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Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates

a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks

featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the

irregular activity occurring in our simulations of conductance-based differential equations and

mathematically analyze the instability of fixed points corresponding to synchronous and antiphase

spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction,

and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features

are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in

a conductance-based framework and provides precise conditions on parameters that ensure that

irregular activity will occur. In particular, the temporal details of spiking dynamics must be present

for a model to exhibit this irregularity mechanism and must be considered analytically to capture

these effects. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4831752]

Networks of neurons in the brain are very high-

dimensional dynamical systems that can produce corre-

spondingly diverse and complex dynamics. While temporal

structure such as synchronization can emerge in the activ-

ity of such networks, normal activity in the brain is often

irregular, lacking recurrent relationships or correlations in

the firing times of different neurons. Past analysis of irreg-

ular activity in networks of neurons has relied on a balance

of different types of interactions that leads to cancellations

of correlations in the limit as network size goes to infinity.

Here, we introduce and mathematically analyze a novel

mechanism for irregular dynamics. This mechanism does

not require many neurons, arising already in a two-neuron

model network featuring a form of coupling known as

synaptic inhibition, nor does it involve cancellation of inter-

actions between neurons. As we show mathematically, the

resulting irregularity emerges naturally from the interplay

of standard ionic currents, as well as the inhibitory synap-

tic current through which neurons interact, during the

spikes of membrane potential that constitute neuronal ac-

tivity. Given its generality, the mechanism we elucidate

may be a fundamental feature of inhibitory brain networks

exhibiting irregular activity.

I. INTRODUCTION

Normal brain states are often characterized by irregular

spiking activity, with little correlation among neurons within

particular brain regions. In particular, there are many exam-

ples of inhibitory networks that generate such irregular activ-

ity. For example, experiments have revealed that, within the

inhibitory network in the globus pallidus of the basal ganglia,

the spike times across pairs of neurons are rather completely

uncorrelated under normal resting conditions.1–4 Indeed, a

hallmark of the parkinsonian state is the replacement of this

uncorrelated activity by more correlated firing.1,2,5–7 Another

example is cortical networks in the dorsolateral prefrontal cor-

tex, which have been identified as playing a key role in work-

ing memory tasks.8–10 Experiments have demonstrated that

during persistent activity, neurons in this area, including a net-

work of interconnected inhibitory fast-spiking interneurons,

exhibit highly irregular firing patterns with a Poisson-like

spike time distribution.11,12 Inhibitory networks also play an

important role in other brain regions that exhibit irregular

spiking activity, such as thalamic networks involved in the

generation of sleep and wake states,13–16 and the hypothala-

mic suprachiasmatic nuclei that coordinate circadian (�24-h)

rhythms.17–20 Although there have been numerous theoretical

and experimental studies of each of these brain regions, the

mechanisms underlying their irregular and/or uncorrelated ac-

tivity remain poorly understood. In this paper, we present a

general mechanism by which highly irregular spike time rela-

tions can emerge in a network of neurons coupled with recip-

rocal synaptic inhibition.

Many works of theoretical neuroscience represent the

viewpoint that coupling between a pair of neurons necessarily

introduces correlations in their spike times. According to this

view, irregularity or asynchronous activity requires some sort

of cancellation of positive and negative correlations, such as

may arise in what are known as balanced input regimes.21,22

Much of this theory has been worked out in the limit as net-

work size goes to infinity and in models that do not include

the temporal features of spikes.23–28 In contrast, we show that

a two-cell network with reciprocal synaptic inhibition can

robustly exhibit irregularity. This activity results from the

combined effects of synaptic inhibition and various standard

ionic currents. In particular, the temporal dynamics of spiking

contribute critically to this irregularity mechanism.
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In this paper, we first consider some ordinary differential

equation models for a pair of neurons reciprocally coupled

by synaptic inhibition, including two from the literature

based on experimental data for particular brain regions.29,30

We use numerical simulations to illustrate that these generate

chaotic dynamics. Next, we define a one-dimensional map

for one of these models and demonstrate numerically that the

complex dynamics of the full system is very well approxi-

mated by the dynamics of this reduced map. We subse-

quently proceed to analyze properties of the map. First, we

show numerically how the map structure relates to changes

in the relative timing, and order, of spike firing by the two

neurons. Subsequently, we derive analytical estimates on the

derivative of the map at points corresponding to both syn-

chronous and antiphase solutions. The analysis leads to

rather precise conditions on parameters for when each of

these solutions is unstable. The mechanism that we analyze

does not require highly specialized or complicated intrinsic

dynamics. Our results do, however, depend on properties of

the spike itself. Specifically, the effects we consider would

not show up in integrate-and-fire type models that neglect

the dynamics of spiking and subsequent repolarization.

Finally, we consider larger inhibitory networks and use nu-

merical simulations to show that these may also exhibit

highly irregular and uncorrelated spiking activity.

II. FROM DIFFERENTIAL EQUATIONS TO A
ONE-DIMENSIONAL MAP

A. Basic model equations

Consider the two-cell neural network governed by the

equations

Cv0i ¼ �INaðvi; niÞ � IKðvi; niÞ � ILðviÞ � Isynðvi; sjÞ;
n0i ¼ /ðn1ðviÞ � niÞ=snðviÞ;
s0i ¼ að1� siÞs1ðviÞ � bsi;

(1)

for i 2 f1; 2g; j ¼ 3� i, where INaðv; nÞ ¼ gNam3
1 ðvÞð1� nÞ

ðv� vNaÞ; IKðv; nÞ ¼ gKn4ðv� vKÞ; IL ¼ gLðv� vLÞ, and

Isynðv; sÞ ¼ gsynsðv� vsynÞ. The parameter gsyn � 0 and we

consider vsyn such that vi > vsyn always holds, corresponding

to synaptic inhibition. Note that in system (1), the synaptic

conductance s1 depends on v1 and appears in the Isyn term in

the differential equation for v2, and vice versa. In the si equa-

tion, we assume that s1ðvÞ is an approximation of the

Heaviside step function with threshold h. Additional func-

tions appearing in model (1) are

m1ðvÞ ¼ ð1þ expð�ðv� hmÞ=rmÞÞ�1;

n1ðvÞ ¼ ð1þ expð�ðv� hnÞ=rnÞÞ�1

s1ðvÞ ¼ ð1þ expð�ðv� hsÞ=rsÞÞ�1;

snðvÞ ¼ s0 þ s1=ð1þ expð�ðv� hsÞ=rsÞÞ:

Model (1) is a fairly standard conductance-based model,

incorporating the basic ionic currents studied by Hodgkin

and Huxley.31 Our default parameter values, which appear in

Table I, lie within biologically relevant ranges if we consider

them to be given in the units specified in the table; we omit

mention of units throughout the remainder of the paper. Note

that we chose vL¼�30 to mimic the effect of a nonselective

cation, since most neurons include additional cationic cur-

rents. In fact, our analysis shows that irregular activity

becomes more robust for more hyperpolarized values of vL

(e.g., Figure 16).

B. Periodic solutions

For our analysis, we assume that for a single uncoupled

cell, defined by gsyn¼ 0, the v- and w-nullclines are cubic-

shaped and monotone increasing curves, respectively, that

intersect at a single point along the middle branch of the

v-nullcline. Moreover, v0 > 0ð<0Þ below (above) the v-null-

cline and w0 > 0ð<0Þ below (above) the w-nullcline. With

these assumptions, it is not hard to show that there must be a

periodic solution C0 ¼ fX0ðtÞ ¼ ðv0ðtÞ; n0ðtÞ; s0ðtÞÞ : t 2 Rg
of the single cell model if the parameter / is sufficiently

small. Moreover, there must also exist a synchronous periodic

solution of Eq. (1) if the coupling strength gsyn is not too large.

For gsyn fixed at any such value, we denote the synchronous

periodic solution as Cg, and we will later find conditions on

parameters so that Cg is unstable.

Figure 1(a) shows the trajectory corresponding to the

periodic solution C0 in the phase plane. Note that this trajec-

tory differs from a so-called “relaxation oscillator,” which

has been used in numerous previous studies of reduced

neuronal dynamics.33 A relaxation oscillator, as shown in

Figure 1(b), is usually defined in the limit /! 0 and tracks

very close to the left and right branches of the cubic-like v-

nullcline during the silent and active phases. The jump-up

and jump-down between these two phases occur when

the trajectory reaches either the left or right fold, or knee, of

the cubic-shaped nullcline. Except where jv0ðtÞj � 0 when

the trajectory crosses the v-nullcline, jv0ðtÞj > 5jn0ðtÞj. The

periodic solution for system (1) that we consider, on

the other hand, does not track close to the left branch of the

cubic nullcline during the silent phase. Instead, after the

TABLE I. Parameter values for system (1).

Conductances Reversal potentials Half activations Slopes Rate constants Other

(nS) (mV) (mV) (1/ms)

gNa¼ 100.0 vNa¼ 55.0 hm ¼ �37:0 rm ¼ 10:0 / ¼ 0:2 C¼ 1.0 pF

gK¼ 10.0 vK¼�80.0 hn ¼ �50:0 rn ¼ 14:0 a¼ 5.0 s0 ¼ 0:05 ms

gsyn¼ 0.2 vsyn¼�100.0 hs ¼ �30:0 rs ¼ 0:1 b¼ 1.0 s1 ¼ 0:27 ms

gL¼ 0.02 vL¼�30.0 hs ¼ �40:0 rs ¼ �12:0
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jump down from the active phase (i.e., termination of a

spike), the trajectory quickly moves nearly vertically, with

jv0ðtÞj < 5jn0ðtÞj much of the time, until it crosses the n-null-

cline. After this crossing, it tracks close to the n-nullcline

until v � �60, which is close to spike threshold, above

which the trajectory jumps back up to the active phase. As

we shall see, this difference in the geometry of the periodic

solutions has a profound impact on the dynamics of the

coupled cell network.

We note that several well-known models for neuronal

activity exhibit phase plane dynamics qualitatively similar to

what we show in Figure 1(a). These include the Wang-

Buzsaki model for hippocampal interneurons29 and the

Destexhe-Par�e model for neocortical pyramidal neurons.30 In

Figures 1(c) and 1(d), we show projections of a periodic so-

lution of each of these models onto the (v,n) phase plane.

C. Two coupled cells generate chaotic activity that is
captured by a one-dimensional map

The dynamics of model (1) depends on the strength of

the coupling parameter gsyn. Figure 2 shows solutions of the

model for different values of gsyn. Numerical simulations

demonstrate that the model exhibits stable synchrony for

gsyn< 0.14 and what appears to be chaotic dynamics for

0:14 < gsyn < 0:49. Such apparently chaotic solutions are

shown in Figures 2(b) and 2(c). Note that as gsyn increases in

this range, each cell tends to fire on more consecutive cycles,

while the other cell remains silent. For gsyn > 0:49, the

model exhibits a so-called suppressed solution in which one

cell fires periodically and the other cell remains silent. Such

a solution is shown in Figure 2(d).

Figure 3(a) shows another example of the time courses

of v1, v2 for a solution of the model (1) with gsyn¼ 0.2. Note

that the two cells fire in a very irregular manner. They often

take turns firing, but sometimes a cell fires two consecutive

spikes before the other one fires. To demonstrate the irregu-

larity of this solution more definitively, we compute a map

as follows. We fix v�1 within the range of subthreshold v val-

ues. We then integrate the model with a random initial condi-

tion. After discarding a long transient, we record data each

time that v1ðtÞ ¼ v�1 with v01ðtÞ > 0. Suppose that these sec-

tion crossings take place at times ft̂kg. We define a subse-

quence, call it ftkg, of ft̂kg by keeping the times between

which cell 1 spikes (defined by the condition that n1

increases through 0.5). We plot the points ðv2ðtkÞ; v2ðtkþ1ÞÞ,
generated using v�1 ¼ �67, in blue in Figure 3(b). Note that

the resulting points seem to fill out an entire curve, which

corresponds to a chaotic attractor of the system. Moreover,

the derivative of this curve has absolute value greater than

one, except near the curve’s local maximum and minimum.

This is another indication of chaotic behavior.34,35 In fact,

the trajectory has a positive Lyapunov exponent, 0.0481, as

computed using the Gram-Schmidt reorthonormalization

procedure implemented in MATDS.36,37

We define another one-dimensional map that is more

amenable to mathematical analysis, which we refer to as the

reduced map, as follows. First, we simulate model (1) with

gsyn¼ 0 to collect coordinates of a dense mesh of points on

the periodic solution C0. Denote these points as fðvk; nkÞg.
We then consider model (1) with gsyn > 0. For each k, we

integrate (1) with cell 1 always starting from the point on C0

with v1¼�67 and v01 > 0 ðv1 ¼ �67; n1 ¼ 0:2066; s1 ¼ 0Þ
and with initial conditions for cell 2 at (v2, n2, s2)¼ (vk, nk,

0). We then record the v2 value at the time sk that we select

such that v1ðskÞ ¼ �67; v01ðskÞ > 0 and cell 1 fires exactly

one spike for 0 < t < sk. Finally, we plot a curve that

interpolates the points ðvk; v2ðskÞÞ; this curve is shown in

FIG. 1. Nullclines and periodic solutions

for single neuron models. (a) Model (1)

with gsyn¼ 0. (b) Relaxation oscillation

in the standard Morris-Lecar model (Ref.

32, with parameters tuned to the Type I

regime). In both cases, the v-nullcline

appears in green, the n-nullcline in red,

and a periodic solution in blue and black.

Each periodic solution is colored black

where jv0ðtÞj < 5jn0ðtÞj and blue else-

where. (c) Projection of periodic solution

for the Wang-Buzsaki model.29 (D)

Projection of periodic solution for

the Destexhe-Par�e model.30 XPPAUT

codes for the Morris-Lecar, Wang-

Buzsaki, and Destexhe-Par�e models can

be found at the website: http://www.

math.pitt.edu/~bard/bardware/neurobook/

allodes.html.
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Figure 3(c), and it is presented together with the blue curve

from Figure 3(b) in Figure 3(d). We observe that the attractor

of the full model—that is, the blue curve in Figure 3B or

3D—is very well approximated by the attractor of the

reduced map. This is, in some sense, not surprising because

the projections of solutions of Eq. (1) with gsyn > 0, small,

onto the (v,n) plane lie very close to the periodic trajectory

C0. We further note that the reduced map has two fixed

points, both of which are unstable. The fixed point at

v2¼�67 corresponds to the synchronous solution.

Since the singular solution is a closed orbit, the one-

dimensional map is, in fact, a map of a topological circle. To

each value of v2 in the map’s domain there correspond two

points on the singular solution (except at the two

“endpoints”): one in which v02 > 0, corresponding to the inter-

val between spikes, and another with v02 < 0, corresponding

the spiking phase. We are primarily interested in the points

where v02 > 0, since these will contain the global attractor.

However, it may happen that v02 < 0 when v1 hits its section,

especially if the crossing occurs when v2 has recently fired a

spike. In Figure 3(c), the part of the black curve generated

from initial conditions with v02ð0Þ < 0 is solid, while the rest

is dashed. There is a sharp, nearly vertical portion of the

dashed black curve at vk � �73 where the map appears to be

discontinuous. This corresponds to points vk that are mapped

to points v2ðskÞ such that v02ðskÞ < 0. We note that this

vertical portion of the black curve crosses the identity line

v2ðskÞ ¼ vk. However, this does not correspond to a fixed

point of the map since vk lies on the portion of C0 where

v0 > 0, while v2ðskÞ lies near the portion of C0 where v0 < 0.

Note that in the free-running simulation used to generate

Figure 3(b), no such points are represented; that is, it appears

to be extremely unlikely that cell 2 will have just fired a

spike when v1 increases through �67 after a cell 1 spike.

For other section choices, however, we can encounter

such points. An example of such a reduced map appears in

Figure 4, generated from taking a section at v�1 ¼ �50 (i.e.,

resetting to v1 ¼ �50; n1 ¼ 0:3135; s1 ¼ 0 on C0). From this

starting point, an uncoupled cell has v0 > 0 and will quickly

approach spike threshold. The discrete points (blue and red)

in Figure 4(a) were generated analogously to those in Figure

3(b), while the continuous curve (black solid and dashed) in

Figure 4(b) was produced the same way as that in Figure

3(c). The red points, however, feature v02ðtkÞ < 0, which did

not arise in Figure 3(b). We find that if v02ðtkÞ < 0, then it

always follows that v02ðtkþ1Þ > 1. Thus, points from intervals

where the slope has smaller magnitude map to the intervals

where the curve is steep. These numerics suggest that further

consideration of a section at v�1 ¼ �50 will be particularly

revealing about how the cells can switch spiking order.

Thus, in the next subsection, we perform some additional nu-

merical explorations using this section, to elucidate how the

FIG. 2. Dependence on gsyn. The synchronous solution is stable for gsyn¼ 0.1, but the model exhibits chaotic oscillations for gsyn¼ 0.2 and 0.35. If gsyn¼ 0.5,

then there is a suppressed solution in which one cell fires continuously, while the other cell is silent.
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structure of the reduced map emerges from changes in the

timing and order of the two neurons’ spikes.

Figure 5 shows additional examples of the full map cor-

responding to three different values of gsyn. Note that the

absolute value of the derivative of the map at vk ¼ �67 is

less than one if gsyn¼ 0.1, but is greater than one if gsyn¼ 0.2

or 0.5. Hence, the synchronous solution is stable for

gsyn¼ 0.1 but unstable for gsyn¼ 0.2 and 0.5. Further note

FIG. 3. Numerical evidence of irregular activity from the model (1) with gsyn¼ 0.2. (a) Time courses of v1 (blue) and v2 (red) from random initial conditions.

(b) v2ðtkþ1Þ versus v2ðtkÞ, where ftkg are defined by the conditions v1ðtkÞ ¼ �67; v1
0ðtkÞ > 0, and v1 fires exactly one spike on ðtk; tkþ1Þ, from a free-running

simulation of 5� 104 msec starting from random initial conditions. The cobwebbing segment was selected randomly from within a run after a transient was

discarded. It starts and ends at the v2 values indicated by the black and open dots, respectively. The black dotted curve is the identity line. (c) Similar data to

(b), generated using repeated simulations of initial conditions along C0 ðv2ðskÞ versus vk; see text). The dashed (solid) part of the black curve corresponds to

v2
0 > 0 ðv2

0 < 0Þ when cell 1 crosses the section at �67 (the curve is closed but parts above v¼�55 and below v¼�77 are cut off here to focus on the central

features). (d) Superposition of the curves from (b) and (c).

FIG. 4. Mapping of v2 values across successive times when v1¼�50 with v1
0 > 0, from the reduced model (1) with gsyn¼ 0.2. (a) Discrete points show

v2ðtkþ1Þ versus v2ðtkÞ from a free-running simulation of 5� 104 ms starting from random initial conditions, similar to Figure 3(b). Points are colored blue (red)

if v2
0ðtkÞ > 0 ðv2

0ðtkÞ < 0Þ. (b) Superimposed on the data from (a) is a continuous curve that interpolates points generated using repeated simulations of initial

conditions along C0, similar to Figures 3(c) and 3(d). The black solid (dashed) part of the curve corresponds to v2
0 > 0 ðv2

0 < 0Þ when cell 1 crosses the section.
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that there is a stable fixed point, indicated by the black circle,

when gsyn¼ 0.5. This fixed point corresponds to the sup-

pressed solution.

We note that there does not exist a stable antiphase solu-

tion for any value of gsyn. However, stable antiphase solu-

tions can emerge if we change some other model parameter.

For example, if rm ¼ 9, then stable antiphase solutions exist

for 0 < gsyn < 0:4. In fact, the model is bistable for

0 < gsyn < 0:1. Over this range of gsyn, there exist both a sta-

ble synchronous solution and a stable antiphase solution.

Further discussion of the antiphase solution is given later.

To define the one dimensional reduced map, we need to

assume that the synaptic variables s1 and s2 decay very close to

zero during consecutive action potentials of the corresponding

neuron. This decay occurs if the parameter b, corresponding to

the synaptic decay rate, is sufficiently large. For the simula-

tions, we chose b ¼ 1:0 msec�1. However, experiments have

demonstrated that inhibitory GABAA synapses decay at a rate

that is about 10 times slower. In Figure 6, we computed the full

map for the model with b ¼ 0:18 msec�1 and gsyn ¼ 0:09.

Note that the solution is chaotic; however, the dynamics can no

longer be captured by a reduced one-dimensional map. This

simplification is not possible because we can no longer assume

that the synaptic variables are zero when defining the reduced

map. So, in fact, more complicated dynamics may come

into play when considering more realistic, slower synaptic

dynamics.

Finally, we note that the full map for each of the Wang-

Buzsaki and Destexhe-Par�e models, as shown in Figure 7,

has a qualitatively similar structure to that of model (1). In

particular, this map consists of regions where the slope has

magnitude greater than one interrupted by abrupt deviations

or discontinuities. Consistent with the analysis developed in

this paper, networks formed from neurons described by

either model, coupled through synaptic inhibition, can

exhibit irregular dynamics.38,39

III. NUMERICAL ANALYSIS OF MAP STRUCTURE

To gain insight about the dynamics of model (1) and the

source of the structure of the reduced map, we replot the data

from the curve in Figure 4 generated from the section

v�1 ¼ �50. Recall that each iterate starts at time 0, and the

kth iterate ends at time sk. We now plot v2ð0Þ � v1ð0Þ and

v2ðskÞ � v1ðskÞ versus our iteration step number k (which we

refer to as a time-like variable, since the initial sampling of

points from C0 was based on integration with a uniform time

step). The results of this replotting appear in the center of

Figure 8. The blue curve denotes v2ð0Þ � v1ð0Þ while the

green is v2ðskÞ � v1ðskÞ. Along the latter curve, various

points are marked with asterisks and numbers. These points

FIG. 5. The full map for gsyn¼ 0.1 (blue), 0.2 (red), and 0.5. The synchro-

nous solution, corresponding the fixed point at (�67, �67), is stable for

gsyn¼ 0.1 but unstable for gsyn¼ 0.2 and 0.5. There is a stable fixed point,

indicated by the black circle, when gsyn¼ 0.5 corresponding to a suppressed

solution.

FIG. 6. The full map for b ¼ 0:18.

FIG. 7. Iterates of the full map described in this paper, but generated from (left) the Wang-Buzsaki model29 and (right) the Destexhe-Par�e model.30 Here, we

computed the map by first discarding a 10 s transient and then running the models for another 50 s.
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label iterates that were selected to represent different regimes

that we discuss below. The time courses of v1 and v2 from

time 0 up to some time greater than or equal to sk (chosen to

best illustrate each regime) are shown for the numbered iter-

ates in correspondingly numbered panels around the outside

of the figure. Possible fixed points, namely states in which v2

always takes the same value whenever v1¼�50 with v01 > 0,

arise at iterates where the blue and green curves coincide. In

reality, however, most of these coincidences turn out to be

cases where v2ðskÞ ¼ v2ð0Þ but v02ð0Þ > 0 and v02ðskÞ < 0;

that is, v2 ends up on the “opposite side” of the orbit from

where it starts. The actual synchronous fixed point occurs near

point 8, where the blue and green curves together cross the

dashed line at 0 and is labeled with an ‘s’. We will now dis-

cuss the various regimes that occur within the simulation.

In regime 1, represented by the leftmost asterisk in

Figure 8 (center) and the panel numbered “1,” cell 2 starts

significantly “behind” cell 1, with v2 much farther below

spike threshold than v1. Due to this disadvantage, the inhibi-

tion to cell 2 that results from the spike of cell 1 allows cell

1 to overtake cell 2 after spiking. Thus, when v1ðskÞ ¼ �50

for sk > 0 with v01ðskÞ > 0, we still have v2ðskÞ < �50, but

v2ðskÞ > v2ð0Þ and thus the green curve lies above the blue

in this regime. This regime ends where the green curve hits

0, which represents an iterate such that v2 manages to first

reach �50 at exactly the time that v1 returns there.

In regime 2, cell 2 spikes before v1 reaches �50, but it

does not have time to complete its spike before this happens.

In the panel numbered “2,” for example, the two cells’ tra-

jectories cross fv ¼ �50g, just after time 15, so close to-

gether in time that we cannot distinguish them; nonetheless,

because the voltage traces are so steep at threshold crossing,

v2 – v1 is almost 20 when this happens (point 2 in Figure 8,

center). This regime can be viewed as ending when the green

curve next hits 0 (with negative slope). At the iterate where

that occurs, v2ðskÞ ¼ �50 with v02ðskÞ < 0: cell 2 and cell 1

have the same voltage at time sk but cell 2 is finishing its

spike while cell 1 approaches spike threshold. Similarly, the

point between “2” and “3” where the blue and green curves

intersect is not a true fixed point for the same reason.

The regime represented by point 3 in Figure 8 (center) is

a simple one in which cell 2 does manage to spike after cell

1 and is still quite far below spike threshold, in its recovery

phase, when v1ðskÞ ¼ �50 with v01ðskÞ > 0 occurs. This is a

long phase in terms of iterates, because the rate of change of

voltage well below spike threshold is relatively small and

there is a significant interval of v2(0) values over which this

regime occurs. There is a fixed point corresponding to a

form of antiphase spiking within this regime, quite close to

point 3, yet numerically we see that it is weakly unstable,

due to the greater slope of the green curve than the blue one

there.

FIG. 8. The return map for a section at v¼�50. See text for a full description.
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The positive slope of the green curve in regime 3 means

that as we progress through this regime, the ending value of

v2 increases; note that cell 2 spikes progressively earlier,

which is what yields the larger final values. If cell 2 spikes

earlier, then it inhibits cell 1 earlier, and in this model, this

earlier inhibition produces a longer delay before cell 1 can

return to spike threshold. Eventually, when v2(0) is large

enough, it can manage to overtake cell 1 and fire a second

spike before cell 1 can spike again. The transition to this

case occurs at the third 0 crossing of the green curve in

Figure 8 (center). Point 4 illustrates what happens beyond

this transition as cell 2 achieves its second spike before cell

1, yielding a large v2ðskÞ.
Continuing this trend, as v2(0) increases still more and

cell 2 spikes still earlier, we observe iterates on which cell 2

is finishing its second spike when cell 1 reaches v1¼�50.

By the iterate corresponding to point 5, cell 2 has completed

its second spike and fallen well below threshold when

v1¼�50, such that the green curve ends up well below the

blue one. The intersection between blue and green curves

between points 4 and 5 is not a true fixed point; analogously

to the intersection between points 2 and 3, v02ðskÞ < 0 at the

iterate at which this intersection occurs.

From point 5 to point 6, the green curve is non-

monotonic, reflecting subtle changes in the effects of inhibi-

tion between the two cells. In regime 5, the delay in spiking

of cell 1 is due to the inhibition associated with the first spike

of cell 2, whereas the second spike of cell 2 has little impact.

In regime 6, the opposite holds, as it is the second spike of

cell 2 that delays the spiking of cell 1 (see outer panels of

Figure 8). Somewhat paradoxically, as cell 2 continues to

fire its first spike progressively earlier beyond point 6, this

spike continues to impact cell 1 less, and the subsequent

spike of cell 1 becomes earlier. Eventually, as represented by

point 7, even the second spike of cell 2 cannot delay the sec-

ond spike of cell 1, and cell 1 spikes while cell 2 is still

active. (As previously, the intersection of curves between

points 6 and 7 is not a fixed point, due to v02ðskÞ < 0.)

After regime 7, we finally reach v2(0)¼�50, the fixed

point corresponding to the synchronous state. The steep slopes

of the curves here suggest that this true fixed point will be

unstable, and we will analyze this claim in the next section.

Beyond the fixed point is a regime with v2ð0Þ > �50 (blue

curve above 0). Here, cell 2 fires its first spike before cell 1,

but cell 1 fires its second spike slightly before cell 2, such that

the green curve lies below 0, as at point 8. As the initial condi-

tion for cell 2 progresses through various points within the

spike, with v2ð0Þ > �50; v2ðskÞ ends up at roughly the same

value as it did for point 8. Once v2(0) becomes less than �50,

with v02ð0Þ < 0, as represented by point 9, v2ðskÞ appears to

briefly become much more sensitive to v2(0); indeed, there

may be some numerical inaccuracies in the green curve in this

regime. At point 9 and over an interval to its right, at least, the

situation is clear: cell 2 is initially in its after-spike hyperpo-

larization phase, with v02ð0Þ < 0, and the inhibition from cell

1 helps keep v2ðtÞ < v2ð0Þ for all t > 0 until v1 reaches �50

with v2ðskÞ � v2ð0Þ. Similarly to several previous cases, the

condition v02ð0Þ < 0 prevents fixed points in this regime, even

if the blue and green curves intersect.

Finally, for sufficiently negative v2(0), we return to initial

states with v02ð0Þ near 0 or positive. As illustrated at point 10,

however, the inhibition from cell 1 manages to prevent cell

2 from spiking before the time sk such that v1ðskÞ ¼ �50.

Since v02ð0Þ is sufficiently close to 0 or positive, we do get

v2ðskÞ > v2ð0Þ in this regime, and in fact the situation

matches up with regime 1, as it should due to the periodicity

of the relevant solutions.

In summary, the numerical experiment illustrated in

Figure 8 suggests that as we progress across iterates corre-

sponding to points on C0, over broad intervals, the value of

v2 at our stopping condition varies more rapidly than the

value of v2 at the starting point (green curve versus blue

curve). The abrupt variations in the reduced map are linked

to the spiking of cell 2, since v2ðskÞ is sensitive to v2(0)

when cell 2 spikes near time sk. This sensitivity is com-

pounded near switches in the order of spike firing, since both

cells’ voltages change quickly when both cells are close to

threshold at the same time, as occurs near such switches.

There appear to be several starting configurations that map

to v2ðskÞ ¼ v1ðskÞ or to v2ðskÞ ¼ v2ð0Þ, but for many of

these, v02ðskÞ < 0, whereas v01ðskÞ > 0 by construction, so

these configurations do not promote phase-locked states.

There do seem to be two true fixed points, one corresponding

to synchrony (‘s’) and the other, near point 3, to an antiphase

state, but both appear numerically to be unstable. In Sec. IV,

we analytically establish conditions on parameters that

ensure the instability of the synchronous state.

IV. INSTABILITY OF THE SYNCHRONOUS STATE

A. The return map P

Our numerics have revealed a form of sensitivity to

initial conditions in system (1), related to the inhibitory inter-

actions between the cells. We now wish to find precise con-

ditions on parameters for when the synchronous solution is

unstable. This is done by constructing a one-dimensional

map, similar to the maps computed numerically in the previ-

ous sections, and then computing the derivative of this map

at a point corresponding to the synchronous solution. To

define the map, let XiðtÞ ¼ ðvi; ni; siÞ for i¼ 1,2 denote the

trajectories corresponding to the two cells. Here, we consider

initial conditions so that both X1(0) and X2(0) lie on C0 and

assume that s1ðvÞ ¼ Hðv� hÞ where H is the Heaviside step

function. For our analysis, we will make use of various addi-

tional notation as illustrated in Figure 9. Fix some V0 < h, to

be chosen later, and assume that v1(0)¼V0 with v01ð0Þ > 0.

Furthermore, assume that jv2ð0Þ � V0j is small with v02ð0Þ > 0

and choose Dt so that v2ðDtÞ ¼ V0. (Note that Dt < 0 if

v2ð0Þ > V0.) The quantity Dt corresponds to the distance

between the cells in the “time metric.” Now, there must

exist a first time T0 > 0 so that v1ðT0Þ ¼ V0 and v01ðT0Þ > 0.

We choose eDt as the minimal in magnitude time so

that v2ðT0 þ eDtÞ ¼ V0 (Figure 9), and we define the map

P : Dt! eDt.
Note that the synchronous solution corresponds to a fixed

point of the map and the synchronous solution is unstable if

jP0ð0Þj > 1. In what follows, we find precise conditions for

this instability. These conditions are found by following the
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trajectories corresponding to the two cells around in phase

space and writing P as the composition of other maps, each

corresponding to passage of the solution through some portion

of phase space. We make this decomposition because, as we

shall see, different components of the model, including both

synaptic and intrinsic properties of the cells, control the

expansion of solutions within different regions of phase space.

Specifically, we write P ¼ P3 �P2 �P1, where

P1 : Dt! Ds; P2 : Ds! Dv; P3 : Dv! eDt:

Each map component Pi is defined and analyzed in a subsec-

tion below. We henceforth assume that v2ð0Þ < v1ð0Þ so that

Dt > 0. The case Dt < 0 is similar.

B. The map P1

We will use P1 to compare the values of the synaptic con-

ductance impacting each cell at the time when its trajectory

intersects a section fv ¼ V1g, with V1 < minfv1ð0Þ; v2ð0Þg ¼
v2ð0Þ (Figure 9); in our numerical examples, we take V1¼�71.

Specifically, let T1 and D1 be the smallest positive times so that

v1ðT1Þ¼ v2ðT1þD1Þ¼V1. Then P1ðDtÞ¼Ds :¼ s1ðT1þD1Þ
�s2ðT1Þ.

To estimate Ds, let t1 < t2 be the smallest positive

times so that v1ðt1Þ ¼ v1ðt2Þ ¼ h, and let d1 < d2 be the

smallest positive times so that v2ðt1 þ d1Þ ¼ v2ðt2 þ d2Þ ¼ h
(Figure 9). Then

s01 ¼
að1� s1Þ; t1 < t < t2;

�bs1; 0 < t < t1; t2 < t < T1 þ D1;

(

s02 ¼
að1� s2Þ; t1 þ d1 < t < t2 þ d2;

�bs2; 0 < t < t1 þ d1; t2 þ d2 < t < T1:

(

We assume that s1(0)¼ s2(0)¼ 0, which is a good approxi-

mation if b is sufficiently large relative to the duration of the

interspike interval of the synchronous solution.

Note that if gsyn¼ 0, then X1(t) and X2(t) both lie on the

same synchronous solution and the “time metric” between

the two cells remains invariant; hence, d1 ¼ d2 ¼ D1 ¼ Dt.
We claim that if gsyn > 0 is small, then one can still approxi-

mate d1; d2 and D1 by Dt. In brief, this is because during this

“spiking” phase of the solution, the synaptic currents are

dominated by the Naþ and Kþ ionic currents. Hence, cou-

pling due to the synaptic currents has little effect on the tra-

jectories corresponding to the two cells. More precisely, we

note that during a spike, when v > h, we can approximate

the nonlinear functions m1ðvÞ and n1ðvÞ by 1. Assuming

further that snðvÞ is constant, we can approximate the first

two equations in Eq. (1) by the linear system

Cv0i ¼ �gNað1� niÞðvi � vNaÞ � gKn4
i ðvi � vKÞ

� gLðvi � vLÞ � gsynsjðvi � vsynÞ;
n0i ¼ kð1� niÞ: (2)

Now consider d1, the time it takes v2 to travel from v2(t1) to

h. Without synaptic input, this time would be Dt. Hence, the

ratio d1=Dt is, to first order in Dt, equal to the ratio of v0 with-

out synaptic input to v0 with synaptic input, evaluated at the

point along C0 with v ¼ h. For our default parameters, we

find that d1 � ð1:004ÞDt.
To estimate d2 and D1, we solve the linear system (2)

explicitly for different initial conditions corresponding to the

two cells. Note that

niðtÞ ¼ 1þ ðnið0Þ � 1Þe�kt

and the solution of the first equation in Eq. (2) can be written

as the sum of four functions, each the solution of a differen-

tial equation corresponding to one of the four terms on the

right hand side of Eq. (2). For example, let (u1,n1) and

(u2,n2) be solutions of the linear system

Cu0 ¼ �gNað1� nÞðu� vNaÞ;
n0 ¼ kð1� nÞ; (3)

where u1ð0Þ ¼ u2ð0Þ ¼ h and n1ð0Þ 6¼ n2ð0Þ. Note that the

solution of the first equation in Eq. (3) is given by

uðtÞ ¼ vNa þ ðh� vNaÞexp � gNa

k
ð1� nð0ÞÞð1� e�ktÞ

� �
:

Hence,

ju1ðtÞ�u2ðtÞj¼ðvNa�hÞexp �gNa

Ck
ð1�n1ð0ÞÞð1�e�ktÞ

� �
� 1�exp �gNa

Ck
jn2ð0Þ�n1ð0Þjð1�e�ktÞ

� �� �
�ðvNa�hÞexp �gNa

Ck
ð1�n1ð0ÞÞð1�e�ktÞ

� �
�gNa

Ck
jn2ð0Þ�n1ð0Þjð1�e�ktÞ

<
gNaðvNa�hÞ

Ck
e�gNa=2Ckjn1ð0Þ�n2ð0Þj; (4)

FIG. 9. Set-up for the analysis of the map P1. The black solid curve is the

periodic orbit C0, generated numerically from model (1) with gsyn¼ 0.

Dashed lines are placed at particular v values used in the proof. The solid

blue and red dots provide example starting locations for cell 1 and cell 2,

respectively.
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using the fact that jn1ð0Þ � n2ð0Þj is small for perturbations

from synchrony and assuming that ð1� n1ð0ÞÞð1� e�ktÞ
> 1=2, as we observe numerically. For our default parame-

ters, we have that gNa=Ck � 25, from which it follows that

there is a huge amount of compression. In a similar way we

can estimate compression of the other three solutions of the

linear equations corresponding to the other terms on the right

hand side of Eq. (2). Based on this compression, we conclude

that there is little change in the time metric distance between

cells while their voltages exceed h and hence d2 and D1 can

be very closely approximated by d1, which we have shown is

closely approximated by Dt.
If we let M1 ¼ t2 � t1 and M2 ¼ T1 � t2, then these

approximations yield

s1ðT1 þ D1Þ � ð1� e�aM1Þe�bðM2þDtÞ;

s2ðT1Þ � ð1� e�aM1Þe�bðM2�DtÞ

so that

P1ðDtÞ � ð1� e�aM1Þe�bM2ðe�bDt � ebDtÞ:

Thus,

P01ð0Þ � �2be�bM2 (5)

in the limit a	 1. Numerically, for our default parameters

and h ¼ �30, the passage time M2 � 0:36 and P01ð0Þ
� �1:4. The negative sign of P01ð0Þ implies that if

v1ð0Þ > v2ð0Þ, then cell 1 is more inhibited when it reaches

fv ¼ V1g than is cell 2 when it reaches the same section.

Finally, note that n1ðT1Þ > n2ðT1 þ D1Þ. This relation

holds because, as shown in Figure 10, the trajectory corre-

sponding to cell 2 lies “inside” that of cell 1. More precisely,

for 0 < t < t1, the cells are essentially uncoupled and evolve

along the synchronous solution. The synaptic variable s1

activates when t¼ t1, while s2 does not activate until t ¼ t1

þ d1. Hence, for t1 < t < t1 þ d1, the vectors ðv02ðtÞ; n02ðtÞÞ
have greater slope than ðv01ðtÞ; n01ðtÞÞ. During this time, cell 1

remains on the synchronous solution, while cell 2 is “pushed

inside” of the synchronous solution by a small amount. An

example of this effect is illustrated in Figure 10(a). The blue

curve is a segment of C0. The black curve points in the direc-

tion of ðv01; n01Þ evaluated at the initial point of the segment at

FIG. 10. Numerical illustration that the trajectory of cell 2 ends up inside that of cell 1 during the P1 phase of the orbit of system (1). (a) For a particular point

on C0 (blue) with v¼�46, the black segment points in the direction of ðv1
0; n

0
1Þ. The red segment similarly points in the direction of ðv2

0; n2
0Þ when v2¼�46

(although cell 2 is not on C0 at that time because s1 > 0) and lies “inside” of the black segment. (b) dn/dv versus v for cell 1 (black) and cell 2 (red) along the

solution of (1) considered from v¼�46 until the voltages increase through the synaptic threshold h ¼ �30. Along these curves, vi
0; ni
0 > 0 for both i, and

dn2=dv2 > dn1=dv1. (c) Structures analogous to (a) but generated at a much later time, when each cell reaches v¼�63 after firing a spike (and neither cell is

on C0). When cell 2 attains v2¼� 63, s1 is much smaller than s2 was when v1¼�63, which causes the segment for cell 2 to point inside that for cell 1 again

(i.e., towards smaller n). (d) Analogous to (b), but with curves occurring from the time the voltages decrease through h to the end of the regime where P1 is

defined, at v¼ –71. Along these curves, vi
0; n

0
i < 0 for both i, and dn2=dv2 < dn1=dv1.
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the time when cell 1 reaches this point. Similarly, the red curve

points in the direction of ðv02; n02Þ when v2 reaches the voltage

coordinate of that point, at which time s1 > 0. From Figure

10(b), we see that the relation dn2=dv2 > dn1=dv1 holds for

voltages all the way up to the threshold h ¼ �30. Subsequently,

for t1 þ d < t < t2, both cells receive synaptic input and satisfy

essentially the same system of equations. (Here, we are assum-

ing that a	 1 so that when activated, s1 � s2 � 1.) Since

(v1, n1) and (v2, n2) satisfy the same system of equations, cell

2’s trajectory must remain inside that of cell 1. Finally, s1 deacti-

vates at t¼ t2, while s2 deactivates later at t ¼ t2 þ d2. Hence,

s1ðtÞ < s2ðtÞ for t2 < t < T1 þ D1. It follows that during this

time the vectors ðv02ðtÞ; n02ðtÞÞ have more negative slope than

ðv01ðtÞ; n01ðtÞÞ and the trajectory corresponding to cell 2 remains

inside that of cell 1. This effect is shown in Figure 10(c), which

is analogous to Figure 10(a) but is computed at a sub-threshold

voltage after spike firing, and in Figure 10(d), which is analo-

gous to Figure 10(b) but is computed from the times when the

cells’ voltages decrease through h to the end of the regime

where P1 is defined. In summary, we have explained why

n1 > n2 at the points where the trajectories cross the section

fv ¼ V1g; that is, why na :¼ n1ðT1Þ > nb :¼ n2ðT1 þ D1Þ.

C. The map P2

For the next map component P2, we start from fv ¼ V1g,
such that the composition P2 �P1 is well-defined, and track

each trajectory until it crosses a section fn ¼ N2g for an

appropriately chosen N2 < nb. That is, P2ðDsÞ ¼ v1ðT12Þ
�v2ðT22Þ :¼ Dv where, for i¼ 1 or 2, Ti2 ¼ minft > 0 :
niðTi2Þ ¼ N2; n

0
iðTi2Þ < 0g: Here, it will be convenient to

translate time so that both trajectories, ðv1ðtÞ; n1ðtÞÞ and

ðv2ðtÞ; n2ðtÞÞ, begin on the section fv ¼ V1g. Let sa ¼
s1ðT1 þ D1Þ and sb ¼ s2ðT1Þ. Now, if we translate time by T1,

then based on the notation from the previous subsection,

the trajectory for cell 1 has initial condition ðv1ð0Þ; n1ð0ÞÞ
¼ ðV1; naÞ, and cell 1 is subject to exponentially decaying in-

hibition from cell 2 with s2ð0Þ ¼ sb. Similarly, if we translate

time by T1 þ D1, then the trajectory for cell 2 has initial condi-

tion ðv2ð0Þ; n2ð0ÞÞ ¼ ðV1; nbÞ, and cell 2 is subject to expo-

nentially decaying inhibition from cell 1 with s1ð0Þ ¼ sa. In

both cases, we abuse notation and denote the translated time

by t. Although t¼ 0 refers to different times for the different

trajectories, the map P2 will take Ds ¼ sa � sb < 0 to a value

Dv, and hence the particular times at which the trajectories are

generated are irrelevant, given that we have incorporated the

appropriate starting values of the si.

We make some assumptions to simplify the analysis that

follows. First, we ignore INa, since we are considering the

subthreshold portion of the trajectory where m1ðvÞ, and

therefore INa, is very small. We also assume that for this

range of v, both n1ðvÞ and snðvÞ are constant. We can then

write the differential equation for each ni as

n0 ¼ kða� nÞ;

where a and k are positive constants. Hence, both n1(t) and

n2(t) satisfy

nðtÞ ¼ aþ ðnð0Þ � aÞe�kt; (6)

with n1(0)¼ na and n2(0)¼ nb and with na > nb from the previ-

ous subsection. In addition to requiring that our stopping sec-

tion fn ¼ N2g satisfies N2 < nb, we henceforth take N2 > a.

Denote the curves (v1(t), n1(t)) and (v2(t), n2(t)) as

v ¼ C1ðnÞ and v ¼ C2ðnÞ, respectively. As shown in Figure 11,

we construct a curve v ¼ WDsðnÞ, for N2 
 n 
 nb, so that

WDsðnbÞ ¼ V1;WDs < C2 for n < nb, and along WDs, the vec-

tor field corresponding to cell 1 points towards the left, away

from C2. That is,

v0 � n0W0DsðnÞ < 0: (7)

This last condition, together with the fact that n1ð0Þ
¼ na > nb, implies that the curve fv ¼ C1ðnÞg lies “outside”

of fv ¼ WDsðnÞg, with v1ðnÞ < v2ðnÞ for each n 2 ½N2; nb�, as

shown in Figure 11. This relation allows us to estimate

P2ðDsÞ ¼ C2ðN2Þ � C1ðN2Þ > C2ðN2Þ �WDsðN2Þ: (8)

We write WDsðnÞ¼C2ðnÞ�KDsðnÞ where KDsðnbÞ¼0 and

KDsðnÞ>0 for N2 
 n< nb. Then along v¼WDsðnÞ, the vector

field corresponding to cell 1 satisfies

v0 ¼ �gLðv� vLÞ � gKn4ðv� vKÞ � gsyns2ðv� vsynÞ
¼ �gLðC2ðnÞ � vLÞ � gKn4ðC2ðnÞ � vKÞ
� gsyns1ðC2ðnÞ � vsynÞ
þ gLKDsðnÞ þ gKn4KDsðnÞ þ gsyns1KDsðnÞ
þ gsynDse�btðC2ðnÞ � vsynÞ
¼ n0C02ðnÞ þ gL þ gsyns1ðtÞ þ gKn4

� �
KDsðnÞ

þ gsynDse�btBðnÞ

FIG. 11. Schematic illustration of the definition and use of the curve v
¼ WDsðnÞ (subscript omitted below and in the figure for convenience). The trajec-

tory for cell 2 (red, fv ¼ C2ðnÞg) lies inside that of cell 1 (black, fv ¼ C1ðnÞg)
at the start of the analysis of P2, at v¼V1. The curve fv ¼ WðnÞg (blue dashed)

emanates from ðV1; nbÞ and satisfies WðnÞ < C2ðnÞ for all relevant n. The vector

field (blue arrows) points to the left of fv ¼ WðnÞg everywhere on the curve,

which implies that C1ðnÞ < C2ðnÞ for all relevant n.
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where BðnÞ ¼ C2ðnÞ � vsyn. Hence, we need to choose

KDsðnÞ so that

0> v0 �n0W0DsðnÞ¼ v0 �n0C02ðnÞþn0K0DsðnÞ
¼ n0K0DsðnÞþ gLþgsyns1ðtÞþgKn4

� �
KDsðnÞ

þgsynDse�btBðnÞ:

Note that Eq. (6) implies that

e�bt ¼ n� a

nb � a

� 	k

� H0ðnÞ; (9)

where

k ¼ b=k: (10)

Since s1ðtÞ ¼ sae�bt and sa < 1, it suffices to choose KDsðnÞ
so that

kða� nÞK0DsðnÞ þ ½gL þ gsynH0ðnÞ þ gkn4�KDsðnÞ

 gsynqH0ðnÞBðnÞ: (11)

We consider the Ansatz

KqðnÞ ¼ �M ðnb � aÞk � ðn� aÞk
h i

Ds > 0 (12)

and seek an upper bound on M, such that Eq. (11), and hence

Eq. (7), is guaranteed to hold for all M values up to this

bound. Plugging the Ansatz into Eq. (11) and then dividing

by the quantity ðn� aÞk, we obtain

M bþ ½gL þ gsynH0ðnÞ þ gkn4�HðnÞ

 �


 gsyn
eBðnÞ; (13)

where

HðnÞ ¼ nb � a

n� a

� �k

� 1

 !
and eBðnÞ ¼ BðnÞ 1

nb � a

� 	k

:

For N2 
 n 
 nb, let

A�1 ¼ maxfHðnÞg; A�2 ¼ maxfH0ðnÞHðnÞg;
A�3 ¼ maxfn4HðnÞg and B� ¼ minfeBðnÞg:

We then obtain an upper bound for M:

M 
 gsynB�

bþ gLA�1 þ gsynA�2 þ gkA�3
� M� (14)

and it follows from Eqs. (8), (12), and (14) that

jP02ð0Þj > M�½ðnb � aÞk � ðN2 � aÞk�:

For the default values in the numerical simulations, we

have that k � 1:5 and nb � 0:8. Note that the parameter a
approximates n1ðvÞ and during this portion of the trajectory,

a � 0:12. Furthermore, BðnÞ ¼ C2ðnÞ � vsyn > 20. Finally,

we let N2¼ 0.25. For these choices of the parameters, we

find numerically that

A�1 � 11; A�2 � :9; A�3 � :1 and B� � 35:67: (15)

Letting gsyn ¼ :2; gL ¼ :02; b ¼ 1 and gK ¼ 10, Eqs. (14)

and (15) give the estimate

M� � 2:97 and ðnb � aÞk � ðN2 � aÞk � :514:

Thus, we estimate that

jP02ð0Þj > M�½ðnb � aÞk � ðN2 � aÞk� � 1:53:

Note that P02ð0Þ is in fact positive; for example, if the cells’

synaptic conductances at fv ¼ V1g come closer together

such that Ds becomes less negative, then Dv also becomes

less negative.

Finally, we need to estimate T12 and T22, the (original)

times at which the two trajectories cross the section

fn ¼ N2g. Recall that cells 1 and 2 cross the first section

fv ¼ V1g at times T1 and T1 þ D1, respectively. Let T̂2 be

the time of passage of cell 2 from fv ¼ V1g to fn ¼ N2g.
Then T22 ¼ T1 þ D1 þ T̂2 . Since nb > na, it follows that the

time of passage of cell 1 from fv ¼ V1g to fn ¼ N2g is

greater than T̂2 . Hence, T12 > T1 þ T̂2 and, therefore,

T12 � T22 > �D1 � �Dt: (16)

D. The map P3

The map P3 : Dv! eDt computes the difference in the

time of passage for trajectories from two different initial v
values in the section fn ¼ N2g to return to the original sec-

tion fv ¼ V0g. For this part of the flow, we assume that the

synaptic and potassium currents have decayed away to negli-

gible levels, as seen numerically. We note that during the ini-

tial portion of this part of the flow, the sodium current is also

still negligible; however, it does begin to activate well before

v reaches V0. We choose V3 < V0 so that the sodium current

is negligible as long as v < V3 and split the analysis into to

two parts corresponding to before and after the sodium cur-

rent has begun to activate.

As long as v < V3, v satisfies the equation

v0 ¼ �gLðv� vLÞ: (17)

Solving this simple ODE and computing the time of passage

from v¼V to v¼V3 yields

t ¼ 1

gL
ln

V � vL

V3 � vL

� 	
: (18)

Recall that T12 and T22 denote the times when the two cells’

trajectories cross the section fn ¼ N2g, respectively. From

Eq. (18), it follows that the times at which cells 1 and 2 cross

v¼V3 are

T13 ¼ T12 þ
1

gL
ln

v1ðT12Þ � vL

V3 � vL

� 	
and

T23 ¼ T22 þ
1

gL
ln

v2ðT22Þ � vL

V3 � vL

� 	
;
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respectively. Hence, using Eq. (16),

T23 � T13 ¼ T22 � T12 þ
1

gL
ln

v2ðT22Þ � vL

V3 � vL

� 	�
� ln

v1ðT12Þ � vL

V3 � vL

� 	�
<Dtþ 1

gL
½lnðv2ðT22Þ � vLÞ � lnðv1ðT12Þ � vLÞ�

�Dt� Dv

gLðv1ðT12Þ � vLÞ
; (19)

where Dv :¼ v1ðT12Þ � v2ðT22Þ < 0 and the denominator in

the final expression is negative as well. If we write Dv ¼ mDt,
with m < 0 since Dv < 0 < Dt, then we have expansion in

the time metric if

Dt 1� m

gLðv1ðT12Þ � vLÞ

� 	
< �Dt;

or m < 2gLðv1ðT12Þ � vLÞ < 0. From our estimates of jP01ð0Þj
and jP02ð0Þj, we have m < �2:14, whereas for our default pa-

rameter values, 2gLðv1ðT12Þ � vLÞ > �2:04. Moreover, simu-

lations show that the latter expression becomes closer to 0

much faster than m as we take smaller perturbations from

synchrony.

Remark: In our analysis, we neglected some effects that

contribute to the numerical results. First, n1ðvÞ is not exactly

constant, and its slope decreases T12 and hence increases

T23 – T13, which works against expansion. On the other

hand, the inhibitory current Isyn to cell 1 is larger during

the P2 phase of the map than is the inhibitory current to cell

2 there, which makes Dv more negative and hence makes

T23 – T13 more negative as well. These effects counteract

each other and are quite minor compared to those we main-

tain in the analysis.

We claim that the time metric between the cells remains

very close to invariant as they pass from fv ¼ V3g to

fv ¼ V0g, completing the cycle. This implies that the expan-

sion is maintained until the cells reach the section fv ¼ V0g.
To prove our claim, we note that invariance must hold if both

(v1, n1) and (v2, n2) lie on the same trajectory (i.e., if both tra-

jectories cross the section fv ¼ V3g at exactly the same value

of n, with negligible synaptic currents). While this last condi-

tion is not strictly met, we claim that the two trajectories

(v1, n1) and (v2, n2) do, in fact, converge at an exponential rate

to an invariant curve; in particular, the points where they cross

fv ¼ V3g are exponentially close to each other.

Choose a value V2 < V3 such that the trajectories

(v1, n1) and (v2, n2) both cross the section fv ¼ V2g while

traveling from fn ¼ N2g to fv ¼ V3g. While the two trajec-

tories travel from fv ¼ V2g to fv ¼ V3g, both voltage varia-

bles satisfy Eq. (17); moreover, the n variables satisfy

n0 ¼ /nðn1ðvÞ � nÞ=snðvÞ: (20)

It is not hard to show that two solutions of this last equation

with different initial conditions are compressed at an expo-

nential rate depending on the size of /=snðvÞ, as illustrated

in an example in Figure 12.

Note that, as defined, the first component of the map

evaluated at the synchronous solution has a negative deriva-

tive less than �1, while the second and third have positive

derivatives greater than 1. For example, a perturbation to the

synchronous state that delays the trailing cell’s threshold

crossing (more positive Dt) causes the lead cell to experience

a larger synaptic conductance on return to the silent phase

(more negative Ds), causing that cell to drop to more nega-

tive voltages (more negative Dv) and fall farther behind the

originally trailing cell (more negative eDt).

V. EXPANSION AWAY FROM THE SYNCHRONOUS
SOLUTION

We now demonstrate that the map P exhibits expansion

for initial points some distance away from the synchronous so-

lution. As before, we consider solutions that begin with both

cells along the lower branch of C0 with v2ð0Þ < v1ð0Þ ¼ V0.

Suppose that the time metric between the cells is D; that is,

v2ðDÞ ¼ V0. We will show that jP0ðDÞj > 1 if D is not too

small or not too big. In particular, our analysis will yield con-

ditions on parameters so that the antiphase solution is

unstable.

If D is sufficiently large, then cell 2 does not jump up

until after cell 1 jumps up and returns to the silent phase. In

this case, as shown in Figure 13, when cell 1 does jump up,

the resulting inhibition causes cell 2 to “turn around” so that

v02 < 0 as long as v1 is above threshold. Once cell 1 falls

below threshold, the inhibition to cell 2 decays and eventu-

ally both cells return to near the synchronous trajectory C0

with v0 > 0. At some later time, cell 2 jumps up and it is now

cell 1 that “turns around”. When cell 2 falls below threshold,

the inhibition to cell 1 decays and both cells return to near

C0. We note that if D is not too large (e.g., regime 3 in

Figure 8), then cell 1 is now ahead of cell 2 along C0 so the

cells maintain their orientation after a complete cycle.

Let t1 denote the time cell 1 crosses the synaptic threshold

or fires; that is, v1ðt1Þ ¼ h and v1ðtÞ < h for 0 < t < t1. Note

that if there was no inhibition, then cell 2 would cross thresh-

old at time t1 þ D. However, because there is inhibition, the

FIG. 12. Compression between two trajectories (solid black curves) of Eq. (1)

at the start of the recovery from spiking. The vertical and horizontal line seg-

ments represent sections at fn ¼ N2g; fv ¼ V2g, and fv ¼ V3g;V2 < V3.

The dashed curves are the v- and n-nullclines and the black arrow indicates

the direction of flow.
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threshold crossing time for cell 2 is delayed. Denote this time

as TðDÞ; that is, v2ðTðDÞÞ ¼ h and v2ðtÞ < h for 0 < t
< TðDÞ. A key step in the analysis is the following Lemma,

which requires certain conditions on the parameters to be sat-

isfied. In particular, D cannot be too large or too small. These

conditions are given below.

Lemma 1: TðDÞ � D is an increasing function of D.

Remark: The time at which cell 2 would cross threshold

with or without inhibition is TðDÞ or t1 þ D, respectively.

Therefore, the Lemma implies that the delay in threshold

crossing due to inhibition is an increasing function of D.

Proof: Fix Da < Db and choose va and vb so that if

v2(0)¼ va or v2(0)¼ vb, then the time metric between cell 2

and cell 1 is Da or Db, respectively. We note that Da < Db

implies that va > vb, and the time metric from vb to va is

Db � Da. Let (va(t), na(t)) and (vb(t), nb(t)) denote the trajec-

tories corresponding to cell 2, with initial conditions that

lie along C0 with va(0)¼ va and vb(0)¼ vb, respectively.

(Here, we ignore the synaptic variables, since they are very

close to 0).

Until cell 1 fires, at t¼ t1, both (va, na) and (vb, nb) evolve

along the lower branch of C0 and the time metric between

them remains invariant. Hence, the time metric from vbðt1Þ to

vaðt1Þ is Db � Da. Once cell 1 fires, however, both (va, na) and

(vb, nb) turn around, with both v0aðtÞ < 0 and v0bðtÞ < 0 as long

as cell 1 remains above threshold. The decrease in va and vb

continues until cell 1 falls below threshold. Once the inhibi-

tion decays sufficiently, (va, na) and (vb, nb) will turn around

again so that both v0aðtÞ > 0 and v0bðtÞ > 0. Choose Ta so that

vaðtÞ < vaðt1Þ for t1 < t < Ta and vaðTaÞ ¼ vaðt1Þ.
We claim that v0aðtÞ > v0bðtÞ for t1 < t < Ta. Once we

prove this claim, the proof of the Lemma follows for the fol-

lowing reason: If v0aðtÞ > v0bðtÞ for t1 < t < Ta, then

vaðt1Þ � vbðt1Þ < vaðTaÞ � vbðTaÞ ¼ vaðt1Þ � vbðTaÞ;

or vbðTaÞ < vbðt1Þ. Since the time metric from vbðt1Þ to

vaðt1Þ is Db � Da, this implies that the time metric from

vbðTaÞ to vaðTaÞ is greater than Db � Da. We assume that for

t > Ta, the inhibition has decayed sufficiently and both

(va, na) and (vb, nb) have returned sufficiently close to C0 so

that the time metric from vb to va remains invariant, at least

until va reaches threshold. From the relative positions of

vbðTaÞ and vbðt1Þ and the subsequent time invariance, it fol-

lows that

TðDbÞ � TðDaÞ > Db �Da or TðDbÞ � Db > TðDaÞ � Da;

(21)

which is what we need to show.

To complete the proof of the Lemma, it remains to

prove our claim that v0aðtÞ > v0bðtÞ for t1 < t < Ta. Since

vaðt1Þ > vbðt1Þ, this inequality follows if we can show that

the right hand side of the first equation in Eq. (1) is an

increasing function of v. One can interpret this property as

saying that the sodium current activates quickly enough. To

simplify the analysis somewhat, we ignore the potassium

current, since the activation variable n4 is very small, and

assume that n remains roughly constant during the relevant

time interval. Let n0¼ 1 – n. Then we need that

0 <
@

@v
ð�INaðv; nÞ � ILðvÞ � Isynðv; sÞÞ

¼ 3gNam2
1ðvÞm01ðvÞn0ðvNa � vÞ � gNam3

1ðvÞn0

�gL � gsyns: (22)

Note that if m1ðvÞ¼ð1þexpð�ðv�hmÞ=rmÞÞ�1
, then m01ðvÞ

¼expð�ðv�hmÞ=rmÞm2
1ðvÞ=rm. Since s< 1, Eq. (22) fol-

lows if

gLþ gsyn

n0gNa
<m3

1ðvÞ

� 3

rm
expð�ðv� hmÞ=rmÞm1ðvÞðvNa� vÞ� 1

� 	
:

(23)

This last equation gives precise conditions on parameters for

when the Lemma holds. For our numerical example, we

have that Eq. (23) is satisfied if �65 < v < �10. (
We now return to the analysis showing that the map P

exhibits expansion for initial conditions away from the syn-

chronous solution. We continue to use the same notation as

in the proof of Lemma 1. Note that while the time t1 at which

cell 1 first reaches threshold does not depend on the initial

position of cell 2 – that is, Da or Db – the time at which cell 1

returns to its initial position, on fv ¼ V0g, does. We denote

this time as t2ðDaÞ or t2ðDbÞ, respectively. Let da and db be

the time metric from vaðt2ðDaÞÞ and vbðt2ðDbÞÞ to V0, respec-

tively (Figure 14(a)). Then PðDaÞ ¼ da and PðDbÞ ¼ db.

We wish to prove the following additional lemma, which

will establish the instability of the antiphase solution.

FIG. 13. Projections of the two cells’ trajectories onto the (v, n) phase plane. When one cell fires, the other cell “turns around” until the first cell falls below

threshold and synaptic input to the other cell decays sufficiently. A blow-up of the lower left region in (a) is shown in (b).
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Lemma 2:

jDa � Dbj < jda � dbj: (24)

Remark: Letting Db ! Da, this Lemma implies that

jP0ðDaÞj > 1, as desired. Note that the left and right sides of

Eq. (24) correspond to the time metrics between the initial

and final positions of va and vb, respectively.

Proof: We follow the cells around in the phase plane until

cell 1 returns to its initial position. Note that the evolution of

cell 1 depends on whether the initial position of v2 is at va or

vb. Let ðv1aðtÞ; n1aðtÞÞ or ðv1bðtÞ; n1bðtÞÞ be the positions of

cell 1 if the initial position of v2 is at va or vb, respectively

(Figure 14(a)). After cell 1 reaches threshold and fires, it returns

to near C0 and evolves along C0 until cell 2 fires. Assume that

vaðtÞ and vbðtÞ reach threshold at t ¼ TðDaÞ and t ¼ TðDbÞ,
respectively. Note that since vbð0Þ < vað0Þ, it follows that

TðDbÞ > TðDaÞ and, therefore, v1bðTðDbÞÞ > v1aðTðDaÞÞ.
Moreover, using Lemma 1 and the fact that cell 1 follows the

same trajectory along C0 until cell 2 fires, we conclude that the

time metric from v1aðTðDaÞÞ to v1bðTðDbÞÞ is TðDbÞ � TðDaÞ
> Db � Da (see Eq. (21) and Figure 14(b)).

Once either (va,na) or ðvb; nbÞ fires, cell 1 turns around

with v01 < 0 until cell 2 falls below threshold, after which

cell 1 returns to near C0. As in the proof of Lemma 1, this

causes a delay in how long it takes cell 1 to return to its ini-

tial position at v¼V0. Since v1aðTðDaÞÞ < v1bðTðDbÞÞ, one

can show, as in the proof of Lemma 1, that the delay for v1a

is greater than the delay for v1b. More precisely, suppose that

the time it would take cell 1 to go from v1bðTðDbÞÞ to V0

if there was no inhibition is kb (Figure 14(b)). With inhibi-

tion, the time it takes v1b to reach V0 is t2ðDbÞ � TðDbÞ
(Figure 14(c)). Hence, the delay for v1b is t2ðDbÞ � TðDbÞ
�kb. On the other hand, if there is no inhibition, then the

time it takes v1a to reach V0 is kb þ TðDbÞ � TðDaÞ and with

inhibition the time it takes v1a to reach V0 is t2ðDaÞ � TðDaÞ
(Figures 14(b) and 14(c)). Hence, the delay for v1a is

t2ðDaÞ � TðDbÞ � kb. Since the delay for v1a is greater than

the delay for v1b, we conclude that

t2ðDbÞ < t2ðDaÞ: (25)

Finally, note that the time metric between the final positions

of vb and va is

db � da ¼ ðt2ðDaÞ � TðDaÞÞ � ðt2ðDbÞ � TðDbÞÞ: (26)

Applying Eq. (25) and Lemma 1 to Eq. (26), we conclude

that

db � da > TðDbÞ � TðDaÞ > Db � Da > 0:

Thus, we have shown that Eq. (24) holds and the proof of the

Lemma, and hence of the instability of the antiphase solu-

tion, is complete. (
This analysis demonstrates that a key ingredient deter-

mining the instability of the antiphase solution is the activa-

tion of the sodium current. In particular, formula (23)

suggests that in order for the antiphase solution to be unsta-

ble, the parameter rm must be sufficiently large. In order to

confirm whether this is indeed the case, we computed the

second iterate of the reduced map; the antiphase solution

corresponds to a fixed point of this second iterate map and

one can determine the stability of the antiphase solution by

computing the derivative of the second iterate map at this

fixed point. In Figure 15(A), we plot the second iterate

map for different values of rm. Note that the antiphase

solution is stable for rm ¼ 9; 9:25 and 9.5; however, it is

unstable for rm ¼ 9:75 and 10, consistent with our analysis.

In Figure 15(b), we fix rm ¼ 9 and vary gsyn. As expected,

the antiphase solution is stable if gsyn is sufficiently small

(less than approximately 0.4), but the antiphase solution

becomes unstable and chaotic dynamics emerge for suffi-

ciently large (but not too large) values of gsyn. We note that

simulations of the map predict that the antiphase solution is

always unstable for the default value of rm ¼ 10.

VI. DEPENDENCE ON PARAMETERS AND LARGER
NETWORKS

The analysis of the one-dimensional map, P, in Sec. IV

identifies key parameters that affect the stability of synchro-

nous solutions of model (1). In this section, we systematically

vary these parameters and compute the map numerically,

using MATLAB, XPPAUT (http://www.pitt.edu/~phase),

and Snnet.40 In particular, we focus on the strength and decay

rate of synaptic inhibition (gsyn, b), the reversal potential of

FIG. 14. Voltage values and times used in the proof of Lemma 2, to estab-

lish the instability of the antiphase solution. (a) Voltage values and time lags

for cell 2 when cell 1 returns to the section fv ¼ V0g, depending on the ini-

tial time lag Da or Db. (b) Voltage values and times to the section fv ¼ V0g
for cell 1 when cell 2 reaches threshold, in the absence of inhibition, depend-

ing on the initial time lag Da or Db. (c) Voltage values and times to the sec-

tion fv ¼ V0g for cell 1 when cell 2 reaches the section fv ¼ V0g, with

inhibition included, depending on the initial time lag Da or Db.
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the leak current (vL), and the slope of the sodium current acti-

vation curve ðrmÞ. We demonstrate that parameter choices for

which the map predicts expansion of synchronous solutions

lead to irregular activity in simulations of two-cell and 100-

cell networks.

We compute a reduced map as described previously for

Figure 3(c), with default parameter values gsyn ¼ 0:2; b ¼ 1:0;
vL ¼ �30, and rm ¼ 10. The derivative of the map at the syn-

chronous solution, P0ð0Þ, is estimated as the slope of a line fit

to the points of the map for which �67:1 < vk < �66:9. The

top row of Figure 16 shows how P0ð0Þ changes as each param-

eter is varied individually, starting from the default values. The

synchronous solution starts off unstable, i.e., jP0ð0Þj > 1, and

remains so until gsyn 
 0:13, b � 1:6, or vL � �6. The stabil-

ity of the synchronous solution is evident in cross-correlograms

constructed from 2-cell network simulations with parameter

values chosen so that jP0ð0Þj < 1 (middle row of Figure 16).

The cross-correlograms with gsyn ¼ 0:1; b ¼ 2:5, or vL¼ 0

have large peaks at a time shift of zero milliseconds, indicat-

ing synchronous spiking of the two cells. When these param-

eters are instead chosen so that jP0ð0Þj > 1 (bottom row of

Figure 16), the relative lack of structure in the cross-

correlograms indicates that the synchronous solution is not

stable. The corresponding irregular firing pattern is consist-

ent with the expansion predicted by our analyses.

Over the range of rm values considered here (see the top

right panel of Figure 16), jP0ð0Þj > 1 and so the synchro-

nous solution is always unstable. The cross-correlogram with

rm ¼ 9:5 (middle right panel of Figure 16) has symmetric

peaks centered around, but not at, a time shift of zero milli-

seconds. This structure indicates that the antiphase solution

is stable, as predicted by analysis of the second iterate map

shown in Figure 15(a). When rm ¼ 10:5 (bottom right panel

of Figure 16), both the synchronous and antiphase solutions

are unstable and the cross-correlogram reflects irregular fir-

ing of the two cells.

The ability of synaptic inhibition to induce uncorrelated

spiking activity is even more evident in simulations of larger

networks. Typical measures of uncorrelated activity in spike

time recordings from the basal ganglia and prefrontal cortex

include a lack of cross-correlations in spike times, exponen-

tially distributed interspike intervals (ISIs), and ISI coeffi-

cients of variation (CVs) near unity. These characteristics

are exhibited by five randomly chosen cells from a 100-cell

network simulation (see Figure 17).

We also note that a relationship between irregular firing

and gsyn is still detectable in the presence of voltage noise.

Stochastic simulations of two-cell networks were performed

using the Euler-Maruyama method. As gsyn is increased from 0

to 0.2, the autocorrelation in spike times decreases, indicating an

increase in irregular activity (top row of Figure 18). However,

after a certain point, further increasing gsyn (e.g., from 0.3 to

0.5) decreases irregularity (bottom row of Figure 18). In the

deterministic system, gsyn¼ 0.5 gives a suppressed solution

where only one cell fires.

VII. DISCUSSION

We have presented a Hodgkin-Huxley-type conductance-

based model for inhibitory networks that exhibits irregular,

uncorrelated activity patterns. The model is minimal in the

sense that it contains only those currents required for irregular

dynamics. However, this behavior also arises in other more

complex Hodgkin-Huxley-like equations, such as the Wang-

Buzsaki and Destexhe-Par�e models,29,30 which share features

underlying the chaotic behavior in the model we consider.

By analyzing a one-dimensional map, we were able to

derive rather precise conditions on parameters for when cha-

otic dynamics emerges in the two-cell network. In particular,

the analysis yields explicit formulas for the derivative of the

map at points corresponding to both the synchronous and the

antiphase solutions. The full map was defined as the compo-

sition of three separate maps, each determining the dynamics

of the solution during different portions of its trajectory

through phase space. Interestingly, different parameters con-

trol the expansion of solutions during different portions of

the cells’ trajectories. In particular, during the spike, expan-

sion depends on the strength, gsyn and decay rate, b, of syn-

aptic inhibition. During the most hyperpolarized portion of

the cells’ trajectories, expansion depends on the interplay

between the decay of synaptic inhibition and the decay of

potassium activation. Finally, during the recovery phase,

expansion depends primarily on the leak current and the acti-

vation of the sodium current.

Chaotic dynamics typically requires three ingredients:

expansion, folding, and contraction.34,35,41 In our model, as

FIG. 15. Stability of the antiphase solution. (a) The second iterate of the reduced map (which we denote as P2ðvkÞ) for different values of rm. The antiphase

solutions correspond to fixed points of these maps, illustrated with small circles along the fixed-point line (dashed). Note that the antiphase solution is unstable

if the derivative of this map has absolute value greater than one at the fixed point. (b) The second iterate of the reduced map for different values of gsyn with

rm ¼ 9. Note that chaotic dynamics emerges when gsyn ¼ :45 and it is not clear which fixed point corresponds to the antiphase solution in that case.
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FIG. 16. Parameter dependence of the stability of the synchronous solution for 2-cell networks. Spike times are based on 60 s of simulation after discarding an

initial 1 s transient. Parameter settings are gsyn ¼ 0:2; b ¼ 1:0; vL ¼ �30, and rm ¼ 10 unless indicated otherwise. Top row: The slope of the reduced map

shows that the synchronous solution goes from stable ðjP0ð0Þj < 1Þ to unstable ðjP0ð0Þj > 1Þ as gsyn is increased, as b is decreased, or as vL becomes more

hyperpolarized. Synchronous solution is unstable for all rm values shown. Dashed black lines indicates jP0ð0Þj ¼ 1. Middle row: Cross-correlograms corre-

sponding to synchronous spiking for gsyn ¼ 0:1; b ¼ 2:5, and vL¼ 0, and antiphase spiking for rm ¼ 9:5. Bottom row: Cross-correlograms corresponding to

irregular spiking.

FIG. 17. Irregular spiking activity in a 100-cell inhibitory network simulation with 10% random connectivity, gsyn ¼ 1:0; b ¼ 1:0; vL ¼ �30, and rm ¼ 10.

Top right: Histogram of interspike interval coefficients of variation ðCV ¼ rISI=lISIÞ. CVs near one are typical of irregular activity in the prefrontal cortex.

Diagonal: Histograms of ISIs for five randomly chosen cells with exponential fits (red lines) overlaid. Lower left: Pairwise cross-correlations in spike times

between the five cells. Flat cross-correlograms are associated with irregular (non-parkinsonian) activity in the basal ganglia and in other neuronal networks.
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described above, expansion between trajectories arises during

both the spiking and hyperpolarized portions of each cycle.

This expansion is due to differences in the synaptic inputs that

the two cells receive as they traverse certain regions of the

(v, n) phase space and occurs as long as the ratio of the rates

at which the synapse decays and the potassium current deacti-

vates is in an appropriate range. Additional expansion can

also happen during the recovery phase due to properties of so-

dium activation. A form of folding also results from these

effects, in that differences in timing of inhibition to the two

cells can cause the leading cell to experience more potassium

activation than the trailing cell, which causes the leading cell

to become more hyperpolarized than the trailing cell and thus

fall behind. Another form of folding arises each time a new in-

hibitory input impacts a recovering cell and causes its trajec-

tory to fold back to more hyperpolarized voltages. Due to

these folding effects, the cells may take turns firing on some

cycles, while during other time periods, a cell may fire two or

more spikes while the other cell remains silent; in terms of the

map P, if D > 0, then it is possible for either PðDÞ > 0 or

PðDÞ < 0 to result. We note that a contribution of such orien-

tation switching to irregularity has been noted previously,42

but there it occurred in transient activity in a large network,

integrate-and-fire setting that is very different to what we have

studied. Finally, contraction arises in our model because tra-

jectories corresponding to each cell must approach very close

to the synchronous trajectory, C0, during the recovery phase

(the P3 component of the map). This contraction preserves

any expansion between trajectories that occurs in earlier parts

of the cycle.

There have been numerous previous studies of recipro-

cal synaptic inhibition between spiking neurons.33 These

studies often considered reduced models, and they provided

important insights into how the intrinsic and synaptic proper-

ties of the neurons involved interact to generate a variety of

phase-locked states, including synchronous firing, antiphase

behavior and almost in-phase oscillations.33 It is not clear,

however, how these previous reduced models can generate

the robust uncorrelated dynamics that we have described.

For example, in models based on relaxation oscillators, the

jump up and jump down between the silent and active phases

correspond to nearly horizontal trajectory paths in the (v, n)

phase plane. For this reason, two cells coupled by inhibition

must always maintain their orientation as they move around

in phase space and it is not at all clear how the “folding”

required for chaotic behavior can arise in these models.

Other papers have considered integrate-and-fire type models,

which typically ignore the dynamics of the spike and subse-

quent repolarization, two ingredients that we have demon-

strated are essential for irregular spiking activity. We note

that previous studies have demonstrated that the properties

of spikes can contribute to the existence and stability of

phase-locked activity patterns.43,44

The stability of phase-locked patterns in coupled net-

works has also been studied using the phase resetting curve

(PRC).33 Although this approach was initially developed to

analyze models with weak coupling, several authors have

extended the PRC method to cases in which the coupling is

not weak.38,45 In particular, our results complement and

extend those of previous papers that have used PRC methods

to study phase-locked solutions of mutually coupled inhibi-

tory neurons in which there are alternations in the firing

order of the two cells. Maran and Canavier38 considered a

network of heterogeneous Wang-Buzsaki model neurons29

with type-I excitability33 and demonstrated the emergence of

2:2 phase-locked states in which the firing order changes ev-

ery cycle. Oh and Matveev39 extended these results to show

that alternating-order firing (sometimes called leap-frog spik-
ing) may arise in a general class of inhibitory networks of

type-I oscillators, as is the case for the model considered

here. Using phase-plane methods, similar to those used in

this paper, they noted that the alternating firing is closely

related to the fast kinetics of Kþchannels relative to the rate

of change of the membrane potential during the quiescent

phase of a cell’s trajectory. As shown in Figure 1, this is the

case for our model. Both of these earlier papers showed

numerically that chaotic dynamics can arise for moderate

levels of the synaptic coupling strength. Here, we study the

chaotic dynamics analytically and derive precise conditions

on parameters for when such dynamics exist. In order to use

the PRC approach described in the previous papers,38,39 one

needs to compute a phase-resetting curve (or spike-time

response curve) over a range of values of gsyn. Moreover, the

analysis of phase-locked states reduces to finding a fixed

point of a possibly large system of algebraic equations; the

stability analysis consists of computing roots of a corre-

sponding characteristic equation. Here, we have reduced the

full dynamics to a single 1-dimensional map and we have

made no assumptions on the firing order of the two cells.

To define the one dimensional reduced map, we needed

to assume that the synaptic variables decay very close to zero

during consecutive action potentials. For this reason, we chose

the synaptic decay rate, b ¼ 1 msec�1, to be sufficiently large.

However, inhibitory GABAA synapses decay at a significantly

slower rate. Numerical simulations with b ¼ :18 msec�1 dem-

onstrate that the assumption that the synaptic variables decay

sufficiently between consecutive action potentials is no longer

FIG. 18. Non-monotonic relationship between gsyn and irregular firing.

Normal random variables (l¼ 0, r ¼ 1) were scaled by the square root of

the Euler time step (dt¼ 0.005) and added to the right hand side of the volt-

age equation in simulations of model (1). Autocorrelation decreases from

gsyn¼ 0 to 0.2, but increases from gsyn¼ 0.3 to 0.5.
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valid, and one can no longer define the one-dimensional map.

However, the simulations also demonstrate that in this case,

the dynamics appears to be even more complex, so other

mechanisms leading to chaotic behavior come into play. This

would be an interesting issue to consider in future studies.

Irregular activity has also been considered in other types

of networks, including those based on recurrent excitation

and excitatory-inhibitory interactions. For example, theoreti-

cal analysis has established conditions for stability of the

asynchronous state in these other types of networks; how-

ever, this analysis has been done for very large networks

with sparse coupling.23–28 Moreover, these studies do not

elucidate how the intrinsic properties of the neurons’ ionic

currents contribute to irregular dynamics. An effect that has

been found to produce irregular activity in a reciprocally

connected pair of model neurons is shear-induced chaos.41,46

Like the mechanisms we have analyzed, shear-induced chaos

involves perturbation from an underlying oscillation and

yields dynamics not predicted from the infinitesimal PRC.

The phenomenon we study differs from that considered in

these previous studies in several ways, however. In our sys-

tem, the mechanisms that conspire to produce irregularity

are distributed in a complex way over the extent of an oscil-

lation, the perturbations are generated from within the sys-

tem itself rather than being applied externally, the perturbing

inputs do not turn off instantaneously, and the resulting irreg-

ularity is robust over an interval of coupling strengths.

While uncorrelated neuronal activity has been observed

in a variety of brain regions, mechanisms underlying this

uncorrelated activity are poorly understood. A detailed analy-

sis and classification of how uncorrelated and irregular activ-

ity patterns can arise in a general class of biologically-based

model networks may be very useful for understanding the ori-

gins of uncorrelated firing in some of these brain areas and for

interventions aimed at switching firing patterns there. For

example, uncorrelated activity occurs under normal resting

conditions in the inhibitory globus pallidus network in the ba-

sal ganglia. In parkinsonian states in which dopamine are

depleted within the basal ganglia, however, such activity is

replaced by significantly more correlated firing.1,2,5–7 A vari-

ety of experiments have demonstrated that dopamine may

have multiple effects on the firing properties of neurons within

these nuclei. In particular, dopamine may alter the strengths of

their inhibitory synapses47–50 and may modulate the activation

of certain sodium currents.51 Our analysis shows that chang-

ing parameters in the model corresponding to each of these

processes may switch the network activity between phase-

locked spiking and uncorrelated states. The analysis we have

presented may therefore offer useful insights into how parkin-

sonian conditions lead to abnormally high correlations in ac-

tivity within the globus pallidus, which in turn could influence

activity downstream from the globus pallidus and throughout

the basal ganglia-thalamo-cortical network.52–54
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