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Abstract

Silent hypoxemia, or ‘happy hypoxia’, is a puzzling phenomenon in which patients who have
contracted COVID-19 exhibit very low oxygen saturation (SaO2 < 80%) but do not experience
discomfort in breathing. The mechanism by which this blunted response to hypoxia occurs
is unknown. We have previously shown that a computational model (Diekman et al., 2017,
J. Neurophysiol) of the respiratory neural network can be used to test hypotheses focused on
changes in chemosensory inputs to the central pattern generator (CPG). We hypothesize that
altered chemosensory function at the level of the carotid bodies and/or the nucleus tractus
solitarii are responsible for the blunted response to hypoxia. Here, we use our model to explore
this hypothesis by altering the properties of the gain function representing oxygen sensing inputs
to the CPG. We then vary other parameters in the model and show that oxygen carrying capacity
is the most salient factor for producing silent hypoxemia. We call for clinicians to measure
hematocrit as a clinical index of altered physiology in response to COVID-19 infection.
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Introduction

COVID-19 and silent hypoxemia

The global COVID-19 pandemic has led to over 1,000,000 deaths in the United States, and over
6,840,000 worldwide, since its onset in late 2019 [1]. COVID-19 can cause profoundly low levels of
oxygen in the blood (hypoxemia) with near normal arterial carbon dioxide (PaCO2) levels. Although
some individuals with COVID-19-induced hypoxemia experience dyspnea (breathing discomfort),
many do not [2]. During surges of the pandemic, patients arriving at already overcrowded emergency
rooms (ERs) who were not in obvious respiratory distress were often triaged [2]. However, some
of these patients may have reduced oxygen saturation despite their lack of dyspnea [3, 4, 5]. This
subpopulation of COVID-19 patients present with a novel condition known as silent hypoxemia or
“happy hypoxia” [3]. Silent hypoxemia can result in tachypnea (rapid, shallow breathing), and
with severe hypoxemia, changes in ventilation can occur [6, 7], but in general there is an absence
of increased alveolar ventilation [2].

The mechanism underlying this condition is poorly understood but has been hypothesized to
depend upon high expression levels of angiotensin converting enzyme 2 (ACE2) in the lungs, carotid
body, and, perhaps, in the central breathing control circuitry within the medulla oblongata [3].
Additionally, recent work has shown that there is a shift in the oxyhemoglobin dissociation curve
in COVID-19 patients [8, 9]. Since carotid body chemoreceptors respond to both low O2 and high
CO2, a primary problem in these patients may be dysregulation of these sensors and chemosensory
reflexes in general. ACE2 is the cellular entry point for SARS-CoV-2 [10]. COVID-19 infection has
been shown to increase ACE2 expression, leading to changes in sensitivity to both CO2 and O2;
changes in blood gases lead to a concomitant change in activity within the nucleus tractus solitarii
(NTS). Recent work has shown that ACE2 is present within the carotid bodies of humans [11, 12]
and there is evidence of altered chemosensation across multiple systems with SARS-CoV-2 infection
[13]. The absence of dyspnea—even though patients exhibit low oxygen saturation—suggests that
changes in carotid body inputs to the NTS are a key feature of SARS-CoV-2 infection. Additionally,
there may be changes in NTS activity that contribute to the blunted ventilatory response but this
has not yet been reported.

Given the low partial pressure of oxygen in arterial blood (PaO2) of patients infected with SARS-
CoV-2 virus [14, 15] and the high expression of ACE2 in the carotid bodies, it is likely that altered
chemosensory reflexes play a central role in the symptoms and outcomes seen in COVID-19 patients
[11, 16]. In light of this data, we hypothesize that altered chemosensory function at the level of
the carotid bodies and/or the NTS are responsible for this blunted response to hypoxia. We use a
previously published computational model of respiratory control [17] to explore this hypothesis by
altering the properties of the gain function representing oxygen sensing inputs to the respiratory
central pattern generator (CPG). 1

Quantitative modeling approach

Quantitative modeling has helped elucidate principles of normal and pathological functioning of the
respiratory system, although its fundamental mechanisms remain debated. Mathematical models
can be particularly helpful for generating experimentally testable hypotheses. A variety of models
have been developed for the respiratory CPG [18, 19, 20, 21, 22, 23, 24, 25], for chemosensory

1Model code is available in ModelDB at: https://senselab.med.yale.edu/ModelDB/ShowModel?model=229640
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feedback-based regulation schemes [26, 27, 28], and for cardiopulmonary gas exchange [29]. See [30,
31] for a review. A smaller number of published models represent closed-loop control incorporating
a conductance-based CPG, muscle dynamics, gas exchange, and sensory feedback [32, 33, 34]. Of
these, several focus on hypercapnia (excessive CO2) as the regulatory pathway. In order to generate
hypotheses about silent hypoxemia, we chose to work with a conductance-based CPG model with
O2 chemosensation as the sensory feedback pathway closing the control loop. To our knowledge,
our previously published model [17] is the only model meeting these criteria. Aspects of it have
been experimentally validated [35, 36]. Like any model, this model fails to represent all aspects
of the control system. We have not included CO2 sensing in our model due to the high diffusion
rates of CO2 when compared to O2 in the lung [37] and evidence showing that CO2 is ≤ 35 mmHg
in patients presenting with silent hypoxemia (SH) and minimal tachypnea [5, 38] Additionally, we
do not explicitly include rapidly adapting (RAR) or slowly adapting (SAR) lung mechanoreceptors
in the model—lung volume is present in the model and reproduces inspiratory drive in much the
same way that SARs do in vivo. Nevertheless, in spite of these limitations, the model suffices to
generate testable hypotheses that could be pursued by the clinical community.

The model studied in [17] has seven dynamical variables: voltage of a central pacemaker cell,
together with one fast and one slow gating variable; diaphragm muscle activation; lung volume;
partial pressure of O2 in the lung; and partial pressure of O2 in the bloodstream. Regulation
of the endogenous breathing rhythm occurs through hypoxia-sensitive chemosensory feedback in
the model. Thus we will refer to this system as the 7D-O2 model. Figure 1 shows the closed-loop
structure of the 7D-O2 model. We briefly describe the 7D-O2 model below. For a full description of
the nonlinear system of seven ordinary differential equations specifying the model see the Methods
section.

The 7D-O2 model is a closed-loop respiratory control model that comprises a well-established
conductance-based central rhythm generator (the Butera-Rinzel-Smith model [18, 17]) with a volt-
age variable V , a fast gating variable (delayed-rectifier potassium current activation, n) and a slow
gating variable (persistent sodium current inactivation, h). The output of the BRS model cell,
namely the voltage, drives a motor pool activation variable, α, that in turn drives expansion of
the lungs. The lung volume (volL), the partial pressure of oxygen in the lungs (alveolar pressure,
PAO2), and the partial pressure of oxygen in the bloodstream (PaO2) complete the model variables.
The BRS cell includes an excitatory current driven by a tonic conductance that is regulated by
chemosensory feedback, closing the control loop. The model includes a metabolic demand parame-
ter, M , regulating the rate at which oxygen is removed from the bloodstream to the tissues. As the
“phenotype” or “physiology” of the model, we take the steady-state value of PaO2 as a function
of M . For the original model as presented in [17], the PaO2-vs-M curve shows a plateau near
100 mm Hg (normoxia) that collapses to a critically hypoxic state when M increases past a high
threshold (Fig. 2A). As we varied the original parameters to investigate possible mechanisms of
silent hypoxemia, we monitored the height of the normoxia plateau, and the location of the collapse
point.

Relating model parameters to potential silent hypoxemia mechanisms

The mechanism by which COVID-19 leads to sustained hypoxemia in the absence of dyspnea is
currently unknown. The minimalist model of [17] includes a number of key parameters that are
plausible targets for modification to mimic the effects of COVID-19-infection on respiratory control.

After three years of the COVID-19 pandemic and on-going endemic infection, a few key patho-
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physiologies have become apparent. First, ACE2 expression is correlated with the location and
severity of infection [39]. Because ACE2 is, based on current knowledge, the main vector by which
SARS-CoV-2 enters the body’s cells, changes in ACE2 expression should have an impact on the
severity and time course of COVID-19 symptoms. Second, changes in NTS signaling may play a
key role in altering the normal, physiological response to COVID-19, and that information may be
carried by the glossopharyngeal nerve (innervating the carotid body) or lung afferents via the vagus
nerve. Information sensed at the carotid bodies (and lung interoceptors) ultimately reaches the
nucleus tractus solitarii via the vagus and glossopharyngeal nerves. From the NTS, these signals
are distributed to local visceral integration circuits within the medulla, including the cardivascu-
lar control regions (rostral and caudal in the ventral medulla) and the preBötzinger complex and
associated regions of respiratory control within the brainstem. Based on the clinical observations
reported so far, it appears that there is a change in gain in the pathway from carotid body, to NTS,
to the breathing rhythm generator and pattern formation network. These observations in patients
have provided the motivation for us to focus on assessing the effect of changes in sensitivity/gain
in this signaling pathway. This change in gain may be more prevalent in any one of these circuit
elements and further work needs to be done to determine the exact mechanism by which sensitivity
of the control circuit is impacted.

Oxygen carrying capacity is a key variable in pulmonary mechanics. Repeated bouts of intermit-
tent hypoxia, as seen in obstructive sleep apnea, can increase HIF-1α signaling, with a subsequent
increase in erythropoietin, and an increase in hemoglobin and erythrocytes. Similar changes are
seen in conditions that result in chronic hypoxemia and hypercapnia, such as cardiovascular dis-
ease, obstructive sleep apnea, and chronic obstructive pulmonary disease [40, 41, 42]. Many of the
patients presenting with silent hypoxemia have pre-existing conditions and co-morbidities that are
likely to increase hematocrit and this increase in oxygen carrying capacity may blunt chemoreceptor
responses—exacerbating the “happy hypoxia” phenomenon. Unfortunately, no current literature
quantifies hematocrit in these patients.

Motivated by these observations, we systematically varied (plus or minus 20%) the following
parameters that control the saturating effect of hypoxia-sensitive chemosensory feedback to the
central pattern generator: σg, which controls the slope of the sensory feedback curve at maximum
sensitivity (gain at threshold); θg, which controls the threshold activation value for sensory feedback
(50% activation point); and φ, which controls the maximum sensory feedback drive at full activation.

Lung volume is a key determinant of mechanosensory feedback to the NTS and the CPG. Our
model incorporates lung volume and allows us to monitor changes in lung volume in response to
changes in central drive for breathing. This also allows us to monitor lung volume as an outcome
measure to determine if the CPG is actually causing lung inflation in a way that assures sufficient
gas exchange to sustain life when extrapolated to animal models or human subjects.

Ventilation-perfusion matching is a key drive for respiration. In mammals the interplay between
cardiovascular and respiratory control is essential for ensuring that sufficient oxygen is delivered to
the body and CO2 is removed via the lung. We have included a time constant for O2 transport
between the lung and blood which allows us to simulate changes in diffusion and dwell time within
the lung that correlate with diseases such as chronic obstructive pulmonary disease (COPD) and
lung fibrosis. Oxygen consumption and CO2 production are key elements for determining how
changes in breathing can match metabolic demand. We have included a simplified treatment of
metabolism in the model. As a “biomarker” to test the model behavior, for all parameter sets we
varied the metabolic demand parameter M across a range of values. We have not included CO2
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in this model, because CO2 diffuses up to 20 times faster than O2 [37] and patients with SH do
not appear to be hypercapnic since there is very little change in breathing rate—CO2 is a potent
stimulator of minute ventilation and hypercapnia results in pronounced increases in breathing
frequency [43, 44, 45].

Additionally, we vary the hemoglobin concentration to mimic the effect of chronic hypoxia seen
in humans living in hypoxic environments which can include mountain dwellers [46], individuals
with severe obstructive sleep apnea [42], or other cardio-respiratory disorders [41, 47]. These
individuals can have high hematocrit, a corresponding increase in red blood cells, and increased
blood viscosity—similar to what has been reported in COVID-19 patients [48].

Results

Figure 1 shows a schematic of the respiratory control model that we will use in this study, with
components representing CPG membrane potential (V ), motor pool activity (α), lung volume
(volL), lung oxygen (PAO2), blood oxygen (PaO2), and chemosensation (gtonic). The model has a
closed-loop structure since an excitatory current, Itonic, depends on PaO2 and is an input to the CPG
component (red arrow). In this model, the rate of metabolic demand for oxygen from the tissues is
represented by the parameter M . If metabolic demand is low or moderate (M < 1.2× 10−5 ms−1),
then the model exhibits a stable eupneic rhythm with CPG bursting activity driving fluctuations
in lung volume that bring in a sufficient amount of oxygen to maintain PaO2 in the normoxia range
(see the “plateau” region of the PaO2 versus M curve shown in Fig. 2A and the traces in the left
panel of Fig. 2B.) However, if metabolic demand is too high (M > 1.2 × 10−5), then the model
exhibits a form of tachypnea, where CPG bursting activity is replaced with tonic spiking that does
not drive the lungs effectively enough to maintain PaO2 in the normoxia range (see the “collapse”
region of Fig. 2A and the right panel of Fig. 2B).

In silent hypoxemia, we would expect to observe a lower height for the plateau region of the
PaO2 versus M curve, since these patients display abnormally low PaO2 despite minimal changes in
minute ventilation. There are three possibilities regarding the collapse region in silent hypoxemia
patients: the collapse point could shift to a lowerM value (as illustrated in Fig. 2C), stay at the same
M value (as in Fig. 2D), or shift to a higher M value (as in Fig. 2E). Because it seems plausible
that a disease-induced reduction in steady-state PaO2 would be accompanied by an decrease in
tolerance of higher metabolic demand, we explored parameter space to see if the closed-loop model
is capable of producing PaO2 versus M curves with shapes similar to the hypothetical curve shown
in Fig. 2C.

Motivated by the hypothesis that silent hypoxemia results from a dysregulation of carotid body
O2 receptors, we first considered variation of the parameters associated with the chemosensory
pathway of the model. In the 7D-O2 model, there is a sigmoidal relationship between PaO2 and
gtonic, with the parameters φ, θg, and σg controlling the height, half-activation, and slope of the
sigmoid, respectively (see Fig. 3A). We simulated the closed-loop model over a range of M values
while varying these parameters over 3 levels spanning roughly ±20% of their original values (φ =
0.24, 0.3, 0.36, θg = 70, 85, 100, and σg = 0.24, 0.3, 0.36), yielding 27 different combinations in total.
Figure 3B shows that varying these parameters generates PaO2 vs M curves in which the plateau
and collapse point are shifted down and to the right (similar to the hypothetical case shown in
Fig. 2E). None of the 27 combinations, however, produce any curves with the plateau and the
collapse point shifted down and to the left (similar to Fig. 2C). Thus, we do not consider any of
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these model variants to suitably capture the phenomenon of silent hypoxemia.
In order to proceed further, we selected a single parameter set from among the 27 combinations

as our working model for producing the hypoxic plateau region, namely φ = 0.24, θg = 70, and
σg = 36. These parameters gave the curve with the greatest reduction of PaO2 (darkest blue curves
in Figs. 3A and B), although the collapse point did shift to significantly higher values of M .

Since varying the chemosensory parameters alone was not sufficient to model a silent hypox-
emia patient prone to respiratory collapse, we considered other parameters that could plausibly
be affected by COVID-19. Based on reports indicating that COVID-19 patients have altered oxy-
hemoglobin dissociation curves [8, 9], we considered variation of the model parameter K which
represents hemoglobin binding affinity (Eq. 18 in Methods). The effect that increasing the bind-
ing affinity (decreasing K) has on the SaO2 − PaO2 saturation curve with the new chemosensory
parameters is shown in Fig. 3C (see also Appendix Fig. 5A for the effect of varying K with the
original chemosensory parameters). Tighter binding affinities (K values less than the default value
of 26 mmHg) do shift the PaO2 vs M curve to the left, but the respiratory collapse point is still at
higher metabolic demand values than the original model (Fig. 3D). Thus, we contined to explore
other parameters that might plausibly be affected by COVID-19. For example, lung damage due
to excessive immune response or local thrombosis could reduce the effective unloaded lung volume
(model parameter vol0), or impede the flux of oxygen between the alveoli and the alveolar capillar-
ies. The latter effect could be reflected by an increase in the model parameter τLB, which governs
the effective relaxation time for differences in partial pressure of oxygen in the model’s lung and
blood compartments, respectively. Therefore, while keeping the chemosensory sigmoid parameters
(φ = 0.24, θg = 70, σg = 36) fixed, we varied the unloaded lung volume (vol0 = 1.6, 2.0, 2.4) and
the time constant for the flux of oxygen from the lung to the blood (τLB = 100, 500, 900).

As shown in Fig. 3E, varying vol0 by ±20% and varying τLB by ±400% had surprisingly little
effect on the height of the PaO2 versus M plateau, and did not significantly affect the collapse point
either.

Finally, we considered variation of the parameter [Hb] representing the hematocrit, i.e. the
concentration of hemoglobin within the blood, which was set to 150 g/l in the original 7D-O2 model.
Fig. 3F shows that increasing [Hb] within the model lowers the collapse threshold of the PaO2

versus M curve, while maintaning a hypoxemic plateau around 80 mmHg. A 33% increase in [Hb]
shifts the collapse point to a similar M value as the original 7D-O2 model, consistent with the
hypothetical silent hypoxemia PaO2 vs M curve shown in Fig. 2D. Further increases in [Hb] yield
collapse points with even lower M values, consistent with the hypothetical silent hypoxemia PaO2

vs M curve shown in Fig. 2C. See also Appendix Fig. 5B for the effect of varying [Hb] with all
other parameters set to their original 7D-O2 model values.

We next considered the model with [Hb]=250 (the second curve from the left in Fig. 3D) as
a putative example of silent hypoxemia, and analyzed the model dynamics for simulations in the
plateau region and in response to increases in metabolic demand. Figure 4A shows voltage traces
in the plateau region (M = 0.4 × 10−5 ms−1) for both the silent hypoxemia model (blue) and the
original 7D-O2 normoxia model (red). The frequency of bursting is similar in the two models, but
there are a few more spikes per burst in the hypoxemia model (Fig. 4B). This leads to slightly more
vigorous lung expansions in the hypoxemia model (Fig. 4C), however the levels of oxygen in the
blood remain substantially lower (Fig. 4D). As the metabolic demand is increased, the frequency
of bursting in the hypoxemia model becomes much faster than in the normoxia model (Fig. 4E),
and there are substantially fewer spikes per burst (Fig. 4F). This type of bursting activity leads to
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more frequent but less vigorous lung expansions and ultimately respiratory collapse at lower levels
of metabolic demand in the hypoxemia model compared to the normoxia model (see Appendix
Fig. 6).

Discussion

We originally hypothesized that altered chemosensory input to the carotid bodies and, eventually,
to the NTS and the rest of the breathing control circuitry, is a key factor in silent hypoxemia.
However, our simulation results suggest that while changes in chemosensivity may play a role in
silent hypoxemia, changes in metabolism and oxygen carrying capacity may have greater relevance
for replicating the respiratory collapse seen in these patients. Specifically, altered chemosensitivity
can create a hypoxemic plateau region (SaO2 < 90 mmHg) for a broad range of metabolic demand
levels (M = 0.4 to 1.5×10−5 ms−1, see blue curves in Fig. 3B). When hemoglobin concentration is
then increased, moderate levels of metabolic demand (M = 0.8 to 1.0×10−5 ms−1) lead to complete
respiratory collapse (SaO2 < 60 mmHg, see blue and purple curves in Fig. 3F).

Our hypothesis was based on the premise that O2 sensing is the key factor in SH. Canonically, it
has been suggested that CO2 is a primary driver for dyspnea [49, 50, 51], but there is evidence that
both hypoxia and hypercapnia equivalently drive the sensation of air hunger [43]. However, clinical
case and cohort studies show that patients with SH are not hypercapnic [5, 38]. This suggested
to us that dysregulation of O2 sensation is a key contributor to the issues seen in SH. We tested
this hypothesis by changing O2 sensitivity in the model at the level of the carotid bodies/NTS and
evaulating whether those changes could reproduce the SH phenotype.

A complicating factor for these patients includes co-morbidities that have demonstrated correla-
tion with poor outcome in patients with COVID-19. These comorbidities include obstructive sleep
apnea (OSA), chronic obstructive pulmonary disease (COPD), or cardiovascular disease (including
hypertension or heart failure). Patients suffering from these diseases often develop polycythemia—
an increase in the hemoglobin and hematocrit to adaptively increase the O2 carrying capacity of
the blood. High-altitude populations are well-adapted to chronic hypoxia and typically have a
higher hematocrit in Andean populations versus Himalayan high-altitude dwellers [52], likely due
to different adapation mechanisms. However, subjects with cardiovascular disease [53], obstructive
apnea [54], and familial hyperlipidemia [41] also show increased hematocrit.

One consequence of pumping thicker blood is to increase the metabolic demand, even during
rest. As we show in our results, increasing metabolic demand increases the likelihood of respiratory
collapse. Somewhat paradoxically, with an increased oxygen carrying capacity, the patient may
be less able to compensate for the worsening PaO2 and a critical tipping point for metabolic
demand is reached where respiratory efforts are insufficient to keep up with demand. We have
not yet seen any report documenting changes in hematocrit in COVID-19 patients who exhibit
silent hypoxemia. Based on our modeling results, we would predict that these patients may show
increased hematocrit levels. In support of our prediction, a recently published study [48] showed
that higher blood viscosity was associated with an increase in mortality in COVID-19 patients.
Obtaining this kind of data should be possible for patients admitted to the intensive care unit and
should be a priority for future investigation.

Angiotensin-Converting Enzyme 2 (ACE2) is expressed in the lungs, carotid bodies, and res-
piratory region of the brainstem, and is likely the vector by which the SARS-CoV-2 virus invades
the carotid bodies and/or the NTS, thereby potentially contributing to silent hypoxemia. High
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ACE2 levels also occur in the most vulnerable target organ systems seen in COVID-19 (elevated
expression levels occur in lung, heart, ileum, kidney and bladder [39]). Since ACE2 expression is
very high in the lungs, and since diffuse alveolar damage, bronchopneumonia, and alveolar hem-
orrhage are common in COVID-19 [40], it seems reasonable to hypothesize that the decrease in
gas exchange across the alveolar membranes within the lung can alter not just the O2 carrying
capacity but also increase metabolic demand for perfusion of the damaged lung. It may be of value
to assess differences in mitochondrial activity in lung cells from normal and COVID-19 patients,
or in animal models that have used SARS-CoV-2 or spike protein (now commercially available) to
mimic the lung damage seen in human patients. Such experiments would provide data concerning
cellular metabolism and give us greater understanding of the impact COVID-19 has on metabolic
demand at all tissue levels.

Lack of dyspnea (breathing discomfort) in patients arriving at already overcrowded emergency
rooms leads to triaging patients not in obvious respiratory distress, when in fact these patients
often have reduced oxygen saturation [55]. Perhaps the greatest mystery that remains unresolved
is why dyspnea is not typically seen in patients exhibiting silent hypoxemia. Sensory perception
is subjective and can vary with a host of factors that include sex, socioeconomic background, and
ethnicity [56, 57, 58]. There is some controversy about these correlates but they may be underlying
factors that influence the reporting of silent hypoxemia. Once again, some demographic data is
available concerning COVID-19 infection, mortality, and morbidity, but this information has not
been correlated with silent hypoxemia yet. Ideally, demographic factors should be reported along
with other patient data to better understand the incidence and severity of silent hypoxemia and
dyspnea.

Patients with COVID-19 are also subject to mitochondrial dysregulation that contributes to
severity and lethality. Mitochondrial function is impacted by the “cytokine storm”, a hallmark
of the immune response to COVID-19. Thus, upregulation of cytokine release in the context of
comorbidities that increase inflammation, including metabolic syndrome, obesity, type 2 diabetes,
and increasing age—in addition to the lung and cardiovascular diseases mentioned above, are all
associated with mitochondrial dysfunction [59, 60, 61]. SARS-CoV-2 infection causes multi-system
changes at transcriptomic, proteomic, and metabolomic levels, altering normal cellular metabolism
and changing mitochondrial respiration [61]. Disruption of normal mitochondrial function can result
in an increase in reactive oxygen species (ROS) further exacerbating inflammation and increasing
the likelihood of poor outcomes [62]. The “long COVID” phenomenon may be related to redox
imbalance, which may be exacerbated by COVID-induced changes in mitochondria [63, 64] and,
ultimately, fatigue related to metabolic impairment. Our results suggest that there is a delicate
balance between metabolic demand changes and respiratory failure. One can easily speculate that
reduction in available oxygen in concert with an increase in metabolic demand as the virus takes
over cellular machinery to produce more viral particles can result in a point of critical failure.

One way to test this mechanism woud be to assay mitochondria function obtained in biopsies of
tissue from COVID-19 patients or through animal models. Testing mitochondrial metabolism would
be easier than using stress tests or cycle ergometry to determine metabolic load and ventilation-
perfusion changes. Whole body tests would be problematic in COVID-19 patients and put them
at greater risk for respiratory collapse. As long COVID has become better described, central
nervous system (CNS) involvement and increased chronic inflammation are seen as sequelae that
may continue to alter metabolism and mitochondrial function [65]. Further research is needed
to determine if these effects are exacerbated by persistent metabolic impairment and whether
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symptoms such as cognitive fog depends on mitochondria and ROS handling problems within the
CNS.

The relationship between changes in overall metabolic demand and cellular level metabolism
has not yet been fully explored in COVID-19 patients. This is an important area for investigation,
because while the metabolic demand required to pump more viscous blood [48] may selectively
impact the cardiovascular system the most, metabolic demand may be increased systemically based
on the diffuse organ involvement seen in these patients.

In addition to the limitations to our model that we have mentioned previously, we realize that
our model represents a very reduced number of the elements in the central pattern generator and
pattern formation network for breathing control. The brainstem network includes hundreds of neu-
rons that participate in each breath [66, 67], and we have simplified this relatively complex circuit
for the sake of rapid simulation time to test our hypotheses about SH. This heavily reductionist
treatment of the brainstem network is an obvious limitation to simulation of the interacting popu-
lations of respiratory neurons and makes it difficult to interrogate the precise mechanisms by which
respiratory collapse occurs in SH. Previously, we have demonstrated that increasing extracellular
[K+] resulted in a progressive increase in respiratory rhythm that showed periodic, multi-periodic,
quasi-periodic, and finally chaotic rhythmic patterns [68]. As excitability increased, the disruption
to eupneic breathing would result in impaired gas exchange in vivo. Thus, there is precendent for
increasing excitability in the respiratory network resulting in a kind of “depolarization blockade”
of normal breathing and a cessation of gas exchange that then results in a precipitous fall in PaO2.
We described experiments related to this concept in [17]. Because we have previously shown these
transitions are gradual and occur over a wide range of excitability changes, it makes sense to assume
that there may be a more gradual progression of the “respiratory collapse”, but we do not yet have
clinical data showing how the collapse evolves to the point of need for ventilatory support.

In conclusion, we call for data to be collected on hematocrit in COVID-19 patients, and testing
of metabolism and mitochondrial function. Our model predicts changes in oxygen handling and
metabolism in silent hypoxemia patients. In addition, we believe the following measures may have
untapped predictive value: minute ventilation, oxygen saturation, and breathing frequency. We
speculate that some combination of these quantities, if measured on entry to the ER, could help
predict the need for ventilator support in the subsequent 48 hours. We also note that there is a
need for incorporating oxygen handling dynamics into more sophisticated state-of-the-art respira-
tory control models, most of which currently focus on CO2 and hypercapnea [30]. Finally, a full
dynamical systems analysis of why increasing the concentration of hemoglobin shifts the collapse
point to lower metabolic demand values in the 7D-O2 model is warranted.

Methods

Here we provide the equations for the 7D-O2 model introduced in [17].

Central Pattern Generator (CPG): A variety of models have been proposed for the central
neural circuits generating breathing rhythms, ranging from group-pacemaker networks to individual
pacemaker models, and beyond. Here, we adopt the original Butera-Rinzel-Smith (BRS) model
(referred to as “model 1” in [18]) proposed as a mechanism for bursting pacemaker neurons in the
preBötzinger complex. For simplicity, we represent the CPG with a single BRS unit. Thus our
CPG is described by a membrane potential V together with dynamical gating variables n (a delayed
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rectifier potassium (IK) channel activation) and h (persistent sodium (INaP) channel inactivation).
We set two “instantaneous” gating variables p∞ (INaP activation) and m∞ (fast sodium (INa)
activation) to be equal to their voltage-dependent asymptotic values. We set the INa inactivation
gate to be equal to (1 − n). The model also includes a leak current (IL) and a tonic excitatory
(Itonic) current. In summary:

C
dV

dt
= −IK − INaP − INa − IL − Itonic (1)

dn

dt
=
n∞(V ) − n

τn(V )
(2)

dh

dt
=
h∞(V ) − h

τh(V )
(3)

IK = gKn
4(V − EK) (4)

INaP = gNaPp∞(V )h(V − ENa) (5)

INa = gNam
3
∞(V )(1 − n)(V − ENa) (6)

IL = gL(V − EL) (7)

Itonic = gtonic(V − Etonic) (8)

x∞(V ) =
1

1 + exp[(V − θx)/σx]
(9)

τx =
τ̄x

cosh[(V − θx)/2σx]
(10)

with parameters C = 21 pF, gK = 11.2 nS, gNaP = 2.8 nS, gNa = 28 nS, gL = 2.8 nS, EK = −85
mV, ENa = 50 mV, EL = −65 mV, Etonic = 0 mV, θn = −29 mV, σn = −4 mV, θp = −40
mV, σp = −6 mV, θh = −48 mV, σh = 6 mV, θm = −34 mV, σm = −5 mV, τ̄n = 10 ms, and
τ̄h = 10, 000 ms.

Motor pool activity: The output of the CPG is the BRS cell’s membrane potential (V ), which
drives the respiratory muscles through synaptic activation of a motor unit (α):

dα

dt
= ra[T ](1 − α) − rdα (11)

[T ] =
Tmax

(1 + exp(−(V − VT)/Kp))
. (12)

Here, ra = rd = 0.001 mM−1 ms−1 sets the rise and decay rate of the synaptic conductance. Also,
[T ] represents the neurotransmitter concentration, with parameters Tmax = 1 mM, VT = 2 mV,
and Kp = 5 mV [69].

Lung volume: The output of the motor unit determines the rise and fall of lung volume (volL):

d

dt
(volL) = E1α− E2(volL − vol0). (13)

Here vol0 = 2 L is the volume of the unloaded lung, and parameters E1 = 0.4 L and E2 = 0.0025
ms−1 were chosen so that the lung expansion would remain in a physiologically reasonable range

9



[37]. We note that while the low-frequency input of the envelope of CPG burst activity effectively
drives changes in lung volume, high-frequency input (such as tonic spiking) does not drive the lung
biomechanics effectively. This low-pass filter behavior of the respiratory musculature is analogous
to tetanic muscle contraction that occurs in response to high frequency stimulation of motor nerves
[70].

Lung oxygen: At standard atmospheric pressure (760 mmHg), external air with 21% oxygen
content will register a partial pressure of oxygen of PextO2 = 149.7 mmHg. As the lungs expand(
d
dt [volL] > 0

)
, they draw in external air. Our model makes the simplifying assumption that this

fresh air mixes instantaneously with the air already present in the lungs. Therefore, the partial
pressure of oxygen in the lung alveoli (PAO2) increases at a rate given by the pressure differ-
ence between external and internal air, and by the lung volume. In contrast, during exhalation(
d
dt [volL] ≤ 0

)
, no external air enters the lungs, so the mixing of air stops. During both contraction

and expansion of the lung, oxygen moves between the lungs and the blood. The flux of oxygen
from the lungs to the blood occurs at a rate determined by the time constant τLB = 500 ms, and
by the difference in partial pressure of O2 between the lungs (PAO2) and the arterial blood (PaO2).
The rate of change in PaO2 is thus given by:

d

dt
(PAO2) =

PextO2 − PAO2

volL

[
d

dt
(volL)

]
+

− PAO2 − PaO2

τLB
(14)

where the notation [x]+ indicates max(x, 0).

Blood oxygen: To represent the change in PaO2, we write

d

dt
(PaO2) =

JLB − JBT

ζ
(
βO2 + η ∂SaO2

∂PaO2

) . (15)

Note the fluxes of oxygen from the blood to the tissues (JLB) and from the lungs to the blood
(JLB) have units of moles of O2 per millisecond. The denominator converts changes in the number
of moles of O2 in the blood to changes in PaO2. To calculate the flux JLB, we use the ideal gas
law PV = nRT , where n is the number of moles of O2, R = 62.364 L mmHg K−1 mol−1 is the
universal gas constant, and T = 310 K is temperature. The resulting flux depends on the difference
in oxygen partial pressure between the lungs and the blood:

JLB =

(
PAO2 − PaO2

τLB

)(
volL
RT

)
. (16)

Note that the term JBT accounts for both dissolved and hemoglobin-bound oxygen in the blood:

JBT = Mζ (βO2 PaO2 + η SaO2) . (17)

Following Henry’s law, we take the concentration of dissolved oxygen in the blood to be directly
proportional to PaO2. The blood solubility coefficient, βO2 = 0.03 ml O2 × L blood−1 mmHg−1

for blood at 37 degrees C, is the constant of proportionality. The amount of dissolved O2 at phys-
iological partial pressures (PaO2 ≈ 80 − 110 mmHg) is insufficient to satisfy the body’s metabolic
demand for oxygen. Therefore, most of the blood’s stored oxygen is bound to hemoglobin (Hb).
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Cooperative binding of oxygen to the four binding sites in each hemoglobin molecule leads to a
sigmoidal hemoglobin saturation curve SaO2:

SaO2 =
PaO

c
2

PaO
c
2 +Kc

(18)

∂SaO2

∂PaO2
= cPaO

c−1
2

(
1

PaO
c
2 +Kc

− PaO
c
2

(PaO
c
2 +Kc)2

)
. (19)

Here, we take the phenomenological parameters K = 26 mmHg and c = 2.5 from [71].
Our model includes a parameter M in Eqn. (17) to capture the rate of metabolic demand for

oxygen from the tissues, in units of ms−1. Equations (15) and (17) include conversion factors ζ and
η that depend on the concentration of hemoglobin, [Hb] = 150 gm L−1, as well as the volume of
blood, volB = 5 L, respectively. The model assumes a molar oxygen volume of 22.4 L. We assume
that each fully saturated hemoglobin molecule carries 1.36 ml of O2 per gram:

ζ = volB ×
(

mole O2

22, 400 mL O2

)
(20)

η = [Hb] ×
(

1.36 mL O2

gm Hb

)
. (21)

Chemosensation: Chemosensory feedback from pheripheral chemoreceptors in the carotid bodies,
carried to brainstem respiratory circuits via the carotid sinus nerve, close the control loop in our
model. These receptors detect reductions in PaO2 and drive the central rhythm generator, as
described in more detail in [17]. We model the nonlinear relationship between carotid chemosensory
nerve fiber activity and PaO2 as a sigmoidal saturing function, with the firing rate low until PaO2

is reduced below a threshold (normally about 100 mm Hg) and then steep firing rate increases as
PaO2 is reduced further [72, 37]. We capture this behavior in our model as a sigmoidal function
connecting PaO2 with the conductance representing external drive to the CPG (gtonic):

gtonic = φ

(
1 − tanh

(
PaO2 − θg

σg

))
. (22)

Here, φ = 0.3 nS, θg = 85 mmHg, and σg = 30 mmHg. This conductance closes the control loop
in our respiratory control model, since Itonic = gtonic(V − Etonic) is a term in the CPG voltage
equation (1).

We numerically integrated the preceding equations using a variable-order, variable-step stiff
solver (ode15s in MATLAB).
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Figure 1: Schematic of the 7D-O2 model. Bursts of action potential firing (V , mV) in the respiratory
central pattern generator (CPG) drive a pool of motor neurons (α, dimensionless) leading to expansions
of lung volume (volL, L) and increases in lung and blood oxygen (PAO2 and PaO2, mmHg). Through a
chemosensory pathway (gtonic, nS), the blood oxygen level affects the amount of excitatory current sent
to the CPG, thereby closing the control loop (red arrow). Time (t, seconds) is the horizontal axis for all
traces. The six parameters shown in blue are varied in this study to model silent hypoxemia. Redrawn, with
modifications, from [17].
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Figure 2: Dynamics of 7D-O2 model and hypothetical silent hypoxemia PaO2 vs M curves.
A: Blood oxygen PaO2 as a function of metabolic demand (M) in the original 7D-O2 model. There is a
plateau region at low M values for which normoxia (green shading) is maintained, and a collapse point at
approximately M = 1.2 × 10−5 ms−1 beyond which severe hypoxia occurs. In a model of silent hypoxemia,
it seems clear that the plateau portion of the curve should shift lower (maroon arrow pointing down), but it
is not as clear whether the collapse point should remain in the same location or shift horizontally (maroon
arrows pointing left and right). B: Variables of the 7D-O2 model for M values in the plateau region (left
column) or after the collapse point (right column). C-E: Hypothetical silent hypoxemia models (red) with
a lower plateau and a collapse point shifted to a lower M value (C), in the same location (D), or shifted to
a higher M value (E) compared to the 7D-O2 model (black).
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Figure 3: Sensitivity of PaO2 vs M curves to variation of model parameters. A: Chemosensory
sigmoid of gtonic as a function of PaO2 with various parameter values for the maximum (φ), half-activation
(θg), and slope (σg) of the sigmoid. Default settings from the original 7D-O2 model (φ = 0.3 nS, θg = 85
mmHg, σg = 30 mmHg) shown in gray. See panel (B) for the definition of the color scale used for the
other curves. B: PaO2 vs M curves for 27 different combinations of the chemosensory sigmoid parameters
(φ = 0.24, 0.3, 0.36; θg = 70, 85, 100; σg = 24, 30, 36) on a color scale with the lowest and highest maximum
PaO2 values shown in blue and red, respectively, with the exception of the default parameter set which
is shown in gray. C: Hemoglobin saturation curves (Eq. 18) for various hemoglobin binding affinities K.
Default model has K = 26 mmHg. D: PaO2 vs M curves for the set of K values shown in (C). E: PaO2 vs
M curves for 9 different combinations of oxygen flux and lung volume parameters (τLB = 100, 500, 900 ms;
vol0 = 1.6, 2.0, 2.4 L), with a constant set of chemosensory sigmoid parameters (φ = 0.24, θg = 70, σg = 36)
on a color scale with the lowest and highest M values at the collapse point (PaO2 = 40) shown in blue and
red, respectively, with the exception of the default parameter set which is shown in gray. F: PaO2 vs M
curves for 6 different values of hemoglobin concentration [Hb], with τLB = 500, vol0 = 2.0, and the same
chemosensory sigmoid parameters and color scale as in (E). The purple [Hb] = 250 curve was selected as a
putative model for silent hypoxemia.
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Figure 4: Simulations of putative silent hypoxemia model. A-F: Output from simulations of the
normoxia model (the original 7D-O2 model) and the silent hypoxemia model ([Hb] = 250 curve from Fig. 3D)
shown in red and blue, respectively. Voltage traces showing multiple bursts (A) and zooming in on a
single burst (B); lung volume (C) and blood oxygen (D) traces across multiple bursts. For panels (A-D),
M = 0.4×10−5 ms−1. Interburst interval (E) and number of spikes per burst (F) as a function of metabolic
demand.
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Figure 5: Sensitivity of PaO2 vs M curves to variation of hemoglobin parameters. In both panels,
all parameters are set to their values from the original 7D-O2 model except for the parameter being varied.
A: PaO2 vs M curves for various hemoglobin binding affinities K (including the original value K = 26
mmHg). Color scale maps the lowest and highest maximum PaO2 values to blue and red, respectively. B:
PaO2 vs M curves for 6 different values of hemoglobin concentration [Hb] (including the original value [Hb]
= 250 gm L−1) with the same color scale as in (A).
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Figure 6: Simulations of putative silent hypoxemia model at high metabolic demand. A-F:
Output from simulations of the normoxia model (the original 7D-O2 model) and the silent hypoxemia model
([Hb] = 250 gm L−1 curve from Fig. 3D) shown in red and blue, respectively, for M = 0.97 × 10−5 ms−1.
Voltage traces showing multiple bursts (A) and zooming in on a single burst (B); lung volume (C) and
blood oxygen (D) traces across multiple bursts.


