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Diekman CO, Thomas PJ, Wilson CG. Eupnea, tachypnea, and
autoresuscitation in a closed-loop respiratory control model. J Neu-
rophysiol 118: 2194-2215, 2017. First published July 19, 2017;
doi:10.1152/jn.00170.2017.—How sensory information influences the
dynamics of rhythm generation varies across systems, and general
principles for understanding this aspect of motor control are lacking.
Determining the origin of respiratory rhythm generation is challeng-
ing because the mechanisms in a central circuit considered in isolation
may be different from those in the intact organism. We analyze a
closed-loop respiratory control model incorporating a central pattern
generator (CPG), the Butera-Rinzel-Smith (BRS) model, together
with lung mechanics, oxygen handling, and chemosensory compo-
nents. We show that /) embedding the BRS model neuron in a control
loop creates a bistable system; 2) although closed-loop and open-loop
(isolated) CPG systems both support eupnea-like bursting activity,
they do so via distinct mechanisms; 3) chemosensory feedback in the
closed loop improves robustness to variable metabolic demand; 4) the
BRS model conductances provide an autoresuscitation mechanism for
recovery from transient interruption of chemosensory feedback; and
5) the in vitro brain stem CPG slice responds to hypoxia with transient
bursting that is qualitatively similar to in silico autoresuscitation.
Bistability of bursting and tonic spiking in the closed-loop system
corresponds to coexistence of eupnea-like breathing, with normal
minute ventilation and blood oxygen level and a tachypnea-like state,
with pathologically reduced minute ventilation and critically low
blood oxygen. Disruption of the normal breathing rhythm, through
either imposition of hypoxia or interruption of chemosensory feed-
back, can push the system from the eupneic state into the tachypneic
state. We use geometric singular perturbation theory to analyze the
system dynamics at the boundary separating eupnea-like and tachy-
pnea-like outcomes.

NEW & NOTEWORTHY A common challenge facing rhythmic
biological processes is the adaptive regulation of central pattern
generator (CPG) activity in response to sensory feedback. We apply
dynamical systems tools to understand several properties of a closed-
loop respiratory control model, including the coexistence of normal
and pathological breathing, robustness to changes in metabolic de-
mand, spontaneous autoresuscitation in response to hypoxia, and the
distinct mechanisms that underlie rhythmogenesis in the intact control
circuit vs. the isolated, open-loop CPG.
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SENSORY FEEDBACK is essential to guide the timing of rhythmic
motor processes. How sensory information influences the dy-
namics of a central pattern-generating circuit varies from
system to system, and general principles for understanding this
aspect of rhythmic motor control are lacking. To complicate
matters, the mechanism underlying rhythm generation in a
central circuit when considered in isolation may be different
from the mechanism underlying rhythmicity in the intact or-
ganism.

Despite decades of investigation, there remains little con-
sensus about the mechanisms underlying sustained oscillations
during respiratory rhythmogenesis in the brain stem. On one
hand, it has been proposed that oscillations in the pre-Botz-
inger complex (pBC) arise mainly from synchronized activity
of endogenously bursting cells that interact in a highly coupled
network and drive a population of amplifying follower cells
(Smith et al. 2000). On the other hand, it has also been
suggested that oscillations arise from network-dependent in-
teractions of conditionally bursting cells (Feldman et al. 2013).
More elaborate models have proposed that interactions be-
tween multiple brain stem areas are essential for generating and
shaping breathing rhythms (Lindsey et al. 2012; Rybak et al.
2007; Smith et al. 2007). Without presuming to adjudicate
between these alternatives, here we investigate an alternative
hypothesis, namely that respiratory rhythms arise from the
interplay of central rhythm generation circuits, biomechanics,
and feedback from peripheral signaling pathways.

Our understanding of respiratory rhythmogenesis derives in
large part from the pioneering work of Smith, Feldman,
Ramirez, and others who demonstrated that the pBC can
autonomously sustain respiratory-like oscillations in isolated
brain stem slice preparations (Ramirez et al. 1997; Smith et al.
1991). However, it has long been observed that the mecha-
nisms underlying oscillations in a central pattern generator
(CPG) may differ fundamentally in the intact organism vs. a
deafferented, isolated central circuit (Bissler 1986; Koshiya
and Smith 1999). Here we investigate rhythmogenesis in a
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simple model of closed-loop respiratory control, incorporating
biomechanics, oxygen handling, metabolism, and chemosen-
sation. We show that eupnea-like oscillations arise from a
distinct mechanism in the intact (closed loop) vs. isolated
(open loop) systems. Specifically, we show the following: )
During eupneic oscillations in the closed-loop model, the
time-varying excitatory drive to the CPG (the control param-
eter guonic) remains entirely in a domain that corresponds to
quiescent behavior in the open-loop model with constant g, ;..
2) The frequency of respiratory oscillations in the isolated CPG
system is controlled by the time constant for a persistent
sodium current (7,,), whereas the frequency of eupneic oscilla-
tions in the intact system is relatively insensitive to changes in
7,. 3) In contrast, the frequency of breathing in the closed-loop
model can be controlled by manipulating the frequency content
of the time-varying excitatory drive feedback signal.

This report is organized as follows: We develop the model
and analyze its behavior using averaging and open-loop/
closed-loop control analysis; we demonstrate bistable states
corresponding to coexistence of eupnea and tachypnea; and we
show that imposed bouts of hypoxia, or sustained interruption
of the chemosensory pathway monitoring arterial blood oxygen
levels, can precipitate a dramatic transition from eupnea to
tachypnea. However, for moderate bouts of hypoxia, or brief
interruptions of chemosensory feedback, the endogenous prop-
erties of the ionic conductances in a standard CPG model
(Butera et al. 1999a) can lead to spontaneous autoresuscitation.

A preliminary version of the model was presented at the 34th
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (Diekman et al. 2012).

METHODS
Model Equations

Central pattern generator. We adopt the Butera-Rinzel-Smith
(BRS) model (“model 1” in Butera et al. 1999a) of bursting pace-
maker neurons in the pBC as our CPG. We represent the CPG with a
single BRS unit described by the membrane potential V and dynam-
ical gating variables n [delayed-rectifying potassium (/) activation],
and h [persistent sodium (/y,,) inactivation]. Two “instantaneous”
gating variables p.. (Iy,, activation) and m.. [fast sodium (/y,)
activation] are set equal to their voltage-dependent asymptotic values;
the I, inactivation gate is set equal to (1 — n). In addition, the model
includes leak (/;) and tonic excitatory (/,,,;.) currents. The governing
equations for the CPG are

onic

dv
T —Ix = Inap = Ina = I — Lionic (@)
d (V) —
dn _na(V) = )
dr T,,(V)
dh h(V)—h
I —( ) (€))
1t 'Th(V)
I = gxn*(V — Ex) @
Inae = gnapP(V)h(V = Exy) )
Ina = gnam (V) (1 = n)(V = Ex,) (6)
I =g (V- E) 7)
Itunic = gtonic(v - Etonic) 8

1
=)= e [(V=06)/0,]

Tx

9

T

(V) = cosh [(V —6,)/20,] (10)

where C = 21 pF, gx = 11.2 1S, gnup = 2.8 1S, gy, = 2818, g =

28nS,Ex = —85mV,Ey, =50mV,E;, = —-65mV,E_,;.=0mV,
0,=-29mV,0,=—-4mV, §, = -40mV, g, = —6mV, g, =
—48mV,0,=6mV, 0, = —34mV, 0, = —5mV, 7, = 10 ms, and

7, = 10,000 ms.

Motor pool activity. The membrane potential (V) of the CPG is an
input to the respiratory musculature through synaptic activation of a
motor unit (@):

d
d—(: =r[T](1 - @) — ry (1)

T,

max

[11=13 exp[— (V — V1)/Kp]

(12)

where r, = r, = 0.001 mM ' ms™ ' sets the rise and decay rate of the
synaptic conductance and [77] is the neurotransmitter concentration
with 7., = 1 mM, V=2 mV, and K, =5 mV (Ermentrout and

Terman 2010).
Lung volume. The motor unit drives changes in lung volume (vol, ):

d
E(VOIL) = Ela - Ez(VOlL - Volo) (13)

where vol, = 2 liters is the unloaded lung volume and E, = 0.4 liter
and E, = 0.0025 ms~ ' were chosen to give physiologically reason-
able lung expansions (West 2008). The respiratory musculature acts as
a low-pass filter: low-frequency bursting of the CPG drives discrete
fluctuations in lung volume, but tonic spiking does not. This behavior
is analogous to tetanic muscle contraction in response to high-
frequency nerve stimulation (Kandel et al. 1991).

Lung oxygen. External air at standard atmospheric pressure (760
mmHg) with 21% oxygen content will have a partial pressure of oxygen

d
P...0, = 149.7 mmHg. When the lungs expand (E[VOIL] > 0) external

air is inhaled, and we assume this fresh air mixes instantaneously with
the air already in the lungs. The partial pressure of oxygen in the lung
alveoli (Pao,) will increase at a rate determined by the lung volume
and the pressure difference between external and internal air. When

d
the lungs are not expanding (d—[volL] = 0), there is no mixing of air.
t

During both lung expansion and contraction, oxygen is being trans-
ferred to the blood at a rate determined by the time constant
T = 500 ms and the difference between Pao, and the partial pres-
sure of oxygen in the arterial blood (Paoz). Thus the change in Pag, is
given by

Pag, — Pag,

Pa, d
Oz[d—t(volL)] - (19

exto 2
% + TLB

d P
—(Pago ) =
dr 2 ol
where [x], denotes max(x, 0).

Blood oxygen. Our model for blood oxygenation is given by

d JLB - "BT
=~ (Pag) = —— B BT 15
a:(P20.) aSao, (1)
+
{ Bo2 n 3Paoz

where the fluxes of oxygen from the lungs to the blood (J; ) and from
the blood to the tissues (/1) have units of moles of O, per millisec-
ond and the denominator converts changes in the number of moles of

J Neurophysiol - doi:10.1152/jn.00170.2017 - www.jn.org

/TOZ ‘9T 1870190 U0 ¥'££°022°0T Aq /610 ABojoisAyd-uly/:dny wouy pspeojumoq



http://jn.physiology.org/

2196 AUTORESUSCITATION IN CLOSED-LOOP RESPIRATORY CONTROL MODEL

O, in the blood to changes in Pag,. Ji g depends on the difference in
oxygen partial pressure between the lungs and the blood:

PAO - Pao VOlL
Jn=| —2— 2| — 16
LB ( - )( RT ) (16)

and is calculated with the ideal gas law PV = nRT, where n is the
number of moles of O,, R =62.364 I-mmHg-K 'mol™" is the
universal gas constant, and T = 310 K is temperature.

Jgr accounts for both dissolved and bound oxygen in the blood:

Jsr = M{(Bo, Pao, + mSao,) 7)

The concentration of dissolved oxygen in the blood is directly
proportional to Pag (known as Henry’s law), where the constant of
proportionality is the blood solubility coefficient Bo, = 0.03 ml
O,-liter blood ™ '-mmHg " for blood at 37°C. At physiological partial
pressures (Pag_ from ~80 to 110 mmHg), the amount of dissolved O,
is far too small to meet the body’s metabolic demand for oxygen. The
vast majority of oxygen stored in the blood is bound to hemoglobin
(Hb). Hb has four cooperative oxygen binding sites, leading to the
nonlinear (sigmoidal) Hb saturation curve 53023

Sa Pao, (18)
% Pag + K¢
i) Sao2 1 Paocz‘
= cPay""! — - 5 (19)
dPag, | Pag, + K° (Pag; + K)

where K = 26 mmHg and ¢ = 2.5 are phenomenological parameters
taken from Keener and Sneyd (2009).

The parameter M in Eq. 17 represents the rate of metabolic demand
for oxygen from the tissues and unless stated otherwise is set at
8 X 107°ms~". The conversion factors  and m in Eq. 15 and Eq. 17
depend on the concentration of Hb, [Hb] = 150 g/1, and the volume of
blood, vol; = 5 I, respectively. We assume a molar oxygen volume of
22.4 liters and that each fully saturated Hb molecule carries 1.36 ml
of O, per gram:

CPG (V, h, n)

Motor pool (a)

mol O,
[=volg X [ ——— (20)
22,400 ml O,
1.36 ml O
n:[Hb]X(—g o 2) @10

Chemosensation. Peripheral chemoreceptors in the carotid bodies
detect reductions in Pay_and transmit impulses to the central nervous
system through the carotid sinus nerve. In humans, these chemore-
ceptors are responsible for the increase in ventilation that occurs in
response to arterial hypoxemia (Hlastala and Berger 2001). Carotid
body afferent fibers can adjust their firing rate rapidly (even within a
respiratory cycle) due to small changes in blood gases (West 2008).
There is a nonlinear relationship between the activity of carotid
chemosensory nerve fibers and Paoz, with very little nerve activity
until Pag, is reduced below 100 mmHg and then steep firing rate
increases as Pag_1is reduced further (Hlastala and Berger 2001; West
2008). We modeled this hypoxia chemosensory pathway with a sigmoi-
dal relationship between Pag, and the conductance representing external
drive to the CPG (g,,.;.)- Increasing oxygen deficiency increases the
respiratory drive:

Pao2 - Gg
8tonic = d) 1 — tanh 0_— (22)

g

where ¢ = 0.3 nS, 6, = 85 mmHg, and o, = 30 mmHg. This con-
ductance serves to “close the loop” in our respiratory control model,
since Iignic = SionicV = Eionic) 1 @ term in the CPG voltage Eq. 1.
The closed-loop model (Fig. 1) has the same overall structure as the
model in Diekman et al. (2012). The blood oxygenation component of
the model has been substantially revised to better reflect the basic

physiology of oxygen transport and ensure conservation of mass.

Computational Platform

Numerical simulations were performed in MATLAB R2016a
(MathWorks, Natick, MA) using the odel5s solver with absolute
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Fig. 1. Schematic of closed-loop respiratory control model including neural, mechanical, and chemosensory components. Bursting oscillations of the brain stem
CPG membrane potential (V) activate motor neurons («) to cause increases in lung volume (vol, ) and inspiration. Inhaled air increases alveolar oxygen partial
pressure (Pag,). Oxygen enters the bloodstream through gas exchange. Arterial oxygen partial pressure (Paoz) is monitored by chemoreceptors that regulate input

drive current (/.
range around 100 mmHg.

) to the CPG by modulating excitatory synaptic conductances (g

tonic.

). This respiratory control circuit can maintain Pag, levels in the desired

J Neurophysiol » doi:10.1152/jn.00170.2017 « www.jn.org

/TOZ ‘9T 1870190 U0 ¥'££°022°0T Aq /610 ABojoisAyd-uly/:dny wouy pspeojumoq



http://jn.physiology.org/

AUTORESUSCITATION IN CLOSED-LOOP RESPIRATORY CONTROL MODEL 2197

tolerance = 10~ ? and relative tolerance < 10~ °. Bifurcation diagrams
were constructed with XPPAUT (Ermentrout 2002). MATLAB code
used to generate all figures (except Fig. 11) is available in ModelDB
(McDougal et al. 2017) under accession number 229640 at http://
modeldb.yale.edu/229640, along with XPP code used to construct the
bifurcation diagrams in Figs. 4 and 10.

Animal Experiments

We used in vitro experiments to determine whether hypoxia expo-
sure of pBC neurons mimicked some of the features observed in our
model. We cut rhythmically active slices from Sprague-Dawley rat
pups (postnatal days 0-5) anesthetized with 4% isoflurane in a
ventilated hood. Once the animal reached a surgical plane of anes-
thesia (no withdrawal to tail or toe pinch), the skull and spinal
column were exposed via a midline incision, a scalpel was used to
decerebrate the pup, and the thorax/spinal column was transected
at T,/T,. The spinal column and brain stem were then immersed in
ice-cold artificial cerebrospinal fluid containing the following (in
mM): 124 NaCl, 25 NaHCO,, 3 KCl, 1.5 CaCl,-2H,0, 1.0 MgSO,-7
H,0, 0.5 NaH,PO,-H,0, and 30 p-glucose, bubbled with carbogen
(95% 0O,-5% CO,). We rapidly performed dorsal and ventral lami-
nectomies to expose the neuraxis while preserving the cranial nerve
rootlets. Rhythmically active brain stem slices were cut from the brain
stem with a vibratome (Leica VT1000). We then transferred the slices
to a low-volume chamber mounted on an upright microscope with
IR-DIC optics and superfused the slice continuously with 95% O,-5%
CO, for at least 30 min before beginning our experiments. Extracel-
lular potassium concentration was raised to 9 mM to generate a
breathing rhythm comparable to an awake human (10-20 breaths/
bursts per minute). We used whole cell patch-clamp recordings to

A B

Closed loop
(dynamic g, .+ dynamic h)

207 1

Open loop
(static g, . + dynamic h)

assess the behavior of pBC neurons and the role that hypoxia/anoxia
played in stimulating autoresuscitative transitions in these neurons.
The in vitro slice preparation and electrophysiological recordings
were performed as described previously (Koizumi et al. 2008; Smith
et al. 1991). Briefly, inspiratory cells were acquired by making a tight
seal (=5 G()), breaking through to whole cell, and then switching to
current clamp for hypoxia/sodium cyanide (NaCN). To test the role
that hypoxia plays in altering rhythmic drive, we switched the gas
used to bubble the perfusate to a hypoxic gas mixture (94% N,, 1%
0,, 5% CO,) or added NaCN (300 uM) to the perfusate. Application
of either hypoxia or NaCN challenge was for 1-3 min. All animal
procedures were approved by the Institutional Animal Care and Use
Committee of Case Western Reserve University.

RESULTS

Distinct Mechanisms Underlie Bursting in Isolated CPG and
Closed-Loop Systems

The closed-loop model described in METHODS produces a
stable eupnea-like breathing rhythm of ~10 breaths/min (Fig.
2A). The CPG components of the model comprise a three-
dimensional (3D) subsystem (voltage, fast potassium activa-
tion gate n, and persistent sodium inactivation gate i) corre-
sponding to the BRS Iy,, pacemaker model. The isolated
pacemaker can also produce a eupnea-like fictive breathing
rhythm for a range of (fixed) excitatory conductances, with
roughly 10 bursts/min when g, = 0.3 nS (Fig. 2B). How-
ever, despite similar timing of bursting in the intact and
isolated systems, we find that distinct mechanisms underlie

Cc
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(dynamic g, + static h)
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Fig. 2. Closed-loop bursting persists in the absence of the isolated CPG bursting mechanism. A: black traces show bursts of action potentials (V, fop) in the
closed-loop model with persistent sodium channel inactivation (h, middle) as a dynamic variable and a dynamic g.;c (bottom) in response to changes in Paoz.
B: blue traces show bursting in the open-loop model with & as a dynamic variable and g, set as a static parameter. C: red traces show bursting in a version
of the closed-loop model where 7 is set as a static parameter. This illustrates that the dynamical mechanism responsible for bursting in the open-loop model (slow

h dynamics) is not required for bursting in the closed-loop model.
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rhythmogenesis in these two scenarios. To establish this result,
we perform the following analyses.

1) Compare the range of g, supporting bursting in the
isolated (open loop) model vs. the values of g, .. at-
tained during eupneic bursting in the intact model. We
find that during eupneic bursting for the intact system the
values of g, remain within the “quiescent” range for
the isolated BRS model.

2) Study the dynamics of bursting superimposed on the
bifurcation structure of the (v, n, h) subsystem. Both the
intact and isolated systems exhibit a fixed point near a
saddle-node bifurcation; however, in the isolated system
the fixed point is unstable (allowing spontaneous burst-
ing) and in the intact system it is stable (requiring phasic
chemosensory drive to support bursting).

3) Compare the effect of accelerating or retarding the dy-
namics of the & gate in the isolated vs. the intact model.
We find that rescaling 7, causes proportionate changes in
burst period in the isolated model but has little effect in
the intact model. Moreover, the intact model supports
eupneic bursting even when 7, is infinitely large (% is
held fixed as a constant).

4) Study the sensitivity of burst timing to sensory input by
rescaling the time course of g,,,;.- We find that rescaling
the time course of g, proportionately changes the burst
period.

Closed-loop bursting with “quiescent” g,,,... Our model of
closed-loop respiratory control includes neural, mechanical,
and chemosensory components and is capable of producing a
stable oscillatory solution that represents normal eupneic
breathing. The operation of the closed-loop model is illustrated
in Fig. 1. Bursts of action potential firing (V) of pBC neurons
in the brain stem CPG activate a pool of motor neurons () that
contract the diaphragm, causing the lungs to expand in volume
(vol;) and intake air. Inhaled oxygen increases the partial
pressure of oxygen in the lung (Pap,)) and enters the blood-
stream through gas exchange between alveoli and capillaries.

Peripheral chemoreceptors in the carotid body detect
changes in the partial pressure of oxygen in the blood (Paoz)
and convey this information to the central nervous system by
regulating the amount of excitatory input drive g, to the
brain stem CPG. This chemosensory feedback closes the re-
spiratory control loop and maintains Pag, levels around 100
mmHg.

If the connection between Pag, and the CPG is interrupted,
then g, .;. takes a fixed value and the isolated CPG corresponds
to the canonical BRS model of pBC neurons in a well-studied
regime (Best et al. 2005; Butera et al. 1999a, 1999b; Dunmyre
et al. 2011). We refer to this as the “open-loop” system. For a
range of g.ni. values, bursting arises through fast activation
and slow inactivation of a persistent sodium current, Iy,p. The
timescale of bursting is controlled by the inactivation variable
h, which must deinactivate sufficiently after a burst before the
next burst can begin. With a maximal time constant 7, of 10 s,
both the closed-loop model and the open-loop model (with
Zionic = 0.3 nS) exhibit burst periods of ~6 s (Fig. 2, A and B).

In the open-loop system, the dynamics of /& are essential for
bursting: if & were held constant, then the model can exhibit
quiescence or repetitive spiking but is not capable of bursting.
For example, with /& held constant at 0.6, the isolated BRS

model exhibits hyperpolarized quiescence for g, ... < 0.31,
tonic spiking for 0.31 < g .. < 1.64, bistability of tonic
spiking and depolarized quiescence for 1.64 < g.nic < 2.57,
and depolarized quiescence for g, > 2.57. In contrast, the
dynamics of & are not essential for bursting in the closed-loop
system, since fluctuation of g, ;. in response to changes in
Pag, also operates on the timescale of eupneic breathing. A
reduced version of the closed-loop model where % is held
constant at 0.6 produces bursting with a period of ~7 s (Fig.
2C). Thus closed-loop bursting does not require the dynamical
mechanism responsible for bursting in the isolated CPG.

Additional evidence that distinct mechanisms underlie burst-
ing in the open- and closed-loop models comes from the
surprising observation that the closed-loop limit cycle exists
entirely within the quiescent regime of the isolated CPG
system. To compare the operation of the circuit in these
different configurations, we conducted a series of simulations
of the open-loop (static g,,;.» dynamic #) model over a range
of gnic Values and the reduced closed-loop (dynamic gpics
static #) model over a range of / values (Fig. 3). The open-loop
model exhibits quiescence if g, < 0.28 nS, bursting if
0.28 < gionic < 0.44 nS, and beating if g,pic = 0.44 nS. The
reduced closed-loop model exhibits quiescence if 7 < 0.3, slow
beating if 0.3 < h < 0.45, bursting if 0.45 < h < (.75, and fast
beating if & > 0.75. One might naively predict that the limit
cycle corresponding to eupneic bursting in the full closed-loop
model (dynamic g.ni.» dynamic z) would exist in the region
corresponding to bursting in both the static g,.,;. and static &
models (i.e., region labeled Bu/Bu in Fig. 3). Instead, we find
that the closed-loop trajectory exhibits £ values in the bursting
region of the reduced closed-loop model but g, values that
lie entirely within the quiescent region of the open-loop model
(Fig. 3). Thus we observe a novel form of excitability in the
canonical BRS model: a time-varying g,,.;. produces bursting
despite the g,.,;. values remaining within the quiescent region
(i.e., the maximum g,.,;. value observed during bursting in the
closed-loop model is less than the minimum g,,,;. needed to
obtain bursting in the open-loop model).

Bifurcation analysis. To understand the distinct mechanisms
of closed-loop bursting in more detail, Fig. 4 walks through the
dynamics in a series of projections onto the V-A plane. The
ability of the closed-loop system to exhibit bursting with a
time-varying g.ni. that is always less than the value of static
8ionic Tequired for bursting can be understood by considering
the bifurcation structure of the BRS equations. Bursting con-
sists of oscillations on two timescales: a slow alternation
between silent and active phases and rapid spiking oscillations
during the active phase. Models of bursting can be decomposed
into a fast subsystem responsible for generating spikes and a
slow subsystem that modulates spikes and the resting mem-
brane potential (Ermentrout and Terman 2010). In the BRS
model, i evolves on a slower timescale than V and n. Thus Egs.

1 and 2 form the fast subsystem, which we denote (V, 1), and

Eq. 3 is the slow subsystem, which we denote h. Different
classes of bursting can be identified based on the types of
bifurcations that occur in the fast subsystem to cause transi-
tions between the silent and active phases when the slow
variable is treated as a bifurcation parameter (Bertram et al.
1995; Rinzel 1987).
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Fig. 3. Closed-loop bursting exists in the quiescent regime of the isolated CPG system. Blue contour and vertical hatching indicate the range of values the dynamic
variable h (x-axis) traverses as the static parameter g,..;. (x-axis) is varied in the open-loop model. For example, with g.;. fixed at 0.3 nS, the CPG is bursting
and £ oscillates between 0.57 and 0.61. Blue dashed vertical lines demarcate regions of quiescence (Q), bursting (Bu), and beating (Be) in the open-loop model.
Red contour and horizontal hatching indicate the range of values the variable g, traverses as the parameter / is varied in the version of the closed-loop model
with dynamic g,,,,;. and static i. For example, with / fixed at 0.6, the CPG is bursting and g,,.;. oscillates between 0.21 and 0.32 nS. Red dashed horizontal lines
demarcate regions of quiescence, slow beating, bursting, and fast beating in this model. Black curve is the bursting trajectory of the full closed-loop model (with
dynamic g, and dynamic &) projected onto the g.,.;.-% plane. Note that this limit cycle exists in the Q/Bu region, indicating that the g,,;. values traversed
during closed-loop bursting lie entirely within the range of g,.,;. values that produce quiescence in the open-loop model. Black arrow indicates the direction of
flow on the closed-loop limit cycle. Cyan, green, and magenta dots (along with cyan, green, and magenta arrows labeled B, C, and D on the g, ;. axis) denote
3 locations on the closed-loop limit cycle that are further illustrated in Fig. 4, B—D (where the same color scheme is used). Blue arrow labeled A corresponds

t0 gionic = 0.3 nS, which is the value used to further illustrate the open-loop limit cycle in Fig. 4A.

The BRS model is an example of “fold/homoclinic” burst-
ing, where spiking initiates at a fold bifurcation and terminates
at a homoclinic bifurcation (Izhikevich 2007). This type of
bursting has also been called “square-wave” bursting since the
shape of the membrane potential profile resembles a square
wave (Fig. 2A). The steady states of the fast subsystem, i.e.,

points satisfying (V = 0, i = 0), form an S-shaped curve in the
V-h plane that we denote S. The lower branch of S is stable and
meets the middle branch of unstable fixed points at the lower
knee (h = 0.61, V= —51.4), where a fold bifurcation occurs
as shown in Fig. 4A. Another fold bifurcation, which is not
shown in the figure, occurs at the upper knee (h = —1.56,
V = —29.7), where the middle and upper branches of S meet.
The upper branch becomes stable through a subcritical Hopf
bifurcation at (h = 0.92, V = —22.8). The branch of unstable
periodic orbits that are born at this Hopf bifurcation coalesce
with a branch of stable periodic orbits at the saddle node of
periodic orbit bifurcation located at 4~ = 1.17 (not shown). The
stable branch of periodic orbits ends at the homoclinic bifur-
cation on the middle branch of S at 4 = 0.57. During the silent
phase of bursting, the trajectory is along the lower branch of &
at a stable fixed point of the fast subsystem. The hyperpolar-
ized membrane potential causes the persistent sodium channel
to deinactivate and % to increase. As h increases, the trajectory
moves slowly to the right until the stable fixed point is
destroyed at the fold bifurcation. At this point, the trajectory
jumps up to the stable branch of periodic solutions and spiking
begins. The depolarized membrane potential during spiking
causes the persistent sodium channel to inactivate and /4 to
decrease. As h decreases, the period of the limit cycle—and
therefore the time between spikes—increases until spiking

ends when the limit cycle merges with the invariant manifold
of a saddle point at the homoclinic bifurcation. At this point,
the trajectory jumps down to the stable branch of S, ending the
active phase of that burst and beginning the silent phase of the
next burst. Throughout both phases of open-loop bursting, all
fixed points of the full system (Egs. /-3) are unstable. This is
indicated by all intersections of the A-nullcline (defined as

h = 0) occurring on unstable portions of S (Fig. 4A, bottom).

In contrast, during closed-loop bursting the A-nullcline al-
ways intersects the stable lower branch of S (Fig. 4, B-D,
bottom). These stable fixed points of the full CPG subsystem

(V, 1, h) correspond to g, taking values that would lead to
stable quiescence in the isolated BRS model. However, in the
closed-loop model, when the CPG is quiescent (as in Fig. 4B)
then Pag, starts to fall, which causes g,,,,;. to increase. Slowly
increasing g gradually shifts S to the left, allowing the
trajectory to jump up at the lower knee fold bifurcation and
start spiking, even though the CPG fixed point remains stable
(Fig. 4C). The spiking of the CPG eventually causes Pag, to
increase, which in turn causes g,;. to decrease and shifts S to
the right, leading to the homoclinic bifurcation that terminates
spiking (Fig. 4D). Thus, although the same bifurcations occur
in the fast subsystem during both open- and closed-loop burst-
ing, the time-varying nature of g, ;. in the closed-loop system
changes the way in which the bifurcations are approached in
comparison to the open-loop system.

Sensitivity of burst timing to sensory input and internal
dynamics. We find that the timing of bursts in the closed-loop
system is governed by chemosensory feedback rather than the
intrinsic bursting mechanism of the isolated CPG (slow inac-
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Fig. 4. Closed-loop fast subsystem undergoes bifurcations differently than the open-loop fast subsystem. A, fop: bifurcation diagram of open-loop fast subsystem

(V, 1) with bifurcation parameter i and g,,.;.c = 0.3 nS. Black curve S shows stable (thick lines) and unstable (thin lines) fixed points of the fast subsystem. Solid
black dots indicate saddle-node (SN), Hopf (HB), and homoclinic (HC) bifurcations of the fast subsystem. Blue trace is the bursting trajectory from the open-loop
system projected onto the -V plane. Bottom: zoomed-in view of image at top, also showing the #-nullcline (dashed gray line). Open gray dot is an unstable fixed

point of the full CPG subsystem (V, 1, h); the bursting trajectory circumnavigates this unstable fixed point. Additional unstable fixed points located at (h = 0.20,
V = —=39)and (h = 0.02, V = —24) are not shown. B-D, top: bifurcation diagrams of closed-loop fast subsystem during silent phase (B), at the onset of spiking
(€), and at the termination of spiking (D). Black trace is the closed-loop bursting trajectory, and gray curves show how S shifts as g, varies during closed-loop
bursting (the locations shown correspond to the points labeled B—D in Fig. 3). B: cyan dot shows the location of the trajectory at the minimum g,;. value (0.12
nS) observed during closed-loop bursting. Lower portion of S and corresponding SN point are shifted to the right relative to the open-loop system, and the CPG
is not spiking. Cyan arrow indicates that S will move to the left as the trajectory evolves and g..;. increases through the remainder of the silent phase of the
burst. C: green dot shows the location of trajectory at the maximum g,,,;. value (0.22 nS) observed during closed-loop bursting. Lower portion of S and SN point
are shifted to the left relative to B, and the CPG is about to start spiking. Green arrow indicates that S will move to the right as the trajectory evolves and gonic
decreases, during the spiking phase of the burst. D: magenta dot shows the location of the trajectory at g, = 0.22, which is near the HC bifurcation that
terminates spiking. Lower portion of S is shifted to the left relative to B and to the right relative to C. Magenta arrow indicates that S will continue to move

to the right until reaching the minimum g, ;. configuration shown in B. B-D, bottom: solid gray dots are stable fixed points of the full CPG subsystem (V, i, h).
The trajectory does not circumnavigate these fixed points but exhibits bursting due to the movement of S, the fast subsystem’s steady-state curve.

tivation of Iy, through the & gate). To assess the influence of
h dynamics in controlling burst properties, we simulated the
open-loop and closed-loop models with 7, ranging from 8§ to
45 s (Fig. 5). The interburst interval (IBI), burst duration, and
number of spikes per burst all varied linearly as a function of
T, in the open-loop model, whereas in the closed-loop model
these burst properties were much less sensitive to changes in
T,. To assess the influence of the timescale for chemosensory
input Tpa, in controlling burst properties, we recorded the g i

values observed during closed-loop eupneic bursting with
7, =10 s and then played back compressed (y < 1) or
elongated (y > 1) versions of this g,,;. waveform as a forcing
signal to the BRS model (with 7, = 10 s). For y =1, the
forced BRS exhibited identical burst properties to the closed-
loop model, as one would expect. For y = 0.8, the system
entrained 1:1 to the forcing and exhibited smaller IBIs, burst
durations, and number of spikes per burst. For y < 0.8, the
system could not keep up with the forcing and lost 1:1
entrainment, instead only bursting once for every two peaks of

the g,nic waveform. For y > 1, IBI increased linearly with vy,
whereas burst duration and number of spikes per burst in-
creased up to y = 2 before leveling off or even decreasing.
These simulations highlight the differential roles of & dynamics
and g, fluctuations in the closed-loop system, with g, .ic
controlling the overall period of bursting (dominated by IBI)
and & controlling spiking during the burst. Thus it is the
timescale of chemosensory input that determines burst timing
in the closed-loop system and not the timescale of the internal
CPG dynamics.

Bistability of eupnea and tachypnea in the closed-loop
model. In the closed-loop model, the stable bursting rhythm
that represents eupneic breathing coexists with a stable beating
rhythm that represents pathologically rapid and shallow
“tachypneic” breathing. This bistability is evident in Fig. 6,
which shows two simulations of the closed-loop model with
identical parameter values but different initial conditions. In
Fig. 6A, spikes during the active phase of CPG bursting drive
lung expansions that bring in new air, causing an increase in
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Fig. 5. Chemosensory feedback (not the isolated CPG bursting mechanism)
governs burst timing in the closed-loop system. A—C: effect of persistent

sodium channel inactivation time constant 7, and timescale of chemosen-
sory feedback (1'pa ) on burst properties. Blue lines and black lines: 7, is

increased from 8 to 45 s, where y = 1 corresponds to the default BRS
model setting of 7,, = 10, 000 ms. Green line: TPa, is modulated by forcing

the BRS model with compressed (y < 1) and elongated (y > 1) versions
of the g.onic Waveform observed during closed-loop bursting (y = 1). A:
interburst interval (IBI) increases linearly in the open-loop system as 7, is
increased (blue) and in the forced system as Tag, is increased (green). IBI

is much less sensitive to 7, in the closed-loop system (black). B and C: burst
duration (B) and number of spikes per burst (C) are more sensitive to
increases in 7, in the open-loop system (blue) than in the closed-loop
system (black). In the forced system, burst duration and number of spikes
per burst increase sharply, then level off, and eventually decrease slightly
as Ty, is increased (green).

Pag,. During the silent phase of the burst, the lungs relax as air
is exhaled and Pag, decreases. The oscillation in Pag, between
90 and 110 mmHg produces an oscillation in g, between
0.12 and 0.22 nS, which in turn leads to CPG bursting that
maintains eupnea. In contrast, Fig. 6B shows that tonic spiking
of the CPG fails to drive lung expansions large enough to
support effective gas exchange, resulting in a Pao2 level well
below the desired range. The low Pao2 produces a high g, .ic»
which reinforces tonic spiking, trapping the system in a path-
ological state.

To better understand the nature of the bistability between
normal and reduced Pag_levels observed in the closed-loop
model, we analyzed a reduced version of the open-loop model
obtained by approximating the dynamics of the control variable
Pag , using the method of averaging (Sanders et al. 2007). If
the dynamics of the control variable Pag_evolve on a slow
timescale, then our analysis is formally equivalent to an aver-
aging analysis of the closed-loop model decomposed into fast
and slow variables. We find that during eupneic bursting the
intrinsic slowness of the variables (measured as the maximum
rate of change divided by the range of the variable) span
multiple temporal scales, with Pag , vol;, and Pag, being an
order of magnitude slower than 4 and «, which in turn are an
order of magnitude slower than v and n (Table 1). Since Pao2
is both a slow variable and the control variable, we reduce the
closed-loop system to this single component and obtain a
reduced model of the form

dy

ey 5(») (23)

where y = Pag, and g is defined by averaging the expression
for the Pag, flux, given a fixed Pag value (see Egs. 27 and 28
in AppENDIX). This 1D model facilitates understanding the
dynamics of the control variable. In particular, Pag, decreases
when g < 0, increases when g > 0, and remains constant when
= 0. Pag, values for which g = 0 are fixed points of our
reduced (1D) slow subsystem. In Fig. 7A we show g for
three different values of the metabolic demand M. With
M = 0.4 X 10 > ms™ ', the system has a stable fixed point at
Pag, = 90 corresponding to eupnea, a stable fixed point at
Pag, = 40 mmHg corresponding to tachypnea, and an un-
stable fixed point at Pag = 80 mmHg that acts as a bound-
ary between the two stable states. With M = 0.8 X 10>
ms ', the same three fixed points exist but the unstable fixed
point and the stable eupneic fixed point are now closer to
each other. With M = 1.6 X 107> ms™ !, only one fixed
point exists and it is the stable tachypneic fixed point. Figure
7B shows the location of the fixed points as a function of M.
As M is increased, the unstable fixed point and the stable
eupneic fixed point move toward one another until they
collide and annihilate each other in a saddle-node bifurca-
tion. Thus the reduced model obtained through averaging
predicts that, as M is increased, the closed-loop system will
eventually lose bistability and display tachypneic tonic
spiking for all initial conditions. Indeed, simulations of the
full model confirm that for high values of M the closed-loop
system no longer exhibits eupneic bursting (Fig. 8).

Enhanced Robustness of Closed-Loop System

The incorporation of chemosensory feedback leads to the
closed-loop system being more robust to changes in metabolic
demand than the open-loop system. Figure 8 illustrates the
enhanced robustness of the full closed-loop system in two

ways. First, the Pag, vs. M curve has a shallower slope near the
aPaO

oM
is 70% less in the closed loop than in the open loop. Thus the
closed-loop model is locally robust to increases in metabolic

desired operating point of Pao2 = 100 mmHg, where
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Fig. 6. Coexistence of 2 stable periodic orbits (bistability) in the closed-loop respiratory control model. A and B: simulations with identical parameter values but
different initial conditions. From top to bottom: CPG voltage (mV), lung volume (liters), arterial oxygen (mmHg), chemosensory-dependent input to CPG (nS).
x-Axis is time (s). A: “eupneic” bursting. The central BRS circuit responds to time-varying chemosensory input by producing a regular breathing rhythm at ~10
breaths/min. Lung volume varies between 2 and 3 liters. Blood oxygen (Pag ) varies between 90 and 110 mmHg. B: different initial conditions lead to
pathological “tachypneic” spiking. The CPG receives elevated tonic input causing sustained spiking at several hertz, leading to ineffective motor output. Lung
volume fluctuates by <0.1 liters, and blood oxygen is approximately constant at a pathologically reduced level (25 mmHg).

demand (cf. Robustness and Flexibility). Second, the range of
M values for which Pag_stays within the acceptable range of
80—110 mmHg is larger in the closed loop (1 X 1077 < M <
1.23 X 107> ms ") than it is in the open loop (0.49 X 10> <
M <091 X103 msfl). This is a more global, or functional,
measure of the robustness.

As M is increased from 0.2 X 10 °t0 1.5 X 10 > ms ™', the
mean Pag, levels decrease from 102 to 90 mmHg in the
closed-loop model and from 135 to 62 mmHg in the open-loop
model. The ability of the closed-loop system to maintain Pag,
levels within a narrower range reflects increased robustness of
the closed-loop system to variations in metabolic demand.
However, if the metabolic demand becomes too great (M >
1.2 X 107> ms™ '), mean Pag, levels in the closed-loop model
drop precipitously as the system transitions from eupnea to
tachypnea. Our averaging analysis predicts that this transition
would occur at M = 0.82 X 10> ms ™', since that is the value
of M at which saddle-node bifurcation occurs in the reduced

Table 1.

model variables

Comparing “relative speed” of closed-loop

x max,co X' O} max,cion{x()} min,e o 7y {x(1)} Vy
Pag,_ 0.0278 105.7054 93.3442 0.0022
vol, 0.0022 2.9744 2.0078 0.0023
Pao, 0.0349 107.2739 94.5528 0.0027
h 0.0035 0.7551 0.6734 0.0427
«a 7.0518 X 10°* 0.0090 3.5427 X 107> 0.0783
v 76.2152 6.3719 —59.7198 1.1532
n 1.7849 0.9386 4.6197 X 107* 19027

The dimensionless quantity v, of each variable in the model along the
eupneic bursting limit cycle of period T is calculated with Eq. 24.

system (cf. Fig. 7B). The fact that this transition occurs at a
higher value of M than predicted by analysis of the reduced
system illustrates another type of robustness present in the
closed-loop system.

Autoresuscitation After Transient Perturbations

The closed-loop system exhibits surprising resilience to
transient perturbations. Because of the bistable nature of the
closed-loop system, perturbations can take the system out of
the basin of attraction for eupnea and into the basin of attrac-
tion for tachypnea. We find that the closed-loop system is able
to recover to eupnea after perturbations, even when the pertur-
bation creates transient Pag, levels below 75 mmHg. This
“autoresuscitation” phenomenon arises from properties intrin-
sic to the BRS conductances (Diekman et al. 2012). We
demonstrate and analyze autoresuscitation using two different
types of perturbations. First, we consider perturbations where
Pag, instantaneously drops to an abnormally low level. This
type of perturbation, which we refer to as an imposed hypoxic
event, is rather nonphysiological but is mathematically conve-
nient. The second type of perturbation we consider is more
physiologically plausible and models intermittent disruption of
chemosensory feedback. In this scenario, we temporarily dis-
connect g, ;. from Pag, and hold g, ;. at a constant value. All
the system variables continue to evolve under this value of
&ionic TOr Tseconds, until we reconnect the loop and again make
8tonic @ function of Pag .

Perturbation I: imposed hypoxic event. We defined eupneic
and tachypneic “ranges” based on the long-term behavior that
results from different initial conditions. First, we simulated the
open-loop model over a range of g,..;c values corresponding to
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Fig. 7. Reduced slow subsystem predicts that eupnea is lost at high metabolic
demand through saddle-node bifurcation. A: phase line of averaged slow
subsystem (Egq. 23) showing the approximate rate of change of Pay_ (g) as a
function of Pag . The curves show when Pag will increase (g > 0) and
decrease (g < 0) for 3 different values of the metabolic demand M. Colored
dots are fixed points of the averaged slow subsystem (g = 0). Zero crossings
with positive and negative slopes are unstable and stable fixed points, respec-
tively. When M = 0.4 X 107° ms™', the system has a stable fixed point
corresponding to eupneic bursting (Pao2 =89 mmHg), a stable fixed point
corresponding to tachypneic spiking (Pag. = 41 mmHg), and an unstable fixed
point (Pap, = 74 mmHg). When M = 0.8 X 10™° ms ', the system still has 2
stable fixed points, but the stable eupneic fixed point (Pag, = 87 mmHg) and
the unstable fixed point (Pag, = 80 mmHg) have moved closer together. When
M = 1.6 X 107> ms™ ", the system has only 1 fixed point, which corresponds
to stable tachypneic spiking (Pag, = 17 mmHg). B: location of fixed points in
averaged slow subsystem. The curve shows the Pagy value of fixed points
(g = 0) as a function of metabolic demand M. For intermediate M values, the
system has 3 branches of fixed points. The upper branch is stable and
corresponds to eupnea, the middle branch is unstable, and the lower branch is
stable and corresponds to tachypnea. At M = 0.25 X 107° ms™ ', the lower
stable branch and unstable middle branch collide and these fixed points are
destroyed in a saddle-node bifurcation (SN,), leaving only the stable upper
branch (eupnea) for M < SN,. Similarly, at M = 0.88 X 10~°> ms™ ', the
upper stable branch and unstable middle branch collide in another saddle-
node bifurcation (SN,), leaving only the stable lower branch (tachypnea)
for M > SN,.

different Pag, levels. The g, Values were chosen using the
chemosensation sigmoid (Eq. 22) for a range of Pay_values
with 0.1-mmHg spacing. Each simulation was allowed to reach
steady state before “closing the loop” and observing whether
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Fig. 8. Sensory feedback increases the robustness of eupnea with respect to
metabolic demand. Mean Pag,_levels in systems with (closed loop) and without
(open loop) chemosensory feedback as a function of M. Green band indicates
a nominal range of normoxia from 80 to 110 mmHg. The enhanced robustness
of the closed-loop system is evident in the shallower slope of the black curve
relative to the blue curve at the operating point of Pag = 100 mmHg and in

the wider range of M values for which the black curve stays within the
normoxic limits.

those initial conditions led to eupnea or tachypnea in the
closed-loop system. Closed-loop simulations with initial con-
ditions corresponding to Pay_  below 75.6 mmHg resulted in
tachypnea, and those with initial conditions corresponding to
Pag, above 78.1 mmHg resulted in eupnea (Fig. 9). These
ranges of Pag, values are henceforth referred to as the tachy-
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Fig. 9. Transient response of CPG in closed-loop system can lead to “autore-
suscitation” after hypoxic perturbations. The open-loop system was simulated
with gionic = 0.3800 nS (red curve) and g,,ic = 0.3791 nS (blue curve) until it
reached steady state. At ¢ = 0, we “closed the loop” and allowed g,,,;. to vary
as a function of Pao2 throughout the remainder of the simulation. From these
initial conditions, the blue trajectory approaches eupnea, whereas the red
trajectory approaches tachypnea. Dashed line indicates that initial conditions
determined from steady states of open-loop simulations with g.... values
corresponding to Pag_ levels above (below) this line will approach eupnea
(tachypnea). At t = 180 s, Pao2 was set to 40 mmHg momentarily and then
immediately went back to being determined by the system dynamics. This
hypoxic perturbation takes the trajectory to Pay_levels below the steady-state
dividing line, but the transient response allows the system to recover to eupnea.
At t =360 s, Pag was set to 30 mmHg momentarily and then immediately
went back to being determined by the system dynamics. The transient response
again leads to an abrupt initial increase in Pagy_following the perturbation, but
it is not enough to get over the dividing line and the trajectory ultimately
approaches tachypnea.
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pneic range and the eupneic range, respectively. The dividing
line between these two ranges was approximately g.onic = 0.38,
which corresponds to Pag_ = 76.85 mmHg (Fig. 9). However,
the restored closed-loop system could recover from transient
perturbations that brought Pag, below this dividing line. For
example, at ¢t = 180 s we set Pag = 40 mmHg and then
immediately released the system back to its normal dynamics.
We see that the trajectory escapes the tachypneic range and
returns to eupnea. Then, at = 360 s we set Pao2 = 30 mmHg
and again immediately released the system back to its normal
dynamics. The trajectory is not able to escape the tachypneic
range after this more severe perturbation. The system does not
recover to eupnea and instead descends into tachypnea.
When the system is able to recover from transient hypoxic
perturbations, it is because of the barrage of spiking activity
brought on by the reduction in Pao2 levels and ensuing sudden
increase in .- The relationship between Pag . 8ionic» V- and
vol; is illustrated in Fig. 10A. The active phase of a eupneic
burst is 0.39 s in duration and consists of 21 spikes, corre-
sponding to a spiking frequency of 54.5 Hz during the active
phase (Fig. 10B, top). In contrast, the burst immediately fol-
lowing the hypoxic perturbation is 0.96 s in duration and
consists of 69 spikes, corresponding to a spiking frequency of
72.2 Hz (Fig. 10B, bottom). The enhanced spiking during this

burst leads to a vigorous expansion of vol; (Fig. 10A, bottom)
that brings extra oxygen into the lungs, ultimately raising Pag,
(Fig. 104, top) to a level high enough that g,,.;. decreases (Fig.
104, second from top) before the system becomes trapped in
the tachypneic state. The barrage of spiking that facilitates
autoresuscitation after hypoxic perturbation can be understood
in terms of the bifurcation structure of the fast subsystem of the
BRS model (Fig. 10C). As shown in Fig. 4, the curve of fast
subsystem fixed points moves as g,,n;. fluctuates in the closed-
loop model. During the silent phase of a burst, Pag, decreases
and g, increases, which shifts the curve leftward until the
trajectory jumps up and begins to exhibit limit cycle oscilla-
tions corresponding to repetitive spiking. During the active
phase, h decreases until the periodic orbits collide with the
middle branch of unstable fixed points and are destroyed in a
homoclinic bifurcation. Importantly, the period of the orbits
increases logarithmically as they approach the homoclinic
(Gaspard 1990); thus spiking occurs at a higher frequency
when the trajectory is further from the bifurcation point. Figure
10C, top, shows the trajectory of a typical eupneic burst, and
the location of the curve of steady states, at the time the
trajectory jumps up (green dot). Figure 10C, bottom, shows
the trajectory of the spiking barrage following hypoxic
perturbation. Note that when the trajectory jumps up, the
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Fig. 10. Hypoxia-induced barrage of spiking leads to an autoresuscitative lung expansion and is explained by the effect of hypoxia on the location of the
homoclinic bifurcation that terminates spiking. A: traces from the closed-loop model during eupneic bursting (+ < 180 s) and after a hypoxic perturbation (r >
180 s). At = 180 s, Pag_(fop) was set to 40 mmHg, which causes a large and immediate increase in g, (2nd from fop). The increase in g,,;. elicits a barrage
of spiking (V, 3rd from fop) that drives a much bigger increase in lung volume (vol, , bottom) than occurs during a typical breath. This large breath causes a
substantial increase in Pag_, which reduces g,,,;. sufficiently for the system to recover from the perturbation and return to eupneic bursting. Green and magenta
dots indicate the values of system variables at initiation and termination of spiking during the last burst before the perturbation and the first burst after the
perturbation, respectively. Cyan dot indicates the minimum g, ;. point during eupneic closed-loop bursting. B: expanded view of voltage trace from A during
the last burst before the hypoxic perturbation (fop) and during the barrage of spiking induced by the perturbation (bottom). The burst induced by the perturbation
is longer and consists of higher-frequency spiking than the burst before the perturbation. C: bifurcation diagram of BRS model fast subsystem during the last
burst before the hypoxic perturbation (fop) and during the barrage of spiking induced by the perturbation (bottom). Top: black trace is the trajectory during
closed-loop bursting, projected onto the V-h plane. Green, magenta, and cyan curves show the location of the fast subsystem steady states in its leftmost position,
which occurs at the initiation of spiking (green, g.,nic = 0.22 nS), at the homoclinic bifurcation that terminates spiking (magenta, g,,..c = 0.18 nS), and at its
rightmost position, which occurs at the g,,,;c minimum point (cyan, g, = 0.12 nS). Note that these 3 curves are the same as those shown in Fig. 4, B-D. Bottom:
black trace is the trajectory during the barrage of spiking induced by the perturbation, projected onto the V-h plane. Green and magenta curves show the location
of the fast subsystem steady states in its leftmost position, which occurs at the initiation of spiking (green, g,,.;c = 0.57 nS), and at the homoclinic bifurcation
that terminates spiking (magenta, g,,,;c = 0.35 nS). Cyan curve is the same as at top. The drastic reduction in Pag_due to the hypoxic perturbation has shifted
the green curve much further to the left (cf. top and bottom), enabling the CPG to fire more spikes (and at a higher frequency) before reaching the homoclinic
bifurcation.
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curve of fixed points is located much further to the left in the
(V, h) plane because of the drastic reduction in Pag . Since
the trajectory is further from the homoclinic bifurcation
when it begins spiking, the system exhibits spikes for a
longer time and at a higher frequency than it does during the
active phase of a typical burst.

Response to transient hypoxia in vitro. Although a sudden
drop in Pay_may seem nonphysiological, it can be simulated in
vitro by adding NaCN, a pharmacological analog of hypoxia,
to the brain stem slice perfusate. Alternatively, hypoxia can be
imposed by reducing the amount of O, in the gas used to
bubble the perfusate. We find that both of these in vitro
hypoxic challenges induce a similar barrage of spiking in brain
stem slices containing the pBC as occurs in the closed-loop
model in response to a hypoxic Pag, clamp perturbation. Figure
11A shows a barrage of spikes in an individual pBC cell (Fig.
11A, top) and increased hypoglossal nerve rootlet discharge
(Fig. 11A, bottom) after bath application of 300 uM NaCN.
Figure 11C shows summary data from nine experiments with
increased burst duration and frequency during NaCN or hyp-
oxia treatment, followed by a return to baseline bursting
activity after the treatment. The changes in burst duration and
frequency are significant (P < 0.05) across baseline, NaCN or
hypoxia, and recovery. There is a delay between the initiation
of the treatment and the effect seen in the individual neurons or
the network output (XII) due to the “dead space” volume of the
perfusion system.

The carotid chemoreceptors and their inputs to the nucleus
tractus solitarii and the rest of the inspiratory rhythm-generat-
ing circuit are absent in the reduced in vitro slice preparation.
The cellular mechanisms by which neurons and glia partici-
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pating in the respiratory neural network sense local changes in
oxygen is unknown; however, D’Agostino et al. (2009) have
shown that hemeoxygenase is expressed in neurons in the
rostral ventrolateral medulla, which includes the pBC and other
respiratory-related neurons, and this may serve as a marker for
hypoxia-sensitive cells within the pBC. Other cellular mecha-
nisms that may serve as hypoxia sensors in pBC include second
messengers as modifiers of K,rp channels (Mironov et al.
1998; Mironov and Richter 2000), changes in mitochondrial
NADH (Mironov and Richter 2001), and L-type calcium chan-
nels (Mironov and Richter 1998). Even changes in the excit-
ability of upstream projecting neurons, for example from the
nucleus tractus solitarii to the pBC (Takakura et al. 2007),
could impact the behavior of our model with changes in
oxygen tension.

Perturbation II: interruption of chemosensory feedback. To
explore the autoresuscitation phenomenon further, we modeled
intermittent failure of the chemosensory pathway that transmits
information about blood oxygen content to the CPG (Fig. 12).
Specifically, we simulated the closed-loop system in the eup-
neic state and then transiently disconnected g,,,;. from Pag, by
setting g, nic to a constant value of 0.1 nS for durations ranging
from 1 to 60 s. This intervention puts the CPG in the quiescent
regime, and Pag, gradually declines, reaching values <50
mmHg for durations >35 s. We then reconnected the chemo-
sensory feedback, which caused an abrupt increase in g, and
a barrage of spiking that quickly raised Pag, . We observed that
if the duration of the chemosensory failure was short enough
the system would recover to eupnea (Fig. 12, A and C) but if
the duration of the failure was sufficiently long the system
would descend into tachypnea (Fig. 12, B and D). For chemo-
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Fig. 11. Hypoxia induces a barrage of spiking in vitro. A: application of 300 uM sodium cyanide (NaCN), a pharmacological analog of hypoxia, led to increased
spiking in an individual pBC inspiratory cell recorded in current clamp (fop) and increased network activity measured as hypoglossal nerve (XIIn) rootlet
discharge (bottom) in a brain stem slice preparation. At the peak of the stimulation, phasic, coordinated drive is abolished. B: firing pattern of pBC cell before
(left) and after (right) NaCN challenge. The depolarization and increased spiking that occur in response to the hypoxic perturbation in vitro are qualitatively
similar to the responses observed in our closed-loop model. C: summary data from 9 experiments showing burst duration (fop) and frequency (bottom) changes
for baseline, NaCN treatment, hypoxia treatment, and recovery (n = 9, *P < 0.05 ANOVA, Tukey’s least significant difference as post hoc test, baseline vs.
hypoxia or NaCN; error bars are SE). NaCN and hypoxia challenges do not result in statistically significantly different responses and produce an equivalent

perturbation of the breathing rhythm in our in vitro slice preparations.
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Fig. 12. Recovery to eupnea vs. tachypneic failure after transient interruption of chemosensory feedback. A: time course of Pag_before (black), during (blue),
and after (green) interruption of chemosensory feedback. Black, eupneic breathing in closed-loop model; blue, chemosensory feedback is interrupted by holding
Zionic fixed at 0.1 nS for 49.2466 s; green, chemosensory feedback is reestablished by again making g,..;. a function of Pag . System recovers to eupnea. B: same
as A, except the g,,,ic = 0.1 nS clamp (blue) is held for 0.1 ms longer. After reestablishing chemosensory feedback the system ultimately descends into tachypnea
(red) rather than recovering to eupnea. C: eupneic recovery from A projected onto (h, vol; , Pag) coordinates. During the g,,.;. clamp (blue curve), the CPG is
quiescent and Pag_ decreases to 42 mmHg. After release of the clamp (green curve), g, increases rapidly, causing a barrage of spiking and a large expansion
of lung volume that rapidly increases Pao2 to 82 mmHg. From ¢ = 120 to 180 s the system exhibits bursts of spiking with shorter interburst intervals and shorter
burst durations than eupneic breathing. This leads to intermediate Pa02 values (76—80 mmHg) as the interburst intervals and burst durations gradually lengthen
and the system returns to eupneic breathing. D: tachypneic failure from B projected onto (h, vol;, Pag ) coordinates. Same as C, except that during the
intermediate Pag, oscillations from ¢ = 120 to 180 s the interburst intervals and burst durations gradually shorten and the system descends into tachypnea (red

curve).

sensory failure durations near the critical value separating these
two states, trajectories transiently exhibited an activity pattern
consisting of bursts with a smaller number of spikes and
shorter IBIs before transitioning to a steady state of eupneic
bursting (as in Fig. 6A) or tachypneic tonic spiking (as in Fig.
6B). In the next section, we show that this intermediate burst-
ing pattern corresponds to an unstable limit cycle with a stable
manifold acting as a boundary between respiratory system
recovery and failure.

Boundary between eupnea and tachypnea. When pushed to
the boundary separating eupnea and tachypnea, the failure or
survival of the system depends on the interplay of biomechan-
ics (e.g., lung expansion and contraction) and excitability in
central circuits (including /-gate dynamics) and cannot prop-
erly be understood in terms of the central dynamics in isola-
tion. The model has seven dynamical variables; therefore
trajectories move in a 7D space. The two attractors (tachypneic
spiking and eupneic bursting) are separated by a smooth 6D
separatrix that is the stable manifold of a metastable set living
on the boundary. Simulations suggest that this set is a saddle
limit cycle, with a 6D stable manifold and a 2D unstable
manifold. The intersection of these two sets of points is a 1D
unstable limit cycle. We computed Floquet multipliers, u, for
this limit cycle and found one unstable direction (u > 1), five
stable directions (w < 1), and one neutral direction (n = 1)

(see appENDIX for details). The components of the eigenvector
associated with the unstable direction provide information
about the impact of each system variable on the fate of
trajectories on the boundary. We analyzed the eigenvectors at
the four locations on the boundary limit cycle indicated by the
black arrows in Fig. 13A: approximately halfway through the
quiescent phase of the burst (arrow b), shortly before the first
spike of the active phase (arrow c), between spikes during the
active phase (arrow d), and shortly after the last spike of the
active phase (arrow e). The size of the eigenvector components
indicate how susceptible the system is to being pushed off of
the boundary limit cycle by perturbations in each of the
system’s variables. We find that the system is most sensitive to
perturbations in 4, Pag,, and Pag_ at all four locations (Fig. 13,
D and E). Since eigenvectors are only defined up to an arbitrary
change in sign, we chose the convention that the Pag, compo-
nent is positive in order to orient the eigenvectors consistently
around the limit cycle (we ensured this by multiplying the
vectors by —1 when necessary). The sign of each eigenvector
component then indicates whether small increases in that
variable push the system toward eupnea or tachypnea, with
positive components being “proeupneic” and negative compo-
nents being “protachypneic.” We find that the /& and Pag,
components are proeupneic at all four locations on the limit
cycle, whereas a has a small protachypneic effect at all four
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Fig. 13. Floquet eigenvectors at the eupnea-tachypnea boundary limit cycle. A: trajectories from the closed-loop model that either recover to eupnea (green) or
descend to tachypnea (red) after chemosensory interruption, projected onto (A, vol;, Pag ) coordinates. These are the same trajectories as shown in Fig. 12, C
and D, replotted here for the time window between r = 130 and 155 s, when they are near an unstable limit cycle on the boundary between eupnea and tachypnea.
Black arrows illustrate the eigenvectors associated with the unstable Floquet multiplier at 4 locations along the boundary limit cycle. To aid the clarity of the
illustration, the eigenvectors were multiplied by —1 so that the arrows point toward tachypnea rather than eupnea. B—E: eigenvector components at the locations
labeled b—e in A. The signs of the components were chosen such that positive values are consistently “proeupneic” and negative values are consistently

“protachypneic” (see text for details).

locations. The effect of perturbations in vol; is small and varies
with location. The system is not sensitive to perturbations in V
and n, except during the active phase when V is slightly
proeupneic (Fig. 13D).

Extent of Autoresuscitation

To quantify the extent of the autoresuscitation regime, we
simulated a range of durations for the interruption of chemo-
sensory feedback. Figure 14 shows Pag, levels 3 min after
reestablishing chemosensory feedback, with dark and bright
colors indicating low and high Paoz, respectively. In the ab-
sence of chemosensory feedback, we assume that the drive to
the CPG no longer fluctuates and set g, to constant values
between 0 and 0.6 nS when disconnected from Pag,. If this
value was sufficiently close to 0.3 (the nominal g value
used for open-loop simulations as shown in Fig. 2A4), the CPG
exhibited a bursting pattern that kept Pag, levels sufficiently
high, such that the system always maintained eupnea when the
chemosensory feedback was reconnected. Values of g, be-
low this range correspond to cases qualitatively similar to the
simulations shown in Fig. 12. Values of g,.,;. above this range
correspond to g, being set to a high value in the absence of

chemosensory feedback. Here the CPG responds with a bar-
rage of spiking at the beginning of, rather than after, the
perturbation. This initial barrage raises Pag, and can help the
system avoid tachypnea if the perturbation is short enough in
duration (Fig. 15). The boundary separating eupnea and tachy-
pnea in this case is again associated with the unstable limit
cycle analyzed in Fig. 13.

DISCUSSION
Modeling Rationale

To understand the generation and stabilization of vital
rhythms, such as breathing, one must consider both central and
peripheral systems working in concert. Thus one confronts
oscillating, nonlinear, closed-loop control systems, which are
notoriously difficult to analyze in a general setting (Shimkin
2009). We therefore chose to work with a model that does not
include all known aspects of respiratory control but represents
enough salient aspects of the physiology to capture the princi-
pal conundrum of interest—the interaction of a stable CPG
circuit with phasic sensory feedback provided by peripheral
chemosensation.
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Fig. 14. Autoresuscitation occurs for both high and low default g,.;. levels.
Pseudocolors indicate Pag_levels in the restored closed-loop system after
transient interruption of chemosensory feedback for a range of durations
(x-axis, s) and severities (y-axis, nS). The severity of the failure corresponds to
the value at which g,,,,;c was held constant during the chemosensory interrup-
tion. Pag_levels shown were measured 3 min after chemosensory feedback was
reestablished and were calculated as the midrange of Pag_over a 10-s window.
The capability of the system to autoresuscitate is observed whether the CPG is
quiescent because of low input drive (low g,.. values) or hyperexcited
because of high input drive (high g values) during the absence of chemo-
sensory feedback. For default g,;. values in an intermediate range, the system
recovers to eupnea despite arbitrarily long interruptions of feedback.

Because breathing is such a fundamental physiological func-
tion, one expects there to be multiple interwoven and layered
control mechanisms interacting to stabilize and modulate
breathing rhythms. For instance, chemosensation allows
changes in both oxygen and carbon dioxide concentrations in
the bloodstream to dramatically affect the breathing rhythm.
Both hypercapnia and hypoxia sensitivity are important, and
dysregulation of either—for instance in the perinatal period,
when the immature network is still developing—can contrib-
ute to pathological apneas (Martin et al. 2012). To formulate
our model, we select one element from each step in a closed-
loop control circuit: sensitivity to blood gases (hypoxia in our
case), central pattern generation, motor output driving gas
exchange, metabolic demand, and, as the final “control vari-
able,” the arterial partial pressure of dissolved oxygen. Despite
its relative poverty when compared with the full complexity of
respiratory control, our simple model nevertheless exhibits
these fundamental features of interest: /) bistability between a
normal “eupneic” state and a pathological “tachypneic” state;
2) interaction of intrinsic rhythmicity of central circuitry (BRS
model) and global rhythmicity of the closed-loop system; and
3) spontaneous activity providing a mechanism of “autoresus-
citation” following bouts of imposed hypoxia or interruption of
chemosensory feedback.

We do not claim to have developed a minimal model for
robust breathing, in the sense that we do not rule out the
possibility of a lower-dimensional closed-loop control model
exhibiting the same fundamental behaviors. Rather, we think of
our model as minimalist, in the sense that it incorporates
enough physiological realism to shed light on natural respira-
tory control yet remains simple enough to be amenable to
mathematical analysis. Thorough analysis of any such system

requires a constellation of approaches, including control-theo-
retic techniques, dissection of fast and slow timescales, bifur-
cation analysis, and numerical simulation. We apply these tools
to better understand the mechanisms of generation and stabi-
lization of robust breathing rhythms.

Alternative Bistable States and Interpretations

We interpret the nonbursting, regular spiking or “beating”
regime of the CPG in the closed-loop model as tachypnea
because it produces rapid and shallow fluctuations in lung
volume that are not sufficient to maintain normoxia (Diekman
et al. 2012). These lung fluctuations have extremely small
amplitude, and in other closed-loop models the beating regime
has been interpreted as apneusis, or “holding the breath” after
inspiration (Ben-Tal and Smith 2008). Altering the shape of the
8wonic chemosensation sigmoid, by setting the parameters
¢ =02 nS and 6, = 100 mmHg in Eg. 22, results in a
closed-loop model that has bistability between two different
bursting regimes of the CPG: one with 20 spikes per burst and
a period of 5.8 s and the other with only 3 spikes per burst and
a period of 1.4 s. These bursting patterns produce lung volume
fluctuations of 0.9 and 0.07 liter, respectively, with the former
maintaining Pag, around 100 mmHg and the latter around 30
mmHg. Thus this version of the closed-loop model again
exhibits bistability of eupnea and tachypnea, where here the
tachypnea regime consists of multispike bursts occurring at a
higher frequency than eupnea. Although this is perhaps a more
natural concept of tachypnea than the beating regime, we chose
to use the beating regime as our model of tachypnea (i.e., we
set ¢ = 0.3 nS) for this study in order to make the difference
between the coexisting physiological and pathological states
more pronounced. Raising instead of lowering the maximal
value of the chemosensation sigmoid, i.e., setting ¢ =5 nS
(and 6, = 50 mmHg), results in a closed-loop model with
bistable eupneic bursting and a depolarized (—30 mV) quies-
cent state of the CPG. We interpret this quiescent state, for
which lung volume is constant at 3.1 liters, as apneusis.
Finally, we also considered a bell-shaped curve instead of a
sigmoid for the relationship between g, and Pag_ and ob-
served bistability between eupneic bursting and a hyperpolar-
ized (—60 mV) quiescent state of the CPG. We interpret this
quiescent state, for which lung volume is constant at 2.0 liters,
as apnea. While we have not observed coexistence of more
than two stable states in any of these versions of the closed-
loop model, we cannot rule out the possibility of higher-order
multistability.

Control Theory and Averaging Analysis

Control theory is a promising framework for studying respi-
ratory control; however, it requires the part of control theory
that involves nonlinear, nonstationary control (i.e., control of
limit cycle trajectories), and possibly also stochastic control—
which means that the control theoretical framework needed is
not yet complete (Cowan et al. 2014; Roth et al. 2014). In our
closed-loop model, Pao2 is the natural “control variable”: it
carries the signal that regulates the activity of the CPG (as
opposed to Pag_or lung volume being the feedback signals).
Although there 1s no canonical way to partition fast and slow
variables in a high-dimensional system of ordinary differ-
ential equations (Clewley et al. 2005), empirical investiga-
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Fig. 15. Recovery to eupnea vs. tachypneic failure after transient interruptions of chemosensory feedback assuming high input drive to the CPG during the
interruptions. These simulations are analogous to those shown in Fig. 12, except here g, is set to 0.5 nS (high drive to CPG) rather than 0.1 nS (low drive
to CPG) in the absence of chemosensory feedback. A: time course of Pag, before (black), during (blue), and after (green) interruption of chemosensory feedback.
Black, eupneic breathing in closed-loop model; blue, chemosensory feedback is interrupted by holding g..;. fixed at 0.5 nS for 24.5 s; green, chemosensory
feedback is reestablished by again making g ... a function of Pag . System recovers to eupnea. B: same as in A, except that the g, = 0.5 nS clamp (blue) is
held for 0.1 s longer. After reestablishing chemosensory feedback the system ultimately descends into tachypnea (red) rather than recovering to eupnea. C:
eupneic recovery from A projected onto (h, vol;, Pag ) coordinates. The interruption of chemosensory feedback causes a sudden increase in g,;. since the
constant value it is set to during the interruption (0.5 nS% is higher than the values traversed by g,.,;c during eupneic bursting (0.12—0.22 nS). This change triggers
a barrage of spiking and a large expansion of lung volume that rapidly increases Pag_to 124 mmHg. During the remainder of the g,.,;. clamp, the CPG exhibits
tonic spiking that does not drive effective lung expansions and Pag_ decreases to 83 mmHg. After release of the clamp, the system exhibits bursts of spiking with
shorter interburst intervals and shorter burst durations than eupneic breathing. This leads to intermediate Pag_ values (76—80 mmHg) as the interburst intervals
and burst durations gradually lengthen and the system returns to eupneic breathing (green trace). D: tachypneic failure from B projected onto (h, vol; Pag )
coordinates. Same as in C, except that during the intermediate Pag, oscillations from ¢ = 90 to 120 s the interburst intervals and burst durations gradually shorten
and the system descends into tachypnea (red trace).

tion (Fig. 16) suggests that Pag, is also a reasonable candi-
date for consideration as the slow variable. Identification of
a slow variable suggests analysis via averaging. In this case,
averaging gives a qualitative insight into the nature of the
bistability between eupnea and tachypnea, interpreted
along the Pag, “phase line” (Fig. 7). However, the resulting
behaviors are not fixed points but limit cycles, and the
averaging analysis with a single slow variable does not give
full quantitative agreement. An averaging analysis consid-
ering multiple slow variables (Wang and Rubin 2016),
which lies beyond the scope of the present report, may be
able to more faithfully capture the chain of dependencies
present in the closed-loop model.

It is both conceptually and mathematically convenient that
the slow variables coincide with the control variables for this
system, and we suggest that it may be useful to look for this

feature in other motor control systems, such as those involved
in legged locomotion (Full and Koditschek 1999).

Closed-Loop Respiratory Control Models

Although the literature on computational modeling of the
respiratory system is vast (Lindsey et al. 2012), the model
analyzed here is, to our knowledge, the first to embed a
conductance-based CPG capable of firing action potentials into
a closed-loop respiratory control model. Most computational
studies have focused on respiratory pattern generation rather
than the neural response to changes in blood gases (Ben-Tal
and Tawhai 2013). Furthermore, much of the work that treats
the respiratory system from a control-theoretic perspective
(Grodins 1963) predates the identification of the pBC as the
main location of the rhythmic pattern generation circuitry
(Smith et al. 1991). In early dynamical models of the respira-
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Fig. 16. Phase plots showing the relative speed of each variable during closed-loop bursting identify Pag_as a slow variable. x-Axis is x and vertical y-axis
is the rate of change x'(7) normalized by the range of x, where x = n, V, a, h, vol,, PAOZ, Paoz. Green dots indicate the maximal speed v, of each variable
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than V and n.

tory control loop, neuronal activity was represented by time
delays between different compartments (Grodins et al. 1954,
1967) or as a black-box rhythm generator (Cheng et al. 2010;
Khoo 1990). Later models incorporated neuronal dynamics
using a generic limit cycle oscillator (Eldridge 1996) or firing
rate models of excitatory and inhibitory neurons (Longobardo
et al. 2005) as the respiratory pattern generator. Ben-Tal and
Smith (2008) developed the first closed-loop model with a
rhythm generator based on the persistent sodium current (Iy,p)
that plays a major role in bursting of brain stem pBC neurons.
The Ben-Tal model used a reduced description of the BRS
model that did not include the ionic currents needed to produce
action potentials. Instead, the activity level is described by a
variable that represents the average spike rate of the pBC
population, which can be related to the average voltage by a
linear transformation. Two closed-loop models with detailed
respiratory neuronal networks are the O’Connor et al. (2012)
and Molkov et al. (2014) models. Both include the pBC as well
as other brain stem neuronal populations involved in pattern
generation, such as the Botzinger complex and the ventral
respiratory column. However, neither model simulates action
potential-like spikes. The O’Connor model employed interact-
ing populations of integrate-and-fire neurons where spikes are
implied by voltage threshold crossings. The Molkov model
used an activity-based neuron formalism in which the voltage
variable represents an average voltage for the population and
the population firing rate is described by a function of the
voltage variable. As discussed in the previous section, in our
model we find that replacing the full conductance-based model
with a lower-dimensional model obtained by averaging repro-
duces the qualitative but not quantitative aspects of the full
model.

It is possible that several of the features of the closed-loop
model explored in this report, such as bistability and sponta-
neous autoresuscitation, would still be present in a version of
the model where the ionic currents responsible for action
potential firing of the CPG have been removed. We choose to
retain the spikes, as it has been shown that reduced models of
bursting cells (the R15 neuron in Aplysia californica) that do
not consider the effects of action potentials on the underlying
slow-wave oscillation in membrane potential may wrongly
predict transitions between quiescent, bursting, and beating
activity modes compared with the full model (Butera et al.
1996). In the BRS model, creating a “spikeless” reduced model
by removing the transient sodium current Iy, yields a slow-
wave membrane potential oscillation with a period that is
approximately twice that of the full model (Ermentrout and
Terman 2010). The full model has a shorter period relative to
the reduced model because action potentials intensify the
inactivation of the pacemaking persistent sodium current Iyp.

Physiology of Autoresuscitation

Autoresuscitation occurs when the confluence of chemosen-
sory drive and centrally generated drive causes a restart of the
respiratory network. Typically, this restart occurs after the
decreased oxygen tension is sensed via the carotid bodies and
low O, drives the hypoxic ventilatory response, consisting of
two distinct phases: phase 1, an acute increase in minute
ventilation early after hypoxic exposure, and phase 2, a later
response characterized by ventilatory depression. In most
mammals, the hypoxic ventilatory response is fully mature by
2 wk of postnatal life (Prabhakar et al. 2007). However, in
neonatal mammals with immature chemosensory feedback, the
reduced drive to the CPG is likely the key failure point that
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reduces the probability of restarting the respiratory rhythm in
response to severe hypoxia (i.e., anoxia). Serotonergic and
adrenergic neuromodulatory inputs appear to play a key role
and are developmentally regulated (Erickson and Sposato
2009; Givan and Cummings 2016). Other complications of
neonatal life, including infection (Siljehav et al. 2014), con-
found our understanding of the points of failure in the respi-
ratory control system. As yet we do not have a mechanistic
understanding of why autoresuscitation sometimes fails and
sometimes succeeds. Our model provides greater understand-
ing of the state changes that are required for resuscitation and
an impetus for future experiments dedicated to elucidating the
key control points that can force the respiratory network into
restart after a hypoxic challenge.

Development

Developmental changes in the respiratory rhythm-generat-
ing and pattern formation networks have been described, but
we do not yet know the impact that these changes have on the
core of the rhythm-generating circuit. For example, burst-
generating currents, including Iy,p and Ca®*-activated nonse-
lective cation (I-,y) currents, are modulated during develop-
ment (Del Negro et al. 2005). Furthermore, fetal Hb is known
to have a higher binding affinity for oxygen, and the time
course by which fetal Hb shifts to predominantly adult Hb
would impact autoresuscitation (Rutland et al. 1983; Teitel and
Rudolph 1985). Developmental changes in chemosensation
also are key modifiers of autoresuscitation, as mentioned
above. Carotid body resetting—after the relatively hypoxic
environment in utero—occurs over the first weeks of life
(Prabhakar et al. 2007), and the chronic intermittent hypoxic
events common in neonates can alter the gain of carotid body
chemosensors (Pawar et al. 2008). In our closed-loop model,
changes in the gain of the hypoxia-sensitive pathway would
correspond to changes in the slope of the sigmoid connecting
Pag, 10 gionic (the parameter o, in Eg. 22). Additionally,
hypoxia alters gene transcription and reactive oxygen species-
mediated signaling. Relatively little is known about how the
respiratory control circuit changes, as a whole, over the course
of development from the perinatal period to adulthood.

In our closed-loop model, the ability of the system to recover
from an interruption in chemosensory feedback failure depends
on the constant value assumed for g,,;. when disconnected
from Pag (Fig. 14). If this value is in the range that produces
bursting in the isolated CPG (between 0.25 and 0.4 nS), then
the closed-loop system always returns to eupnea after chemo-
sensory interruption. Based on this observation, we speculate
that there may be at least two distinct components of carotid
body input to the brain stem: an excitatory drive that is
independent of chemosensory feedback and a modulatory path-
way to confer additional robustness. The former would be an
example of open-loop control and may be dominant during
early stages of development, whereas the latter would reflect
closed-loop control and may be more prominent in later stages
of development.

Periodic Breathing

In the closed-loop model, a stable bursting limit cycle
(eupnea) coexists with a stable tonic spiking limit cycle (tachy-
pnea). On the boundary between the basins of attractions of

two different stable limit cycles, one may “generically” expect
to find an unstable limit cycle solution—just as we have
observed (Benes et al. 2011). Indeed, in many neuronal mod-
els, the transition between bursting and spiking exhibits com-
plicated dynamics (Ermentrout and Terman 2010). Recently, it
has been shown that a common dynamical phenomenon, the
torus canard, separates bursting and spiking regimes in several
neuronal models (Burke et al. 2012; Kramer et al. 2008). Torus
canards have been found in classes of neuronal models where
the active phase of bursting terminates in a saddle-node bifur-
cation of periodic orbits (a fold-cycle bifurcation) in the fast
subsystem, such as subcritical-Hopf/fold-cycle, circle/fold-cy-
cle, and fold/fold-cycle bursters. In contrast, the BRS model is
a fold/homoclinic (square wave) burster, i.e., the active phase
of bursting terminates at a homoclinic bifurcation. In the BRS
model, there is a fold-cycle bifurcation in the fast subsystem;
however, the active phase of bursting does not terminate there,
and it is not clear whether the torus canard phenomenon is
possible in the closed-loop model presented here. Although the
single-neuron version of the BRS model exhibits fold/homo-
clinic bursting, two synaptically coupled BRS model neurons
exhibit fold/fold-cycle (or top hat) bursting (Best et al. 2005).
A recent study (Roberts et al. 2015) has linked the transitions
between bursting and spiking in the coupled BRS model to
folded singularities and canards. Thus we expect that torus
canards may be present in a version of the closed-loop model
where the CPG is a network of BRS neurons rather than a
single representative neuron. In systems with torus canards,
trajectories can make extended visits to the neighborhood of an
attracting limit cycle and a repelling limit cycle in alternation
(Benes et al. 2011). Such dynamics in a respiratory control
loop might provide a model of periodic breathing, a phenom-
enon commonly observed in premature infants where pauses in
breathing of up to 10 s are followed by a series of rapid,
shallow breaths before breathing returns to normal (Mohr et al.
2015; Patel et al. 2016). The typical phenotype of periodic
breathing—apneas interspersed with tachypneic episodes—is
also seen in adults as Cheyne-Stokes breathing. Hypoxic epi-
sodes have been implicated in the early stages of Cheyne-
Stokes breathing and may be essential to the initiation of these
episodes and the downward spiral into pathophysiological
rhythms (Guntheroth 2011).

Robustness and Flexibility

Lyttle et al. (2017) recently introduced a dynamical systems
framework for characterizing the robustness and flexibility of
motor control systems. They defined robustness as the ability
of a system to maintain performance despite perturbations (or
parameter variation) and flexibility as the ability of a system to
deploy alternative strategies that improve performance by ad-
justing behavioral output in response to perturbations. A third
concept, sensitivity, measures the extent to which the dynamics
of system components change in response to perturbations.
Using a model of an invertebrate feeding apparatus, Lyttle et
al. (2017) demonstrated that motor control systems can achieve
robustness and flexibility by dynamically switching between
coexisting modes in response to changing demands. One of
these modes is characterized by low sensitivity to perturbations
and parameter variations and the other mode by high sensitiv-

1ty.
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Interpreting our respiratory control model in this framework
raises interesting questions. We have shown that the closed-
loop system is more robust to changes in metabolic demand
(M) than the open-loop system, because it is able to maintain
blood oxygen within acceptable limits (80—110 mmHg) over a
wider range of M values (Fig. 8). However, once M exceeds a
certain value (1.24 X 107" ms™ ") Pag, drops precipitously in
the closed-loop model, and for M values above this threshold
the Pag, levels in the open-loop model are higher than they are
in the closed-loop model. This suggests that respiratory system
performance might improve if the system were to modulate its
sensitivity by reducing the gain of chemosensory feedback (o)
as metabolic demand increases, paradoxically enabling it to
postpone a collapse in Pag, by switching to more of an open-
loop control regime. Additional feedback mechanisms on a longer
time scale could potentially confer such flexibility.

As another point of comparison, Fig. 10 illustrates the
mechanism by which sensory feedback allows the closed-loop
respiratory system to respond to what Lyttle et al. (2017) call
a “challenge,” that is, a perturbation that tends to decrease the
system’s performance (in this case, maintenance of adequate
Pag, levels). Imposing a hypoxic challenge leads to the system
producing a longer and stronger motor response that effectively
counteracts the perturbation, within certain amplitude limits.
The role of sensory feedback in Lyttle et al. (2017) is qualita-
tively similar. In that system, applying a mechanical load
opposing the pulling in of food during the swallowing phase of
an ingestive motor pattern activates a proprioceptive input to
the CPG that selectively extends a portion of the underlying
limit cycle trajectory. In response, the CPG produces a longer
and stronger activation of the motor units innervating muscles
opposed to the mechanical challenge.

Model Extensions

There are several aspects of the respiratory control network
that could be incorporated in future work extending our closed-
loop model. These include modeling the pBC as a multiunit
network with parametric heterogeneity, which has been shown
to increase the robustness of inspiratory oscillations in a
network of model conditional pacemaker neurons (Rubin and
Terman 2002b); interaction of the pBC with other brain stem
nuclei such as the ventral respiratory column and the retrotrap-
ezoid nucleus, which can lead to a variety of multiphasic
rhythms (Rubin et al. 2009); changes in cellular properties in
response to hypoxia (Mironov et al. 1998; Mironov and Richter
1998); and additional sensory feedback pathways involving
carbon dioxide sensing (Molkov et al. 2014) and lung/chest/
abdominal stretch receptors (Coleridge and Coleridge 1994;
Paintal 1973; Schlifke and Koepchen 1996; Widdicombe
1982).

These extensions would introduce challenges in the mathe-
matical analysis of the resulting model. For example, inclusion
of lung volume feedback modulation of inspiratory drive yields
a closed-loop model with a mechanical control problem nested
within the blood gas homeostatic control problem. Moreover,
additional sensory feedback pathways may not converge on the
same input (g,n;.) used as the control variable in the present
report. Incorporating multiple control pathways will signifi-
cantly complicate the averaging analysis, just as systems with
multiple slow variables are more challenging to analyze

through fast-slow dissection than systems with a single slow
variable (Bertram and Rubin 2017). However, what we would
expect to carry over to a more elaborate model is that the
timing of the sensory feedback, or different components of
sensory feedback, would still be expected to play the predom-
inant role in setting the timing of respiration rather than
intrinsic properties of the CPG in isolation.

APPENDIX

To better understand the nature of the bistability between normal
and reduced Pag_levels, we performed a fast-slow decomposition of
the closed-loop system, treating Palo2 as the slow variable and then
approximating its dynamics with the method of averaging (Sanders et
al. 2007).

Fast-Slow Decomposition

The application of singular perturbation methods developed by
Fenichel and others (Fenichel 1979; Jones 1995; Rubin and Terman
2002a; Wiggins 1994) has led to rapid advances in understanding the
geometry of bursting dynamics in numerous neural oscillators admit-
ting a timescale separation between “slow” and “fast” variables
(Bertram and Rubin 2017; Borisyuk and Rinzel 2005; Coombes and
Bressloff 2005; Izhikevich 2000; Rinzel and Ermentrout 1989). The
global structure of the flows in such systems is determined by the
“slow” variables, for instance the persistent sodium gating variable &
in the isolated BRS model (Best et al. 2005). In the case of a
respiratory control loop, we embed the BRS model into a system
including timescales for gas exchange, lung mechanics, and metabolic
consumption of O,. What is, or what are, the “slow variables” in such
a control system?

The closed-loop model is a 7D system of ordinary differential
equations that includes timescales for a variety of processes (neuronal
dynamics, lung mechanics, gas exchange, and metabolic consumption
of oxygen), and several different partitions of the system into fast and
slow subsystems are possible. To place disparate variables on a
common basis, we calculated the maximum relative speed of the
variable v,, defined as the maximum rate of change divided by the
range of the variable. Formally,

)= maxejo.nd (1) |} (24)

max o r{x(7)} — min,egp r{x(7)}

where x'(7) is the time derivative dx/dz. The smaller v, is, the “slower”
we consider x to be. We find that during eupneic bursting the intrinsic
slowness of the variables spans multiple temporal scales, with Pag ,

. . 2
vol., and Pag, being an order of magnitude slower than s and a,
which in turn are an order of magnitude slower than v and n (Fig. 16
and Table 1).

Averaging Analysis

To set up an averaging calculation to obtain the approximate
dynamics of the control variable, y = Pag , we write the closed-loop
model in the following form:

dx
T f(xy) (25)
dy
i g(x.y) (26)

where x = (V, h, n, a, vol;, Pag,) play the role of the dependent
variables. The control variable, y = Pag , is held constant and the
dependent variables are allowed to evolve freely. The dependent
subsystem dx/dt = f(x, y) will evolve either to a fixed point or to a
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(beating or bursting) limit cycle. If the dependent subsystem has a
fixed point, then

3 =80) =g[0% ().] @7

is the reduced system for the evolution of the control variable, where
O*(y) is the (y dependent) value of lung oxygen at the fixed point. If
the dependent subsystem has a limit cycle y,(¢) with period 7(y), we
obtain g(u) by numerically integrating glv,(1), u] over one period 7(u)

g(u) = o) f " olyul), u]de (28)

and the averaged equation for the dynamics of the control variable is
—=~3() (29)

Floquet Analysis

The stability of periodic solutions can be determined with Floquet
theory (Perko 2001). Suppose we have a period 7 limit cycle solution
x =) of a system ¥ = f(x), xER". The linearization of the
dynamics around the limit cycle are A(f) = D, f[y(¢)], giving the
periodically forced linear system

= A(t)u (30)
with the fundamental matrix ®(7) satisfying
d=A()®, D(0)=1 31)
Floquet’s theorem says we can write & as
®(1) = 0(1)e*" (32)

where Q(?) is T-periodic and B is a constant matrix. The eigenvalues
of €57 are the Floquet multipliers w,,..., u,, and they describe the
cycle-to-cycle growth or decay of perturbations. One multiplier will
be unity, corresponding to perturbations along +y(¢). If any of the
remaining multipliers have |lul > 1, then the periodic solution is
unstable.

In the closed-loop model, D, is undefined at the transition from
inspiration to expiration because the right-hand side of Eq. 14 is
nondifferentiable at that point. Thus instead of solving the variational
equation we compute Floquet multipliers through perturbation and
direct simulation of the system equations alone. We start at a point x,,
on the limit cycle and solve the initial value problem from 0 to 7 with
Xy + ée for k = 1,..., 7. The é; are unit vectors, and € must be small
enough that we stay close to the limit cycle for one period but large
enough that we are not overwhelmed by roundoff error. For the limit
cycle on the boundary between eupnea and tachypnea the period 7 is
1,818.5 ms, and we have found € = 1077 to work well. We also
simulate the unperturbed system, which after one period returns to
X7 =~ X,. Let x; be the solution starting from x, + ée. Then the seven
vectors x,—x; form the columns of the (approximate) multiplier
matrix, the eigenvalues of which are the Floquet multipliers. With x,,
located at arrow b in Fig. 13A (v = —50.9617, n = 0.0041,
h=0.5126, o =0.0012, vol, = 2.2660, Pao, = 78.0837, Pag, =
77.2000), the following Floquet multipliers w,,..., u, were obtained:
1.37, 1.00, 0.49, —0.01 + 0.01i, —0.01 — 0.01i, 0.00, and 0.00. Since
w, > 1, we conclude that the limit cycle on the boundary between
eupnea and tachypnea is unstable. Associated with each multiplier is
an eigenvector §; satisfying

EBTfi = w& (33

The components of &, contain information about how influential
each of the seven closed-loop variables is in determining whether
trajectories perturbed off of the boundary limit cycle will head toward

eupnea or tachypnea. To ensure a fair comparison of the components,
we rescaled the eigenvectors using scaling factors s; defined as the
magnitude of the change in each variable during one unperturbed
period of the unstable limit cycle. The rescaled eigenvectors {; are
given by

S
gi = —1
IS~ &ll
with scaling matrix S = diag(s,, ..., s;). The components of {, com-

puted with x, located at four different points along the boundary limit
cycle (arrows b—e in Fig. 13A) are shown in Fig. 13, B-E.
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