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Entrainment Dynamics of Forced Hierarchical Circadian Systems Revealed by
2-Dimensional Maps\ast 

Guangyuan Liao\dagger , Casey Diekman\dagger , and Amitabha Bose\dagger 

Abstract. The ability of a circadian system to entrain to the 24-hour light-dark cycle is one of its most important
properties. A new tool, called the entrainment map, was recently introduced to study this process
for a single oscillator. Here we generalize the map to study the effects of light-dark forcing in
a hierarchical system consisting of a central circadian oscillator that drives a peripheral circadian
oscillator. We develop techniques to reduce the higher-dimensional phase space of the coupled system
to derive a generalized two-dimensional entrainment map. Determining the nature of various fixed
points, together with an understanding of their stable and unstable manifolds, leads to conditions
for existence and stability of periodic orbits of the circadian system. We use the map to investigate
how various properties of solutions depend on parameters and initial conditions including the time
to and direction of entrainment. We show that the concepts of phase advance and phase delay need
to be carefully assessed when considering hierarchical systems.
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1. Introduction. Circadian rhythms refer to a variety of oscillatory processes that occur
over a roughly 24-hour time period. Circadian oscillations are found in a variety of animal
and plant species [5]. Within humans a common example involves our core body temperature
which shows a local minimum typically in the early morning hours (\sim 4:00 AM) and a local
maximum roughly twelve hours later [25]. Similarly, concentrations of certain hormone levels
within our bodies oscillate over the course of a day [12]. In the absence of any explicit forcing
from naturally occurring light-dark cycles, circadian oscillators possess endogenous periods of
roughly 24 hours. Their ability to also entrain to 24-hour periodic cycles of light and dark is
one of their most important properties.

The entrainment of circadian oscillators has been mathematically analyzed using a vari-
ety of techniques. Often this involves describing the circadian oscillator with a reduced phase
description such as that given by a Kuramoto oscillator [7, 27]. The problem then reduces
to studying periodically forced Kuramoto systems. Other approaches include deriving model
equations that retain more of their connection to the underlying biological process [36, 41].
Recently Diekman and Bose [13] introduced a novel tool called the entrainment map to de-
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termine whether a circadian oscillator can entrain to the 24-hour light-dark cycle and, if so,
at what phase. The derived map is equivalent to a 1-dimensional (1-D) Poincar\'e map that
tracks the phase of light onset of the light-dark forcing on a cycle-by-cycle basis. In princi-
ple, the dimension of the underlying circadian oscillator model is not relevant. Diekman and
Bose derived entrainment maps for the 2-dimensional (2-D) Nov\'ak--Tyson model [41, 36], the
3-dimensional (3-D) Gonze model [18], and the 180-D Kim--Forger model [22]. In general, the
map can be used to estimate both entrainment times and whether entrainment occurs through
phase advance or delay with respect to the daily onset of lights.

There are several scenarios in which circadian oscillators do not directly receive light-dark
forcing [18, 20, 29]. Instead they are part of hierarchical systems in which, as ``peripheral""
oscillators, they are periodically forced by other ``central"" circadian oscillators that do directly
receive light input. Cells within major organs in our bodies fall into this category. Several
natural questions arise about the entrainment process of these peripheral oscillators. For
example, do they entrain through phase advance or phase delay as central oscillators do? To
what extent is their entrainment time dependent on the entrainment process of the central
oscillator from which they receive forcing? To study such questions, here we generalize the
entrainment map to a 2-D map where we track from the perspective of the peripheral oscillator
both the phase of the central oscillator as well as the phase of light onset.

In this paper, we first consider the situation in which a single central oscillator receives
light-dark input. In turn, this central oscillator sends input to a single peripheral oscillator.
To focus on the mathematical aspects of the derivation and analysis of the 2-D entrainment
map, we will utilize the planar Nov\'ak--Tyson model [36] for both the central and peripheral
oscillators. The phase space for this problem is 5-dimensional (5-D), two for each of the
oscillators and a fifth that accounts for the light-dark forcing. We will define a Poincar\'e
section transversal to the flow allowing us to derive a 2-D map that determines the phase of
light and the phase of the central oscillator at each cycle when the peripheral oscillator lies on
the Poincar\'e section. We analyze the map by extending techniques first introduced in Akcay,
Bose, and Nadim [1] and Akcay et al. [2]. We will show that for a range of parameter values, the
map possesses four fixed points: one asymptotically stable and three unstable fixed points, two
of which are saddle points. All of these fixed points are related to actual periodic orbits of the
flow. By numerically calculating entrainment times (defined precisely later in the text), we are
able to uncover how the stable and unstable manifolds of the saddle points organize the iterates
of the map, determine the direction of entrainment, and give rise to a rich set of dynamics. The
findings of the map are then validated by comparing them to direct simulations of the model
equations. We also extend the analysis to the case of a semihierarchical system that consists
of a second central oscillator that receives less light input than the first central oscillator.

Analysis of the map reveals several important insights into the entrainment and reentrain-
ment process. First, bounds on important parameters, such as the intensity of light input and
the strength of the coupling from the central oscillator that lead to entrainment, are easily
identified. We are able to determine which kinds of perturbations lead to faster or slower reen-
trainment, e.g., whether perturbations that desynchronize only the peripheral oscillator but
not the central one lead to quick reconvergence. Interestingly, we find that the straightforward
notion of convergence via phase advance or phase delay needs to be generalized. Indeed, the pe-
ripheral oscillator can converge by a combination of phase advance and delay while the centralD
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ENTRAINMENT OF CIRCADIAN SYSTEMS 2137

oscillator typically converges by either phase advancing or delaying. This result has implica-
tions for recovery from jet lag and abrupt changes in sleep-wake schedules. In experimental
studies of aircrews, some subjects experienced internal dissociation with different components
of the circadian system converging in opposite directions [23]. Specifically, after an eastbound
flight across 9 time zones, activity rhythms reentrained through phase advances while body
temperature reentrained through phase delays. In hospital studies, a 12-hour phase shift of
sleep time results in a phase advance of urinary potassium but a phase delay in urinary hydrox-
ycorticosteroids [31]. Aschoff [4] referred to this behavior as ``reentrainment by partition"" and
suggested that it may impact health and contribute to the degradation of psychomotor perfor-
mance observed on postflight days. The saddle fixed points of our map provide a dynamical
explanation for the partitioning phenomenon, as will be elaborated upon in the discussion.

2. Models and methods. Our model is based on the Nov\'ak--Tyson (NT) model [41] for
the molecular circadian clock in the fruit fly Drosophila. The NT model can be written in the
following form:

1

\phi 

dP

dt
= M  - kfh(P ) - kDP  - kLf(t)P,

1

\phi 

dM

dt
= \epsilon (g(P ) - M) ,

(1)

where g(P ) = 1
1+P 4 , and h(P ) = P

0.1+P+2P 2 . The M variable represents mRNA concentra-
tion, and P variable represents the protein concentration. The parameter \epsilon is small, which
separates P and M into fast and slow variables. The parameter \phi will directly affect the
period of the solutions of this system; smaller values imply longer endogenous periods. The
function f(t) describes the light-dark (LD) forcing, which is defined by a 24-hour periodic
step function, f(t) = 1 when lights are on and f(t) = 0 when lights are off. We consider for
convenience a 12:12 photoperiod. There is no difficulty in extending to other photoperiods,
though a minimum amount of light per day is needed for entrainment; see [13] for a detailed
assessment of how entrainment depends on photoperiod and light intensity. In Drosophila,
there is protein degradation during darkness, and light increases the degradation. So kD repre-
sents the degradation rate during darkness, and kL represents the additional degradation rate
which is caused by light. The parameter kf is a combination of two variables in the original
Tyson et al. paper [41]. In [13], the entrainment of a single NT oscillator to a 24-hour period
LD forcing was studied. The ensuing solution was denoted as an LD-entrained solution.

2.1. Coupled NT model. The coupled NT (CNT) model is given by the following equa-
tions:

1

\phi 1

dP1

dt
= M1  - kfh(P1) - kDP1  - kL1f(t)P1,

1

\phi 1

dM1

dt
= \epsilon [g(P1) - M1],

1

\phi 2

dP2

dt
= M2  - kfh(P2) - kDP2  - kL2f(t)P2,

1

\phi 2

dM2

dt
= \epsilon [g(P2) - M2 + \alpha 1M1g(P2)].

(2)
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(a) (b)

Figure 1. (a) Model with strict hierarchical coupling. (b) Semihierarchical model when both oscillators
receive light input, but the light into O2 is much weaker than the light into O1.

The parameters and variables have the same meaning as the original NT model. We introduce
a coupling term \alpha 1M1g(P2), from oscillator 1 (O1) to oscillator 2 (O2). The parameter \alpha 1 is a
nonnegative real number which denotes the coupling strength. We placed the coupling factor
into the second equation of O2 based on Roberts et al. [39], who suggest that coupling occurs
between the mRNA production rates.

We mainly study the case with strict hierarchical coupling, which is shown in Figure 1(a).
In this case, the LD forcing is applied only on O1, which then has feedforward coupling onto
O2. We fix the value of parameter kL2 = 0. Figure 1(b) shows the semihierarchical CNT
model when both oscillators receive light forcing, but the effect of light into O2 is taken to be
less intense than that into O1; in other words, kL2 < kL1 .

2.2. The entrainment map. When attempting to determine the existence of periodic
solutions using Poincar\'e maps, one has to decide where in phase space to place the section.
Often in circadian models, the Poincar\'e section is placed on the 24-hour LD forcing, leading to
a stroboscopic map that determines the state of the system every 24 hours. In [13], Diekman
and Bose instead placed the section in the phase space of the circadian oscillator and backed
out the phase of light when the oscillator was at the section. Here, we follow that approach
when building the 2-D map. The Poincar\'e section is chosen at a location in the flow that
O2 will be shown to cross. In this section, we first introduce the original 1-D map, and then
generalize it to our 2-D map.

The entrainment map \Pi (y) for the original NT model was introduced as a 1-D map in
[13]. To define \Pi (y), Diekman and Bose take a Poincar\'e section \scrP as a 1-D line segment which
intersects the LD-entrained solution of a single periodically forced NT oscillator. The section
is placed along a portion of an attracting 1-D slow manifold where all trajectories of the NT
oscillator pass. A phase variable y is defined to be the amount of time that has passed since
the beginning of the most recent LD cycle. When the trajectory first returns to \scrP , the map
\Pi (y) is defined to be the amount of time that has passed since the onset of the most recent
LD cycle, which is the new phase of the light forcing. The domain and range of \Pi (y) are both
(0,24]. The domain is actually homeomorphic to the unit circle \BbbS 1, so y = 0 and y = 24 are
equivalent. The map is written as yn+1 = \Pi (yn), where

(3) \Pi (yn) = (\rho (yn) + yn) mod 24.

\rho (y) is a return time map that measures the time a trajectory starting on \scrP takes to returnD
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ENTRAINMENT OF CIRCADIAN SYSTEMS 2139

to \scrP . It is continuous and periodic at its endpoints \rho (0+) = \rho (24 - ). If \rho (y) < 24  - y, then
\Pi (x) = \rho (y)+y, because the trajectory will return back to \scrP within the same LD cycle which
it started. If 24  - y < \rho (y) < 48  - y, then \Pi (y) = \rho (y) + y  - 24, because the trajectory will
return in the next LD cycle and so on.

If there exists a ys such that ys = \Pi (ys) and | \Pi \prime (ys)| < 1, then ys is a stable fixed
point of the map \Pi (y), and it also determines a 1:1 phase locked solution. The phenomenon
of 1:1 phase locking in this case occurs when the oscillator has one return to the Poincar\'e
section for every one period of the LD forcing. When a stable solution exists, the map \Pi (y)
quite accurately calculates the time to approach the stable solution starting from any initial
condition of y. Numerically we use the concept of entrainment to evaluate the convergence
time. Suppose yj is a sequence of iterates of the map, then we say the solution is entrained
if there exists m, such that for all j \geq m, | ys  - yj | < 0.5. The entrainment time is then
\Sigma m
i=1\rho (yi).
The 1-D \bfitO \bfone -entrained map for the CNT system. The 1-D map for the NT system

cannot be directly applied to the CNT system because the second oscillator will have additional
free variables to determine, meaning that the entrainment map for the CNT system will be
higher dimensional. However, for the hierarchical CNT system, if we assume that O1 is already
entrained, then the chain LD \Rightarrow O1 \Rightarrow O2 is reduced to O1-entrained \Rightarrow O2. The system can
be rewritten in the following manner:

1

\phi 2

dP2

dt
= M2  - kfh(P2) - kDP2,

1

\phi 2

dM2

dt
= \epsilon [g(P2) - M2 + \alpha 1M1g(P2)].

(4)

In the O1-entrained case, O2 is continuously forced by the coupling from O1. This differs
from the coupling due to direct light input into O1 which is a discontinuous square wave.
We place a Poincar\'e section that intersects the entrained O2 limit cycle solution at \scrP : P2 =
1.72, | M2  - 0.1289| < \delta such that P \prime 

2 < 0, where \delta is a small control parameter. In the results
section, we will explain why trajectories are funneled into a region that forces them to cross
this choice of Poincar\'e section. Along the section \scrP , P2 is fixed, and M2 is bounded by \delta , so
the only free variable is the phase of light. We define the 1-D O1-entrained map by

(5) yn+1 = \Pi O1(yn) = (yn + \rho (yn; \gamma (yn))) mod 24,

where y \in (0, 24] is defined to be the phase of the LD forcing, which has the same meaning
as the 1-D entrainment map in [13]. We define \gamma (t) := \varphi t(X0) to be the LD-entrained limit
cycle of O1, where X0 is a chosen reference point on \gamma (t). We denote the set of points that
lie on the limit cycle of O1 by \Gamma O1 . At X0, the lights just turn on for O1. In the O1-entrained
case, the location of O1 only depends on yn and can be denoted by \gamma (yn). Based on the above
definition, \gamma (yn) means a point on the limit cycle of O1 when the light has been turned on for
yn hours. \rho (yn) measures the return time when O2 first returns \scrP .

Notice that in the definition of the O1-entrained map, the phase of O1 is determined by y
(the phase of the LD forcing), since it is O1-entrained. This makes the O1-entrained map a 1-D
map, and most of the properties of the NT model's 1-D map carry over to the O1-entrained
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2140 GUANGYUAN LIAO, CASEY DIEKMAN, AND AMITABHA BOSE

map. For example, if there is a point ys, such that ys = \Pi O1(ys) and | \Pi \prime 
O1

(ys)| < 1, then ys
is a stable fixed point of the O1-entrained map. The fixed points of the map also determine
1:1 phase locked solutions of the coupled system.

The general 2-D entrainment map. In the case of the O1-entrained map, the initial
location of O1 when O2 lies on \scrP is always determined by y, the phase of the LD cycle. But in
general, the initial location of O1 doesn't always depend on y, rather it could lie arbitrarily in
its phase space. To limit the possibilities, we restrict the initial location of O1 to lie anywhere
along its own limit cycle \Gamma O1 . This restriction will therefore only introduce one new free
variable and motivates us to generalize the map to two dimensions:

(xn+1, yn+1) = \Pi (xn, yn) = (\Pi 1(xn, yn),\Pi 2(xn, yn)).

We keep the definition of yn and the location of the Poincar\'e section \scrP the same as in the
O1-entrained map. We now introduce a new variable x to determine O1's position in phase
space relative to its own LD-entrained solution. The detailed definition is explained using a
phase angle.

Defining \Pi \bfone using a phase angle. According to the O1-entrained map, the trajectory
of O1 always remains on \Gamma O1 . However, if O1 is not already entrained, then its trajectory may
not lie on \Gamma O1 but will instead approach it asymptotically. Thus we need a new independent
variable to determine the position of O1 for this situation. From the O1-entrained case, the
position of O1 can always be described as \gamma (t), where t \in (0, 24]. The idea is to define a new
independent phase variable x equivalent to the time variable t that is obtained by projecting
the real location of O1 onto its limit cycle \Gamma O1 , while keeping the error small. We define the
phase angle in the following steps:

(1) Transform the coordinate system appropriately: Shift the origin to the intersection
point of the uncoupled O1's two nullclines. Then connect the origin and the point X0 and
expand the line segment as the x-axis of the new coordinate system. The y-axis is determined
automatically to be orthogonal to the x-axis, as in Figure 2(a).

(2) Define x in terms of the phase angle: Consider the phase plane as a complex plane
\BbbC . Let's call the point X0 as z0 = r0e

i\theta 0 \in \BbbC , where \theta 0 = 0 after the coordinate system
transformation. We can then represent any point on the limit cycle \gamma (t) as a complex number
z = rei\theta , where we define \theta \in (0, 2\pi ]. Then x is defined to be the phase of O1 when choosing
X0 as the reference point. In other words, z = \gamma (x) = rei\theta . Notice that x is homeomorphic to
the unit circle \BbbS 1, because \theta = Arg(\gamma (x)); see Figure 2(a). The domain of x is also \~\BbbS 1 = (0, 24].

(3) Define the map \Pi 1. Suppose we start integrating the system with any initial condition
(xn, yn) (see Figure 2(a), lower panel as an example). After the time \rho (xn, yn), O2 returns to
the Poincar\'e section, the new location of O1 is now

\Psi \rho (xn,yn)(\gamma (xn)) = rn+1e
i\theta n+1 ,

where \Psi t(X) is the flow of O1, and the phase angle is \theta n+1. We then find the unique point \^x
lying on \Gamma O1 such that the phase angle of \Psi \rho (xn,yn)(\gamma (xn)) matches the angle associated with
\gamma (\^x). That is we choose \^x such that Arg(\gamma (\^x)) = \theta n+1. Geometrically, we are simply choosing
\^x as the associated value at which the ray passing through \Psi \rho (xn,yn)(\gamma (xn)) intersects \gamma (t).D
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(a) Schematic for \Pi 1 (b) Schematic for \Pi 2

Figure 2. (a) The upper panel shows a schematic of the homeomorphism from the unit circle \BbbS 1 to \Gamma O1 .
The lower panel shows how we construct the map in two different conditions; the left one shows the case when
the phase angle \theta associated with the trajectory of O1 rotates through more than 2\pi , the right one is where
the rotation is less than 2\pi . (b) In both panel schematics, the first blue vertical line segment denotes where
we chose the initial phase of light. After time \rho (xn, yn), the trajectory returns to \scrP , and the new phase of
light is yn+1. For the upper panel, yn + \rho (xn, yn) > 24, so yn+1 = yn + \rho (xn, yn)  - 24. For the lower panel,
yn + \rho (xn, yn) < 24, so yn+1 = yn + \rho (xn, yn). The black square wave f(t) in both panels represents the LD
forcing.

We define xn+1 = \^x. We can then write \Pi 1 as the following:

(6) xn+1 = \Pi 1(xn, yn) = \{ \^x \in [0, 24) : Arg(\gamma (\^x)) = \theta n+1\} .

(4) To numerically compute the map \Pi 1, we integrate an initial condition where O1 lies
along its limit cycle and O2 at \scrP , and integrate the system until O2 returns to the section. We
then use a linear map to shift the new location of O1 to the coordinate system we set up in
step 1. We transform the point into a complex number, and then use the built-in MATLAB
function angle() to find the phase angle. Using this angle, we locate a point on the limit cycle
of O1, that we had previously partitioned, with the same phase angle.

The definition of \Pi 2 is straightforward. We just mimic the construction of the O1-entrained
map. The only difference is that the return time function \rho depends on both x and y, because
O1 is no longer O1-entrained:

(7) yn+1 = \Pi 2(xn, yn) = yn + \rho (xn, yn) mod 24,

where y \in \~\BbbS 1 = (0, 24] is defined on a homeomorphism of the unit circle \BbbS 1, y = h(\theta ) = 12
\pi \times \theta .

The schematic Figure 2(b) depicts a way to understand the definition of \Pi 2. The first blue
vertical line segment signifies the initial phase yn of the lights when O2 starts on \scrP . After
time \rho (xn, yn), the trajectory returns to \scrP , signified by the second blue vertical line segment,
with the lights having turned on yn+1 hours ago. In the upper panel, \rho (xn, yn) > 24  - yn,
therefore, the trajectory does not return to \scrP within the same LD cycle. In the lower panel,
\rho (xn, yn) < 24 - yn, therefore, the trajectory does return to \scrP within the same LD cycle.

3. Results. In this section, we first show simulations demonstrating the entrainment of
the strictly hierarchical CNT model. We then define and analyze a 1-D map in which O1 isD
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2142 GUANGYUAN LIAO, CASEY DIEKMAN, AND AMITABHA BOSE

assumed to already be entrained. We call this the O1-entrained map. Understanding the 1-D
map will facilitate the definition and analysis of the 2-D entrainment map. Finally, we extend
the results to the semihierarchical case.

3.1. The entrained solutions of the CNT model. To find the entrained solutions and
understand the geometry of the strictly hierarchical CNT system in the presence of the LD
cycle, the nullclines of each oscillator play an important role. The nullclines are the set
of points where the right-hand sides of (2) equal zero and will be different for each of the
oscillators. For O1, there are two different P -nullclines corresponding to the dark or light
condition manifested through the square-wave forcing f(t) and a single M -nullcline:

NPD
: M1 = kfh(P1) + kDP1,

NPL
: M1 = kfh(P1) + (kD + kL)P1,

NM1 : M1 = g(P1).

(8)

For O2, there is a single P -nullcline (since kL2 = 0), but a family of M -nullclines since the
coupling from O1 is continuous rather than discrete:

NP : M2 = kfh(P2) - kDP2,

NM2 : M2 = g(P2) + \alpha 1M1g(P2).
(9)

Each P -nullcline is a cubic shaped curve. Note that NPD
and NPL

are independent of the
variables P2 and M2. In the four-dimensional space (P1,M1, P2,M2) they actually correspond
to hypersurfaces. But since the equations governing the evolution of O1 are independent of
O2, we simply project and view NPD

and NPL
as curves in (P1,M1) space (Figure 3(a)).

We similarly view the sigmoidal nullcline NM1 as a curve in this phase plane. We project
the nullclines of O2 onto the (P2,M2) space (Figure 3(c)). Note that NM2 now represents a
continuum of sigmoidal shaped curves that vary depending on the value of M1. When O1 is
entrained, along its limit cycle, the M1 value is bounded between min| M1(t)| and max| M1(t)| .
Thus NM2 can oscillate between N\mathrm{m}\mathrm{i}\mathrm{n}

M : M2 = g(P2) + \alpha 1min| M1(t)| g(P2) and N\mathrm{m}\mathrm{a}\mathrm{x}
M : M2 =

g(P2)+\alpha 1max | M1(t)| g(P2). We assume that any intersection between NP and NM occurs on
the middle branch of the corresponding cubic nullclines. This will guarantee that any ensuing
fixed points of the CNT system are unstable and will allow oscillations to exist.

We plot the entrained solution of the CNT by direct simulation. In our simulations, we
take a specific set of parameters for (2), i.e., \phi 1 = \phi 2 = 2.1, \epsilon 1 = \epsilon 2 = 0.05, kD = 0.05, kL1 =
0.05, kL2 = 0, kf = 1, \alpha 1 = 2. In Figure 3(a), the periodic solutions of O1 are presented for
different light conditions. The dashed black (red) limit cycle denotes the stable solution of O1

in DD (LL) conditions. The solid red-black limit cycle denotes the LD-entrained solution of
O1, with hourly markings shown by green open circles. We also show various nullclines and
note that the M nullcline (yellow curve) is unique, but the P -nullcline (red and blue curves)
varies between M1 = (kD+kL)P +kfh(P ) and M1 = kDP +kfh(P ). The corresponding time
courses are shown for the P1 variable in Figure 3(b).

In Figure 3(c), we show the entrained solutions of O2 when O1 is in different light con-
ditions. The color convention is the same as in Figure 3(a). Here, we note that the P -
nullcline (blue curve) is unique, but the M -nullcline (red and yellow curves) varies betweenD
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(a)
(b)

(c)
(d)

Figure 3. (a) The periodic solutions of O1 in DD, LL, and LD conditions. The dashed black trajectory
represents the DD limit cycle (f(t) \equiv 0), the dashed red trajectory represents the LL limit cycle (f(t) \equiv 1). The
solid trajectory represents the LD solution with green hourly markers. The two different P1 nullclines, NPD

and NPL and the single M1 nullcline, NM , are shown. Note that for panels (a) and (c) the horizontal scale is
much larger than the vertical scale. (b) The time course plots: P1 versus t in all three cases (blue line lies at
0, 1, or is a square wave for DD, LL, or LD, respectively. (c) The periodic solutions of O2 when O1 is in DD,
LL, and LD conditions. Same color scheme as in (a). The Poincar\'e section is represented at P2 = 1.72 by a
small vertical line segment. Note that only the maximal and minimal sigmoidal M2 nullclines, N\mathrm{m}\mathrm{i}\mathrm{n}

M and N\mathrm{m}\mathrm{a}\mathrm{x}
M ,

are shown that bound the family of nullclines that exist for this case. (d) The time course plots: P2 versus t in
DD, LL, and LD conditions.

M2 = (1 + \alpha 1min | M1(t)| )g(P2) and M2 = (1 + \alpha 1max | M1(t)| )g(P2). We also show the time
course plots related to the same condition in Figure 3(d). The time course plots show that
the period of the DD solution is longer than that of LD, and the period of the LL solution
is shorter than that of LD. In particular, we found that the period of the DD cycle is 28.9
h, which is the same as the DD cycle of O1, and the period of the LL cycle is 21.6 h, whichD
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2144 GUANGYUAN LIAO, CASEY DIEKMAN, AND AMITABHA BOSE

is also the same as the LL cycle of O1. This is not surprising, because when the coupling is
strong enough, O2 is entrained by O1.

The nullclines shown in Figure 3(c), together with the dashed LL and DD O2 limit cycles,
are useful to explain our choice of the Poincar\'e section at P2 = 1.72, centered at M2 = 0.1289.
It is straightforward to use the vector field and phase plane analysis to show that any trajectory
starting on \scrP will evolve clockwise and cross the right branch of NP with P2 > 3. Because of
the difference in scaling of the vertical and horizontal components of that phase plane it may
not be so obvious that the M2 value does not vary much for points along the right branch
between where the LL (dashed red) and DD (dashed blue) limit cycles intersect it. In the LD
situation, a trajectory will intersect the right branch of the NP nullcline somewhere between
a neighborhood of each of these points. We now show that any two trajectories with initial
conditions lying on this nullcline in that region remain close in their M2 value. Suppose we
have a trajectory cross the right branch of NP at ( \~P2, \~M2), where \~P2 > 3, so that

\~M2 = H(P2) = kfh( \~P2) + kD \~P2.

Taking a derivative of the function on the right-hand side and, for convenience, using x to
represent the P2 variable, yields

H \prime (x) = kfh
\prime (x) + kD = kf

0.1 - x2

(0.1 + x+ x2)2
+ kD.

When x is large, H \prime (x) \rightarrow kD, implying H(x) \approx kDx, where kD is a small parameter. So
when \~P2 > 3,

H(x1) - H(x2) \approx kD(x1  - x2).

Thus the difference of M2 between two points on the right branch of NP is small. Next we
show that those points have approximately the same dynamics in the M2 direction. When P2

is large, g(P2) \rightarrow 0, the second equation of (4) is approximately

dM2

dt
=  - \phi 2\epsilon M2,

M2(t) = \~M2e
 - \phi 2\epsilon t.

The main point here is that the effect of M1 is gone, so trajectories evolve largely independent
of the coupling. Since any initial points lying on the region of the right branch of the NP

nullcline are close in their M2 value, it is an easy application of Gronwall's inequality to
show that they remain close until P2 becomes sufficiently smaller. Thus those trajectories are
funneled into the small region between the LL and DD limit cycles and cross the Poincar\'e
section.

We note that our choice of Poincar\'e section is dictated by the funneling effect. For example,
choosing the section elsewhere, say P2 = 3, | M2  - 0.521| < \delta , \delta > 0 but small, would not
guarantee that trajectories cross through this section again. Trajectories will, of course, cross
P2 = 3 with P \prime 

2 > 0, but won't necessarily do so in a small neighborhood of the LD-entrained
solution.D
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3.2. The \bfitO \bfone -entrained map. The O1-entrained map we obtained from (5) has similar
properties as the entrainment map Diekman and Bose constructed in their paper [13]. Figure
4 shows that there are two fixed points which correspond to different types of periodic solutions
for the CNT system. The lower one with yn+1 = yn = 10.2 is a stable fixed point of the map,
which represents a stable periodic solution. The upper one with yn+1 = yn = 17.2 is an
unstable fixed point of the map.

We classify the direction of entrainment as occurring through phase advance or phase
delay. Suppose yn+1 = \Pi O1(yn), and the return time needed from yn to yn+1 is less than
24 hours. We call this a phase advance. Alternatively, if the return time is greater than 24
hours, we call it a phase delay. The unstable fixed point of the map plays an important role
in determining this direction. For example, pick two different initial conditions (y0 = 16.5, 18)
near the unstable fixed point and use the cobweb method to observe how different directions
of entrainment can occur. For y0 = 16.5, the iterates move to the left and converge to the
stable solution by phase advance. For y0 = 18, however, the iterates move to the right and
converge to the stable solution by phase delay. In Figure 4(b), we compare the iterates with
simulations; the green curve corresponds to y0 = 16.5 and the magenta curve corresponds to
y0 = 18. The black curve is the entrained solution for O2. The direction of entrainment from
the simulations agrees with the calculations obtained from the map.

In our model system, there are two parameters of interest, the coupling strength \alpha 1 and
the intrinsic period of O2 governed by \phi 2. In Figure 4(c), we decrease \alpha 1 from 2.5 to 1.4,
so that the coupling strength is weaker. As a result, the return time \rho (y) increases. This
makes the map move up, and the stable and unstable fixed points get closer to each other.
At \alpha 1 = 1.51, the two fixed points collide at a saddle-node bifurcation. In Figure 4(d), we
increase the intrinsic period of O2 by decreasing \phi 2 from 2.3 to 1.9, so that the difference
between the intrinsic period and the 24-h forcing increases, which increases the return time
to the Poincar\'e section. Hence the map moves up. When \phi 2 = 1.91, the map passes through
the saddle-node bifurcation value. The disappearance of the stable fixed point means that in
the full system 1:1 entrainment is lost and replaced by higher order periodic behavior. The
details of this kind of behavior are interesting in their own right, but an investigation of this
behavior is beyond the scope of this work.

Notice that the O1-entrained map we construct is not monotonic, which makes it different
from the 1-D entrainment map found in [13]. To understand this nonmonotonicity, we take
two initial conditions (y0 = 6 and y0 = 8) near the local maximum of the map in Figure 5(a),
and analyze the dynamics of the system. Associated with the return time plot in Figure 5(b),
we found that the return time is between 28 and 29 when y is less than the local maximum
point. But when it crosses that point, the return time decreases quickly with the derivative
\rho \prime (y) <  - 1. In Figure 5(c), we plot the trajectories with the two initial conditions. The
trajectory for y0 = 6 flows to the left branch of the P -nullcline, which increases the return
time since evolution near this branch is slow. Alternatively, the trajectory for y0 = 8 doesn't
flow near the left branch and thus has a shorter return time. A minor consequence of this
nonmonotonicity is that some solutions converge to the stable fixed point by initially phase
delaying, but then ultimately phase advancing. For example, in Figure 5(d), we take y0 = 18
then cobweb the map. We find that the first four iterates initially phase delay. The fourth
iterate lands near the local maximum of the map, which lies above the value of the fixed point.D
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(a) (b)

(c) (d)

Figure 4. (a) The cobweb diagram for the O1-entrained map. We pick two different initial conditions and
show how the iterates move to the stable fixed point. (b) The approach to the stable solution (black curve) in the
t versus P plane; the colors correspond to the two initial conditions in (a). (c) The map displays a saddle-node
bifurcation by decreasing \alpha 1. (d) Decreasing the intrinsic period of O2 by decreasing \phi 2 also leads the map to
display a saddle-node bifurcation. Fixed points shown as open circles are unstable, and those shown with solid
circles are stable.

This causes subsequent iterates to phase advance. This nonmonotonicity foreshadows a more
complicated picture that arises under the dynamics of the 2-D map.

3.3. The results of the general 2-D map. In this section, the analysis of the 2-D map
is presented. We follow ideas first derived by Akcay, Bose, and Nadim [1] and followed up on
in [2] to find fixed points of the map via a geometric method. The entrainment time and the
direction of entrainment are analyzed by iterating the map. We also compare these results
with simulations. At the end of this section, we show that the map is also applicable to the
semihierarchical model.D
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(a) (b)

(c) (d)

Figure 5. Nonmonotonicity in the entrainment map leads to convergence initially due to phase delay but
ultimately due to phase advance. (a) The nonmonotone O1-entrained map and two choices of initial conditions
near the local maximum. Note that the local maximum lies above the value of the fixed point of the map. (b)
The return time plot associated with the two initial conditions. (c) The corresponding phase plane. The solid
blue trajectory for y0 = 8 does not approach the left branch of NP , while the solid red trajectory for y0 = 6 does,
causing its evolution to slow down. (d) Starting with an initial condition y0 = 18, the first four iterates phase
delay. The fourth iterate lands near the local max of the map, and subsequent iterates then phase advance.

Basic results from the map. Both parts of the 2-D map \Pi 1 and \Pi 2 are surfaces in
relevant 3-D spaces. Because of the mod 24 operation, each surface will contain discontinuities.
In Figures 6(a) and 6(b), we project the surface onto the x--y plane. For \Pi 1, the purple part
of the surface is points lying above the diagonal plane z = x, in other words, xn+1 > xn. The
red part of the surface of \Pi 2 is points lying above the diagonal plane z = y, i.e., yn+1 > yn.
The points of gray color denote all points that are below the diagonal planes, xn+1 < xn andD
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(a) (b)

(c) (d)

Figure 6. (a) and (b) The 2-D entrainment map is plotted as two separate maps \Pi 1 and \Pi 2, and projected
onto the domain space (xn, yn). The purple and red color in both maps denote all points that are above the
diagonal plane. The gray color denotes points that are below the diagonal plane. The white curves denote the
discontinuity. (c) The purple curves denote points of \Pi 1's nullcline Nx, where x = \Pi 1(x, y), the red curves
denote points of \Pi 2's nullcline Ny, where y = \Pi 2(x, y). Their intersections are the four fixed points of the
map. (d) The entrainment time is plotted with a heatmap. The color denotes the entrainment time starting
from a specific initial condition. The light green curves locate W s(B) and W s(C) from near which the longest
entrainment times occur.

yn+1 < yn. The white curves indicate locations of discontinuity of the map. The separation of
the two different colors consists of curves which indicate the points where x = \Pi 1(x, y) and y =
\Pi 2(x, y). Here we define those curves as nullclines of the map:

Nx = \{ (x, y) : x = \Pi 1(x, y)\} , Ny = \{ (x, y) : y = \Pi 2(x, y)\} ,

which are plotted in Figure 6(c). The purple curves denote Nx. Similarly, the red curvesD
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Table 1
Numerical computation of the eigenvalues of the map at the four fixed points. Eigenvalues with modulus

less than one correspond to stable directions, while those with modulus greater than one correspond to unstable
directions.

x y Eigenvalue Stability

A 10.6 10.6 0.1609, 0.4453 sink

B 17.2 17.2 2.0858, 0.4238 saddle

C 10.6 21.1 2.325, 0.2734 saddle

D 17.2 3.7 1.595+0.77i, 1.595-0.77i source

denote Ny. Their intersections are four fixed points of the map. We numerically calculated
the Jacobian at those fixed points and found the eigenvalues of the linearization. These values
and the corresponding stability of each fixed point are shown in Table 1. From the results
of the O1-entrained map, points A and B lying on the diagonal line correspond to the stable
solution of O1. For O2, point A corresponds to the stable solution. For point B, the trajectory
of O2 returns to the Poincar\'e section after 24 hours but corresponds to the unstable solution
of the O1-entrained map. At the fixed point C, O1 lies on its own unstable periodic orbit.
This can be inferred from and agrees with the calculation of Diekman and Bose [13] who
showed that the original 1-D entrainment map has an unstable fixed point that corresponds
to an unstable periodic orbit. Thus O1 is entrained to a 24-hour LD cycle and provides a
24-hour forcing to O2. From simulation, we found that the trajectory of O2 stays for several
cycles near what appears to be a stable limit cycle, though it is different from the limit cycle
corresponding to point A since O1 is unstable and the forcing signal to O2 is different. At
point D, if we check the difference between C and D, we can see that

(xD, yD) = (xC , yC) + 6.6 mod 24,

so O1 is still on its unstable periodic orbit. That is, points C and D represent conditions
where the forcing M1(t) is identical, but just phase shifted by 6.6 hours. Thus O2 still receives
24-hour forcing so we also expect there to exist an unstable O2 limit cycle for this case.

One advantage of the map is its ability to estimate the entrainment time. Starting from
different initial conditions, we iterate the map (xn+1, yn+1) = \Pi (xn, yn) until \| (xn+1, yn+1) - 
(xs, ys)\| < 0.5, where point A has coordinates (xs, ys). The entrainment time is the sum of
the return times corresponding to each iterate. In Figure 6(d), we show the entrainment times
corresponding to different initial conditions on the torus expanded as a square. We also plot
the nullclines Nx and Ny on top of it for illustrative purposes. The color for each point on
the square denotes the entrainment time needed for that initial point.

Notice that, in Figure 6(d), there are two light green curves. Along these curves, the
entrainment time is much longer than other regions. Additionally, they appear to connect
the two saddle points B, C with the unstable source D. Though not proven here, we believe
that these curves locate where the stable manifolds of the saddle points B and C (W s(B) and
W s(C)) are. To completely understand the dynamics of the entrainment map, it is useful to
numerically find the stable and unstable manifolds.

The algorithm we used to find the manifolds of the entrainment map are based on the
following results. For the unstable manifold, Krauskopf and Osinga [26] introduced a growingD
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method to calculate the unstable manifold point by point. They initially iterate points chosen
in a neighborhood of the fixed point along the associated unstable eigenvector and accept new
points as lying on the unstable manifold if they satisfy specific constraints. For the stable
manifold, the search circle (SC) method introduced by England, Krauskopf, and Osinga [16]
utilizes the stable eigenvector to find points within a certain radius that iterate onto a segment
of the stable eigenvector. The SC method has the advantage that it does not require the
inverse of the map to exist, which is important for us since our map is noninvertible. Both
of these methods are constructed for planar nonperiodic domains. In our case, the map lives
on a torus, but is graphically shown on a square. Whenever an iterated point exceeds the
boundary of the square, we use the modulus operation to define the correct value within the
square. Thus we develop our algorithm to account for this discontinuity. Another difference is
that the terminating conditions for both the growing and SC methods rely on calculating the
arc length of the manifolds up to a certain predetermined length. However, in our map, the
stable manifolds of points B and C are generated from the source point D, while their unstable
manifolds terminate at point A. Thus our algorithm terminates when these manifolds enter
prescribed neighborhoods of those corresponding fixed points D and A.

In Figure 7(a), we choose initial points ranging from 0 < x < 24, 0 < y < 24, and iterate
ten times for each initial point. The arrow on each coordinate is pointing to its own next
iterate. The obtained vector field give us another visualization of the map. In Figure 7(b),
the numerical result of stable and unstable manifolds of B and C are plotted (also overlayed in
panel (a) for easier comparison). W s(B) andW s(C) agree with the light green curves in Figure
6(d). W u(B) is exactly the diagonal line of the phase plane, which is not surprising. Because
the diagonal line corresponds to the O1-entrained case, if an iterate starts on the diagonal line,
it stays on it. The numerical calculation of the eigenvector of Eu(B) is approximately (0.7,0.7)
on the diagonal line, which means W u(B) = Eu(B). W u(C) also matches the darkest region
in Figure 7(a). Indeed, these dark regions indicate the location of the unstable manifolds
of points B and C. The located manifolds are also helpful for understanding the direction
of entrainment of 2-D maps. In the case of the 1-D map, the direction of entrainment is
essentially either phase advance or delay, and the longest entrainment times happen for initial
conditions lying near the unstable fixed point. In the case of the 2-D map, the direction of
entrainment need no longer be monotonic. The manifolds associated with the saddle points B
and C appear to behave like a separatrix, despite this being a map and not a flow. To classify
the direction of entrainment in the 2-D map, we consider phase delays and advances in the
x and y directions separately. For the x direction, if the rotated angle from xn to xn+1 is
greater than 2\pi , we call it phase delay, otherwise we call it phase advance. For the y direction,
we use the same definition as in the O1-entrained map. To illustrate different directions of
entrainment, we pick several initial conditions near the stable manifolds, then iterate the map.
We also run simulations with the same initial conditions for comparison. For Figure 8(a), in
the left panel, we pick an initial point slightly above W s(C). It entrains to the stable solution
by phase delay in the y direction, and phase delay-advance-delay in the x direction. In the
right panel, the initial point is slightly below W s(C), but the entrainment is through phase
delay-advance in y, and phase delay-advance in x. The corresponding simulations in Figure
8(b) agree with the direction of entrainment found through the map and demonstrate the
sensitivity to initial conditions.D
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(a)
(b)

Figure 7. (a) N = 10 iterates from various initial points are shown. The arrow at each coordinate point is
in the direction of the next iterate. The vector field indicates that there may exist a separatrix type structure at
both points B and C. (b) Stable and unstable manifolds of B and C as generated through the generalization of
the search circle and growing methods (see text) which are also overlayed in panel (a). The labeled manifolds
do appear to provide a separatrix type behavior despite this being a map and not a flow.

Parameter dependence of the map. In the section on the O1-entrained map, we
calculated the O1-entrained map for four different values of \alpha 1, and found the system will lose
entrainment if the coupling strength is too small. Now we calculate the 2-D map at different
values of \alpha 1 to see how the fixed points and the entrainment time depend on \alpha 1. In Figures
9(a) and 9(b), we show the x and y nullclines for three different \alpha 1 values; the points with a
a solid circle are the stable fixed points, the points with open circles are the unstable fixed
points, and the starred points are saddle points. In Figure 9(c), we show the heatmap of
entrainment times for \alpha 1 = 1.52. In Figures 9(d), we show the heatmap of entrainment times
for \alpha 1 = 2.5. Note that \alpha 1 = 2 is our canonical case, and was presented before in Figure 6(d).
Increasing \alpha 1, in general, decreases the entrainment time as can be observed from the color
scale values (yellow max value \approx 700 for \alpha 1 = 1.52) versus 400 for \alpha 1 = 2.5. In other words,
stronger coupling between the central to peripheral oscillator speeds up entrainment.

The 2-D map for the semihierarchical case. For the strictly hierarchical model with
only one feedforward connection from O1 to O2, we have shown how to construct both the
O1-entrained map and the general 2-D entrainment map. Here we will show that the 2-D map
can be derived for the model when 0 < kL2 < kL1 . In this case, O1 is still dominant, allowing
us to keep a semihierarchical structure.

We take kL2 = 0.025, and keep the values of other parameters the same, so that O1 and
O2 both receive light forcing. We define the Poincar\'e section \scrP : P2 = 1.72, | M2 - 0.1548| < \delta .
We then obtained a 2-D map for this model. In Figures 10(a) and 10(b), the top view of
\Pi 1 and \Pi 2 are presented. In Figure 10(c), we similarly obtained 4 fixed points (A,B,C,D) as
in the strictly hierarchical case. Compared to the strictly hierarchical model, we found that
the additional light forcing into O2 accelerates the entrainment process, so that the time toD
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(a)

(b)

Figure 8. Direction of entrainment depends sensitively on initial conditions. (a) The initial point (labeled 1)
in the left panel lies above W s(C), while the similarly labeled point in the panel to the right lies below W s(C).
Numbers indicate iterates. As shown, the direction of entrainment differs significantly. (b) Corresponding
simulations agree with the iterates. Note the top panel shows that O2 (red time course) entrains through phase
delay to the entrained solution (black time course); the lower panel shows O2 entraining through phase delay-
advance.D
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(a) (b)

(c) (d)

Figure 9. (a)--(b) The x and y nullclines under different \alpha 1 values. Solid circles denote stable fixed points,
open circles unstable fixed points, and stars saddle points. (c)--(d) The heatmap of entrainment times for
different values of \alpha 1. Note the difference in numeric value of the maximum value of the color scale.

return to \scrP is decreased. Thus the whole surface shifts down, which causes A to move to
the left of the diagonal, and B to move to the right of the diagonal. For points C and D,
the limit cycle of O2 is now determined by both O1 and the light forcing, which changes the
location of C and D. In Figure 10(d), we calculated the first 10 iterates of each initial point.
Comparing these results with the strictly hierarchical case, the stability of each fixed point
remains unchanged, but their location has changed. Further, the entrainment time required
for each initial condition is reduced because of the LD forcing into O2.

4. Discussion. Circadian oscillations exist from the subcellular level involving genes, pro-
teins, and mRNA up to whole body variations in core body temperature. These oscillations
are typically entrained to the 24-hour LD cycle. Additionally, food, exercise, exterior tem-
perature, and social interactions can also act as entraining agents in certain species [34]. InD
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(a) (b)

(c) (d)

Figure 10. 2-D semihierarchical case. (a)--(b) The top view of \Pi 1 and \Pi 2 are presented; see Figures 6(a)
and 6(b) for an explanation of color coding. (c) We obtained 4 fixed points (A,B,C,D) with similar stability of
the canonical model. (d) Ten iterates of each point. The vector field looks qualitatively similar to the strictly
hierarchical case shown in Figure 7(a).

these cases, various pathways in each species exist which carry the entraining information to
relevant parts of the circadian system. In this paper, we refer to the set of oscillators that
first receive this input as central circadian oscillators. In turn, these central oscillators send
signals about the time of day to other peripheral oscillators. When viewed in this manner,
we obtain a hierarchical circadian system. For example, in the strictly hierarchical model
(Figure 1(a)), the central oscillator O1 could represent the suprachiasmatic nucleus (SCN),
the master pacemaker in the hypothalamus of mammals. The peripheral oscillator O2 that
does not receive light input could represent circadian clocks in organs such as the heart orD
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kidney. Alternatively, O1 could represent the part of the SCN that directly receives light
input (the ventral core), and O2 could then represent the part of the SCN that does not (the
dorsal shell) [21]. For the semihierarchical model (Figure 1(b)), O1 and O2 could represent
the central and peripheral clocks in Drosophila, since in flies the clock protein cryptochrome
is a photoreceptor and thus even peripheral organs receive some direct light input [11]. The
main goal of this paper has been to develop a low-dimensional method to study the basic
properties of hierarchical systems such as the existence and stability of entrained solutions,
together with how the phase and direction of entrainment of the constituent oscillators depend
on important parameters.

In this work, we have focused on how a hierarchical circadian system entrains to an
external 24-hour LD cycle. To do so, we developed a method, partly analytic and partly
computational, to assess the existence and stability of the entrained solution. Generalizing
the approach of Diekman and Bose [13], we derived a Poincar\'e map by placing a section
in the phase space of the peripheral oscillator O2. The phase of O1 with respect to a ref-
erence point on its own limit cycle, x, and of lights y, was then determined to derive the
2-D map. With this approach, we were able to determine that over a large set of parame-
ters, the 2-D map possesses four fixed points, each of which corresponds to a periodic orbit
of the hierarchical circadian system. Only one of these fixed points is asymptotically sta-
ble. The other three fixed points are unstable. We showed how one of them, labeled D in
Figures 6(c), 7(b), and 10(c), is a source from which iterates emerge, including the stable
manifolds of the two saddle points B and C. These manifolds appear to act as separatrices
in the x-y domain of the map in the sense that, although they are for a map and not a
flow, the manifolds separate the direction of convergence towards the stable fixed point A.
Perhaps this is not so surprising as the saddle structure of the fixed points implies the ex-
istence of a saddle structure of the periodic orbits associated with points B and C. In the
full 5-D phase space of the flow, each of the corresponding 1-D stable and unstable mani-
folds from the map become 3-D; the motion along the O1 and O2 limit cycles provide the
additional two dimensions. This would be enough to form a separatrix in the 5-D phase
space.

There are several findings of our work that are readily revealed through the 2-D map.
First, in a strictly hierarchical system, central oscillators typically entrain first. This can be
seen quite clearly from Figure 7(a) which shows that iterates of the map congregate along the
diagonal line, which represents the O1-entrained subset of the 2-D map. This figure also shows
that the peripheral oscillators may entrain in a different direction than the central oscillator
or may in fact change their direction of entrainment during the transient. Given that direct
light input speeds up entrainment, it is intuitively clear to see why entrainment times are,
in general, less for semihierarchical compared to strictly hierarchical systems; see Figure 10.
A second finding involves the stable and unstable manifolds of the fixed points. Despite this
being a map, these manifolds help to organize the iterate structure. In particular, the stable
manifolds of the unstable saddle points create a tubular neighborhood of initial conditions that
lead to very long entrainment times, as seen in Figure 6(d). Determining that the unstable
node and saddle points of the map actually exist is yet another important consequence of our
map-based approach. Simulations alone would be unlikely to reveal either the existence or the
role of these fixed points. Finally, effects of changing relevant parameters are readily explainedD
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using the map. For example, the limits on parameters of entrainment are readily observed
if the coupling to the peripheral oscillator is too weak or if that oscillator is intrinsically too
slow (Figure 4). Alternatively, stronger coupling from central to peripheral oscillators speeds
up entrainment as shown in Figure 9.

Related work. The mechanisms of communication between clock neurons is a topic of
much ongoing research in the circadian field. The neuropeptide pigment-dispersing factor
(PDF) is thought to act as the main synchronizing agent in the fly circadian neural network
[32]. The analogue of PDF in the mammalian circadian system is vasoactive intestinal peptide
(VIP), which plays a major role in synchronizing SCN neurons [33]. Although it is clear
from studies with mutants that these neuropeptides provide important signals to synchronize
circadian cells, the manner in which the signals interact with the molecular clock is not
well understood [15]. Mathematical modeling can be used to explore the effect of different
coupling mechanisms on clock network synchronization. In our model, we have assumed that
production of the synchronizing factor is induced by activation of the clock gene in oscillator
1 (M1), and that the effect of the synchronizing factor is to directly increase transcription of
the clock gene in oscillator 2 (M2). This type of coupling is similar to how Gonze et al. [18]
modeled the action of VIP in the mammalian clock network; however, in the Gonze model
they included a linear differential equation for the production and decay of the coupling agent.
Thus, in their model the coupling agent is a delayed version of the clock gene activity. In
the Roberts et al. [39] model of the fly clock network, the coupling signal is also increased by
clock gene activity. As in our model, the coupling signal then instantaneously increases the
clock gene transcription rate in other oscillators. In addition, the Roberts model included a
second type of coupling where the coupling signal depends on clock protein levels, rather than
clock gene activity, and the effect of the coupling signal is to instantaneously reduce the clock
gene transcription rate in other oscillators. Their simulations suggested that networks with
both coupling types promoted synchrony and entrainment better than networks with either
type of coupling alone. In a more detailed model of the fly clock network, Risau-Gusman and
Gleiser [38] explored 21 different coupling mechanisms and found that synchronization of the
network can only be achieved with a few of them. In future work, it would be interesting to
use generalized entrainment maps to try to gain insight into why certain types of coupling
promote synchrony and entrainment better than others.

Several prior modeling studies on entrainment of circadian oscillators exist. Bordyugov
et al. [7] used the Kuramoto phase model and found, via Arnold tongue analysis, that the
forcing strength and the oscillator amplitude both affect the entrainment speed. As noted in
their work, a limitation of the method is that it only works for relatively weak coupling. An
et al. [3] found that large doses of VIP reduce the synchrony in the SCN, which then reduces
the amplitude of circadian rhythms in the SCN. In turn, they show that this leads to faster
reentrainment of the oscillators in a jet lag scenario. Lee et al. [28] directly introduced a
linear phase model to study the entrainment processes. They found that the period of the
central and peripheral oscillators are not the only predictors of the entrained phase. The
intensity of light forcing to the central oscillator and the strength of coupling from the central
to the peripheral oscillator also play a role in determining the stable phase. Their results are
consistent with what we found for the O1-entrained map shown in Figure 4. Roberts et al.
[39] studied a population of coupled, modified, heterogeneous Goodwin oscillators under DDD
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and single light pulse conditions. Their model simulations of a semihierarchical system show
that because of heterogeneity, a single light pulse can desynchronize and phase disperse the
oscillators. This can lead to a change in the coupling strength between oscillators which in turn
leads to a new periodic solution of different amplitude than before the light pulse. Although
they didn't consider 24-hour LD forcing, Roberts et al. suggests that this desynchrony can be
an important component in assessing reentrainment of semihierarchical networks after jet lag.
Our 2-D entrainment shows that this is indeed true. Namely, a shift in the light phasing that
retains synchrony between O1 and O2 is equivalent to changing the initial y-value of our map,
but keeping x fixed. Whereas a shift of light phasing accompanied by a desynchronization
is equivalent to changing both x and y from the stable fixed point. As our simulations show
(Figure 10(d)), the reentrainment process can be quite different in these two cases.

There are two modeling papers of hierarchical systems that are quite relevant to our work.
In Leise and Siegelman [29], the authors consider a multistage hierarchical system to assess
properties of jet lag. They utilized a 2-D circadian model due to olde Scheper et al. [37]
to show that the direction of entrainment of peripheral oscillators need not follow that of
the central oscillator. This is referred to as reentrainment by partition. To understand this
idea more clearly, consider the concepts of orthodromic and antidromic reentrainment which
are studied in the context of a time zone shift as in jet lag. Orthodromic reentrainment is
defined as the oscillator shifting in the same direction as the forcing signal (e.g., advancing
in response to an advance of the LD cycle) and antidromic reentrainment is when the oscil-
lator shifts in the opposite direction as the forcing signal (e.g., delaying in response to an
advance of the LD cycle). The situation is more complicated for hierarchical systems where
different parts of the system may shift in different directions. For example, when Leise and
Siegelman simulated a jet lag scenario involving a phase advance of 6 hours, they found that
the pacemaker oscillator responded by phase advancing but the intermediate and peripheral
oscillators responded by phase delaying. Similarly to Leise and Siegelman, we also observe
reentrainment by partition in our model. With the parameter values that we used in this
paper, a 6-hour phase advance leads to orthodromic reentrainment in our model with both
oscillators responding by phase advancing. However, simulating a 10-hour phase delay of
the LD cycle places the initial condition in the vicinity of the saddle fixed point C, lead-
ing to reeentrainment through partition depending on the exact location relative to C. Our
results are consistent with those of Leise and Siegelman, as they note that in their model
reentrainment by partition can also be observed in response to phase delays of the LD cycle
for certain values of the coupling strength between the master pacemaker and the interme-
diate component. The qualitative similarity in our results suggests that our findings can be
used to infer that the Leise-Siegelman multistage model also possesses unstable saddle fixed
points whose properties govern the reentrainment process. A second more recent paper due
to Kori, Yamaguchi, and Okamura [24] developed a hierarchical Kuramoto model to study
the entrainment of circadian systems. They applied the model to predict the reentrainment
time after two types of phase shifts, a single eight-hour shift versus a two-step shift with
4-hour shifts in each step. It turns out the latter requires fewer days to recover. In our
paper, this can be related to the properties of stable manifolds of B or C. For example, in
Figure 6(d), for a single eight-hour shift near the fixed point A, the new point will stay close
to W s(C), which makes the reentrainment time longer. For two successive four-hour shifts,D
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the new point will be further from W s(C), which decreases the reentrainment time. This
result generalizes findings from Diekman and Bose [14] and Kori, Yamaguchi, and Okamura
[24].

Regarding the numerical methods that we used to find stable and unstable manifolds,
we basically applied the search circle for stable manifolds [16] and the growing method [26]
for unstable manifolds. One difference between those methods and ours is the domain of
the map, \BbbR 2 versus a torus \BbbT 2 in our case. Instead of growing one curve, our manifold is
cut off when it hits the boundary of the domain. We then restart the calculation at the
equivalent periodic point of the domain, e.g., x = 24 is reset to x = 0. Another difference is
the terminating criteria for both growing and SC methods rely on calculating the arc length
to a predetermined length. However, in our map, the manifolds are generated from a certain
point (the source D or the sink A), thus our algorithm terminates when those manifolds enter
a neighborhood of the corresponding fixed points D and A.

Recently Castej\'on and Guillamon derived a different 2-D entrainment map [9]. This map
applies to a single oscillator (not necessarily a circadian oscillator), subject to pulsed periodic
input. The variables of their map are the phase and amplitude of the oscillator. They use
phase-response curve type methods to show that their 2-D map is more accurate in tracking
the phase-locking dynamics as compared to a 1-D map of simply phase. While they use the
term 2-D entrainment map, it appears that their method applies to a class of problems that
are different than the ones considered in this paper.

Advantages and disadvantages of our method. The methods derived in this paper
have the following advantages. Aside from allowing us to calculate entrainment times and
directions as discussed above, the method provides a clear geometric description of why these
results arise. Namely, the unstable manifolds of various fixed points organize the iterate
structure of the dynamics. Our method does not specifically require the LD forcing to be weak
in amplitude or short in duration. This is in contrast to methods that use phase response
curves and thus require weak coupling or short duration perturbations [8, 35].

Second, the dimension on which we perform analysis is significantly reduced from five to
two dimensions. The classical Poincar\'e map can reduce the dimension of the original system
by one. For example, Tsumoto et al. [40] construct a Poincar\'e map for the 10-dimensional
Leloup and Goldbeter model of the Drosophila molecular clock [30], reducing the dimension
to 9. The phase reduction techniques of Brown, Moehlis, and Holmes [8] can reduce the
dimension of limit cycle oscillators to 1 dimension, however, this method is not accurate for
strong coupling.

There are some disadvantages of the map. First, the map only works to study local
behavior near the stable limit cycle solutions. This is because we restrict the type of per-
turbations that we are considering to allow only for a shift of the LD cycle or a shift of
the central oscillator along its own limit cycle. In particular, we don't know if there is an
unstable or stable structure outside the basin of attraction of the stable entrained solution
without additional analysis. Second, the phase angle method works well with 2-D systems.
For higher-dimensional systems, it would require additional assumptions.

Open questions and future directions. This work is based in part on analysis and in
part on simulations. We have not proved that the correspondence of the findings of the 2-D
map, e.g., existence and stability of fixed points, actually exist for the hierarchical system ofD
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ODEs. We would like to use a 1-D phase model, for example a Kuramoto model [27] for each
oscillator, to see if this proof can be made. Alternatively, we believe this method of mapping
should be applicable to other models, such as Goodwin [19], Gonze et al. [18], or Forger,
Jewett, and Kronauer [17] oscillators which are all higher dimensional. Verifying this, at the
moment, would have to rely on checking agreement with simulations. The 2-D entrainment
map should also be applicable to understanding the interaction of circadian and sleep-wake
rhythms to generalize the findings of Booth, Xique, and Diniz Behn [6].

A necessary condition of our method is the existence of limit cycle solutions of the forced
system, so that we can map any point in the phase plane to a point on the limit cycle.
Light input is not the only forcing signal that a circadian oscillator receives. For instance,
exercise, the intake of meals, and taking melatonin can also be considered as an external
forcing. We would like to develop the entrainment map for multiple forcing signals. Another
possible direction for future work involves generalization of model reduction techniques. Most
reduction techniques are based on weak coupling, such as phase reduction [8]. We would like
to develop a technique for a system with strong coupling. This part could potentially be
done by deriving a Floquet normal form [10] in phase and amplitude space. For the circadian
oscillators that we studied in this paper, it remains open how to derive the Floquet normal
form.
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