders (Paquette et al. 2021; Balasubramanian et al. 2021).
These individuals can have high hematocrit, a corresponding
increase in red blood cells, and increased blood viscosity—
similar to what has been reported in COVID-19 patients
(Choi et al. 2022).

3 Results

3.1 Twenty percent variation in parameters
specifying chemosensory feedback gain is
insufficient to qualitatively reproduce silent
hypoxemia

Motivated by the hypothesis that silent hypoxemia could
result from a dysregulation of carotid body O2 receptors,
we first considered variation of the parameters associated
with the chemosensory pathway of the model. In the 7D-
O2 model, there is a sigmoidal relationship between PaO2

and gtonic, with the parameters φ, θg , and σg controlling the
height, half-activation, and slope of the sigmoid, respectively
(see Fig. 3a). We simulated the closed-loop model over a
range of M values while varying these parameters over three
levels spanning roughly ±20% of their original values (φ =
0.24, 0.3, 0.36, θg = 70, 85, 100, and σg = 0.24, 0.3, 0.36),
yielding 27 different combinations in total. Figure3b shows
that varying these parameters generates PaO2 vs M curves in
which the plateau and collapse point are shifted down and to
the right (similar to the hypothetical case shown in Fig. 2e).
None of the 27 combinations, however, produce any curves
with the plateau and the collapse point shifted down and to
the left (similar to Fig. 2c). In patients with comorbidities
that cause compensatory adaptations to chronic hypoxia—
downstream from hypoxia-inducible factor 1α (HIF-1α)—it
seems plausible that disease-induced reduction in steady-
state PaO2 would be accompanied by an increase in tolerance
of higher metabolic demand. However, we do not consider
any of these model variants to suitably capture the phe-
nomenon of silent hypoxemia.

In order to proceed further, we selected a single parameter
set fromamong the 27 combinations previously considered as
our workingmodel for producing the hypoxic plateau region,
namely φ = 0.24, θg = 70, and σg = 36. These parameters
gave the curve with the greatest reduction of PaO2 (dark-

est blue curves in Fig. 3a, b), although the collapse point
did shift to significantly higher values of M . Next, based on
reports indicating that COVID-19 patients have altered oxy-
hemoglobin dissociation curves (Vogel et al. 2020; Ceruti
et al. 2022), we considered variation of the model parameter
K which represents hemoglobin binding affinity (Eq. 18 in
Methods).

3.2 Varying the shape of the hemoglobin saturation
curve leaves blood oxygen unchanged and
weakly shifts themetabolic collapse point

The effect that increasing the binding affinity (decreasing K )
has on the hemoglobin saturation versus blood oxygen curve
(SaO2 − PaO2) with the new chemosensory parameters is
shown in Fig. 4a. Tighter binding affinities (K values less
than the default value of 26 mmHg) do shift the PaO2 vs
M curve to the left, but the respiratory collapse point is still
at higher metabolic demand values than the original model
(Fig. 4b). See also Fig. 9a in “Appendix A.2” for the effect
of varying K with the original chemosensory parameters.

Since varying the chemosensory parameters alonewas not
sufficient to model a silent hypoxemia patient prone to res-
piratory collapse, we considered other parameters that could
plausibly be affected by COVID-19. Specifically, lung dam-
age due to excessive immune response or local thrombosis
could reduce the effective unloaded lung volume (model
parameter vol0), or impede the flux of oxygen between
the alveoli and the alveolar capillaries. The latter effect
could be reflected by an increase in the model parameter
τLB, which governs the effective relaxation time for differ-
ences in partial pressure of oxygen in the model’s lung and
blood compartments, respectively. Therefore, while keeping
the chemosensory sigmoid parameters (φ = 0.24, θg =
70, σg = 36) fixed, we varied the unloaded lung volume
(vol0 = 1.6, 2.0, 2.4) and the time constant for the flux of
oxygen from the lung to the blood (τLB = 100, 500, 900).

3.3 Varying both oxygen flux and lung volume has
little effect on the blood oxygen vsmetabolic
demand curve

As shown in Fig. 5a, varying vol0 by ±20% and varying τLB
by ±400% had surprisingly little effect on the height of the
PaO2 versus M plateau, and did not significantly affect the
collapse point either.

Having experimented with varying parameters specifying
the shape of the chemosensory feedback response to hypoxia,
the hemoglobin binding affinity constant K , and oxygen flux
and lung volume parameters, we were able to significantly
reduce the height of the eupneic PaO2 plateau, but at the cost
of shifting the collapse point to higher values of themetabolic
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Fig. 3 Sensitivity of PaO2 versus M curves to variation of model
parameters. a Chemosensory sigmoid of gtonic as a function of PaO2
with various parameter values for the maximum (φ), half-activation
(θg), and slope (σg) of the sigmoid. Default settings from the origi-
nal 7D-O2 model (φ = 0.3 nS, θg = 85 mmHg, σg = 30 mmHg) are
shown in gray. See panel (b) for the definition of the color scale used for
the other curves. b Average PaO2 vs M curves for 25 different combi-
nations of the chemosensory sigmoid parameters (φ = 0.24, 0.3, 0.36;

θg = 70, 85, 100; σg = 24, 30, 36) on a color scale with the low-
est and highest maximum PaO2 values are shown in blue and red,
respectively, with the exception of the default parameter set which is
shown in gray. Two of the 27 combinations were omitted for clarity.
c Expanded view of curves from b close to the default curve. Param-
eter values (φ, θg, σg), listed from top to bottom at M = 4 × 10−6:
(0.36, 85, 36), (0.36, 85, 30), (0.3, 85, 36); gray curve has the default
values (0.3, 85, 30)

Fig. 4 a Hemoglobin saturation
curves (Eq. 18) for various
hemoglobin binding affinities
K . Default model has K = 26
mmHg. b Average PaO2 vs M
curves for the set of K values
shown in (a)

Fig. 5 a Average PaO2 vs M curves for nine different combinations
of oxygen flux and lung volume parameters (τLB = 100, 500, 900 ms;
vol0 = 1.6, 2.0, 2.4 L), with a constant set of chemosensory sigmoid
parameters (φ = 0.24, θg = 70, σg = 36) on a color scale with the low-
est and highest M values at the collapse point (PaO2 = 40), are shown
in blue and red, respectively, with the exception of the default parameter

set which is shown in gray. b Average PaO2 vs M curves for six differ-
ent values of hemoglobin concentration [Hb] (specifically [Hb]=120,
150, 180, 200, 250, 300 mmHg), with τLB = 500, vol0 = 2.0, and the
same chemosensory sigmoid parameters and color scale as in panel a.
The purple [Hb] = 250 curve was selected as a putative model for silent
hypoxemia
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Fig. 6 Simulations of putative
silent hypoxemia model.
a–l Output from simulations of
the normoxia model (the
original 7D-O2 model, red
traces) and the silent hypoxemia
model ([Hb] = 250 curve from
Fig. 5b, blue traces). a Voltage
traces showing multiple bursts
for M = 0.4 × 10−5ms−1.
b Burst-to-burst period T as a
function of metabolic demand
M . Black markers indicate
values of M used for panels
(a,d,g,j) (M = 0.4 × 10−5ms−1,
black circles) and (c,f,i,l)
(M = 0.97 × 10−5ms−1, black
Xs). c Voltage traces showing
multiple bursts for M = 0.97
× 10−5ms−1. d Voltage traces
from (a) zoomed in on a single
burst. e Spikes per burst as a
function of M . f Voltage traces
from (c) zoomed in on a single
burst. g Lung volume for
M = 0.4 × 10−5ms−1.
h Minute ventilation as a
function of M . See text for
details. i Lung volume for
M = 0.97 × 10−5ms−1. j Blood
O2 traces across multiple bursts
for M = 0.4 × 10−5ms−1.
k Average PaO2 as a function of
M . l Blood O2 traces across
multiple bursts for
M = 0.97 × 10−5ms−1

demand. The problem remains of finding parameters that can
shift the collapse point without elevating the eupneic plateau.

Another parameter that could possibly be affected by
COVID-19 infection is hematocrit (hemoglobin concentra-
tion). Increased hematocrit (polycythemia) is one phenotypic
response observed in individuals who relocate from sea level
to extreme high altitude environments for a prolonged period
of time (Winslow and Cassinelli 1987; Beall et al. 1990).

3.4 Increasing hemoglobin concentration shifts the
PaO2 collapse point to lowerM values while
maintaining eupneic plateau height

Finally, we considered variation of the parameter [Hb] repre-
senting the hematocrit, i.e., the concentration of hemoglobin
within the blood, which was set to 150g/l in the original
7D-O2 model. Figure 5b shows that increasing [Hb] within
the model lowers the collapse threshold of the PaO2 versus
M curve, while maintaining a hypoxemic plateau around 80
mmHg. A 33% increase in [Hb] shifts the collapse point to a
similarM value as the original 7D-O2model, consistent with
the hypothetical silent hypoxemia PaO2 vsM curve shown in

Fig. 2d. Further increases in [Hb] yield collapse points with
even lower M values, consistent with the hypothetical silent
hypoxemia PaO2 vs M curve shown in Fig. 2c. See Fig. 9b
in Appendix A.2 for the effect of varying [Hb] with all other
parameters set to their original 7D-O2 model values.

Thus, we will consider the model with [Hb]=250 (the sec-
ond curve from the left in Fig. 5b) as a our working model
for silent hypoxemia, and analyzed the model dynamics for
simulations in the plateau region and in response to increases
in metabolic demand.

Figure6 compares simulations of the silent hypoxemia
model (blue traces) and the original 7D-O2 normoxia model
(red traces) for different values of the metabolic demand
parameter M , generated as follows. First, the correspond-
ing model is simulated with M = 0.8 × 10−5ms−1 for two
minutes of simulated time, to establish baseline initial con-
ditions on the eupneic limit cycle. Then, the value of M
is changed to the value shown on the horizontal axis (cen-
tral column: panels b, e, h, k) and the simulation is run for
another 10min of simulated time. For the conditions shown
in detail in the left column (M = 0.4× 10−5ms−1, panels a,
d, g, j), this duration is sufficient to effectively remove tran-
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sient behavior. For the conditions shown in the right column
(M = 0.97×10−5ms−1, panels c, f, i, l), the transient effects
are still visible for the silent hypoxemia curves.3

Figure6a shows voltage traces in the plateau region (M =
0.4×10−5 ms−1) for both the silent hypoxemia model (blue)
and the original 7D-O2 normoxiamodel (red). The frequency
of bursting is similar in the two models (Fig. 6b), but there
are a few more spikes per burst in the hypoxemia model
(Fig. 6d,e). This leads to slightly more vigorous lung expan-
sions in the hypoxemiamodel (Fig. 6g); however, the levels of
oxygen in the blood remain substantially lower (Fig. 6j). As
the metabolic demand is increased, the frequency of burst-
ing in the hypoxemia model becomes much faster than in
the normoxia model (Fig. 6b), and there are substantially
fewer spikes per burst (Fig. 6e). This type of bursting activity
leads to more frequent but less vigorous lung expansions and
ultimately respiratory collapse at lower levels of metabolic
demand in the hypoxemia model compared to the normoxia
model (Fig. 6e,k). For comparison, panels (c, f) show voltage
traces for a metabolic demand value M = 0.97× 10−5ms−1

for which the SH model’s breathing pattern has moved past
the point of collapse, while the original 7D-O2 model main-
tains steady eupneic breathing; note the dramatically reduced
mean PaO2 values in panel (l).

Figure6h plots minute ventilation (MV) as a function
of metabolic demand M for the original 7D-O2 normoxia
model (red) and the silent hypoxemia model (blue). MV
is a well-established clinical measure of respiratory perfor-
mance, and is defined as the net volume of respired air. MV is
approximately six liters per minute in normal, resting adults,
and typically increases with modestly increasing metabolic
demand. For excessively high demand,MV shows nonmono-
tonic behavior in our model, first increasing and then rapidly
decreasing. For our model systems, we define MV as the net
inspired air per breath (maximum lung volume minus mini-
mum lung volume), divided by the breath cycle duration. For
the original model parameters,MVbegins near 3 l/min at low
metabolic effort (M = 0.2×10−5ms−1), and increases grad-
ually to approximately 12 l/min at intermediate effort (M �
1.2×10−5ms−1) before collapsing to near zero at excessively
high effort (M � 1.2×10−5ms−1). In contrast, for the silent
hypoxemia model, MV begins with slightly elevated val-
ues, relative to the normoxia model, climbs gradually while
remaining slightly above the normoxia curve, until suddenly
collapsing at MV ≈ 1.0× 10−5ms−1. For comparison, pan-
els (I,L) shows lung volume and PaO2, respectively, for the
higher demand value M = 0.97 × 10−5ms−1. The traces
show the ongoing transient decline of the respiratory pattern
in the SH model, toward full tachypneic collapse, after ten
minutes of elevated metabolic demand.

3 The same procedure was used to generate Figs. 3b, 4b, and 5.

Having established our working model for silent hypox-
emia, we next exploit the relative simplicity of the model
to investigate the underlying mechanism by which changing
hematocrit shifts the collapse point along the M-axis.

3.5 Dimension reduction via fast–slow analysis
shows varying hematocrit levels has similar
effects in themodel

Fast–slow dissection is a principled approach to understand-
ing the behavior of dynamical systems involving variables
with disparate timescales (Fenichel 1979; Rubin and Terman
2002). Let the vector x represent the fast variables and let the
scalar y be the slow variable in the two-timescale system

dx
dt

= f(x, y) (1)

dy

dt
= εg(x, y) (2)

where ε � 0 is a small parameter. Suppose (1), the fast
subsystem, has either a stable fixed point x = xfp(y) or else
a stable limit cycle solution with period T (y), which we
write as x = γ (y, t) = γ (y, t + T (y)), for each value of
y in the relevant range. The value of the fixed point, or the
shape and period of the limit cycle trajectory, may depend
on y. In the limit of small ε, the variable y given by (2), the
slow subsystem, is approximately constant. Then (2) may be
written in terms of rescaled (slow) time τ = εt as

dy

dτ
= ḡ(y) (3)

where ḡ(y) represents the average effect of the fast subsystem
on the slow subsystem, at a given value of the slow variable
y:

ḡ(y) =
{
g(xfp(y), y), fixed point case;
1

T (y)

∫ T (y)
0 g(γ (y, t), y) dt, limit cycle case.

(4)

When the timescales of y and x are sufficiently separated,
the dynamics given by (3) provide a lower dimensional
approximation of the full system (1)–(2). We previously
determined PaO2 to be the slowest dynamical variable in the
7D-O2 model (Diekman et al. 2017). Identifying the slow
variable y with PaO2, we applied fast–slow dissection as
described above.

Figure 7 shows the averaged rate of change of the slow
subsystem, ḡ, definedbyEq. (4) for the original 7D-O2model
and the SH model. Panels a (redrawn from Diekman et al.
(2017)) and b show the phase line corresponding to the
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Fig. 7 Varying hemoglobin
concentration shifts the collapse
point in a reduced model
obtained from fast–slow
decomposition. a,b Rate of
change of PaO2 (ḡ) of averaged
slow subsystem (Eq. (3)) for
M = .4 × 10−5ms−1 (green),
M = .8 × 10−5ms−1 (blue) and
M = 1.6 × 10−5ms−1

(magenta) for the models with
normoxia (panel a) and silent
hypoxemia (panel b)
chemosensory parameters. Gray
arrows in a indicate where PaO2
lies in a range for which the fast
subsystem sits in the quiescent
state. c,d Heat map showing ḡ
as a function of PaO2 and M for
the models with normoxia
(panel c) and silent hypoxemia
(panel d) chemosensory
parameters. Black curves: fixed
points (ḡ = 0) of the averaged
slow subsystem (3). e,f Fixed
point (ḡ = 0) curves for three
levels of [Hb] (mmHg) for the
normoxia (panel e) and silent
hypoxemia (panel f)
chemosensory parameters

one-dimensional reduced system (3), which specifies the
approximate rate of change of PaO2 as a function of PaO2.

The curves in panels a, b have a detailed structure related
to the bursting, beating and quiescent regimes of the origi-
nal BRS model (Butera et al. 1999a). When PaO2 is in an
intermediate range, roughly 70–90mm Hg in the approxi-
mate reduced model, the fast subsystem (1) is in the bursting
regime, which efficiently drives gas exchange in the lungs, so
that more O2 enters the blood stream than leaves it (ḡ > 0)
provided M is not too large (green and blue curves, Fig. 7a).
Within the eupneic range, the ḡ versus PaO2 curve has a
scalloped shape due to the addition of spikes to the bursting
pattern as PaO2 increases. When PaO2 is below the eupneic
range, gtonic increases, forcing the fast subsystem into the
steady spiking or “beating” regime, which leads to ineffi-
cient gas exchange in the lungs and low minute ventilation.
Under these conditions, less O2 enters the blood stream than
leaves it (ḡ < 0). When PaO2 is above the eupneic range,
i.e., PaO2 � 90 mm Hg, gtonic decreases sufficiently that
the fast subsystem enters the quiescent state, as described in
Butera et al. (1999a). That is, the voltage and gating vari-

ables enter a stable fixed point corresponding to a steady
resting potential. Under these circumstances, no new oxygen
enters the blood stream; meanwhile, O2 leaves in proportion
to PaO2, so the level curves of ḡ decrease rapidly. Referring
to Eqs. (20)–(25), we see that if the slow variable y = PaO2

is held constant in a range where the fast subsystem enters
the quiescent state then the expression for ḡ simplifies to

ḡ(y) = −Mζ
(
βO2 y + η SaO2(y)

)
ζ

(
βO2 + η ∂SaO2

∂PaO2
(y)

) (5)

≈ −M
SaO2(y)

SaO′
2(y)

+ O (
βO2

)
, as βO2 → 0, (6)

giving the smooth descending curves above PaO2 � 90 mm
Hg (see Fig. 7a, arrows). In the second line, we have used
the fact that βO2 � 1. We discuss this small parameter fur-
ther below. In the SH model (Panel b), a similar structure is
apparent, but is shifted to the left along the PaO2 axis.

The curves showing when PaO2 will increase (ḡ > 0)
and decrease (ḡ < 0) provide a simplified explanation of
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the collapse from eupnea to tachypnea through a saddle-
node bifurcation in the slow subsystem. In Fig. 7a, b,
zero-crossings of ḡ with positive and negative slopes cor-
respond to unstable and stable fixed points of the slow
subsystem, respectively. For the 7D-O2 model (Panel a),
we can observe the following (cf. Diekman et al. (2017)).
When M = 0.4 × 10−5 ms−1 (green curve), the system
has a stable fixed point corresponding to eupneic bursting
(PaO2=89 mmHg), a stable fixed point corresponding to
tachypneic spiking (PaO2=41 mmHg), and an unstable fixed
point (PaO2=74mmHg).When M = 0.8×10−5 ms−1 (blue
curve), the system still has two stable fixed points, but the sta-
ble eupneic point (PaO2=87 mmHg) and the unstable fixed
point (PaO2=80mmHg) have moved closer together. Further
increases in M lead to a saddle-node bifurcation in which
the stable eupneic point and the unstable fixed point collide
and disappear, leaving only the tachypneic fixed point. For
example, when M = 1.6× 10−5 ms−1 (magenta curve), the
system has only 1 fixed point, which corresponds to stable
tachypneic spiking (PaO2=17 mmHg). For the SH model
(panel b), as in panel a the system again has three fixed
points for M = 0.4 × 10−5 ms−1 and only 1 fixed point for
M = 1.6× 10−5 ms−1; the qualitative behavior is the same,
although the value ofM at which the saddle-node bifurcation
occurs is different.

Panels c, d of Fig. 7 show ḡ as a function of both blood
oxygen (PaO2) and metabolic demand (M), for the reduced
system (4) in the 7D-O2 model (panel c) and the SH model
(panel d). The black curve in each panel shows the loca-
tion (PaO2 value) of fixed points (ḡ = 0) in the averaged
slow subsystem as a function of metabolic demand M . The
heatmap colors indicate the value of ḡ. For the 7D-O2 model
(panel c), at M = 0.25×10−5 ms−1, the lower stable branch
and unstable middle branch collide and these fixed points
are destroyed in a saddle-node bifurcation (SN1), leaving
only the stable upper branch for M < SN1. Similarly, at
M = 0.88× 10−5 ms−1, the upper stable branch and unsta-
ble middle branch collide in another saddle-node bifurcation
(SN2), leaving only the stable lower branch (tachypnea) for
M > SN2. Panel d shows qualitatively similar behavior for
the SH model, but the “eupneic” region is shifted to lower
PaO2 values, and the ḡ = 0 curve is shifted to higher values
of M for corresponding values of [Hb]. Panels e, f illustrate
how the curve of fixed points shifts to the right as [Hb] is
decreased (blue) and to the left as [Hb] is increased (red)
for the normoxia (panel e) and silent hypoxemia (panel f)
chemosensory parameters.

3.6 Why does changing [Hb] shift ḡ along the PaO2
axis?

Reexamining the detailed model equations (§A) we see that
the metabolic demand parameter M occurs only in equation

Fig. 8 Gray average PaO2 versus M curves depict the mapping of the
curves for 5 different values of hemoglobin concentration ([Hb] = 120,
180, 200, 250, and 300) to [Hb] = 150 by multiplying each curve by
the ratio [Hb]/150

(23). We further note that equation (23) contains a small
parameter, namely the Henry’s Law constant (βO2 ) repre-
senting the solubility of oxygen in the blood, in the absence
of hemoglobin. For the physiologically realistic values cho-
sen in the original model, 3 ≈ βO2 PaO2 � η SaO2 ≈ 150,
in appropriate units. Given the form of (23), it is clear that
setting βO2 ≈ 0 is a small (regular) perturbation of the
dynamics. Neglecting this small parameter, we see that the
flux of oxygen from the blood to the tissue is mainly driven
by the product M × η of the metabolic demand parameter
M and the hematocrit (concentration of hemoglobin) param-
eter η. Therefore, the model dynamics are (approximately)
invariant to any rescaling M → γ M , η → η/γ , i.e., any
rescaling of M and η that leaves the product Mη constant.
We thus may predict that running the model with η increased
and M reduced in proportion would shift a PaO2-versus-
ln(M) curve to the left with little deformation. Thus, if (in the
model) the results of COVID-19 infection lead to an increase
in a patient’s hematocrit level, for instance, through hypoxia-
driven polycythemia, together with the parameter changes
necessary to lower the eupneic PaO2 plateau as in Fig. 5b,
wemight expect to recover a net shift of the PaO2-v-M curve
down and to the left, as suggested in Fig. 1 panel e.

It is natural to conjecture that a similar rescaling might be
observed in the full system, since the small-parameter argu-
ment above applies equallywell to the full seven-dimensional
model. Figure 8 confirms this conjecture via simulations of
the full model using several [Hb] levels. This figure replots
the curves from Fig. 5b (colors from blue to red) together
with rescaled versions of the figures (gray traces) obtained
by multiplying each curve’s abscissa by the ratio [Hb]/150,
while keeping its original ordinate. As soon in the figure, the
rescaled curves, plotted in gray, collapse onto approximately
a common curve.
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Fig. 9 Sensitivity of PaO2 versus M curves to variation of hemoglobin
parameters. In both panels, all parameters are set to their values from the
original 7D-O2 model except for the parameter being varied. a Average
PaO2 vs M curves for various hemoglobin binding affinities K (includ-
ing the original value K = 26 mmHg). Color scale maps the lowest and

highest maximum PaO2 values to blue and red, respectively. bAverage
PaO2 versus M curves for 6 different values of hemoglobin concentra-
tion [Hb] (including the original value [Hb] = 250 gm L−1) with the
same color scale as in (a)

“Appendix A.2” shows that changing the hematocrit level
in the original 7D-O2 model has qualitatively similar effects
to those illustrated here.

4 Discussion

In this study, we applied a previously published model to the
problem of silent hypoxemia seen in a subset of COVID-
19 patients. While our model is highly simplified, it can
nevertheless be useful for testing hypotheses (about the
model) and for generating novel hypothesis relevant to the
clinic—although (we hasten to note) we do not make recom-
mendations for clinical practice. We consider a simplified
breathing model even though more complicated models are
available (Molkov et al. 2017). In general, the complexity of
a biophysical model should be related to the research ques-
tion the model is used to address (Thorburn 1918; Koch and
Segev 1998; Carnevale and Hines 2006; Levenstein et al.
2023). Simple models often provide useful tools for under-
standing the behavior of control systems. In the literature,
one may find reduced models of the central controller for
breathing that are less representative of preBötzinger com-
plex neurons than our version of the Butera–Rinzel–Smith
model (Khoo et al. 1982; Khoo 2000; Cheng et al. 2010).
Thus, our intention here has been to develop a model that is
as reduced as possible, yet still able to recapitulate changes
in control of breathing that can be seen in a given disease
condition. Our goal has not been to capture the full com-
plexity of the rostroventrolateral medulla and the entirety of
the brainstem breathing control network. However, we have
included aspects of the control circuitry that are important in
any whole-body model of breathing control. These include
the closed-loop feedback, which represents chemosensation
(of oxygen levels via PaO2) and mechanosensory inputs, in

an abstracted form at least, via the lung volume component
of the model. Because we see responses to changes in breath-
ing patterns that recapitulate many of the features observed
in COVID-19 patients in a clinical setting, we see our model
as a useful tool for exploring the overall control system for
breathing. Our ultimate goal will be to increase the complex-
ity of our model to more closely resemble the architecture
and diversity of the brainstem control circuitry. However, that
is beyond the scope of this manuscript.

In order to generate hypotheses about silent hypoxemia,
we chose to workwith a conductance-based CPGmodel with
O2 chemosensation as the sensory feedback pathway closing
the control loop. To our knowledge, our previously published
model (Diekman et al. 2017) is the only model meeting these
criteria and our goal here was to extend that model to address
a relevant clinical problem. Aspects of our model have been
experimentally validated (Diekman et al 2022;Diekman et al.
2018).However, aswith any computationalmodel, ourmodel
is not designed to encompass all aspects of the respiratory
control system. Despite its limitations, the model suffices to
generate hypotheses that can be tested in animal models and
by the clinical community.

For the original model as presented in Diekman et al.
(2017), the PaO2-vs-M curve shows a plateau near 100mm
Hg (normoxia) that collapses to a critically hypoxic state
when M increases past a high threshold (Fig. 2a). The work
we report here focuses on expanding the original param-
eters to investigate possible mechanisms of SH. Changing
these parameters allowed us to monitor the height of the nor-
moxia plateau, and the location of the collapse point. We
hypothesized that altered chemosensory input to the carotid
bodies and, eventually, to the NTS and the rest of the breath-
ing control circuitry, is a key factor in silent hypoxemia.
However, our simulation results suggest that while changes
in chemosensivity may play a role in silent hypoxemia,
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changes in metabolism and oxygen carrying capacity may
have greater relevance for replicating the respiratory collapse
seen in these patients. Specifically, altered chemosensitivity
can create a hypoxemic plateau region (SaO2 < 90 mmHg)
for a broad range of metabolic demand levels (M = 0.4
to 1.5×10−5 ms−1, see blue curves in Fig. 3b). When
hemoglobin concentration is then increased, moderate lev-
els of metabolic demand (M = 0.8 to 1.0×10−5 ms−1) lead
to complete respiratory collapse (SaO2 < 60 mmHg, see
blue and purple curves in Fig. 3f).

Our hypothesis was based on the premise that O2 sensing
is the key factor in SH.Canonically, it has been suggested that
CO2 is a primary driver for dyspnea (Cherniack and Altose
1987; Chonan et al. 1990; Guyenet and Bayliss 2022), but
there is evidence that both hypoxia and hypercapnia equiva-
lently drive the sensation of air hunger (Moosavi et al. 2003).
However, clinical case and cohort studies show that patients
with SH are not hypercapnic (Chandra et al. 2020; Alamé
et al. 2022). This suggested to us that dysregulation of O2

sensation is a key contributor to the issues seen in SH. We
tested this hypothesis by changingO2 sensitivity in themodel
at the level of the carotid bodies andNTSaswell as evaluating
whether those changes could reproduce the SH phenotype.

Complicating factors for these patients include comor-
bidities that show correlation with poor outcome in patients
with COVID-19. These comorbidities include obstructive
sleep apnea (OSA), chronic obstructive pulmonary disease
(COPD), cardiovascular disease (including hypertension or
heart failure) among others. Patients suffering from these
diseases often develop polycythemia—an increase in the
hemoglobin and hematocrit to adaptively increase the O2

carrying capacity of the blood. High-altitude populations
are well adapted to chronic hypoxia and typically have a
higher hematocrit in Andean populations versus Himalayan
high-altitude dwellers (Beall and Reichsman 1984), likely
due to different adaptation mechanisms. However, subjects
with cardiovascular disease (Valeanu et al. 2022), obstructive
apnea (Rha et al. 2022), and familial hyperlipidemia (Paque-
tte et al. 2021) also show increased hematocrit.

One consequence of pumping thicker blood is to increase
the metabolic demand, even during rest. As we show in our
results, increasing metabolic demand increases the likeli-
hood of respiratory collapse. Somewhat paradoxically, with
an increased oxygen carrying capacity, the patient may be
less able to compensate for the worsening PaO2 and a critical
tipping point for metabolic demand is reached where respira-
tory efforts are insufficient to keep up with demand. We have
not yet seen any report documenting changes in hematocrit
in COVID-19 patients who exhibit silent hypoxemia. Based
on our modeling results, we would predict that these patients
may show increased hematocrit levels. In support of our pre-
diction, a recently published study (Choi et al. 2022) showed
that higher blood viscosity was associated with an increase

in mortality in COVID-19 patients. Obtaining this kind of
data should be possible for patients admitted to the intensive
care unit and should be a priority for future investigation.

Angiotensin-converting enzyme 2 (ACE2) is expressed in
the lungs, carotid bodies, and respiratory region of the brain-
stem, and is likely the vector bywhich the SARS-CoV-2 virus
invades the carotid bodies and/or the NTS, thereby poten-
tially contributing to silent hypoxemia. High ACE2 levels
also occur in the most vulnerable target organ systems seen
inCOVID-19 (elevated expression levels occur in lung, heart,
ileum, kidney, and bladder (Zou et al. 2020)). Since ACE2
expression is very high in the lungs, and since diffuse alve-
olar damage, bronchopneumonia, and alveolar hemorrhage
are common in COVID-19 (Mauad et al. 2021), it seems
reasonable to hypothesize that the decrease in gas exchange
across the alveolar membranes within the lung can alter not
just the O2 carrying capacity, but also increase metabolic
demand for perfusion of the damaged lung. It may be of value
to assess differences in mitochondrial activity in lung cells
from normal and COVID-19 patients, or in animal models
that have used SARS-CoV-2 or spike protein (now commer-
cially available) to mimic the lung damage seen in human
patients. Such experiments would provide data concerning
cellular metabolism and give us greater understanding of the
impact COVID-19 has on metabolic demand at all tissue lev-
els.

Lack of dyspnea (breathing discomfort) in patients arriv-
ing at already overcrowded emergency rooms leads to
triaging patients who are not in obvious respiratory distress,
when in fact these patients often have reduced oxygen sat-
uration (Bertran et al. 2020). Perhaps the greatest mystery
that remains unresolved is why dyspnea is not typically seen
in patients exhibiting silent hypoxemia. Sensory perception
is subjective and can vary with a host of factors that include
sex, socioeconomic background, and ethnicity (Green et al.
2003; Reynolds Losin et al. 2020; de Araújo Palmeira et al.
2011). There is some controversy about these correlates but
they may be underlying factors that influence the reporting
of silent hypoxemia. Once again, some demographic data
is available concerning COVID-19 infection, mortality, and
morbidity, but this information has not yet been correlated
with silent hypoxemia. Ideally, demographic factors should
be reported along with other patient data to better understand
the incidence and severity of silent hypoxemia and dyspnea.

Patients with COVID-19 are also subject to mitochondrial
dysregulation that contributes to severity and lethality. Mito-
chondrial function is impacted by the “cytokine storm,” a
hallmark of the immune response toCOVID-19. Thus, upreg-
ulation of cytokine release in the context of comorbidities
that increase inflammation, including metabolic syndrome,
obesity, type 2 diabetes, and increasing age—in addition
to the lung and cardiovascular diseases mentioned above,
are all associated with mitochondrial dysfunction (Moreno
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Fernández-Ayala et al. 2020; Grossini et al. 2021;Wang et al.
2022). SARS-CoV-2 infection causes multi-system changes
at transcriptomic, proteomic, and metabolomic levels, alter-
ing normal cellular metabolism and changing mitochondrial
respiration (Wang et al. 2022). Disruption of normal mito-
chondrial function can result in an increase in reactive
oxygen species (ROS) further exacerbating inflammation
and increasing the likelihood of poor outcomes (Saleh et al.
2020). The “long COVID” phenomenon may be related to
redox imbalance, which may be exacerbated by COVID-
induced changes in mitochondria (Paul et al. 2021; Singh
et al. 2020) and, ultimately, fatigue related to metabolic
impairment. Our results suggest that there is a delicate bal-
ance between metabolic demand changes and respiratory
failure. One can easily speculate that reduction in available
oxygen in concert with an increase in metabolic demand
as the virus takes over cellular machinery to produce more
viral particles can result in a point of critical failure. How-
ever, it is not intuitively obvious that greater O2 carrying
capacity results in metabolic collapse. Our model treats the
relationship betweenoxygen carrying capacity andmetabolic
demand simplistically and we have not incorporated blood
viscosity changes and their impact on cardiovascular func-
tion, particularly cardiac output as the key factor driving
tissue perfusion.

Mitochondrial dysregulation due to COVID-19 results
in pronounced impacts on blood coaguability (Hai-Han
et al. 2020), handling of reactive oxygen species (ROS)—
increased by the cytokine storm associated with COVID-
19 (Saleh et al. 2020), calcium homeostasis (Yang et al.
2021), iron homeostasis (Vlahakos et al. 2021; Abobaker
2020), as well as cellular metabolism (Henry et al. 2020;
Booth et al. 2021). COVID-19 significantly impacts each of
these aspects of mitochondrial function and this results in
altered ability to respond to cytokine induced ROS changes,
as well as reducedmetabolic capacity. All of these alterations
in mitochondria function contribute to changes in metabolic
demand and it may be that, regardless of the O2 concentra-
tion in the blood, the mitochondria are not able to utilize the
available O2. In this study, we have shown that changes in
metabolic reserve—particularly an impaired ability to meet
metabolic demand in the context of respiratory function—
can result in collapse of respiration contributing to death.
These changes are also most likely to be key factors in
patients presenting with SH.

Oneway to test the impact of COVID-19 onmitochondrial
functionwould be to assaymitochondria obtained from tissue
biopsies of COVID-19 patients or through animal models.
Testingmitochondrialmetabolismwould be easier than using
stress tests or cycle ergometry to determine metabolic load
and ventilation/perfusion changes. Whole body tests would
be problematic in COVID-19 patients and put them at greater
risk for respiratory collapse. As long COVID has become

better described, central nervous system (CNS) involvement
and increased chronic inflammation are seen as sequelae that
may continue to altermetabolism andmitochondrial function
(Stefano et al. 2021). Further research is needed to deter-
mine if these effects are exacerbated by persistent metabolic
impairment andwhether symptoms like cognitive fog depend
on CNS mitochondria and ROS handling problems. The
relationship between changes in overall metabolic demand
and cellular level metabolism have not yet been explored in
COVID-19 patients. This is an important area for investiga-
tion because, while the metabolic demand required to pump
more viscous blood (Choi et al. 2022)may selectively impact
the cardiovascular system the most, metabolic demand may
be increased systemically based on the diffuse organ involve-
ment seen in these patients.

In addition to the model limitations we mentioned above,
we realize that our model represents a very reduced number
of the elements in the central pattern generator and pattern
formation network for breathing control. The brainstem net-
work includes hundreds of neurons that participate in each
breath (Wang et al. 2014; Carroll and Ramirez 2013), and
we have simplified this relatively complex circuit for the
sake of rapid simulation time to test our hypotheses about
SH. This heavily reductionist treatment of the brainstem net-
work is an obvious limitation to simulation of the interacting
populations of respiratory neurons and makes it difficult to
interrogate the precisemechanisms bywhich respiratory col-
lapse occurs in SH. Three examples include, (1) we have not
included CO2 sensing in our model due to the high diffu-
sion rates of CO2 when compared to O2 in the lung (West
2008) and evidence showing that CO2 is ≤ 35 mmHg in
patients presenting with silent hypoxemia (SH) and minimal
tachypnea (Chandra et al. 2020; Alamé et al. 2022); (2) we
do not explicitly include rapidly adapting (RAR) or slowly
adapting (SAR) lung mechanoreceptors in the model—lung
volume is present in the model and reproduces inspiratory
drive in much the same way that SARs do in vivo; (3) the
lack of a specific mechanism for understanding the relation-
ship between blood viscosity, number of red cells, oxygen
carrying capacity, and changes in metabolic demand.

Previously, we have demonstrated that increasing extra-
cellular [K+] resulted in a progressive increase in respiratory
rhythm that showed periodic, multi-periodic, quasi-periodic,
and finally chaotic rhythmic patterns (Del Negro et al. 2002).
As excitability increased, the disruption to eupneic breath-
ing would result in impaired gas exchange in vivo. Thus,
there is precedent for increasing excitability in the respiratory
network resulting in a kind of “depolarization blockade” of
normal breathing and a cessation of gas exchange that then
results in a precipitous fall in PaO2. We described experi-
ments related to this concept in our prior work (Diekman
et al. 2017). Because we have previously shown these transi-
tions are gradual and occur over a wide range of excitability
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changes, it makes sense to assume that there may be a more
gradual progression of the “respiratory collapse,” but we do
not yet have clinical data showing how the collapse evolves
to the point of need for ventilatory support.

Our model predicts changes in oxygen handling and
metabolism in silent hypoxemia patients. As an obvious next
step, we call for data to be collected on hematocrit in ani-
mal models of COVID-19 infection and COVID-19 patients,
with the inclusion of metabolism and mitochondrial func-
tion tests. In addition, we believe the following measures
may have untapped predictive value:minute ventilation, oxy-
gen saturation, and breathing frequency. We speculate that
some combination of these quantities, if measured on entry
to the ER, could help predict the need for ventilator sup-
port in the subsequent 48h. Finally, we emphasize that there
is a need for incorporating oxygen handling dynamics into
more sophisticated state-of-the-art respiratory control mod-
els, most of which currently focus on CO2 and hypercapnea
(Molkov et al. 2017).

A Appendix A

A.1 Detailedmodel specification

Here, we provide the equations for the 7D-O2 model intro-
duced in Diekman et al. (2017).
Central pattern generator (CPG): A variety of models have
been proposed for the central neural circuits generating
breathing rhythms, ranging from group-pacemaker networks
to individual pacemaker models, and beyond. Here, we adopt
the original Butera–Rinzel–Smith (BRS) model (referred to
as “model 1” in Butera et al. (1999a)) proposed as a mech-
anism for bursting pacemaker neurons in the preBötzinger
complex. For simplicity, we represent the CPG with a sin-
gle BRS unit. Thus, our CPG is described by a membrane
potential V together with dynamical gating variables n (a
delayed-rectifier potassium (IK) channel activation) and h
(persistent sodium (INaP) channel inactivation). We set two
“instantaneous” gating variables p∞ (INaP activation) and
m∞ (fast sodium (INa) activation) to be equal to their voltage-
dependent asymptotic values.We set the INa inactivation gate
to be equal to (1−n). The model also includes a leak current
(IL) and a tonic excitatory (Itonic) current. In summary:

C
dV

dt
= −IK − INaP − INa − IL − Itonic (7)

dn

dt
= n∞(V ) − n

τn(V )
(8)

dh

dt
= h∞(V ) − h

τh(V )
(9)

IK = gKn
4(V − EK) (10)

INaP = gNaP p∞(V )h(V − ENa) (11)

INa = gNam
3∞(V )(1 − n)(V − ENa) (12)

IL = gL(V − EL) (13)

Itonic = gtonic(V − Etonic) (14)

x∞(V ) = 1

1 + exp[(V − θx)/σx] (15)

τx = τ̄x

cosh[(V − θx)/2σx] (16)

with parameters C = 21 pF, gK = 11.2 nS, gNaP = 2.8 nS,
gNa = 28 nS, gL = 2.8 nS, EK = −85 mV, ENa = 50 mV,
EL = −65mV, Etonic = 0 mV, θn = −29mV, σn = −4 mV,
θp = −40 mV, σp = −6 mV, θh = −48 mV, σh = 6 mV,
θm = −34 mV, σm = −5mV, τ̄n = 10 ms, and τ̄h = 10, 000
ms.
it Motor pool activity The output of the CPG is the BRS
cell’s membrane potential (V ), which drives the respiratory
muscles through synaptic activation of a motor unit (α):

dα

dt
= ra[T ](1 − α) − rdα (17)

[T ] = Tmax

(1 + exp(−(V − VT)/Kp))
. (18)

Here, ra = rd = 0.001 mM−1 ms−1 sets the rise and decay
rate of the synaptic conductance. Also, [T ] represents the
neurotransmitter concentration, with parameters Tmax = 1
mM, VT = 2 mV, and Kp = 5 mV (Bard Ermentrout and
Terman 2010).
Lung volumeThe output of themotor unit determines the rise
and fall of lung volume (volL):

d

dt
(volL) = E1α − E2(volL − vol0). (19)

Here vol0 = 2 L is the volume of the unloaded lung,
and parameters E1 = 0.4 L and E2 = 0.0025 ms−1

were chosen so that the lung expansion would remain in
a physiologically reasonable range (West 2008). We note
that while the low-frequency input of the envelope of CPG
burst activity effectively drives changes in lung volume, high-
frequency input (such as tonic spiking) does not drive the lung
biomechanics effectively. This low-pass filter behavior of the
respiratory musculature is analogous to tetanic muscle con-
traction that occurs in response to high-frequency stimulation
of motor nerves (Kandel et al. 1991).
Lung oxygenAt standard atmospheric pressure (760mmHg),
external air with 21% oxygen content will register a partial
pressure of oxygen of PextO2 = 149.7 mmHg. As the lungs
expand

( d
dt [volL] > 0

)
, they draw in external air. Our model

makes the simplifying assumption that this fresh air mixes
instantaneously with the air already present in the lungs.
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Therefore, the partial pressure of oxygen in the lung alveoli
(PAO2) increases at a rate given by the pressure difference
between external and internal air, and by the lung volume. In
contrast, during exhalation

( d
dt [volL] ≤ 0

)
, no external air

enters the lungs, so the mixing of air stops. During both con-
traction and expansion of the lung, oxygen moves between
the lungs and the blood. The flux of oxygen from the lungs
to the blood occurs at a rate determined by the time constant
τLB = 500 ms, and by the difference in partial pressure of
O2 between the lungs (PAO2) and the arterial blood (PaO2).
The rate of change in PaO2 is thus given by:

d

dt
(PAO2) = PextO2 − PAO2

volL

[
d

dt
(volL)

]
+

− PAO2 − PaO2

τLB
(20)

where the notation [x]+ indicates max(x, 0).
Blood oxygen To represent the change in PaO2, we write

d

dt
(PaO2) = JLB − JBT

ζ
(
βO2 + η ∂SaO2

∂PaO2

) . (21)

Note the fluxes of oxygen from the blood to the tissues (JBT)

and from the lungs to the blood (JLB) have units of moles
of O2 per millisecond. The term in the denominator converts
from units of moles per millisecond (the rate of change of
moles of O2 in the blood) into units ofmillimeters ofmercury
per millisecond (rate of change of partial pressure of O2 in
the blood). To calculate the flux JLB, we use the ideal gas law
PV = nRT , where n is the number of moles of O2, R =
62.364LmmHgK−1 mol−1 is the universal gas constant, and
T = 310 K is temperature. The resulting flux depends on the
difference in oxygen partial pressure between the lungs and
the blood:

JLB =
(
PAO2 − PaO2

τLB

)(
volL
RT

)
. (22)

Note that the term JBT accounts for both dissolved and
hemoglobin-bound oxygen in the blood:

JBT = Mζ
(
βO2 PaO2 + η SaO2

)
. (23)

The dependence of the hemoglobin saturation (SaO2) on
PaO2 is given below, see Eqn. (24). Following Henry’s law,
we take the concentration of dissolved oxygen in the blood
to be directly proportional to PaO2. The blood solubility
coefficient, βO2 = 0.03 ml O2 × L blood−1 mmHg−1 for
blood at 37 degrees C, is the constant of proportionality.
The amount of dissolved O2 at physiological partial pres-
sures (PaO2 ≈ 80 − 110 mmHg) is insufficient to satisfy
the body’s metabolic demand for oxygen. Therefore, most

of the blood’s stored oxygen is bound to hemoglobin (Hb).
Cooperative binding of oxygen to the four binding sites in
each hemoglobin molecule leads to a sigmoidal hemoglobin
saturation curve:

SaO2 = PaOc
2

PaOc
2 + Kc

(24)

∂SaO2

∂PaO2
= cPaO

c−1
2

(
1

PaOc
2 + Kc

− PaOc
2

(PaOc
2 + Kc)2

)
.

(25)

Here, we take the phenomenological parameters K = 26
mmHg and c = 2.5 from Keener and Sneyd (2009).

Our model includes a parameter M in Eq. (23) to capture
the rate of metabolic demand for oxygen from the tissues,
in units of ms−1. Equations (21) and (23) include conver-
sion factors ζ and η that depend on the concentration of
hemoglobin, [Hb] = 150 gm L−1, as well as the volume of
blood, volB = 5 L, respectively. The model assumes a molar
oxygen volume of 22.4 L. We assume that each fully satu-
rated hemoglobin molecule carries 1.36 ml of O2 per gram:

ζ = volB ×
(

mole O2

22, 400 mL O2

)
(26)

η = [Hb] ×
(
1.36 mL O2

gm Hb

)
. (27)

Chemosensation: Chemosensory feedback from peripheral
chemoreceptors in the carotid bodies, carried to brainstem
respiratory circuits via the carotid sinus nerve, close the con-
trol loop in our model. These receptors detect reductions in
PaO2 and drive the central rhythm generator, as described in
more detail in Diekman et al. (2017). We model the nonlin-
ear relationship between carotid chemosensory nerve fiber
activity and PaO2 as a sigmoid saturating function, with the
firing rate low until PaO2 is reduced below a threshold (nor-
mally about 100mm Hg) and then steep firing rate increases
as PaO2 is reduced further (Hlastala and Berger 2001; West
2008). We capture this behavior in our model as a sigmoidal
function connecting PaO2 with the conductance representing
external drive to the CPG (gtonic):

gtonic = φ

(
1 − tanh

(
PaO2 − θg

σg

))
. (28)

Here, φ = 0.3 nS, θg = 85 mmHg, and σg = 30 mmHg.
This conductance closes the control loop in our respiratory
control model, since Itonic = gtonic(V − Etonic) is a term in
the CPG voltage equation (7).

We numerically integrated the preceding equations using
a variable-order, variable-step stiff solver (ode15s in
MATLAB).
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A.2 Hemoglobin effects given the original model
parameters

In this section,we illustrate the effects of changing the param-
eters controlling the hemoglobin binding curve and the total
hemoglobin (hematocrit) in the originalmodel, as opposed to
the model adjusted by successive parameter shifts (see Sect.
3). Panel a shows the effect of increasing K , the hemoglobin
binding affinity. Panel b shows the effect of varying [Hb],
the hemoglobin concentration. The effects are qualitatively
similar to the effects of analogous parameter changes in the
silent hypoxemia model.
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