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ABSTRACT

Several distinct entrainment patterns can occur in the FitzHugh–Nagumo (FHN) model under external periodic forcing. Investigating the
FHN model under different types of periodic forcing reveals the existence of multiple disconnected 1:1 entrainment segments for constant,
low enough values of the input amplitude when the unforced system is in the vicinity of a Hopf bifurcation. This entrainment structure is
termed polyglot to distinguish it from the single 1:1 entrainment region (monoglot) structure typically observed in Arnold tongue diagrams.
The emergence of polyglot entrainment is then explained using phase-plane analysis and other dynamical system tools. Entrainment results
are investigated for other slow-fast systems of neuronal, circadian, and glycolytic oscillations. Exploring these models, we found that polyglot
entrainment structure (multiple 1:1 regions) is observed when the unforced system is in the vicinity of a Hopf bifurcation and the Hopf point
is located near a knee of a cubic-like nullcline.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079198

Entrainment, a type of synchronization phenomenon where an
oscillation is phase-locked to an external periodic input, is ubiq-
uitous in biological systems and in nature in general. In 1:1
entrainment, the number of input and output cycles coincides.
Entrainment is typically characterized by regions in the input
period (T)-input amplitude (A) parameter space referred to as
Arnold tongues. These tongues typically have a triangular shape
with a vertex pointing down, indicating that the range of entrain-
ment in T is larger as A increases. We have found that in contrast
to classical studies, the Arnold tongues for 1:1 entrainment split
for certain activator–inhibitor systems when the fixed-point is
located in the vicinity of a Hopf bifurcation and the Hopf point
is located near the knee of a cubic-like nullcline for the activa-
tor variable. This characterizes situations where 1:1 entrainment
is lost as T increases and regained as T increases further. We
refer to this phenomenon as polyglot entrainment in contrast
to the entrainment that is characterized by a single 1:1 tongue.
Polyglot entrainment can occur when the fixed-point for the
unforced system is either stable or unstable. In the latter case,

the unforced system is a sustained oscillator, while in the for-
mer case, the unforced system is a damped oscillator. We describe
the phenomenon of polyglot entrainment and the underlying
dynamic mechanisms in detail for the FitzHugh–Nagumo model
and discuss a number of other examples.

I. INTRODUCTION

Entrainment refers to a type of synchronization in which a
stable phase relationship is maintained between the output of an
oscillator and an external periodic forcing signal.13,29,32,36,39,47,55,56,59,77

Entrainment patterns are described in terms of the number of
input oscillations (N) that are phase-locked to a number of out-
put oscillations (M), referred to as N:M patterns. The properties
of entrainment are characterized in terms of Arnold tongues55 in
the input period-amplitude parameter space. Within each tongue,
the system exhibits the same entrainment pattern. Arnold tongues
have stereotypical shapes, from which their name derives, that
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form connected sets in the input period space for any fixed
amplitude.1,17,21,33,37,60,65 However, we have observed the presence of
1:1 Arnold tongues with a complex “mountain/valley” shape in the
well-known FitzHugh–Nagumo model20,50 (and modified versions
of this model) in the vicinity of Hopf bifurcations. These Arnold
tongue diagrams appear to have a set of cojoined 1:1 Arnold tongues,
and not all pairs of points with 1:1 entrainment can be joined by
a (straight) line without that line going through a part of parame-
ter space that is not in the 1:1 tongue. We refer to this situation as
polyglot entrainment, and classical Arnold tongue diagrams with a
single 1:1 region as monoglot entrainment. A similar polyglot phe-
nomenon, although with different properties, has been observed in
the Selkov model for glycolytic oscillations.72

Traditionally, entrainment studies focus on systems with
intrinsic oscillators that exhibit sustained oscillations in the absence
of time-dependent inputs. However, the entrainment patterns we
observed include systems that exhibit damped oscillations in the
absence of such inputs. This type of entrainment has received much
less attention (but see Refs. 5, 24, 45, 74, and 78) and its associated
dynamical properties have not been thoroughly investigated.

Although Arnold tongues are often used in entrainment stud-
ies, the dynamic mechanisms that give rise to the structure of Arnold
tongues are not well understood. In particular, it is unclear how the
tongues depend on the nonlinearities present in the system and the
time constants at which the system operates. The goal of this paper is
to investigate the dynamic mechanisms underlying the structure of
disconnected 1:1 Arnold tongues in the FitzHugh–Nagumo model
and other models of biological and chemical oscillators. Our results
will shed light onto the synchronization properties of oscillatory sys-
tems in networks including both sustained oscillators and damped
intrinsic oscillators.

II. METHODS

A. Model

We use the following periodically forced model of FitzHugh–
Nagumo (FHN) type20 used previously in Ref. 61,

dv

dt
= f(v) − w + A F(t), (1)

dw

dt
= ε(αv − λ − w), (2)

where v and w are dimensionless variables representing a biologi-
cal cell’s membrane potential and the recovery variable, respectively.
The function f(v) = −2v3 + 3v2 is cubic with the minimum and
maximum occurring at (0, 0) and (1, 1), respectively. The parame-
ters ε, α, and λ represent the time scale separation between the two
dependent variables, the slope of the w-nullcline (the curve defined
by the set of points for which dw/dt = 0), and the displacement of
the w-nullcline with respect to the v-nullcline (the curve defined
by the set of points for which dv/dt = 0). The last term in Eq. (1)
is a time-dependent, periodic input with a constant amplitude A.
We use two different types of waveforms for F(t): square wave and
sinusoidal, with period T, duty cycle 50%, and minima and maxima
equal to F = 0 and F = 1, respectively. We refer to the time intervals
where F > 0.5 as the “on” state and F < 0.5 as the “off” state.

One advantage of using a square-wave forcing is that one can
decompose the periodically driven system into two autonomous
systems, one with the forcing turned off and another one with
the forcing turned on. In the latter case, a change of variables
W = w − A allows us to move the constant forcing term A into the
second equation, yielding

dv

dt
= f(v) − W, (3)

dW

dt
= ε[αv − (λ + A) − W]. (4)

When the forcing is on, the forcing amplitude contributes to the dis-
placement of the W-nullcline. Alternatively, without the change of
variables, A causes the v-nullcline to displace abruptly between the
two regimes. For sinusoidal inputs, this displacement is continuous
and gradual.

System (1) and (2) undergoes a Hopf bifurcation28,31,46,68 as
the fixed-point crosses a vicinity of the minimum of the (cubic)
v-nullcline (or alternatively, its maximum). The Hopf bifurcation
point and the criticality properties can be computed in terms of the
model parameters under the assumption that ε � 1.40,61,80 The fixed-
point is stable (unstable) for λ < λH (λ > λH) as shown in Fig. 1.
The Hopf bifurcation is subcritical (supercritical) if α < 3 (α > 3).
The dynamics of the FHN model for a = 2 and various λ values are
shown in Fig. 2.

B. Computation of Arnold tongues

Arnold tongues are areas in parameter space where the system
exhibits different locking modes in response to periodic forcing.33,55

Outside the Arnold tongues, the input and output do not exhibit
N:M phase-locking patterns.

Here, we focus on investigating 1:1 entrainment patterns. For
the Arnold tongues we use here, the horizontal axis corresponds to
the forcing period T and the vertical axis corresponds to the forc-
ing amplitude A. Typically, with increasing forcing amplitude the
Arnold tongue widens, indicating that entrainment can occur for a
larger range of periods.52,55

In order to numerically compute the Arnold tongues, for each
fixed value of A, we performed simulations (with initial conditions
V = 0.05, w = 0.05) to find the minimum and maximum values of
T for which the system exhibits 1:1 entrainment. We defined 1:1
entrainment to occur when the period of the system response (Ts)
matched the period of the forcing (T) within some tolerance η, i.e.,
|T − Ts| < η, with η = 0.001. We computed Ts as the time between
peaks of the system response, using the MATLAB (The Mathworks,
Natick, MA) findpeaks function with the option MinPeakPromi-
nence to set a value of one half the amplitude of the largest peak
in each simulation as the threshold for admissible peaks.

To verify that the initial conditions used for the simulations
are not impacting our results, we repeated the computation of the
Arnold tongues shown in Fig. 3(A4) four times with initial condi-
tions chosen at different locations along the stable limit cycle of the
unforced system. In all cases, the recomputed Arnold tongues were
identical to the ones shown in Fig. 3(A4). We then checked further
for the possibility of multistability when the forcing amplitude is
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FIG. 1. Bifurcation diagram for the FHN model with α = 2 and bifurcation parameter λ. A. Hopf point indicates a Hopf bifurcation at λ = 0.0033. The shaded region
denotes the λ values of the unforced system for which we have 1:1 polyglot entrainment. The red lines denote the representative λ values used for the unforced system in
the subsequent figures: λ = 0.016 [Fig. 3(A)], λ = −0.1 [Figs. 3(B) and 3(C)], λ = 0 (Fig. 5), and λ = 0.004 (Fig. 8). B. Magnification of A around the Hopf point showing
that the Hopf bifurcation is subcritical.

large by conducting simulations with 50 random initial conditions
chosen from a uniform distribution (with bounds of [−1,1] for V
and w). Specifically, with parameter values used for the monoglot
Arnold tongue in Fig. 3(A4), we set A = 0.06 and ran simulations
over a range of forcing periods. For all 50 random initial conditions,
we found the same 1:1 entrainment region as shown in Fig. 3(A4).

C. Numerical simulations

Phase-plane diagrams, time course plots, and Arnold tongues
were computed numerically using the modified Euler method9

(a Runge–Kutta method of order 2) with a time step 1t = 0.05 in
MATLAB. Bifurcation diagrams were computed using the AUTO
feature of XPPAUT.15

III. RESULTS

The concept of 1:1 polyglot entrainment refers to the ability
of a system, in response to periodic inputs, to display separated 1:1
Arnold tongues in the input period-amplitude parameter space. In
general, one expects the entrainment to be of monoglot type (for a
given value of the input amplitude, the 1:1 entrainment segment is
connected), which has been the focus of previous studies (but see
Refs. 22 and 72).

In the following sections, we identify the conditions under
which 1:1 polyglot entrainment emerges in a number of case stud-
ies with representative dynamic properties. We begin by using the
forced FHN model [Eqs. (1) and (2)] and then we extend our results
to a number of additional models forced by the same (square-wave)
input and to the FHN model forced by sinusoidal inputs. Square-
wave and sinusoidal inputs having the same number of cycles differ
in the mechanism of transition between peaks and troughs, which
are abrupt for square-wave inputs and gradual for sinusoidal inputs.
It is not clear a priori whether and how this additional frequency

content in square-wave input with respect to sinusoidal input affects
the 1:1 entrainment properties of the forced systems.

The fixed-points for the (autonomous) FHN system are deter-
mined by the parameters λ and α. We use values of the parameter ε

for which there is a time scale separation between the activator (v)
and inhibitor (w) variables and the FHN system exhibits relaxation
oscillations. In the phase-plane diagram [e.g., Figs. 2(A) and 2(D)],
the limit cycle trajectory transitions in between the two slow mani-
folds, which are located in vicinities of the left and right branches of
the v-nullcline, along fast fibers.

To aid in the analysis, we consider autonomous FHN mod-
els with a constant input equal to the periodic input’s amplitude.
The fixed-points of the time-independent forced system are differ-
ent and may have different stability properties from the unforced
system. We note that for the FHN model, the addition of a constant
forcing to the activator equations is equivalent to an increase in the
parameter λ.

In the following sections, we are going to restrict our focus to
the cases of α = 2, for which we have a subcritical Hopf bifurcation
upon varying λ, and α = 4, for which we have a supercritical Hopf
bifurcation upon varying λ. We analyze the entrainment results
for different λ values. We split the λ axis into regions where we
have monoglot (single 1:1 region in the Arnold tongue diagram)
or polyglot (multiple 1:1 regions in the Arnold tongue diagram)
entrainment.

We consider periodic forcing with different frequencies and
two types of waveforms, sinusoidal and square-wave, that are rep-
resentative of gradual and abrupt transitions in the external forcing
signal. Both are amenable to analysis using dynamical systems tools.
In the latter case, the dynamics of the periodically forced system can
be decomposed into two two-dimensional subsystems with constant
forcing, which simplifies the analysis. We call the times at which the
forcing turns on and off the switching times, and the corresponding
points in the phase-plane diagrams the switching points. Switching
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FIG. 2. Representative phase-plane diagrams and v time course dynamics for the FHN model with constant forcing (A). A. λ = 0.016. The autonomous system (A = 0)
has an unstable focus (eigenvalues 0.019 ± 0.138i) and shows intrinsic LAOs ( A1). The constantly forced system (A = 0.04) has an unstable focus (0.08 ± 0.108i) and
shows intrinsic LAOs ( A2). B. λ = −0.1. The autonomous system (A = 0) has a stable focus (eigenvalues −0.15 ± 0.004i) and shows strongly damped SAOs ( B1). The
constantly forced system (A = 0.15) has an unstable focus (eigenvalues 0.07 ± 0.116i) and shows intrinsic LAOs ( B2). C. λ = 0. The autonomous system (A = 0) has a
stable focus (eigenvalues−0.005 ± 0.141i) and shows damped SAOs ( C1). The constantly forced system (A = 0.005) has an unstable focus (eigenvalues 0.0025 ± 0.142i)
and shows intrinsic LAOs ( C2). D. λ = 0.004. The autonomous system (A = 0) has an unstable focus (eigenvalues 0.001 ± 0.141i) and shows intrinsic LAOs ( D1). The
constantly forced system (A = 0.005) has an unstable focus (eigenvalues 0.008 ± 0.14i) and shows intrinsic LAOs ( D2). For these simulations, α = 2 and ε = 0.01.

points serve as initial conditions at the transitions between the
on and off states of the forcing (once 1:1 entrainment occurs, the
switching points always stay fixed).

A. Monoglot entrainment: Responses to periodic

inputs of cells having Hopf bifurcations

Here, we consider the FHN model with α = 2 and ε = 0.01 and
representative values of λ using a square-wave input with amplitude
A and a 50% duty cycle. Figure 2 shows representative phase-plane
diagrams (arranged in the order that will be used in the following
sections). As λ increases (panels B1, C1, D1, A1) the w-nullcline
moves to the right and the fixed-point transitions from a stable node
(away from the knee of the v-nullcline, on the left, not shown) to a

stable focus [Figs. 2(B1) and 2(C1)], to an unstable focus [Figs. 2(D1)
and 2(A1)], to an unstable node (away from the knee of the
v-nullcline, on the right, not shown). The stable focus in Fig. 2(B1)
is located close to the boundary between stable foci and nodes [fur-
ther away from the knee of the v-nullcline than in Fig. 2(A1)] and,
therefore, it exhibits strongly damped oscillations, but not sustained
oscillations.

The effect of periodic forcing by positive square wave inputs
(with amplitude A) can be thought of as an abrupt transition
between two autonomous FHN systems, one with A = 0 (forcing
“turned off”) and the other with a nonzero value of A (forcing
“turned on”). We refer to the latter as the tonically forced FHN
system. In the absence of time-dependent forcing, increasing (con-
stant) values of A have the same effect as increasing values of λ
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(increasing the constant forcing A is equivalent to increasing λ

via a translation of the variable w). Therefore, as A increases, the
fixed-point moves to the right and its stability properties change
accordingly. If the unforced FHN model exhibits large amplitude
oscillations (LAOs) for A = 0, then it will do so for A > 0 [e.g.,
Figs. 2(A2) and 2(D2)]. If the unforced FHN exhibits small ampli-
tude (damped) oscillations (SAOs), then the tonically forced FHN
model may exhibit SAOs with a weaker damping [e.g., the transition
from Figs. 2(B1) and 2(C1)] or LAOs [e.g., Figs. 2(B2) and 2(C2)].
We consider the response of the FHN model to periodic forcing in
these three scenarios below. Finally, if the unforced FHN model has
a stable node, then the tonically forced FHN model may have a stable
node, exhibit SAOs, or exhibit LAOs. The results for this scenario is
similar to the previous one and are presented in the supplementary
material. We note that the existence of LAOs does not preclude
the existence of damped SAOs for the small bistability range of
values of λ.

1. Unstable focus for the unforced system:

Entrainment of a self-sustained oscillator

Here, we describe the monoglot entrainment properties of the
FHN system when both the unforced (A = 0) and the constantly
forced system have an unstable focus with large amplitude oscil-
lations (LAOs) with a natural (intrinsic) period (T0 ≈ 200 for the
unforced system). The trajectories of both the unforced and con-
stantly forced system exhibit SAOs as they spiral out toward the LAO
limit cycle [Fig. 2(A)].

Figure 3(A) shows representative entrained responses of the
FHN model to periodic stimulation with the same amplitude as in
Fig. 2(A2). The 1:1 entrainment reflects the similarity between peri-
ods of the forcing and the unforced system as the system dynamically
transitions between the regimes described in Fig. 2(A). The region
of 1:1 entrainment in the Arnold tongue [Fig. 3(A4), green] widens
with increasing values of A. Figures 3(A1) and 3(A3) show examples
of entrained responses with different input–output ratios illustrating
the ability of the FHN model to follow the corresponding inputs via
a mixed-mode oscillations (MMOs) mechanism.

2. Stable focus for an unforced system: Entrainment

of a strongly damped oscillator

Figure 2(B) illustrates the behavior of the FHN model when
the unforced system (A = 0) is a stable focus with strongly damped
SAOs [Fig. 2(B1)] and the constantly forced system has an unstable
focus [as in Fig. 2(A2)] and displays LAOs [Fig. 2(B2)].

The entrainment of non-sustained oscillators has been signifi-
cantly less studied than the entrainment of sustained oscillators. One
important conceptual difference between the two protocols is the
lack of a reference period in the cell to be entrained. In the previous
section, we argued that the entrainment can be understood as the
abrupt transition between two oscillatory regimes and entrainment
occurs when the time scales of the two regimes are compatible. Here,
there is no oscillatory time scale associated with the unforced sys-
tem. Furthermore, while the constantly forced system is able to show
LAOs for large enough values of A [Fig. 2(B2)], for lower values of
A, the dynamics remains in a damped oscillatory regime without

LAOs (not shown). Therefore, entrainment, when it occurs, cannot
be explained simply by the compatibility of time scales, but requires
a deeper explanation in terms of dynamical systems ideas.

Figures 3(B4) and 3(C4) show the 1:1 entrainment regions
(green) for these two cases. Notably, they have a different shape
than the standard Arnold tongues [e.g., Fig. 3(A4)]. In particular,
1:1 entrainment is broken as A increases for constant values of T, but
maintained as T increases for constant values of A below some crit-
ical value (dashed horizontal line). This critical value corresponds
to the transition between two stability regimes for the constantly
forced system: unstable focus with LAOs [above, Fig. 3(B4)] and
stable focus [below, Fig. 3(C4)].

Comparison between Figs. 3(B2) and 3(C2) shows relatively
similar patterns for the entrainment in the two regimes for the
same oscillatory input. Comparison between Figs. 3(B3) and 3(C3)
shows that the increased entrainment robustness as T increases in
Fig. 3(C3) is associated with the presence of MMOs in the forced
system reflecting the dynamic interaction between the forcing and
the cell.

3. Stable node for an unforced system: Entrainment

of a non-oscillator

The results for this scenario are similar to the results for a sta-
ble focus that is not in the vicinity of a Hopf bifurcation and are
presented in Fig. S11.

4. Breaking of 1:1 entrainment

The 1:1 entrainment for the FHN model in the parameter
regimes discussed above breaks in different ways depending on
whether T is larger or smaller than its values in the 1:1 entrainment
region, and whether the unforced system is in a LAO regime or sta-
ble focus regime (Fig. 3). In all cases, the N:M patterns have N > M
for smaller values of T and N < M for larger values of T. In the first
case, the breaking of 1:1 entrainment is due to a cycle skipping mech-
anism where the input turns off before the response (v) jumps up,
and therefore the LAO fails to be generated. In the second case, the
breaking of 1:1 entrainment is due to a cycle adding mechanism. In
Fig. 3(A3), in contrast to the 1:1 entrainment case [e.g., Fig. 3(A2)],
v succeeds to jump up in spite of the fact that the input turns off.
This seeming disconnect between the input and the response leads
to cycle adding and indicates a more complex interaction of effective
time scales. In Fig. 3(B3), the cycle adding mechanism results from
the ability of the input to produce two output cycles per input cycle
while it is on. Note that the inter-oscillation interval (IOI) is larger
when the input is off than when it is on. None of these effects break
1:1 entrainment for larger values of T in Fig. 3(C). In fact, Fig. 3(C3)
shows that 1:1 entrainment is maintained for values of T for which
it is broken in the panels described above. This result is due to v
remaining roughly constant when the input turns off, instead of v
increasing as in the other panels.

5. Phase-plane analysis of entrainment mechanisms

Here, we use dynamical systems tools (extended phase-plane
analysis) to provide a more detailed explanation of the results dis-
cussed above. As we mentioned above, the dynamics of the forced
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FIG. 3. Representative entrainment patterns and Arnold tongues with monoglot structure in response to square-wave forcing when the fixed-point of the unforced system
is not in the vicinity of the subcritical Hopf bifurcation. For these simulations, α = 2 and ε = 0.01. A. λ = 0.016 [Fig. 2(A)] and A = 0.04. B. λ = −0.1 [Fig. 2(B)] and
A = 0.15. C. λ = −0.1 [Fig. 2(B)] and A = 0.05. A4, B4, and C4. Arnold tongues showing 1:1 entrainment regions (highlighted in green). The dashed-magenta horizontal
lines in panels B4 and C4 indicate the value of A for which the system with constant forcing A changes from a stable (below) to an unstable (above) focus. Remaining panels.
Time courses for v and the forcing signal for the values of T and A indicated in A4, B4, and C4 (black markers).

system can be interpreted as the abrupt transition between two
autonomous FHN systems, the off (A = 0) and on (A > 0) states.
Dynamically, the evolution of the response trajectory is governed
by an abrupt alternation between the phase-plane diagrams for
the corresponding values of A. Figure 4 shows the superimposed
phase-plane diagrams for A = 0 (black) and A > 0 (red). We use
“numbered arrows” (in black and red) to denote the switching points
between the unforced and forced systems.

Roughly speaking, the entrainability of the FHN system
requires compatibility between its effective time scale and the time
scale of the input. The former is primarily determined by the slow
manifolds located in vicinities of the v-nullcline. In the unforced sys-
tem (A = 0), the limit cycle trajectory evolves along these manifolds
and jumps up and down toward the right and left branches of the v-
nullcline, respectively, as time progresses [e.g., Fig. 2(A)]. The inter-
action between the two time scales is interpreted as the v-nullcline
rising and shifting down as the input turns on and off, respectively.
This interaction process is affected by other factors, including the
presence of fixed-points in one of the two regimes [e.g., Figs. 2(B2)
and 2(B3)] that may transiently create slower dynamics. In addition,
the presence of nonlinearities may disrupt the evolution of the
trajectory as the v-nullcline moves and adds additional time scales

by creating small amplitude oscillations (SAOs), for example. These
may favor or oppose the entrainability of the system. While oscilla-
tory time scales are usually associated with sustained oscillators, they
are still present in damped FHN oscillators (close, but away from the
sustained oscillations regime) and they become apparent (and func-
tional) as they interact with the input. The presence of oscillatory
time scales may also favor or oppose the entrainability of the FHN
system.

Below, we discuss a number of representative cases in detail,
both to highlight the basic aspects of entrainability in the FHN
system and to develop language for subsequent sections.

6. 1:1 Entrainment [figs. 4(a2), 3(b2), 4(c2), 4(c3),

corresponding to figs. 3(a2), 3(b2), 3(c2), 3(c3),

respectively]

When the forcing turns on (2), the v-nullcline raises and the
trajectory, located further away from the lower knee, jumps up
toward the right branch, moves up (slowly) along it, reaches the
upper knee, and jumps down toward the left branch. The trajectory
then moves down (slowly) along the left branch until the forcing
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turns off (1). When this happens, the v-nullcline shifts down, affect-
ing the direction of motion of the trajectory. In Fig. 4(A2), the
trajectory is about halfway to the lower knee and is affected only
slightly by the shift in the v-nullcline. In Fig. 4(B2), the trajectory
is affected significantly by the shift as it jumps to the left, and then
moves down toward the lower knee at which point the forcing turns
on (2). In Fig. 4(C2), the size of the effect that the shift in the null-
cline has on the trajectory is in between the two cases described
above.

The dynamics in Fig. 4(C3) are similar to those described
above, except that the on-off transition of the forcing (1) occurs
very close to the lower knee. The trajectory jumps to the left near
the lower knee. Because of that, in contrast to the previous figures,
the trajectory evolves on a much slower time scale than the ones at
higher points on the slow manifold (in vicinities of the left branch).
Therefore, it does not reach the lower knee, while the forcing is off
and only jumps up when the forcing turns on (2).

7. 1:2 Entrainment [fig. 4(b3), corresponding to

fig. 3(b3)]

When the forcing turns off (1), the v-nullcline shifts down
and the trajectory is left closer to the upper knee, thus acceler-
ating the jump down toward the left branch. The trajectory then
evolves slowly along the left branch until it reaches the lower knee,
at which point the forcing turns on (2). When this happens, the v-
nullcline raises and trajectory jumps up to the right branch. The
trajectory evolves along the right branch, reaches the upper knee,
and jumps down. Because T is relatively large (forcing relatively
slow), the trajectory is able to jump up once more before the forc-
ing turns off (1), and, therefore, can produce two LAOs per input
cycle.

The (very) slow time scale operating in Fig. 4(C3), where 1:1
entrainment is maintained, is due to the fact that the tonically forced
system is in a stable focus regime. The switch to an unstable focus
regime (for the tonically forced system) in Fig. 4(B3) “destroys”
this time scale and therefore the maintenance of 1:1 entrainment
is no longer possible. More specifically, the increase in the input
amplitude (A) as the tonically forced system transitions from hav-
ing a stable fixed-point [Fig. 3(C3)] to an unstable fixed-point
[Fig. 3(B3)], allows the forced oscillator corresponding to the latter
to jump up just before the forcing is turned off. In contrast, for the
lower value of A [Fig. 3(C3)], the forced oscillator is still in a vicinity
of the left branch of the v-nullcline when the oscillator is turned off
and remains there until the forcing is turned on again. The resulting
longer time scale is associated with the 1:1 entrainment observed for
this value of A.

8. 3:4 Entrainment [fig. 4(a3), corresponding to

fig. 3(a3)]

These dynamics are more complex than those for Fig. 4(B3)
since the first and third oscillations in the shaded region in
Fig. 3(A3) occur while the forcing is off. Starting from the beginning
of the shaded region, when the forcing turns off (1) the v-nullcline
shifts down, the trajectory jumps down, it moves slowly along the

lower knee and jumps up toward the right branch creating an oscil-
lation, which is induced by the forcing ceasing to be active rather
than by the forcing turning on. A second oscillation is generated
after the forcing turns on (2) and this oscillation remains after
the forcing turns off (3) since the trajectory needs to reach the
upper knee in order for the oscillation to be terminated. In other
words, the cell’s intrinsic dynamics dominate over the forcing here
since the forcing does not induce or terminate this oscillation. The
third oscillation is induced by the forcing (4). When the forcing
turns off (5), the trajectory is very close to the lower knee, and
therefore the trajectory jumps up well in advance of the forcing
turning on (6). In fact, the trajectory is able to reach the upper
knee when the forcing turns on and jumps down roughly when this
happens.

9. 2:1 Entrainment [figs. 4(b1) and 4(c1),

corresponding to figs. 3(b1) and 3(c1)]

The 2:1 patterns in both figures are generated by a cycle skip-
ping mechanism. When the forcing turns on (2), the trajectory is
approaching the stable focus. The v-nullcline raises and releases the
trajectory that jumps up toward the right branch. The turning off of
the forcing (3) roughly coincides with the passing of the trajectory to
the upper knee. The trajectory jumps down toward the left branch
(it would do that even in the absence of the forcing remained on,
but the shifting down of the v-nullcline accelerates the process). The
forcing turns on again (4) when the trajectory is evolving along the
left branch. The ability of the cell in panel B1 to generate an oscil-
lation in response to this depends on the competition between two
time scales determined by the slow manifold and the input period.
Cycle skipping results because the forcing turns off (1) before the
trajectory manages to pass through the lower knee and jump up.
The trajectory then needs to wait for the forcing to turn on (2) in
order to jump up. In the absence of the forcing, the trajectory would
converge to the stable focus. The dynamics in panel C1 is similar to
those in panel B1, except that the forcing turning off (1, currently
3) does not prevent the trajectory to jump up. Even if the forcing
remained on the trajectory would not jump up, but converge to the
stable focus. From that perspective, the successive forcing turning
off (1, currently 3) and on (2, currently 4) are necessary to maintain
the 2:1 pattern.

10. 4:3 Entrainment [fig. 4(a1), corresponding to

fig. 3(a1)]

The mechanism of generation of 4:3 patterns is different than
the ones for the 2:1 patterns described above, resulting from the fact
that both the unforced and tonically forced systems are oscillators
and have intrinsic oscillatory time scales that operate independently
of the input. The trajectory jumps up toward the right branch even
if the forcing is turned off (1) and is already moving along the left
branch when the forcing turns off (3). Moreover, the forcing turn-
ing on (2) has little effect on the evolution of the trajectory, which is
already moving along the right branch. The stronger effect the input
has on the response oscillatory dynamics, and the one that deter-
mines the 4:3 pattern, is the forcing turning off (1) that delays the
jumping up of the trajectory.
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FIG. 4. Phase-plane diagrams for the entrained patterns in response to square-wave input shown in Fig. 3. The dashed curves are the v-nullclines for the unforced (black)
and forced (red) systems. The green line is the w-nullcline. The solid curves are the trajectories with the time intervals when the forcing is off and on shown in black and
red, respectively. The numbers next to the arrows indicate the points in the phase-plane diagram at which the forcing turns off (black open circles) and on (red open circles).
A. λ = 0.016 and A = 0.04 [Fig. 3(A)] with 4:3 ( A1), 1:1 ( A2), and 3:4 ( A3) patterns. B. λ = −0.1 and A = 0.15 [Fig. 3(B)] with 2:1 ( B1), 1:1 ( B2), and 1:2 ( B3) patterns.
C. λ = −0.1 and A = 0.05 [Fig. 3(C)] with 2:1 (C1) and 1:1 ( C2 and C3) patterns. For these simulations, α = 2 and ε = 0.01.

B. Polyglot entrainment in close vicinities of Hopf

bifurcations

Both the standard and non-standard 1:1 Arnold tongues dis-
cussed in the previous section consisted of 1:1 entrainment regions
where horizontal segments of 1:1 entrainment for constant values
of A (as well as vertical segments for constant values of T) are con-
nected. Here we discuss a more complex type of 1:1 entrainment
region structure arising in the FHN model, consisting of discon-
nected horizontal segments for low values of A, while the segments
remain connected for higher values of A [e.g., Figs. 5(A1) and 5(B1)].
These regions have a multi-lobed 1:1 Arnold tongue. We refer to this
phenomenon where 1:1 entrainment is interrupted as T changes (for
constant values of A), and is restored as T changes further, as polyglot
entrainment. We use the same values of α = 2 and ε = 0.01 as in the
previous section as well as square-wave input with amplitude A (50%
duty cycle).

We have observed polyglot entrainment in two parameter
regimes: when the unforced system has a stable focus and is a
damped oscillator [Fig. 5(A1)], or when it has an unstable focus

and is a sustained oscillator [Fig. 5(B1)]. We discuss these two cases
below. The main differences between them and the ones described
in the previous sections (monoglot entrainment) is the location of
the fixed-point, which is closer to the minimum of the v-nullcline in
Fig. 2(C1) than in Fig. 2(B1). This creates a region of sensitivity to
perturbations that is responsible for the generation of the multiple
1:1 tongues.

1. Stable focus for the unforced system: Polyglot

entrainment of a damped oscillator

We observed polyglot entrainment responses when the
unforced FHN system has a stable focus in the vicinity of a Hopf
bifurcation located near the lower knee of the cubic nullcline (Fig. 5).
Here, we take two representative cases. First, when the forced sys-
tem has unstable focus (along with sustained oscillations) as shown
in Fig. 5(A1). Figures 5(A3), 5(A5), and 5(A7) show representa-
tive traces for the 1:1 entrainment in the three tongues shown in
Fig. 5(A1) (above the horizontal line). They are generated by an
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MMO mechanism that controls the time scale by adding SAOs as
the period increases and therefore the oscillatory output adapts to
the input. The corresponding extended phase-plane diagrams are
presented in Fig. 6.

For the first (left) tongue [Figs. 5(A3) and 6(A)], there are no
MMOs and the entrainment is standard. The trajectory arrives at the
lower knee of the v-nullcline and jumps up toward the right branch.
The motion of the v-nullcline following the input does not interfere
with this process.

For the second (middle) tongue [Figs. 5(A5) and 6(C)], the tra-
jectory crosses the v-nullcline in a vicinity of the lower knee, to the
right, and turns back instead of jumping up toward the right branch.
The forcing turns on when the trajectory is below the lower knee.
This raises the v-nullcline leaving the trajectory in a region of fast
fibers and therefore the trajectory jumps up. For the third (right)
tongue [Fig. 5(A7)], the mechanism is similar, but the larger forcing
period allows the trajectory to evolve around the lower knee twice
before jumping up.

These mechanisms of 1:1 entrainment can be disrupted in dif-
ferent ways [Figs. 5(A2), 5(A4), 5(A6), and 5(A8)]. In Fig. 5(A2), the
forcing is too fast, and activates the SAO mechanism only once every
three cycles. In Fig. 5(A4) [see Fig. 6(B)], when the forcing turns on
(2), the v-nullcline raises and the fixed-point raises too. As a result,
the trajectory spirals out around this (forced) unstable fixed-point
until the forcing turns off (3). When this happens, the trajectory
spirals into the (unforced) stable fixed-point until the forcing turns
on again (4) and the trajectory is able to jump up toward the right
branch as the result of the v-nullcline raising and leaving the tra-
jectory in a region of fast fibers (below the knee). These additional
oscillations disrupt the ability of the cell to follow the input. The
disruption mechanisms in Figs. 5(A6) and 5(A8) are similar to this
one.

Second, when the forced system has a stable focus (and damped
oscillations) as shown in Fig. 5(B1). Figures 5(B3), 5(B5), and 5(B7)
show representative traces for the 1:1 entrainment in the three
tongues shown in Fig. 5(B1) (below the horizontal line). They are

FIG. 5. Representative entrainment patterns and Arnold tongues with polyglot structure in response to square-wave forcing when the unforced system is a damped oscillator
with a fixed-point in the vicinity of a subcritical Hopf bifurcation. A1 & B1. Arnold tongues showing 1:1 entrainment regions (highlighted in green). Remaining panels. Time
courses for v and the forcing for the values of T and A indicated in A1 and B1 (black markers). The dashed-magenta (horizontal) lines in panels A1 and B1 indicate the
value of A for which the system with constant forcing A changes from a stable (below) to an unstable (above) focus. A. A = 0.005. B. A = 0.002 82. We used the following
parameter values: α = 2, λ = 0 and ε = 0.01. The fixed-point for the unforced system is a stable focus [Fig. 2(C)].
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FIG. 6. Phase-plane analysis of polyglot entrainment dynamics when the unforced system is a damped oscillator and the constantly forced system has an unstable focus.
Left column. Time courses for v and the forcing. Middle column. Phase-plane diagrams. Right column. Phase-plane diagram magnification in vicinities of the knee of the
v-nullclines. The black (red) portions of the v time courses and trajectories correspond to the forcing turned off (on). A. 1:1 entrainment for T = 210 [Fig. 5(A3)]. B. 2:1
entrainment for T = 230 [Fig. 5(A4)]. C. 1:1 entrainment for T = 257 [Fig. 5(A5)]. We used the following parameter values: α = 2, λ = 0, A = 0.005 and ε = 0.01
[Fig. 5(A)].

also generated by MMO mechanisms similar to the ones described
above as illustrated in the Figs. 7(A) and 7(C). The breaking of
entrainment mechanisms is also similar to those discussed above,
except that in some cases, the timing of the output is not good
enough to cause the cell to jump up toward the right branch and
produce oscillations [Figs. 5(B2) and 5(B6)]. By the time the forc-
ing is turned on, the trajectory is “inside” the v-nullcline, and by
the time the trajectory arrives in the region of fast fibers (below the
v-nullcline), the forcing is off.

2. Unstable focus for the unforced system: Polyglot

entrainment of a self-sustained oscillator

When the unforced system has an unstable focus, the forced
system also has an unstable focus. Polyglot entrainment [Fig. 8(A1)]
has also been observed when the unforced system has an unstable
focus (and hence self-sustained oscillations) in the vicinity of a Hopf
bifurcation. Figures 8(A3) and 8(A5) show representative traces for
the 1:1 entrainment in the two tongues shown in Fig. 8(A1). In the

polyglot entrainment observed here, the tongues do not merge as
the forcing amplitude increases. The corresponding extended phase-
plane diagrams are presented in Fig. 9.

For the first (left) tongue [Figs. 8(A1) and 8(A)], there are no
MMOs and the 1:1 entrainment is standard. The trajectory when
reaches the lower knee of the v-nullcline jumps up toward the right
branch. For the second (right) tongue, 1:1 entrainmemt arise as a
result of MMOs. When the forcing turns off, the trajectory is located
in the very close vicinity of an unstable fixed-point (focus), thus,
larger forcing period allows the trajectory to spiral out around the
lower knee. When the forcing turns on, the trajectory is located far
away from the vicinity of an unstable fixed-point, thus, jumps up
toward the right branch and the large forcing period allow the tra-
jectory to traverse around the phase-plane, and completes the round
[Fig. 9(C)].

The disruption of 1:1 entrainment is shown in Fig. 8(A4)
in which 2:2 patterns are observed for the corresponding forcing
period. When the forcing turns off for the first forcing cycle, the
trajectory is close to the unstable fixed-point near the lower knee,
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hence, it spirals out and when the forcing turns on, the trajectory
is far from fixed-point of the forced system, hence the trajectory
shoots up to the right creating a spike. For the second input, the
forcing turns off and on far away from the lower knee thus a spike is
observed with no SAOs [Fig. 9(B)].

C. Monoglot and polyglot entrainment in other

parameter regimes

In the above sections, we have focused on a scenario in which
the unforced system has some degree of time scale separation
(ε = 0.01), undergoes a subcritical Hopf bifurcation as λ is var-
ied (α = 2), and the periodic forcing F(t) takes the form of a
square wave with a 50% duty cycle. Since the location and criti-
cality of the Hopf bifurcation depends on model parameters, we
also explored other parameter regimes. We have observed both
monoglot and polyglot entrainment in systems with less time scale
separation (ε = 0.1), a supercritical Hopf bifurcation as λ is varied

(α = 4), square-wave forcing with various duty cycles, and sinu-
soidal forcing. Here, we briefly discuss the results in these other
parameter regimes.

First, we consider time scale separation. As ε increases, the
separation of time scales becomes less pronounced and trajectories
that would leave the lower knee region along fast fibers may no
longer do so. Nevertheless, for ε = 0.1, we still observe both stan-
dard and nonstandard monoglot Arnold tongues similar to the case
with ε = 0.01 (cf. Fig. 3 and Fig. S16). For ε = 0.1, we also observe
polyglot entrainment responses (cf. Fig. 5 and Fig. S17). However,
for ε = 1, the forced system only exhibits subthreshold responses
(moving around the lower knee) and thus we do not consider them
to be entrained according to our previous description of entrain-
ment. In these cases, the stable fixed-points are located along the
middle branch of the cubic nullcline.

Second, we consider the criticality of the Hopf bifurcation.
When the unforced system undergoes a supercritical Hopf
bifurcation (α = 4), we see a monoglot entrainment structure

FIG. 7. Phase-plane analysis of polyglot entrainment dynamics when the unforced system is a damped oscillator and the constantly forced system has a stable focus.
Left column. Time courses for v and the forcing. Middle column. Phase-plane diagrams. Right column. Phase-plane diagram magnification in vicinities of the knee of the
v-nullclines. The black (red) portions of the v time courses and trajectories correspond to the forcing turned off (on). A. 1:1 entrainment for T = 210 [Fig. 5(B3)]. B. 3:2
entrainment for T = 230 [Fig. 5(B4)]. C. 1:1 entrainment for T = 257 [Fig. 5(B5)]. We used the following parameter values: α = 2, λ = 0, A = 0.002 82 and ε = 0.01
[Fig. 5(B)].
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FIG. 8. Representative entrainment patterns and Arnold tongue with polyglot structure in response to square-wave forcing when the unforced system is a self-sustained
oscillator with a fixed-point in the vicinity of a Hopf bifurcation. A1. Arnold tongue showing 1:1 entrainment regions (highlighted in green). Remaining panels. Time courses
for v and the forcing for the values of T and A indicated in A1 (black markers). We used the following parameter values: α = 2, A = 0.005, λ = 0.004 and ε = 0.01. The
fixed-point for the unforced system is an unstable focus [Fig. 2(D)].

with standard and nonstandard Arnold tongues similar to the
subcritical Hopf case (α = 2, cf. Figs. 3 and S1). For α = 4, we also
observed polyglot entrainment responses (cf. Figs. 5 and S2, see
also Figs. S3–S5). The difference we observed is that the region of
polyglot entrainment for α = 4 is larger than for α = 2 (cf. Figs. 1
and S6).

Third, we consider the effect that the duty cycle of the square-
wave forcing has on monoglot and polyglot entrainment. We
checked cases where the duration of the “on” period is either
longer or shorter than the duration of the “off” period (75% on,
25% off and 25% on, 75% off, respectively). We found that vary-
ing the duty cycle had very little effect on the Arnold tongue
in the standard monoglot entrainment case [cf. Figs. 3(A1) and
S18]. However, in the case of nonstandard monoglot entrain-
ment, reducing the relative duration of the “on” period (a 25%
duty cycle) leads to a wider Arnold tongue [cf. Figs. 3(B1) and
S18]. Similarly, in the case of polyglot entrainment, the size
of the 1:1 entrainment regions in the input period-amplitude
plane increases as the duty cycle is decreased [Figs. 5(A1) and
S19].

Finally, we consider the form of the periodic forcing. With
sinusoidal forcing, we observe standard monoglot Arnold tongues
but we do not find the type of nonstandard monoglot Arnold
tongues that were observed with square-wave forcing (cf. Figs. 3
and S12). In addition to monoglot entrainment, with sinusoidal
forcing we also observed polyglot entrainment (Fig. S13). We note
that the range of λ values exhibiting polyglot entrainment with
sinusoidal forcing is larger than the corresponding range for square-
wave forcing (cf. Figs. 1 and S15). To explain this observation, we
focused on a case (λ = −0.065, α = 2, ε = 0.01) for which the
unforced system has a stable focus and we have monoglot entrain-
ment with square-wave forcing but polyglot entrainment with sinu-
soidal forcing (see Fig. S25). With A = 0.03 and a forcing period
of T = 230, we have 1:1 entrainment with both types of forcing. In
both situations, when the forcing is either off (in the square-wave
case) or gradually approaching zero (in the sinusoidal case), then
the trajectory is moving in the direction of converging to the stable
fixed-point. With sinusoidal forcing, once the forcing reaches zero
then it begins to increase and the v-nullcline gradually moves up.
The trajectory stays in the vicinity of the moving fixed-point, and
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FIG. 9. Phase-plane analysis of polyglot entrainment dynamics when the unforced system is a self-sustained oscillator. Left column. Time courses for v and the forcing.
Middle column. Phase-plane diagrams. Right column. Phase-plane diagram magnification in vicinities of the knee of the v-nullclines. The black (red) portions of the v time
courses and trajectories correspond to the forcing turned off (on). A. 1:1 entrainment for T = 205 [Fig. 8(A3)]. B. 2:2 entrainment for T = 267 [Fig. 8(A4)]. C. 1:1 entrainment
for T = 398 [Fig. 8(A5)]. We used the following parameter values α = 2, λ = 0.004, A = 0.005, and ε = 0.01 [Fig. 8(A)].

depending on the speed at which the trajectory is moving relative to
the speed at which the v-nullcline is moving, the trajectory may cross
the nullcline and change direction. When this occurs, it can disrupt
1:1 entrainment (see Fig. S26 and Supplemental Movie 1). As the
forcing period increases, the v-nullcline moves more slowly, affect-
ing the relative speeds of the trajectory and nullcline movements.
Thus, with sinusoidal forcing, 1:1 entrainment can be lost and then
regained depending on these relative speeds as the forcing period
is varied, leading to a polyglot entrainment structure. In contrast,
with square-wave forcing, when the forcing turns on the v-nullcline
abruptly moves away from the trajectory located near the stable
fixed point of the unforced system (see Fig. S27 and Supplemen-
tal Movie 2). Thus, the trajectory does not have an opportunity to
cross the v-nullcline and change direction. This leads to a monoglot
entrainment structure as the forcing period is increased.

D. Generality of polyglot entrainment

In the previous sections, we analyzed the phenomenon of poly-
glot entrainment in the FHN model and uncovered the underlying
mechanisms. The presence of polyglot entrainment (without using

this name) has been reported before in the Selkov model.72 The
question arises whether this type of entrainment is a general phe-
nomenon for a certain class of oscillatory systems. Here, we briefly
explore the 1:1 response patterns in models of neuronal, circadian,
chemical and glycolytic oscillations in vicinities of a Hopf bifurca-
tion and compare them with a representative example of another
bifurcation type. In contrast to the FHN model, in these addi-
tional models, the parameters have a direct biological or chemical
interpretation.

1. Morris–Lecar model

We investigated polyglot entrainment responses in two param-
eter regimes corresponding to excitability properties being governed
by a Hopf bifurcation (type II) or a SNIC (saddle-node on an
invariant cycle) bifurcation (type I) (Fig. S21).

In type I excitability, a SNIC bifurcation occurs at an Iapp value
near the lower knee of the v-nullcline and is responsible for the onset
of oscillations. A Hopf bifurcation occurs at a higher Iapp value, near
the upper knee of the v-nullcline, and is responsible for the termi-
nation of the oscillations. In the vicinity of the Hopf bifurcation, we
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FIG. 10. Generality of polyglot entrainment in models other than the FHN model in response to square-wave forcing. A. Polyglot entrainment in the Morris–Lecar model of
neuronal oscillations with type II excitability. B. Polyglot entrainment in the 2D oregonator model of chemical oscillations. C. Polyglot entrainment in the Novak–Tyson model
of circadian oscillations.

found polyglot entrainment responses. We did not observe polyglot
entrainment near the SNIC bifurcation.

For type II excitability, we have Hopf bifurcations near the
lower and upper knees that are responsible for onset and termina-
tion of oscillations, respectively. We found polyglot entrainment in
the vicinity of both Hopf bifurcations [Figs. 10(A) and S22].

2. The 2D oregonator and Novak–Tyson models

In both the 2D Oregonator and Novak–Tyson models, oscil-
lations are generated via a Hopf bifurcation when the fixed-point
is located in the vicinity of a knee of a cubic-like nullcline. We
observed polyglot entrainment in both cases [see Figs. 10(B) and S23
for oregonator; Figs. 10(C) and S24 for Novak–Tyson].

3. The Lengyel–Epstein model: The presence of a Hopf

bifurcation is not sufficient for polyglot entrainment

Our results above suggest that the polyglot entrainment is
generally found for models where the generation of oscillations
is governed by a Hopf bifurcation. Here, we show that polyglot
entrainment is not always found in such models. More specifically,
the Lengyel–Epstein model42,43 for chemical oscillations is a coun-
terexample to the putative principle that models having a Hopf
bifurcation as the mechanism for generation of oscillations exhibit
polyglot entrainment [Fig. 11(A4)].

However, in contrast to the previous examples, the Hopf bifur-
cation fixed-point in the Lengyel-Epstein system is located far from
the knee of the cubic-like nullcline [Figs. 11(A1) and 11(A2)].

IV. DISCUSSION

We have identified and explained the dynamical mechanisms
underlying a novel type of entrainment when the unforced system,

not necessarily a sustained oscillator, is in the vicinity of a Hopf
bifurcation. The 1:1 entrainment area in the frequency-amplitude
parameter space has a different shape than that of a classical Arnold
tongue diagram and has a complex boundary with multiple regions
of 1:1 entrained behavior. We termed this polyglot entrainment
and referred to the type of entrainment characterized by the clas-
sical Arnold tongue structure with a single 1:1 region as monoglot
entrainment. Split 1:1 entrainment has been observed in models72

and in experiments with a saline oscillator22 in response to periodic
inputs. To our knowledge, this phenomenon has not been fully char-
acterized and the mechanisms underlying polyglot entrainment are
not well understood. In this paper, we set out to address these issues.

A. Dynamical mechanisms of polyglot entrainment

The unforced (or constantly forced) FHN model is two-
dimensional and amenable to phase-plane analysis. When the FHN
model is subjected to time-dependent forcing, the system becomes
three-dimensional. However, if the time-dependent forcing is peri-
odic with abrupt transitions between on and off states, such as
square-wave forcing, then we can decompose the system into a pair
of two-dimensional systems (one with the forcing on, and one with
the forcing off) and use phase-plane analysis to study how changes
in the vector field in response to the forcing turning on and turning
off affect the evolution of the trajectory leading to 1:1 entrainment
or the lack thereof. The changes in the v-nullcline and in the location
and stability of the fixed-points in response to the forcing parame-
ters aids in our analysis. Using this extended phase-plane analysis
approach, we characterized how 1:1 entrainment can be broken
and then regained as the forcing period is varied, resulting in poly-
glot entrainment. This type of entrainment is only possible when
the unforced system is in the vicinity of a Hopf bifurcation and
exhibits either weakly damped oscillations (near the Hopf point with

Chaos 32, 063137 (2022); doi: 10.1063/5.0079198 32, 063137-14

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

λ < λH) or weak self-sustained oscillations (near the Hopf point
with λ > λH), and the forcing is weak enough. For stronger forc-
ing, the 1:1 tongues merge and the polyglot entrainment transitions
into monoglot entrainment (e.g., Fig. 5).

1:1 entrainment reflects the compatible interaction between
two time scales, the input period (or, alternatively, the duration of
the on phase) and the time it takes the trajectory to evolve between
two upstroke times. In terms of the phase-plane diagram, the latter
is the time it takes the trajectory to evolve from the upstroke point
[e.g., the red dot in Figs. 6(A3) and 6(C3)] back to it. 1:1 entrain-
ment occurs if and only if these two characteristic times match. The
forcing activation raises the v-nullcline and facilitates the upstroke
by leaving the trajectory below the v-nullcline and away from the
basin of attraction of the stable fixed-point, if it exists. The stronger
the input amplitude A, the larger the distance between the trajec-
tory and the v-nullcline, and the easier it is for the cell to produce an
upstroke.

In the simplest 1:1 entrainment situation, the cellular response
time scale is controlled by the slow manifolds. For low enough values
of ε, the trajectory evolves in vicinities of the right and left branches
of the v-nullcline, and the upstroke and downstroke times are negli-
gible. This type of 1:1 entrainment can be lost for various reasons as
the period T increases. One reason is that the trajectory may arrive to
the upstroke region in the phase-plane diagram too early, and cross
the unstable branch of the v-nullcline engaging in small amplitude

oscillations [e.g., Fig. 6(A3), in Figs. 6(B3) and 6(C3) the black tra-
jectories cross the unstable, black, branches of the corresponding
v-nullclines]. In this case, the rise of the v-nullcline due to the forcing
may not be enough to leave the trajectory below the v-nullcline, and
therefore the upstroke is missed. Another reason is that trajectories
arriving too early to the upstroke region may produce an upstroke
while the forcing is still off.

Polyglot entrainment occurs if the 1:1 entrainment can be
recovered as T continues to increase. This requires an additional
component to the cellular time scale that delays the arrival of the
trajectory to the upstroke region until the forcing is turned on. Our
analysis demonstrates that this additional component is provided by
the time it takes the trajectory to move around the lower knee of
the v-nullcline roughly an integer number of times, and be back in
the upstroke region when the forcing is turned on [e.g., Fig. 6(C3)].
This is reflected as small amplitude oscillations in the cell’s responses
during the forcing’s off phase.

Key to these mechanisms is the development of a slow time
scale by trajectories moving around the lower knee of the v-nullcline,
which allows for the cell’s response to match the forcing period. This
mechanism can operate for systems in which excitability occurs via
Hopf bifurcations, but not saddle-node on invariant circle bifurca-
tions. These mechanisms also require that ε is small enough so that
the system produces relaxation oscillations. For larger values of ε,
trajectories are able to cross the middle branch of v-nullcline further

FIG. 11. Monoglot entrainment in the LE model despite the fixed-point of the unforced system being in the vicinity of a Hopf bifurcation. A1. Bifurcation diagram showing a
Hopf bifurcation as the parameter a is varied. A2. Trajectory (blue) in the phase-plane with the fixed-point of the unforced system before bifurcation (a = 15). A3. Trajectory
in phase-plane after bifurcation (a = 16). A4. Arnold tongue with monoglot structure in the vicinity of Hopf.
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away from the knee at the expense of the upstroke. By moving the
location of the fixed-point toward the center of this middle branch,
the cell recovers the ability to produce an upstroke, but we have not
observed polyglot entrainment for the same parameter settings that
produce polyglot entrainment with smaller values of ε. In this paper
we focused on polyglot entrainment in systems exhibiting oscilla-
tions of relaxation type. Further research is needed to investigate
whether and under what conditions polyglot entrainment can be
obtained for other types of oscillators.

Additionally, these mechanisms also require that A is small
enough. For larger values of A, the v-nullcline raises to higher levels
in response to the forcing turning on, thus facilitating the upstroke
for larger ranges of T. Therefore, the mechanisms of disruption of
1:1 entrainment discussed above cease to operate.

B. Precursory studies on polyglot entrainment

The literature on nonlinear dynamics and entrainment is vast
with many classical texts and a wide variety of applications to natu-
ral and engineered systems.55 Two studies that report results closely
related to polyglot entrainment are González et al.22 and Verveyko
et al.72 In Ref. 22, the authors perform experiments with a saline
oscillator. This simple hydrodynamical oscillator consists of a con-
tainer with salt water submerged in a larger container of fresh water.
A tiny hole in the container with salt water (which is plugged until
the start of the experiment) allows salt water to flow downward out
of the smaller container due to the higher density of salt water com-
pared to fresh water. However, after a few minutes, the flow reverses
and fresh water flows upward into the smaller container for several
tens of seconds.

This cycle then repeats thousands of times until the saline gra-
dient dissipates. The oscillator can be subjecting to time-dependent
forcing by periodically infusing a fixed volume of fresh water and
then withdrawing it using a syringe, referred to as a volume pulse
protocol. González et al. found that when the period of the volume
pulse forcing was increased from 15 to 20, 30, 50, and 60% of the
intrinsic period of the saline oscillator, the observed entrainment
patterns went from 1:1 to 2:2, 2:1, 2:2, and back to 1:1. Although
an Arnold tongue diagram was not plotted for these experimental
results, we anticipate such a diagram would show a polyglot entrain-
ment structure similar to what we have found in the FHN and other
models.

In Ref. 72, the Selkov model of glycolytic oscillations was stud-
ied under periodic forcing. Glycolysis is a metabolic process that
converts glucose into pyruvic acid, thereby releasing energy that is
used to form ATP. The Selkov model66 is a two-dimensional ODE
system describing a key step of the glycolytic reaction. Verveyko
et al. modeled periodic forcing of a model parameter to represent
oscillations in the substrate for this enzymatic reaction. They char-
acterized the entrainment patterns using an Arnold tongue diagram
(see Fig. 2 of their paper) and found that inside the 1:1 tongue there
is an area where trajectories diverge to infinity (see also Ref. 8)
and therefore are not entrained. This leads to a split 1:1 tongue,
with interruptions between regions of 1:1 entrainment, similar to
our Arnold tongue diagrams for polyglot entrainment. However, the
mechanism for polyglot entrainment is different, as the breaking of

1:1 entrainment is due to the existence of other N : M patterns rather
than unbounded solutions.

C. Previous studies on entrainment of damped

oscillators

Although the entrainment of damped oscillators has been less
explored, there have been some experimental and theoretical stud-
ies on this topic. Experimental work shows the presence of damped
oscillations in the circadian clock of insects.4 In mammals, the
central circadian clock (the suprachiasmatic nucleus, or SCN) is
comprised of a heterogeneous cell population with a large propor-
tion of cells that show weak (damped) oscillations.73 In a theoretical
work, Woller et al. studied a classic circadian oscillator model (the
Goodwin model) and compared the entrainment properties when
the unforced system shows either damped oscillations or limit cycle
oscillations.78 They found that the range of entrainment is wider
(entrainment is achieved over a wider range of forcing periods)
when the unforced system exhibits damped oscillations. With peri-
odic forcing applied to limit cycle oscillators, they found a richer
set of behaviors, including non-entrained chaotic and quasiperiodic
solutions, which are not desirable biologically. A modeling study
by Westermark et al. investigated the effect of noise on damped
oscillators.76 They showed that noise can generate sustained oscil-
lations in a damped oscillator. They compared their simulations to
experimental data from individual cells, and concluded that whether
the circadian clock is a damped or self-sustained oscillator at the
single-cell level could not be determined.

Further work by Gonze et al.24 considered synchronization of
populations of coupled circadian oscillators. In their work, they
showed that when the coupled oscillators being considered are
damped, high synchronization efficiency is achieved. Work by
Bernard et al.5 also shows that efficient and robust synchronization
is achieved in coupled damped oscillators. Komin et al.38 studied
entrainment of coupled oscillators where each oscillator has a differ-
ent intrinsic period. They found that cells having damped oscillators
are entrained more efficiently to external forcing than cells with
sustained oscillations with different intrinsic periods. Gu et al.27

investigated the range of entrainment for damped oscillators in dif-
ferent regions of the SCN. They found that the entrainment range
widens when the proportion of damped oscillators in the light insen-
sitive region of the SCN increases, whereas the entrainment range
narrows when the proportion of damped oscillators in the light
sensitive region increases.

To our knowledge, previous studies have not reported polyglot
entrainment of damped oscillators.

D. Future work

Our results open a number of questions. First, 1:1 entrainment
implies the presence of an input–output phase relationship. Clas-
sical studies on entrainment have paid little attention to how the
phase of entrainment depends on the input frequency. In Perez-
Cervera et al.,54 it is shown that the timing of the input in relation
to the phase of the output oscillation (i.e., whether it arrives before
or after the crest of the oscillation) has a significant effect on the
entrainment properties of the system. Motivated by these results, we
find that in the FHN model with square-wave forcing, the phase
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of entrainment can either be positive (the oscillation peaks after
the forcing turns on) or negative (the oscillation peaks before the
forcing turns on) when the unforced system is a self-sustained oscil-
lator and we have a monoglot entrainment structure [Fig. S20(A)].
However, when the unforced system is a damped oscillator, we have
only observed positive phases of entrainment for both monoglot and
polyglot entrainment structures [Figs. S20(B)–S20(D)]. Further-
more, the phase-shift structure (shapes of the phase of entrainment
vs forcing period curves) depends on the type of 1:1 entrainment.
Future work should address these issues in more detail by charac-
terizing the phase-shift structure and understanding the underlying
mechanisms.

Second, we have focused on models in which the unforced
system is planar (two-dimensional). However, models with impli-
cations to realistic systems found in nature are expected to be
higher-dimensional. Although analyzing the phase space of higher-
dimensional models is more challenging, if one finds polyglot
entrainment in a three-dimensional model it would be interesting
to determine whether the geometric structure of the null surfaces
in the phase-space diagram play a similar role to the knees of the
cubic nullclines in two-dimensional models. Natural candidates to
exhibit polyglot entrainment in three-dimensional models are these
that have been shown to exhibit the canard phenomenon,2,62,69,75

particularly extensions of the FHN to three-dimensions.
Third, polyglot entrainment is expected to have implications

for circadian and neuronal systems. For example, in the context
of the circadian clock, the period of external forcing is fixed at 24
hours but intrinsic periods of the circadian clock vary across indi-
viduals in a population. If the intrinsic period is closer to 24 hours,
which is the period of forcing, then one may expect 1:1 entrain-
ment. As the intrinsic period gets further away from 24 hours,
we expect to lose 1:1 entrainment. However, if we have polyglot
entrainment responses for a population of circadian clocks, then
as the intrinsic period gets even further from 24 then 1:1 entrain-
ment may be regained for some of the oscillators. Although there
is much previous work on entrainment of circadian and related
oscillators,1,6,7,10–12,14,16,23,25,26,30,33–35,41,48,51,54,63–65,67,70,81 we are not aware
of any studies focused on polyglot entrainment of these oscillators.

Finally, within complex organisms, as well as some simple
ones, cellular oscillators interact with each other to form systems
of coupled oscillators.35 For example, coupled circadian oscillations
exist in multicellular cyanobacteria.3 In mammals, central circa-
dian oscillators located in the SCN receive direct information about
light–dark cycles via photic input pathways. These central oscilla-
tors in turn interact with circadian oscillators in peripheral tissues
located throughout the body. Such systems are described as hierar-
chical coupled oscillators and how they entrain to light–dark cycles
is an active area of research.44 Modeling studies have shown that
entrainment is achieved efficiently when damped oscillators are
coupled to one another.5,24,38,45,74,76,78 In future work, it would be
interesting to see if hierarchical coupled systems exhibit polyglot
entrainment. Moreover, one could investigate polyglot entrainment
responses in a network consisting of different types of oscillators.
For example, does one observe polyglot entrainment with two cou-
pled oscillators when one is a damped oscillator and the second is
a self-sustained oscillator, or when one is a self-sustained oscillator
and the second is non-oscillatory?

SUPPLEMENTARY MATERIAL

See the supplementary material which includes 27 figures and 2
movies illustrating a number of scenarios related to the main results
of the paper.
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APPENDIX: ADDITIONAL MODELS

In Secs. III B and III C, we observed polyglot entrainment
in the periodically forced Fitzhugh–Nagumo model. Although the
FHN model is a model of neuronal oscillations, the w variable does
not have a direct biophysical interpretation. This motivated us to
explore, in Sec. III D, whether polyglot entrainment is observed
in other two-dimensional models, for which the variables do have
a direct biological or chemical interpretation. A brief description
of these additional models of neuronal, circadian, and chemical
oscillations is provided below.

1. Morris–Lecar model

The two-dimensional Morris–Lecar model57 is a reduction of
a model of oscillations in the barnacle giant muscle fiber,49 and it
has been used as a prototypical model of neuronal oscillations. The
model has a cubic-like V-nullcline and a sigmoidal w-nullcline. This
model can exhibit both type I and II neuronal excitability. Type I
excitability occurs via a saddle-node on an invariant circle (SNIC)
bifurcation, while type II excitability occurs via a Hopf bifurcation.58

The periodically forced Morris–Lecar model is given by

Cm

dV

dt
= Iapp − gL(V − EL) − gKw(V − EK) − gCam∞(V)(V − ECa)

+ AF(t), (A1)

dw

dt
= φ

w∞(V) − w

τw(V)
, (A2)

m∞(V) =
1 + tanh((V − V1)/V2)

2
, (A3)

w∞(V) =
1 + tanh((V − V3)/V4)

2
, (A4)
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τw(V) =
1

cosh((V − V3)/2V4)
. (A5)

In this model, Cm is the membrane capacitance, Iapp is the input
current, gL is the conductance for leak current, EL is the reversal
potential for leak current, gK is the maximal conductance for K+ cur-
rent, EK is the reversal potential for K+ current, gCa is the maximal
conductance for Ca2+ current, ECa is the reversal potential for Ca2+

current, and V1, V2, V3, V4 are gating variable kinetic parameters,
and φ is a scaling parameter.

We used the following parameter values for all simulations:
Cm = 20 µF/cm2, EL = −60 mV, ECa = 120 mV, EK = −84 mV,
gL = 2 µS/cm2, gK = 8 µS/cm2, gCa = 4 µS/cm2, V1 = −1.2 mV,
V2 = 18 mV, and Iapp = 95 µA/cm2. Additionally, for type I
excitability (SNIC), we set φ = 0.067 1/ms, V3 = 12 mV, and
V4 = 17.4 mV. For type II excitability (Hopf), we set φ = 0.04 1/ms,
V3 = 2 mV, and V4 = 30 mV.

2. The 2D oregonator

The two-dimensional oregonator is a simplified version of
the three-dimensional oregonator model, which represents chem-
ical oscillations in the Belousov–Zhabotinsky reaction. The 2D
oregonator serves as a reduced version of the Field–Koros–Noyes
mechanism18 using a quasi-steady approximation.19,79 This model
features a cubic-like v-nullcline and a linear w-nullcline.

The periodically forced 2D oregonator is given by

dv

dt
= v(1 − v) + ηw

q − v

q + v
+ AF(t), (A6)

dw

dt
= ε(v − w). (A7)

The variables v and w represent the dimensionless concentrations of
HBRO2 and Ce(IV), respectively. The parameter η denotes a sto-
ichiometric factor, q is a rate parameter, and ε is the time scale
separation constant. We used the following parameters for all sim-
ulations: η = 2.28 (fixed-point is a stable focus), q = 0.01, and
ε = 0.025.

3. The Novak–Tyson model

The NT model53,71 represents a mechanism for circadian oscil-
lations in Drosophila. It features a cubic-like v-nullcline and a linear
w-nullcline.

The periodically forced Novak–Tyson model is given by

dM

dt
=

(1 + AF(t))vm

1 + (Pt(1 − q)/2Pcrit)
2 − kmM, (A8)

dPt

dt
= vpM −

kp1Ptq + kp2Pt

Jp + Pt

− kp3Pt, (A9)

q =
2

1 +
√

1 + 8KeqPt

. (A10)

The variables M and Pt represent the dimensionless concentra-
tions of mRNA concentration and total PER protein, respectively.

In this model, vm is the maximum rate of synthesis for M, km is the
decay constant for M, kp1 is the maximal rate for monomer phos-
phorylation, kp2 is the maximal rate for dimer phosphorylation, kp3

is the first order rate constant, Keq is the equilibrium constant, Pcrit

is the dimer concern at the half-maximum transcription rate, and
Jp is the Michaelis constant for protein kinase.

We used the following parameters for all simulations: vm

= 1, km = 0.1,vp = 0.5, kp1 = 10, kp2 = 0.03, kp3 = 0.1, Keq = 3.3,
Pcrit = 0.1, and Jp = 0.05.

4. The Lengyel–Epstein model

The Lengyel–Epstein model42,43 is a model for the chlorite-
iodide-malonic acid (CIMA) reaction. The periodically forced
Lengyel–Epstein model is given by

dx

dt
= a − x −

4xy

1 + x2
+ AF(t), (A11)

dy

dt
= bσ

(

x −
xy

1 + x2

)

. (A12)

The variables x and y represent the concentrations of iodide
and chlorite, respectively. a and b are the feed concentration param-
eters. We used the following parameter values: σ = 8, b = 1, and
a = 15 or 16.
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