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Abstract

Alzheimer’s disease (AD) is believed to occur when abnormal amounts
of the proteins amyloid beta and tau aggregate in the brain, result-
ing in a progressive loss of neuronal function. Hippocampal neurons
in transgenic mice with amyloidopathy or tauopathy exhibit altered
intrinsic excitability properties. We introduce a novel parameter infer-
ence technique, deep hybrid modeling (DeepHM), that combines deep
learning with biophysical modeling to map experimental data recorded
from hippocampal CA1 neurons in transgenic AD mice and age-
matched wild-type littermate controls to the parameter space of a
conductance-based CA1 model. Although mechanistic modeling and
machine learning methods are by themselves powerful tools for approx-
imating biological systems and making accurate predictions from data,
when used in isolation these approaches suffer from distinct short-
comings: model and parameter uncertainty limit mechanistic modeling,
whereas machine learning methods disregard the underlying biophysical
mechanisms. DeepHM addresses these shortcomings by using condi-
tional generative adversarial networks (cGANs) to provide an inverse
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mapping of data to mechanistic models that identifies the distribu-
tions of mechanistic modeling parameters coherent to the data. Here,
we demonstrate that DeepHM accurately infers parameter distribu-
tions of the conductance-based model and outperforms a Markov chain
Monte Carlo method on several test cases using synthetic data. We
then use DeepHM to estimate parameter distributions corresponding to
the experimental data and infer which ion channels are altered in the
Alzheimer’s mouse models compared to their wildtype controls at 12 and
24 months. We find that the conductances most disrupted by tauopa-
thy, amyloidopathy, and aging are delayed rectifier potassium, tran-
sient sodium, and hyperpolarization-activated potassium, respectively.

Keywords: Pyramidal Neuron Excitability, Parameter Inference, Generative
Adversarial Network, Population of Models

1 Introduction

Although the underlying cause of Alzheimer’s disease (AD) remains poorly
understood, it is believed to occur when abnormal amounts of the proteins
amyloid beta and tau aggregate in the brain, forming extracellular plaques
(amyloidopathy) and neurofibrillary tangles (tauopathy) that result in a pro-
gressive loss of neuronal function and dementia [1, 2]. In transgenic mice with
amyloidopathy, neurons in the hippocampus—a brain structure critical for
memory—exhibit altered intrinsic excitability properties, such as action poten-
tials with reduced peaks and widths [3–5]. Hippocampal neurons in transgenic
mice with tauopathy also show altered excitability, but in different proper-
ties such as hyperpolarization-activated membrane potential sag and action
potential threshold [6, 7].

Ideally, biophysical modeling could be used to gain insights into the
mechanisms underlying the disrupted electrophysiological properties of these
Alzheimer’s mutant mice. However, determining whether or not such a bio-
physical model and its outputs are coherent with a set of experimental
observations is a major challenge since such models contain many unknown
parameters and are not amenable to statistical inference due to their non-
invertibility. The main difficulty in solving the inverse problem for mechanistic
models arises from intractability of the likelihood function [8]. On the other
hand, neither purely statistical models with tractable likelihoods nor purely
data-driven machine learning algorithms offer much insight into underlying
biological mechanisms [9, 10]. Here, we use deep learning to perform inver-
sion of complex biophysical models and enable the mapping of experimental
data into the space of biophysical model parameters. Since this approach com-
bines deep learning with mechanistic modeling, we refer to it as deep hybrid
modeling (DeepHM).

In biological systems, the tremendous amount of inherent cell-to-cell vari-
ability presents a significant challenge to mapping experimental data to
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underlying cellular mechanisms. It is common to handle this variability by
simply averaging over the data and finding a single set of model parame-
ters that best fits the averaged data. The “populations of models” approach
allows deterministic models to reflect the inherent variability in biological data
through identification of not just the single best parameter set but a popula-
tion of parameter sets such that the output of the group of models displays the
same heterogeneity as the population being modeled [9, 11–16]. The problem
of constructing populations of deterministic models and identifying distribu-
tions of model input parameters from stochastic observations from multiple
individuals in a population is known as the stochastic inverse problem (SIP).
State-of-the-art methods for solving SIPs apply Bayesian inference techniques,
including Markov chain Monte Carlo (MCMC) sampling, and are limited to
finding a distribution for a single set of observations [11, 17–19]. To draw infer-
ences about a new target dataset, the SIP would have to be solved again. We
have recently proposed an alternative approach to solving SIPs, using genera-
tive adversarial networks (GANs), that enables amortized inference— i.e, the
trained GAN can be reused on many target datasets without retraining [20].

GANs are a deep learning paradigm involving two artificial neural networks
that compete with each other in a minimax game. The generator network
attempts to produce fake samples that are as similar as possible to a distribu-
tion of real samples, and the discriminator network tries to distinguish fake
samples from real samples. Since being introduced in 2014, GANs have gar-
nered significant interest across a wide range of fields, including applications
in image processing, cybersecurity, cryptography, and neuroscience [21–23].
Several extensions of GANs have been developed to address particular tasks
[24–26]. To solve SIPs, we use a conditional GAN (cGAN) structure [27] where
the generator is trained with parameter sets X conditioned on the output
features Y of a mechanistic model.

In this paper, we wish to solve an SIP to identify which ion channels are
responsible for the altered excitability properties of hippocampal neurons in
mouse models of amyloidopathy and tauopathy. The data for the SIP of inter-
est in this paper are voltage traces recorded from hippocampal CA1 neurons
in 12-month-old rTg4510 mice expressing pathogenic tau (Tamagnini et al.,
unpublished data), 24-month-old PDAPP mice overexpressing amyloid beta
[3], and age-matched wildtype littermate controls for each transgenic pheno-
type. From these traces, we extract several electrophysiological features (such
as action potential peak, width, and threshold) that capture the excitabil-
ity properties of the cells. Neuronal excitability can be simulated using the
conductance-based modeling formalism originally developed by Hodgkin and
Huxley [28]. The mechanistic model for the SIP of interest in this paper is a
conductance-based model of CA1 neurons that has been shown to be capa-
ble of reproducing key electrophysiological features of recorded voltage traces
[6, 29]. By solving this SIP, we will map the features of the recorded volt-
age traces in the AD mutant and wildtype mice to the parameter space of
the CA1 model. Our goal is to use the resulting parameter distributions to
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infer which ion channel conductances are disrupted in the amyloidopathy and
tauopathy mice compared to their age-matched wildtype controls, and which
conductances change with age in the wildtype mice.

The remainder of the paper is organized as follows. In Section 2, we describe
the experimental data and the features we extract from the recorded action
potentials and hyperpolarization traces. In Section 3, we introduce a biophysi-
cal model of CA1 pyramidal neurons and our initial optimizations of the model
parameters using differential evolution. In Section 4, we give a brief descrip-
tion of GANs and cGANs and illustrate our parameter inference methodology
using the Rosenbrock function as a toy model. In Section 5, we train the cGAN
on output of the CA1 model and then present it with synthetic target data.
We show that cGAN outperforms a benchmark MCMC method on a relatively
simple parameter inference task. We then validate its ability to accurately infer
complex parameter distributions through a series of tests with synthetic target
data. In Section 6, we present the trained cGAN with real target data and use
the inferred parameter distributions to identify which ionic conductances are
affected by age, amyloidopathy, and tauopathy. We conclude with a discussion
of alternative methods and future work in Section 7.

2 Experimental Data and Feature Extraction

The experimental data we use consists of patch-clamp recordings made from
hippocampal CA1 neurons associated with two previous studies involving
mouse models of Alzheimer’s disease. In Tamagnini et al. [3], CA1 current-
clamp recordings were obtained from transgenic PDAPP mice exhibiting
amyloidopathy. In unpublished data, Tamagnini et al. obtained CA1 current-
clamp recordings from transgenic rTg4510 mice exhibiting tauopathy. In this
paper, we use voltage traces from n = 30 cells of 24-month-old PDAPP mice
(and n = 19 cells from their age-matched WT littermate controls) and n = 26
cells of 12-month-old rTg4510 mice (and n = 26 cells from their age-matched
WT littermate controls).

To characterize the excitability of these cells, we focused on the properties
of the first action potential (AP) elicited in response to a square depolarizing
current pulse (300 pA, 500 ms; Fig. 1A) and on the electrotonic properties
of the plasma membrane measured upon the membrane potential exponential
decay in response to a square hyperpolarizing current pulse (-100 pA, 500
ms; Fig. 1B). To account for the biasing effect of cell-to-cell variability of the
membrane potential over the excitability properties, all recordings were made
from a starting membrane potential of Vm = −80 mV. This Vm value was
obtained via the constant injection of a biasing current. To summarize the
behavior of these voltage traces, we defined 9 features associated with the APs
and 4 features associated with the membrane hyperpolarization.

The AP features are illustrated in Figs. 2A-B and are defined as follows:

1. AP threshold: voltage at 10 percent of the AP max positive rate of rise
(feature 6)
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2. AP peak: maximum value of the voltage trace
3. AP trough: minimum value of the voltage in the 2 ms time interval after

the AP peak
4. AP width: duration of time that the voltage is above the AP voltage at max

positive rate of rise (feature 7)
5. AP min voltage before the pulse: minimum voltage in the 1 ms interval

before the AP peak
6. AP max positive rate of rise: maximum value of dV/dt in the 3 ms time

interval around the AP peak (i.e. 1 ms before and 2 ms after the peak)
7. AP voltage at max positive rate of rise: voltage value at the AP max positive

rate of rise
8. AP max negative rate of rise: minimum value of dV/dt in the 3 ms time

interval around the AP peak (i.e. 1 ms before and 2 ms after the peak)
9. AP voltage at max negative rate of rise: voltage value at the AP max

negative rate of rise.

The membrane hyperpolarization features are illustrated in Fig. 2C and
are defined as follows:

10. HP A - voltage at negative peak and baseline differences
11. HP B - voltage at exponential fit and baseline differences
12. HP C - voltage at steady state and baseline differences
13. HP D - voltage at rebound and baseline differences.

We note that these features were chosen to try to capture as much of the
behavior of the voltage traces in as few features as possible. Increasing the
dimensionality of the feature space can reduce the accuracy of cGAN training
if the additional features are not sufficiently informative.

We then calculated these features for the voltage traces from PDAPP,
rTg4510, and WT mice (see Fig. 3 for the AP features, and Fig. 4 for the
hyperpolarization features). Despite the large amount of variability within each
category, for some features clear differences are observed across categories. For
example, AP peak appears to be reduced in PDAPP mice compared to their
WT controls (Fig. 3 top middle panel) and AP width appears to be reduced
in rTg4510 mice compared to their WT controls (Fig. 3 middle left panel).

3 Biophysical Model

CA1 pyramidal neuron model

Conductance-based modeling to describe the electrical activity of neurons was
introduced by Hodgkin and Huxley in 1952 to explain the ionic mechanisms
underlying the initiation and propagation of action potentials (APs) in the
squid giant axon [30]. Nowacki et al [29] developed a conductance-based model
of CA1 pyramidal neurons that includes the following ionic currents: two Na+-
currents, one transient (INaT

) and one persistent (INaP
); two Ca2+-currents,
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one T-type (ICaT
) and one high-voltage activated (ICaH

); and three K+-
currents, delayed rectifier (IKDR

), M-type (IKM
), and leak (IL). The dynamics

of the membrane potential V and ionic gating variables x are governed by the
following system of ordinary differential equations:

C
dV

dt
= Iapp − INaT

− INaP
− ICaT

− ICaH
− IKDR

− IKM
− IL − IKH

(1)

dx

dt
=
x∞ − x
τx

(2)

where:

INaT
= gNaT

m3
NaT∞

hNaT
(V − ENa), INaP

= gNaP
mNaP∞

(V − ENa)

ICaT
= gCaT

m2
CaT

hCaT
(V − ECa), ICaH

= gCaH
m2

CaH
hCaH

(V − ECa)

IKDR
= gKDR

mKDR
hKDR

(V − EK), IKM
= gKM

mKM
(V − EK)

IL = gL(V − EL), IH = gH(pmH + (1− p)nH)(V − EH)

and x ∈ {hNaT
,mCaT

, hCaT
,mCaH

, hCaH
,mKDR

, hKDR
,mKM

,mH , nH}.

The ionic currents I are described by Ohm’s Law with maximal conduc-
tance parameters g and reversal potentials E. The steady-state activation and
inactivation functions x∞ for all gating variables, including mNaT and mNaP ,
are given in Boltzmann form:

x∞(V ) =
1

1 + exp
(
−V−Vx

kx

) .
The time constants τx for all gating variables are fixed parameters, except

for hNaT , for which the time constant is a voltage-dependent function:

τhNaT
(V ) = 0.2 + 0.007 exp (exp (−(V − 40.6)/51.4)) .

First, we simulated the pyramidal neuron model with the parameter values
provided in Nowacki et al [29] (Supplementary Table 1) and calculated feature
values based on the model output (i.e. the simulated voltage trace). For certain
features, the model’s feature value is outside the range of the feature values
observed in the experimental data (solid gray lines in Figs. 3 and 4). For
example, the AP threshold and AP peak in the model are significantly more
depolarized than the AP thresholds and peaks seen in these CA1 neurons
(Fig. 3 top left and top middle panels).

Thus, we used stochastic global optimization to find model parameters that
produce model output with feature values consistent with the experimentally
observed feature values. Specifically, we used differential evolution (DE), a
population-based search technique first introduced by Storn and Price [31, 32].
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The objective function for the DE algorithm was to minimize the sum of
squares error between the simulated voltage trace and the average voltage
trace for each category (PDAPP, rTg4510, WT 12 and 24 month) across all
four categories. More details on our implementation of the DE algorithm are
provided in the Supplementary Methods.

Initially, we chose to hold all the reversal potentials and gating variable
parameters at their original Nowacki et al. values, so the only free parame-
ters for DE to optimize were the 8 maximal conductances. The model with
optimized maximal conductances produced model output with feature values
more consistent with the range of the feature values in the experimental data
(dashed orange lines in Figs. 3 and 4). However, this model’s AP threshold
was still significantly more depolarized than in the data (Fig. 3 top left panel).

We used a variance-based sensitivity analysis (Sobol’s method) to deter-
mine which model parameters affect the model’s AP threshold, and found that
the half-activation of the transient sodium current (VmNaT ) has the largest
effect (see Supplementary Methods for a description of our sensitivity analysis
procedure). We then ran DE again, this time with VmNaT as a free parameter in
addition to the maximal conductances. The model with optimized VmNaT pro-
duced model output with feature values within the range of the feature values
in the experimental data, including the AP threshold (dashed magenta lines in
Figs. 3 and 4). Furthermore, the action potential and membrane hyperpolar-
ization voltage traces produced by this model agree well with the experimental
voltage traces themselves, as the model output appears to lie in the middle
of the four voltage traces obtained by averaging the traces within each of the
four categories (Fig. 5).

We refer to the parameter set obtained through DE with VmNaT and max-
imal conductances as free parameters as the “default” model parameters. We
will use these parameters to set parameter bounds when creating the train-
ing dataset for cGAN. The default parameters are provided in Supplementary
Table 1.

4 Parameter Inference Methodology:
conditional Generative Adversarial Networks

4.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are an example of generative mod-
els in machine learning. Since GANs have a deep neural network architecture
we can classify them as deep learning models. The application we are inter-
ested in here is to build an inverse surrogate model for mapping the output of
a mechanistic model into its corresponding region in parameter space. More
precisely, the goal is to map the density of observed data (PY ) to a coherent
density αX of the model input parameter space. A distribution αX is coher-
ent if: (1) upon sampling from αX and applying the mechanistic model, the
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estimated density in output space (P̂Y ) satisfies P̂Y ∼ PY , and (2) αX cov-
ers all possible solutions in the range described by the prior in input space
(PX). In this section, we will first introduce standard GANs, and then move
on to conditional GANs (cGANs) that are designed to incorporate conditional
distributions into GANs.

The basic GAN consists of two artificial neural networks, a generator G
and a discriminator D, that compete with each other (Fig. 6). The Generator
tries to produce fake samples that are as close as possible to real samples that
come from some distribution, and the Discriminator tries to distinguish real
samples from fake samples. Training the GAN is an iterative process through
which G gets better at fooling D, and D gets better at identifying fake samples.
The first step in training the GAN is to create a training dataset (referred to
as real samples) by simulating the mechanistic model with parameter sets x
drawn from a uniform distribution Pdata(x). Then we initialize the Generator
with a base distribution Pz(z) which is a random variable with typically a
Gaussian distribution. These parameter sets G(z) ∼ PG, referred to as fake
samples, are passed to the Discriminator along with the real samples. For a
given sample x or G(z), the Discriminator outputs a probability ŷ = D(x)
or ŷ = D(G(z)), referred to as a reconstructed label, indicating whether it
thinks the sample is real (ŷ > 0.5) or fake (ŷ < 0.5). If D is correct (i.e. ŷ =
D(x) > 0.5 or ŷ = D(G(z)) < 0.5), then the weights and biases (ω, β) of the D
network will remain fixed, but (ω, β) of the G network will be adjusted through
backpropagation (referred to as fine-tuning in Fig. 6). If D is incorrect (i.e. ŷ =
D(x) < 0.5 or ŷ = D(G(z)) > 0.5), then (ω, β) of D are adjusted while (ω, β)
of G remain fixed. In practice, convergence of the generator and discriminator
one at a time would not only be time consuming, but also lead to instability
due to a vanishing gradient for the loss function of the generator. Therefore, in
this case the weights are adjusted after computing the loss function from the
outputs of D and G over each mini-batch. As a result, both the generator and
the discriminator are being trained simultaneously, and they are converging
gradually.

Derivation of the objective function for the GAN

Cross-entropy is a measure from the field of information theory which calcu-
lates the difference between two probability distributions and is defined by the
following equation:

L(ŷ, y) = [y log(ŷ) + (1− y) log(1− ŷ)] (3)

where ŷ is the reconstructed label D(x) or D(G(z)) and y is the actual label
for the sample. Therefore, the corresponding label for a real sample (i.e. a
sample coming from Pdata(x)) is y = 1 and the reconstructed label (i.e. the
output of the Discriminator) is ŷ = D(x). By substituting these labels for the
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real samples into the equation (3) we can get:

L(D(x), 1) = log(D(x)) (4)

Likewise the data coming from the Generator has the real label y = 0 and the
reconstructed label is ŷ = D(G(z)), therefore, by substituting these expressions
for the fake samples into Eqn. (3) we end up with:

L(D(G(z)), 0) = log(1−D(G(z))). (5)

Panels A and B in Figure (7) are the visualization of Eqns. (4) and (5), respec-
tively. Since the output of the Discriminator is a probability, in both of these
panels we only consider the region between zero and one on the x−axis (which
represents D(x) or D(G(z))). In panel A, log(D(x)) is an increasing function
of D(x). If we have a strong Discriminator, then we expect D(x) ∼ 1 for a
real sample. In panel B, the x−axis represents D(G(z)), and the expectation
for a strong Discriminator would be D(G(z)) ∼ 0 for a real sample. As these
two points are close to the maximum of both Eqns. (4) and (5), the objective
function for the Discriminator is:

max
D
{logD(x) + log(1−D(G(z)))} . (6)

The same logic also holds in the case of having a strong Generator, the only
difference here is that we are going to minimize Eqn. (5), which corresponds to
the right panel of Fig. 7. Having a very strong Generator means it is able to fool
the Discriminator easily. This means the Discriminator will erroneously return
a high probability even for a fake sample, i.e. D(G(z)) ∼ 1. This point is the
minimum value of Eqn. (5). Thus, the objective function for the Generator is:

min
G
{log(1−D(G(z)))} = min

G
{logD(x) + log(1−D(G(z)))} . (7)

In order to obtain a single objective function for the GAN, we combine
Eqns. (6) and (7) and take the expectation over the whole dataset. The result-
ing objective function for the GAN, which is inspired by the cross-entropy loss,
is given by:

min
G

max
D
{Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]}. (8)

In practice, at the beginning of the training process the Generator is not
strong enough and the output of the Generator is very different from the
training dataset. Thus, the Discriminator can easily distinguish the real and
the fake samples. This causes log(1−D(G(z))) to saturate (see Fig. 7B), and
the gradient does not provide any information as it is almost zero. Therefore,
as is mentioned in [21], instead of minimizing log(1−D(G(z))) we can minimize
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the log(1 − D(G(z))) − log(D(G(z))). This will help ensure we have a more
stable loss function during the training process.

4.2 Conditional Generative Adversarial Networks

A standard GAN could be trained to produce samples of parameter sets,
samples of feature sets, or even samples of combined parameter-feature sets.
However, it is not able to produce samples of parameter sets corresponding to
a set of given feature values. To accomplish this, we employ conditional GANs
(cGANs) [27], where features extracted from the output of the mechanistic
model are passed as a condition to the Generator. The parameter samples
produced by the Generator, augmented with the features it was provided as
a condition, are then passed to the Discriminator. Ground truth parameters,
with their corresponding features, as a condition, are also passed to the Dis-
criminator. During the training process, the Generator learns how to produce
samples in parameter space that are similar to the ground truth parameters
for a given set of features.

The overall structure of the cGAN is similar to the basic GAN model.
However, the main difference is that the input into both the Generator (G) and
Discriminator (D) are augmented by the conditional variable Y as described
in Fig. 8. The objective function of the cGAN is:minD

{−Ex∼Pdata(x)[logD(x‖y)]− Ez∼Pz(z)[log(1−D(G(z‖y)))]}

min
G

{Ez∼Pz(z)[log(1−D(G(z‖y)))]− Ez∼Pz(z)[log(D(G(z‖y)))]}
(9)

4.3 Illustration of cGAN training process

We used the Rosenbrock function (Eqn. 10) as a toy mechanistic model to
illustrate the training process for cGAN:

Y = (1−X1)2 + 100(X2 −X2
1 )2. (10)

In this example, we have only two input parameters (X1 and X2) and only one
feature (Y , the output of the Rosenbrock function). Thus, with a fixed output
as a condition, cGAN converges to the ground truth region in the parameter
space after a few training epochs. Figure (9) provides a visual summary of
the training. We used Jensen Shannon Divergence (JSD), a measure of the
similarity between two probability distributions, as our stopping criterion (see
Supplementary Methods for more details on our JSD computation). When the
JSD measure for a fixed epoch number approaches zero, then we stop training
after that epoch. If one continues training after this stopping point, the training
process destabilizes and the JSD measure starts increasing (Fig. 9 bottom right
panel). This phenomenon occurs due to the vanishing gradient problem.
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5 cGAN Training on Biophysical Model and
Validation on Synthetic Target Data

Recall that our main goal is to use cGAN to map voltage traces recorded from
WT and Alzheimer’s mutant mice to the parameter space of our CA1 model.
To enable cGAN to learn the mapping from electrophysiological features to
the CA1 model parameter space, we will create a training dataset consisting of
features calculated from CA1 model simulations with randomly chosen param-
eter values. Since we are primarily interested in how the maximal conductances
of the various ion channels present in CA1 pyramidal neurons are affected by
aging and amyloidopathy/tauopathy, we will only vary the maximal conduc-
tance parameters in our training dataset and keep the gating variable kinetic
parameters and the reversal potentials fixed at their default values. However,
it may be that some of the maximal conductances do not have a large effect
on the output features of interest. To explore this possibility, before creating a
training dataset, we first conducted Sobol sensitivity analysis to see how each
of the 8 maximal conductance parameters affect the features. We found that 3
of these conductances, gNaP , gCaT , and gL have a small effect on the features
compared to the other 5 conductances (Fig. 10). From a biological standpoint,
these 3 conductances are unlikely to play a major role in determining the
AP features for the following reasons: (1) persistent sodium current (INaP ) is
likely to be much smaller than transient sodium current (INaT ), (2) T-type
calcium (ICaT ) is likely to be much slower than INaT , and (3) the leak current
(IL) primarily affects resting membrane potential rather than AP dynamics.
Therefore, when we create the training dataset, we keep those 3 conductances
fixed at their default values, and only vary 5 conductances: gNaT , gCaH , gKDR,
gKM , and gH .

For the training dataset, we performed 3 million simulations of the CA1
model with these 5 conductances drawn from uniform distributions with upper
and lower bounds at ±100% of their default values. We then calculated the
feature values for these simulations, and trained the cGAN with the parameters
X conditioned on the features Y . Once the cGAN was trained, we passed the
features for a subset of the training dataset (10,000 simulations) to the trained
cGAN and asked it to produce samples (i.e. parameter sets) for those features.
We then simulated the CA1 model with the parameter sets from the cGAN and
calculated the features from these simulations. To compare the distributions
of features from the training dataset and from the cGAN samples, we plotted
Kernel Density Estimates (KDEs) for each feature and scatter plots for each
pair of features (Fig. 11A). These plots show that the cGAN samples produced
features that were very consistent with the features in the training data. We
also plotted KDEs and pairwise contour plots for each parameter, which show
that the distributions of parameters produced by the cGAN are similar to
the parameter distributions in the training dataset (Fig. 11B). This visual
conclusion was confirmed by calculating the Jensen Shannon Divergence. The
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JSD between the cGAN samples and training data on the joint distribution of
parameters and features was approximately zero (1.11×10−14).

5.1 Comparison with Markov Chain Monte Carlo
Method on Synthetic Target Data

Although the results shown in Fig. 11B are encouraging, it is important to
test the performance of the cGAN on data that were not part of the training
dataset. To create synthetic target data to use for validation, we constructed
100 random parameter sets with each parameter p drawn from a normal dis-
tribution with mean µp and standard deviation µp/8, where µp is the default
value of that parameter. If the randomly drawn value was negative or was
larger than the upper bound for that parameter in the training set, then the
value was set to zero or the upper bound, respectively.

We simulated these 100 parameter sets with the CA1 model, calculated the
features, and passed the features to the trained cGAN to generate 100 cGAN
parameter samples. We then simulated these cGAN parameter samples with
the CA1 model, calculated the features, and compared the target and cGAN
feature distributions. KDE plots for each feature, as well as 2D KDE plots for
each pair of features, show that the cGAN feature distributions are similar to
the target feature distributions (Figs. 12 and 13A lower triangles). Further-
more, KDE plots for each parameter and each pair of parameters show that
the cGAN parameter distributions are similar to the parameter distributions
used to generate the target data (Fig. 13B lower triangle). To confirm these
visual conclusions, we performed two-sample Kolmogorov-Smirnov (KS) tests
to compare the cGAN and target distributions in feature and parameter space.
In all cases but one (the voltage at the maximum positive rate of rise feature),
the KS test failed to reject the null hypothesis (with a p-value threshold of
0.01) that these two sets of samples come from the same probability distribu-
tion, suggesting that the cGAN distributions are indeed similar to the target
distributions.

We then performed the same procedure using a Markov chain Monte Carlo
(MCMC) method instead of cGAN to infer parameters from the target data.
The details of our MCMC implementation are provided in the Supplemen-
tary Methods. We chose MCMC as the benchmark method to compare the
performance of cGAN to because most state-of-the-art methods for solving
stochastic inverse problems are based on MCMC [11, 33]. We passed the same
100 target data features to the MCMC algorithm as we did the cGAN, and
then simulated the parameters produced by MCMC with the CA1 model. The
feature distributions produced by the MCMC parameters, and the distribu-
tions of the MCMC parameters themselves, differ from their respective target
distributions (Figs. 12 and 13 upper triangles). Furthermore, we performed KS
tests between the MCMC parameters and features and the target parameters
and features, and in all cases the null hypothesis that these samples come from
the same probability distribution was rejected, suggesting that the MCMC
distributions are indeed different from the target distributions.
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5.2 Parameter Inference Tests on Synthetic Target Data

To further test the ability of cGAN to accurately infer biophysical model
parameters from feature data, we generated synthetic target datasets with a
variety of underlying parameter structures. These structures were chosen to
reflect the possible scenarios one may encounter when working with data from
2 different categories (e.g. data from WT versus mutant mice, or data from
young versus old mice). For the CA1 model, we are interested in 5 parame-
ters. Suppose that in the mutant mice, only 1 of these parameters (e.g., gNaT )
is altered compared to WT, and the other 4 parameters are not. To simulate
this scenario, we construct two groups of target data. For each of the 4 param-
eters that are not hypothesized to be altered by the mutation (i.e., gCaH ,
gKDR, gKM , and gH), we draw 100 values from the same normal distribution
N (µp, (µp/8)2) for each group. For the parameter that is altered by the muta-
tion (gNaT ), we draw 100 values from N (0.5µp, (µp/8)2) for Group 1 and 100
values from N (1.5µp, (µp/8)2) for Group 2. For each group, we then: (1) sim-
ulate these parameter sets using the CA1 model and calculate the features,
(2) pass the features to the trained cGAN as target data to obtain cGAN
samples (parameter sets), (3) simulate the cGAN parameter sets using the
CA1 model and calculate the features, and (4) compare the cGAN feature and
parameter distributions between Group 1 (G1) and Group 2 (G2) and to their
respective targets. The G1 and G2 target distributions of some AP features
are quite different from each other (Fig. S8 lower triangle), whereas the G1
and G2 membrane hyperpolarization feature target distributions are similar
(Fig. S9 lower triangle), illustrating that the value of gNaT affects some features
more than others. Nonetheless, for all features the cGAN samples reproduce
the target distributions well across both G1 and G2. Figure 14 (lower trian-
gle) shows that the cGAN was able to accurately infer the distributions of all
5 parameters as well. Importantly, the cGAN-inferred distributions for gNaT

are distinct between Groups 1 and 2, whereas for the other 4 parameters the
cGAN-inferred distributions are similar for G1 and G2.

We also used KS tests to assess the cGAN performance. First, we ran
KS tests on the target data from G1 and G2. For the parameters, the null
hypothesis that the G1 and G2 target samples come from the same distribution
is rejected for gNaT , but is not rejected for the other 4 parameters, as one
would hope since this was the true structure used to create the target data.
For the feature distributions, the KS tests reject the null for 10 out of the 13
features. When we ran the KS tests on the cGAN G1 and G2 distributions,
we get the exact same results for both the parameters and features as we did
for the target data. This consistency in KS test results suggests that cGAN
is able to correctly identify the structure of parameter variations between two
groups of samples based on their features. Additionally, we ran KS tests to
compare the cGAN distributions for G1 to the target data for G1, and the
cGAN distributions for G2 to the target data for G2. For G1, all of the KS tests
(for both parameters and features) failed to reject the null, again indicating
the cGAN distributions are similar to the target distributions. For G2, all of
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the KS tests failed to reject the null except for one feature (the voltage at the
maximum positive rate of rise). We then repeated this simulation and testing
procedure 4 more times with the other possible choices for having a single
parameter distinguish G1 and G2. For the G1 vs. G2 KS tests, the cGAN
sample tests returned the same result as the target data tests 70 out of 72
times (Supplementary Fig. S2 top panels). For the cGAN sample vs. target
data KS tests, the null was rejected 0 out of 72 times for G1 (Fig. S2 bottom
left panel) and 2 out of 72 times for G2 (Fig. S2 bottom right panel).

Next, we investigated scenarios with more than one parameter distinguish-
ing G1 and G2. For example, we considered the case where gNaT is not altered
by the mutation, but the other 4 parameters all are altered by the muta-
tion (i.e. gNaT ∼ N (µp, (µp/8)2) in both G1 and G2, but gCaH , gKDr, gKM ,
and gH are all distributed N (0.5µp, (µp/8)2) in G1 and N (1.5µp, (µp/8)2) in
G2). The KDE and scatter plots for the AP features (Fig. S8 upper triangle),
membrane hyperpolarization features (Fig. S9 upper triangle), and parame-
ters (Fig. 14 upper triangle) indicate that the cGAN samples are consistent
with the target data distributions. We also simulated the 4 other cases where
each of the other 4 parameters was the only one not altered by the mutation.
For the G1 vs. G2 KS tests, the cGAN sample tests returned the same result
as the target data tests 89 out of 90 times (Fig. S5 top panels upper portion).
For the cGAN sample vs. target data KS tests, the null was rejected 0 out of
90 times for G1 and 3 out of 90 times for G2 (Fig. S5 top panels, bottom left
and bottom right portions, respectively).

There are 35 other ways that exactly 4 out of the 5 parameters could be
altered by the mutation. In Fig. 14 (upper triangle), the other 4 parameters all
had lower means in G1 than in G2. Instead, up to three of these parameters
could have higher means in G1 than in G2 (if all 4 had higher means, it would
be equivalent to the case we already simulated just with the G1 and G2 labels
swapped). We simulated and tested these additional parameter structures. For
the G1 vs. G2 KS tests, the cGAN sample tests returned the same result as
the target data tests 624 out of 630 times (Fig. S5 bottom 7 panels upper
portions). For the cGAN sample vs. target data KS tests, the null was rejected
15 out of 630 times for G1 and 38 out of 630 times for G2 (Fig. S5 bottom 7
panels lower portions).

So far, we have discussed scenarios where either exactly 1 parameter was
affected by the mutation or exactly 4 parameters were affected by the mutation.
Here, we consider the remaining scenarios of exactly 2, 3, or 5 parameters
being affected. The number of possible cases for each scenario is given by(

5

k

)
× 2k−1, k = 1, · · · , 5 (11)

where k is the number of parameters affected by the mutation. Thus, for k = 2,
we have 20 different cases. For the G1 vs. G2 KS tests, the cGAN sample tests
returned the same result as the target data tests 353 out of 360 times (Fig. S3
upper portions of panels). For the cGAN sample vs. target data KS tests, the
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null was rejected 3 out of 360 times for G1 and 15 out of 360 times for G2
(Fig. S3 lower portions of panels). For k = 3, there are 40 different cases. For
the G1 vs. G2 KS tests, the cGAN sample tests returned the same result as the
target data tests 711 out of 720 times (Fig. S4 upper portions). For the cGAN
sample vs. target data KS tests, the null was rejected 9 out of 720 times for
G1 and 38 out of 720 times for G2 (Fig. S4 lower portions). Finally, for k = 5,
we have 16 different cases. For the G1 vs. G2 KS tests, the cGAN sample tests
returned the same result as the target data tests 288 out of 288 times (Fig. S6
upper portions). For the cGAN sample vs. target data KS tests, the null was
rejected 9 out of 288 times for G1 and 13 out of 288 times for G2 (Fig. S6
lower portions). The results of the KS tests for all of the 5 choose k cases are
summarized in Fig. S7.

In summary, these results on synthetic target data demonstrate that cGAN
is capable of accurately identifying complex parameter variation structures
from subtle differences in the features of CA1 model simulations. This gives us
the confidence to apply the cGAN method to experimental data in Section 6.

6 Parameter Inference on Experimental Target
Data

Now that we have established cGAN as a tool for mapping observed traces
to unobserved/unmeasured parameter values, we turn our attention back to
experimental data (Figs. 1, 3, 4) and seek to answer the following questions:
Which maximal conductances are responsible for the differences observed in
feature space between (1) the wild type versus the mutant mice (i.e. the disease
effect), and (2) the 12-month old mice versus the 24-month old mice (i.e. the
age effect)?

To answer these questions, we will pass the features for each cell to the
cGAN to obtain a population of models for each individual cell. For some
cells, certain feature values fall outside the range of the values for that fea-
ture used in our training dataset. This can lead to inaccurate cGAN samples;
thus, if a cell has a feature value outside that range we replaced that value
with the median value of that feature across the training dataset. We obtained
100 cGAN samples for each cell, and then pushed those parameters forward
through the mechanistic model. Figure 15A shows that the mean AP and
hyperpolarization traces produced by the cGAN samples agree well with the
mean AP and hyperpolarization traces from the experimental recordings in
each of the 4 categories. For example, we can see from the voltage traces that
the AP peak feature exhibits the same trend in the cGAN samples and exper-
imental data, with WT 24 month having the highest mean AP peak, followed
by PDAPP, WT 12 month, and rTG4510, respectively. To give a sense of how
the variability of the cGAN samples compares to the experimental recordings,
Fig. 15B shows the mean ± standard deviation of the AP and hyperpolariza-
tion traces. Overall, the amount of variability in the cGAN samples appears
comparable to the amount of variability in the experimental data across the
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4 categories, with the exception of the hyperpolarization traces for WT 24
month where there is less variability in the cGAN samples than in the data.
Furthermore, box-and-whisker plots for the output of the cGAN samples in
feature space also agree well with the feature distributions in the experimental
data (compare Fig. S10 to Fig. 3, and Fig. S11 to Fig. 4).

Seeing that the cGAN samples produce appropriate behavior in feature
space, we move on to assessing the distributions of the cGAN samples in
parameter space in order to answer the questions posed at the beginning of
this section. First, we compare the cGAN samples for rTg4510 and their age-
matched controls (WT 12 month). Based on KDE plots for each parameter
(lower main diagonal of Fig. 16), we see that for 3 of the parameters (gNaT ,
gCaH , gH), the WT 12 month and rTg4510 distributions are centered around
the same values. However, the distribution for gKDR is shifted to the right in
rTg4510 relative to WT 12 month, whereas the distribution of gKM is shifted
to the left in rTg4510 relative to WT 12 month. The KDE plots comparing
PDAPP and their age-matched controls (WT 24 month) show a similar trend,
with the gKDR and gKM distributions shifted to the right and left, respectively,
for PDAPP relative to WT (upper main diagonal of Fig. 16). For PDAPP,
the distribution of gNaT is also shifted to the left relative to WT. From these
observations, we hypothesize that for the mouse model of tauopathy, it is the
conductances gKDR and gKM that are responsible for the altered excitability
properties. For the mouse model of amyloidopathy, we hypothesize that these
conductances plus gNaT play a role in the altered excitability.

Having considered the disease effect, we now move on to assessing the
age effect. First, we compare the cGAN samples for WT 12 month and WT
24 month. Based on KDE plots for each parameter (lower main diagonal of
Fig. 17), we see the most striking differences for gH , with the distribution for
the older mice shifted to the right relative to the distribution for the younger
mice. The parameter gKM also shows a rightward shift in the older mice. On
the other hand, the distribution for gKDR is shifted to the left in the older
mice. The 12 to 24 month WT comparison is the most appropriate one for
assessing an age effect, since the only difference between these two groups of
mice is their age. However, for the sake of completeness we also compared the
12 month mutant (rTg4510) to the 24 month mutant (PDAPP). Remarkably,
the 3 shifts in the parameter distributions that we observed with age in the WT
mice were all preserved in the mutant mice, despite the fact that the 12 and
24 month mutants have different mutations (tauopathy and amyloidopathy,
respectively). Specifically, the gH and gKM distributions are shifted to the
right in the older mutants relative to the younger mutants, while gKDR is
shifted to the left in the older mutants (upper main diagonal of Fig. 17). These
results lead us to hypothesize that these 3 conductances underlie the changes
in excitability properties observed with aging.
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7 Discussion

The last decade has seen a rise in the application of population-based mod-
eling in the neuronal and cardiac electrophysiology domains [13–15, 34–37].
The development of methods for selecting and producing virtual patient pop-
ulations that accurately reflect the statistics of clinical populations has also
received a lot of attention in fields such as quantitative systems pharmacology
[16, 18, 19, 38, 39].

Here, we have introduced and employed a deep hybrid modeling (DeepHM)
framework [17, 20] featuring conditional generative adversarial networks
(cGANs) that can be categorized as a population of models technique. We com-
pared the performance of cGAN and a standard Bayesian inference Markov
chain Monte Carlo (MCMC) method [40] on a parameter inference task with
synthetic target data where the ground truth was known. The cGAN outper-
formed MCMC on this task, and showed it is capable of producing a population
of models that captures the type of variability that is often present in biolog-
ical data. Since the cGAN was able to accurately detect a variety of complex
differences in the distributions of parameters across 2 groups of synthetic tar-
get data, we employed the cGAN to infer the parameter distributions across 4
groups of experimental target data (WT and mutant mice at 2 different ages).
From these distributions, we drew conclusions about the biophysical mecha-
nisms (i.e. the ionic conductances) underlying the differences in the observed
excitability properties of WT versus mutant and younger versus older mice.
These results illustrate the value of mapping experimental data back to the
parameter space of a mechanistic model. In future work, the predictions we
made about the role of certain conductances in Alzheimer’s disease and aging
phenotypes can be tested experimentally.

Since DeepHM can produce populations of cell models that accurately
reflect the heterogeneous responses of real cells, this framework could prove
useful in virtual drug design applications. This future direction is inspired by
recent work where a population of models approach was used to identify a set
of ion channel drug targets that optimally convert Huntington’s disease cellu-
lar phenotypes to healthy phenotypes simultaneously across multiple measures
[41].

In this paper, we considered a stochastic inverse problem (SIP), where the
experimental data comes from multiple individuals across a population. Our
method utilized recent advances in deep learning to generate model parame-
ter sets that produced a population of deterministic mechanistic models with
outputs that are consistent with the experimental population data. A distinct
but related problem is simulation-based inference (SBI), where experimental
data are acquired from a single individual and a stochastic mechanistic model
is used to infer the set of model parameters most likely to have generated the
data distribution observed from the individual. While deep learning methods
such as neural density estimation with normalizing flows have been used in
SBI problems [9, 42], to our knowledge our work is among the first to apply a
deep learning approach to an SIP.
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Figures
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Fig. 1 Experimental recordings. Waveforms of the first action potential in response
to depolarizing current pulses (A1-A4) and voltage traces in response to hyperpolarizing
current pulses (B1-B4) injected into CA1 pyramidal neurons for 4 different categories of
mice: Wild-type (WT) 12-month-old mice (black traces, A1-B1), tau mutant (rTg4510)
12-month old mice (red traces, A2-B2), WT 24-month old mice (blue traces, A3-B3), and
amyloid beta mutant (PDAPP) 24-month-old mice (green traces, A4-B4).
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Fig. 2 Schematic of feature extraction. (A-B) Action potential features: (1) AP
threshold, (2) AP peak, (3) AP trough, (4) AP width, (5) AP min voltage before the pulse,
(6) AP max positive rate of rise, (7) AP voltage at max positive rate of rise, (8) AP max
negative rate of rise, (9) AP voltage at max negative rate of rise. (C) Hyperpolarization
features: (10) HP A - voltage at negative peak and baseline differences, (11) HP B - voltage
at exponential fit and baseline differences, (12) HP C - voltage at steady state and baseline
differences and (13) HP D - voltage at rebound and baseline differences.



Springer Nature 2021 LATEX template

20 Neuronal excitability parameter inference using cGANs

WT (12 mo)

rTg4510 (12 mo)

PDAPP (24 mo)

WT (24 mo)

Nowacki

DE - MG

DE – MG - Vmnat

-70

-60

-50

-40

-90

-80

-70

-60

-50

0.2
0.4
0.6
0.8
1

1.2

-70

-60

-50

200

400

600

800

1000

1200

-40

-30

-20

-10

-150

-100

-50

-40

-20

0

20

-20

0

20

40

Fig. 3 Action potential features in experimental data and initial models. Box
and whisker plots of the action potential (AP) features extracted from the experimental
data and the biophysical CA1 model with three different parameter sets: (1) the param-
eters in the original Nowacki et al. paper ([29], solid gray lines), (2) parameters obtained
using differential evolution, optimizing only the maximal conductance parameters (DE-MG,
dashed orange lines), and (3) parameters obtained using differential evolution, optimizing
the maximal conductances and the half-activation voltage of the transient sodium current
(DE-MG-Vmnat, dashed magenta lines).
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Fig. 4 Membrane hyperpolarization features in experimental data and initial
models. Box and whisker plots of the membrane hyperpolarization features extracted from
the experimental data and the biophysical CA1 model with three different parameter sets:
(1) the parameters in the original Nowacki et al. paper ([29], solid gray lines), (2) parameters
obtained using differential evolution, optimizing only the maximal conductance parameters
(DE-MG, dashed orange lines), and (3) parameters obtained using differential evolution,
optimizing the maximal conductances and the half-activation voltage of the transient sodium
current (DE-MG-Vmnat, dashed magenta lines).
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Fig. 5 Average AP and hyperpolarization voltage traces from experimental data
and optimized model. The DE-Model shown here is the same model that was labeled
DE-MG-Vmnat in Fig. 4, and was obtained by minimizing the least square error between
the DE-Model output and the average AP and hyperpolarization traces across all 4 cat-
egories. (A) Mean of the AP waveforms in the experimental data for each category, and
the AP waveform simulated using the optimized DE model (magenta). (B) Mean of the
membrane hyperpolarization traces in the experimental data for each category, and the
hyperpolarization trace simulated using the optimized DE model (magenta).
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Fig. 6 Schematic of a generative adversarial network (GAN). The Generator (G)
and Discriminator (D) are two neural networks that compete with each other during the
training process, with the end result being that G can produce fake samples from a distri-
bution that matches the distribution of the real samples. D(x) and D(G(z)) provide the
reconstructed label ŷ (i.e. the output of the Discriminator network), which represents the
probability of the sample being real rather than fake. If ŷ is greater than (less than) 0.5,
the Discriminator classifies the sample as real (fake). If D is correct (incorrect), then the
weights of G (D) are fine-tuned through backpropagation.
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Fig. 7 Visualization of the components of the GAN objective function (Eqn. (8)).
(A) Discriminator loss function (Eqn. (4)). D(x) is the probability that x came from the
real data rather than Pg . (B) Generator loss function given (Eqn. (5)). D(G(z))) is the
probability that G(z) came from Pg rather than Pdata. The green shading identifies the
possible regions for these two probabilities.
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Fig. 8 Schematic of a conditional GAN (cGAN). Features of the training dataset
(Y ) are passed as a condition into the Generator (G) - already initialized with a Gaussian
distribution (Z) - in order to produce some samples Xg given that condition [Y,Xg ]. This
output, along with real samples X augmented with their output features [Y,X], are passed
into the Discriminator (D). If the Discriminator’s output is close to zero (one), it means the
Discriminator has assigned a low (high) probability of that sample being real.
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Fig. 9 Illustration of the cGAN training process on the Rosenbrock function
(Eqn. 10). Over the course of the training process, both the discriminator and the generator
improve. The discriminator gets better at distinguishing between real (coming from Pdata)
and fake (coming from Pg) samples, and for a fixed discriminator, the generator gets better at
fooling the discriminator. (A1-A6) KDE plots of the cGAN samples (blue) and the training
data (red) for parameters X1, X2, and feature Y at epochs 0, 3, 6, 46, 142, and 208. At epoch
142 (A5), the cGAN distributions are good approximations of the training distributions,
but by epoch 208 (A6) the cGAN distributions are no longer good approximations. (B1-
B3) The discriminator loss (B1), the generator loss (B2), and the JSD measure between the
ground truth parameters versus estimated parameters (B3) as a function of epoch number.
The point labeled A5 in panel B3 represents the JSD stopping criterion: once the JSD starts
to increase we stop training the cGAN.

A B

Fig. 10 Dimensionality reduction using variance-based (Sobol) sensitivity anal-
ysis. The height of the bars represent how sensitive the AP and hyperpolarization features
are to each parameter. (A) S1: average first-order index across feature space. (B) ST:
average total-effect index across feature space.
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cGANtrain

A

B

Fig. 11 Comparison of cGAN samples and training dataset. (A) Feature space:
scatterplots (center of panel) and KDE plots (top and right of each panel) with cGAN
samples in red and the training dataset in green. (B) Parameter space: contour plots (center
of panel) and KDE plots (top and right of each panel) with cGAN samples in red and
the training dataset in green. In both (A) and (B), the KDE plots for the cGAN samples
are nearly identical to the KDE plots for the training dataset (and have almost zero JSD
measure).
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Fig. 12 Performance of cGAN and MCMC on synthetic target data - AP fea-
tures. Lower main diagonal and lower triangle - KDE and scatter plots of the cGAN
samples (red) versus target (green). Upper main diagonal and upper triangle - KDE and
scatter plots of the MCMC samples (blue) versus target (green).

MCMCcGANtarget MCMCcGANtarget

A B

Fig. 13 Performance of cGAN and MCMC on synthetic target data - HP fea-
tures and parameter space. Lower main diagonal and lower triangle - KDE and scatter
plots of the cGAN samples (red) versus target (green). Upper main diagonal and upper tri-
angle - KDE and scatter plots of the MCMC samples (blue) versus target (green). (A) HP
features. (B) Parameter space.
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target-G2cGAN-G1target-G1 cGAN-G2

Fig. 14 Performance of cGAN in parameter space on synthetic targets from 2
groups with distinct parameter structures. KDE plots (main diagonals) and scatter
plots (lower and upper triangles) for Group 1 (G1) target data (magenta), Group 2 (G2)
target data (green), cGAN samples for G1 (blue) and cGAN samples for G2 (red). Lower
main diagonal and lower triangle - only 1 parameter (gNaT ) is distributed differently in
the G1 target data than in the G2 target data, and the other 4 parameters have the same
distribution in the G1 and G2 target data. Upper main diagonal and upper triangle - Four
parameters (all parameters except gNaT ) are distributed differently in the G1 target data
than in the G2 target data.
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Fig. 15 AP and membrane hyperpolarization traces from cGAN samples with
experimental targets. (A) Mean AP and membrane hyperpolarization traces from each
experimental data category (1st and 3rd panels) and mean AP and membrane hyperpolar-
ization traces from simulated the mechanistic model with 100 cGAN parameter samples for
each cell in each category (2nd and 4th panels). (B) Same as A1, but shading shows the
mean ± standard deviation for each category.
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Fig. 16 Disease effect - parameter distributions from cGAN samples with exper-
imental targets. Lower main diagonal and lower triangle - KDE and shaded contour plots
of cGAN samples for 12-month-old WT (black) and 12-month-old tau mutant (rTg4510, red)
mice. Upper main diagonal and upper triangle - KDE and shaded contour plots of cGAN
samples for 24-month-old (blue) and 24-month-old amyloid beta mutant (PDAPP, green)
mice.
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Fig. 17 Age effect - parameter distributions from cGAN samples with exper-
imental targets. Lower main diagonal and lower triangle - KDE and shaded contour
plots of cGAN samples for 12-month-old (black) and 24-month-old (blue) WT mice. Upper
main diagonal and upper triangle - KDE and shaded contour plots of cGAN samples for
12-month-old (rTg4510, red) and 24-month-old (PDAPP, green) mutant mice.
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Supplementary Information
Saghafi et al. (2023). Inferring parameters of pyramidal neuron

excitability in mouse models of Alzheimer’s disease using
biophysical modeling and deep learning

1 Mechanistic Model Parameters

Table 1 Parameters of CA1 pyramidal neuron model. For most parameters, we used
the values given in Nowacki et al. [1] paper. Parameter values for the hyperpolarization-
activated potassium current (IH) are taken from Booth et al. [2]. Optimized parameter
values for the maximal conductances and transient sodium half-activation that we
obtained through differential evolution (DE-MG-Vmnat) are shown in parentheses.

Parameter Value Units Parameter Value Units

Cm 1 µF/cm2 VmH -102 mV
ENa 60 mV VnH -102 mV
ECa 90 mV kmNaT

5 mV

EK -85 mV khNaT
-7 mV

EH -30 mV kmNaP
3 mV

EL -65 mV kmCaT
5 mV

gNaT
65.0 (7.2603) µS/cm2 khCaT

-8.5 mV

gNaP
0.1 (0.0423) µS/cm2 kmCaH

5 mV

gCaT
0.6 (0.067) µS/cm2 khCaH

-7 mV

gCaH
0.74 (1.5208) µS/cm2 kmKDR

11.4 mV

gKDR
9.5 (12.505) µS/cm2 khKDR

-9.7 mV

gKM
0.8 (3.3837) µS/cm2 kmKM

10 mV

gH 0.05 (0.0503) µS/cm2 kmH -13 mV
gL 0.02 (0.0035) µS/cm2 knH -6 mV

VmNaT
-37 (-60.00) mV τmCaT

2 ms

VhNaT
-75 mV τhCaT

32 ms

VmNaP
-47 mV τmCaH

0.08 ms

VmCaT
-54 mV τhCaH

300 ms

VhCaT
-65 mV τmKDR

1 ms

VmCaH
-15 mV τhKDR

1400 ms

VhCaH
-60 mV τmKM

75 ms

VmKDR
-5.8 mV τmH 15 ms

VhKDR
-68 mV τnH 210 ms

VmKM -30 mV p 0.85 -

2 Supplementary Methods

2.1 Differential Evolution (DE) - global optimization

Differential evolution is a type of stochastic global optimization
and a population-based search technique first introduced by Storn
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and Price, 1997 [3, 4]. This method is comprised of four different
steps, including Initialization, Mutation, Crossover, and Selection.

Initialization - a population of individuals, which is also known
as the first generation or parents, is often defined by drawing a pop-
ulation number randomly from a uniform distribution to explore
the objective landscape. In this context an individual is essentially
an ordered set of parameters.

Mutation - a new vector (a.k.a donor vector) is introduced in
this step by a linear combination of three random vectors from the
current generation but not the one which we are going to compare
and substitute with in the next generation (i.e. target vector), this
means at least four members are needed for applying this method.

Crossover - the recombination of donor vector with the best
member of the previous generation with a probability rate bring
both exploration and exploitation to the search and lead the sys-
tem get out of the local minima. Selection - during the selection
step, we have a new vector, which is a candidate for going to the
new generation in replace of the target vector, if it satisfies certain
conditions, and it has a better score 1 than the target vector. In
this way, after each generation we might have better members or
in the worst-case scenario all members could be the same as the
previous generation without any change but none of them getting
worse than before.

The Differential Evolution Algorithm that we used in this
project known as classic DE in [3]. It is also referred to as
DE/rand/1/bin which means the base vector is randomly selected
and only 1 vector difference is added in the mutation part. Finally,
the donated parameters in the crossover section follow a binomial
distribution.

2.2 Sobol indices - global sensitivity analysis

Sensitivity Analysis (SA) [5–9] addresses the question of how much
the output of a model changes given a change in the input. There
are two main classes of sensitivity analysis, local and global. In local
SA, the goal is to deal with sensitivity in the neighborhood of a par-
ticular parameter value. Taking a derivative is an example of local
sensitivity analysis as it only consider the behavior of the system

1The score could be the output of the objective function and depends on the minimization
or maximization problem. The new candidate will be either rejected or accepted for the next
generation.
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near a single point. Global SA, on the other hand, focuses on the
variability of model outputs throughout parameter space. Global
SA provides more information about the system and because of
that it is often preferred, but if the system is too large the com-
putational cost of this technique can be prohibitive. There are
several different global SA approaches, including linear methods,
tree-based methods, regionalized sensitivity analysis (also known
as Monte Carlo filtering methods), and variance-based techniques
[10, 11]. Sobol SA is a variance-based technique that considers the
contribution of the input parameters to the variance of the system
outputs. In Sobol SA we typically use two measures, the first order
index and total effect index. The first order index is the contribu-
tion of an individual parameter to the response variance without
considering any interactions with the other parameters. The total
effect index is the contribution of an individual parameter to the
response variance that does consider interactions with the other
parameters.

Suppose we have a function of f that maps the vector of vari-
ables X = (X1, X2, · · · , Xp) to some quantity of interest. We
assume X has some known probability distribution, this corre-
spond to certain parameters in the model which this probability
distribution reflect the level of uncertainty in them. The goal is to
determine the sensitivity of f to X, under the assumption that f
is square integrable.

f : Rp → R
X 7→ f(X)

If f be square integrable (i.e. f(x) ∈ L2), we can decompose
the above function as the sum of the functions of only 1, 2, · · · , p
parameters:

f(X) = f0+

p∑
i=1

fi(Xi)+
∑

1≤i<j≤p

fi,j(Xi, Xj)+· · ·+f1,2,··· ,p(X1, X2, · · · , Xp)

(1)
where:
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f0 = E[f(X)]

fi(Xi) = E[f(X)∥Xi]− f0

fi,j(Xi, Xj) = E[f(X)∥Xi, Xj]− fi(Xi)− fj(Xj)− f0

If X1, X2, · · · , Xp are statistically independent then all f satis-
fying the orthogonality property, which includes:

V ar(f(X)) =

p∑
k=1

Dk(Xk) +
∑

1≤k≤k′≤p

Dk,k′ (Xk, Xk′ ) + · · ·+D1,2,··· ,p

=
∑
u

Du(Xu), u ⊂ {1, 2, · · · , p}

where:

Dk(Xk) = V ar [fk(Xk)] , Dk,k′ (Xk, Xk′ ) = V ar
[
fk,k′ (Xk, Xk′ )

]
D0 = V ar [f0] = 0, and u = {i1, i2, · · · , is} , 1 ≤ s ≤ p

This means the total variance of the response f(X) can be writ-
ten as the sum of partial variances. By defining the total variance
of the response f(X) that can be attributed to input parameter Xk

as the ratio of V ar [E[f(X)∥Xk]] /V ar(f(X)), the Sobol index for
a subset u (i.e. u ⊂ {1, · · · , p}) can be defined as the ratio between
the contribution given by the interaction among the components
of u for the model variance, and the total variance itself. Thus, the
Sobol index for a subset u can be written as:

Su =
Du(Xu)

V ar(f(X))
,

∑
u⊂{1,··· ,p}

Su =

∑
u Du(Xu)

V ar(f(X))
=

V ar(f(X))

V ar(f(X))
= 1

(2)
As was mentioned before, in Sobol SA, two measures (i.e. the

first order index and the total index) are usually computed. The
first order index refers to the contribution of any one parameter to
the output variance and can be defined as:
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Si =
Di(Xi)

V ar(f(X))
, i = 1, · · · , p.

The total index refers to the contribution of all subsets with
more than one parameter to the output variance, which means:

ST =
∑

1≤i≤j≤p

Si,j + · · ·+ S1,··· ,p =
∑

u⊂{1,··· ,p}

Su

= 1− Si, i ∈ u.

The first order index (i.e. Si) describes the impact of Xi indi-
vidually on the defined output, whereas, the total index (i.e. ST )
represents the effect of Xi along with the interaction of other input
variables. A high value for either of these two indices suggests that
Xi, either alone or in conjunction with other input variables, has
a considerable overall impact on the output space.

2.3 Markov Chain Monte Carlo - MCMC

The Monte Carlo method [12, 13] is a stochastic technique that
aims to calculate numerical results from many random samples. In
other words, if a method uses random numbers to solve a prob-
lem, that method is a type of Monte Carlo method. By employing
this randomness, it is possible that one can address some problems
that, in theory, may have deterministic solutions that are hard to
obtain. In order to draw some samples from a known distribution,
this method repeatedly produces some random samples coming
from that distribution. By repeating this process, eventually in the
long run all the samples come from the desired distribution. One
of the main issues with using a Monte Carlo method is that is a
memoryless process, which can lead to a very long and time con-
suming process to draw samples from a complex distribution. In
other words, if one sample comes from a high density region of the
distribution, there is no guarantee that the next candidate will also
come from the same highly probable region. A Markov Chain is
a sequence of events where the probabilities of the future depend
only on the present [14, 15]. By incorporating a Markov process
into the Monte Carlo method, which is known as Markov Chain
Monte Carlo (MCMC), information about the previous step
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affects the next proposal candidate, and the process of sampling
from complex distributions is sped up. The Metropolis Hastings
algorithm (Algorithm 1) is a particular MCMC method that per-
forms a random walk through the probability distribution to try to
evaluate the values with higher probability. The main idea behind
Metropolis-Hastings is that by running this algorithm for a good
amount of iterations, the random walk procedure helps the Monte
Carlo method to draw samples from the stationary distribution,
which is the posterior distribution or the target distribution. The
important fact here is that based on this algorithm, the acceptance
probability that comes from the density of the model output is
computed using a Gaussian mixture model that is fit to the target
dataset.

Algorithm 1 Markov Chain Monte Carlo method - Metropolis Hastings

Define f(x) as the target distribution, N as the total number of iterations,
xi is the current value and q(x∥xi) be a proposal distribution. This proposal
distribution can be symmetric or asymmetric in this method. Define x0 ran-
domly from its defined range (i.e. x0 = xl + rand(0, 1)× (xu − xl)).

1. while Iter < N do
2. x⋆ ∼ q(x∥xi), proposed candidate

3. ρ = min
{
1, f(x⋆)q(xi∥x⋆)

f(xi)q(x⋆∥xi)

}
, u ∼ U(0, 1),

4. if u < ρ
5. xi+1 = x⋆

6. else
7. xi+1 = xi

8. end
9. Iter = Iter + 1
10. end

2.4 Jensen Shannon Divergence

JSD(p∥q) = 1

2

{∫
p(x) log

(
p(x)

M(x)

)
dx+

∫
q(x) log

(
q(x)

M(x)

)
dx

}
,

where

M =
p+ q

2
.
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3 Supplementary Results

3.1 Synthetic target methodology

As we are dealing with 5 parameters in our mechanistic model, we
design different target data scenarios with 5 choose k parameters
distinguishing two different groups of target data.

5 choose 0: In this scenario, since k = 0, we only have one
target group. All 5 parameters are drawn from a normal distribu-
tion with a mean µ and standard deviation µ/8, where µ is the
value of that parameter in the optimized DE model parameter
set (DE-MG-Vmnat). There is only one case to consider in this
scenario.

5 choose 1: In this scenario, since k = 1, we choose one of the
5 parameters to draw from a different distribution for the Group
1 (G1) and Group 2 (G2) target datasets. For that parameter, we
draw the G1 samples from a normal distribution with a mean of
0.5µ and the G2 samples from a normal distribution with a mean
of 1.5µ. For both groups the normal distribution has a standard
deviation of µ/8, where again µ is the value of that parameter in the
optimized DE model. There are 5 different cases in this scenario,
since there are 5 parameters that can be chosen to distinguish G1
and G2.

5 choose k: Here we consider the scenarios k ∈ {2, 3, 4, 5}. The
number of cases for each value of k can be computed from Eqn. (3).
The 2k−1 term reflects the number of different ways k parameters
can be different between G1 and G2. For example, suppose k = 3,
and the 3 parameters chosen to be distributed differently between
G1 and G2 are g-Na-T, g-Ca-H, and g-K-DR. There are 22 different
possibilities: (1) all 3 parameters are low in G1 and high in G2 –
denoted L-H, L-H, L-H; (2) g-Na-T is high in G1 and g-Ca-H, g-
K-DR are low in G1 – denoted H-L, L-H, L-H; (3) g-Na-T low in
G1, g-Ca-H high in G1, and g-K-DR low in G1 – denoted L-H, H-
L, L-H; and (4) g-Na-T, g-Ca-H low in G1 and g-K-DR high in G1
– denoted L-H, L-H, H-L. We do not have to simulate possibilities
such as H-L, H-L, H-L or L-H, H-L, H-L, since they are equivalent
to possibilities (1) and (2) listed above, respectively, just with the
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labels swapped for G1 and G2 swapped.(
n

k

)
× 2k−1, k = 1, · · · , 5 (3)

3.2 Kolmogorov Smirnov tests

We performed Kolmogorov Smirnov tests (KS-tests) to compare
the cGAN samples to the ground truth target samples for all the
different 5 choose k synthetic target scenarios. The null hypothesis
for these tests is that the two samples are from the same probability
distribution. The plots in Figs. S1-S6 represent the results of these
tests, where black indicates the null hypothesis is rejected (p-value
≤ 0.01) and peach indicates the null hypothesis is not rejected
(p-value > 0.01).
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Fig. S1 5 choose 0 - KS tests for cGAN samples versus target data samples. Peach
color indicates failure to reject the null hypothesis that the cGAN samples and synthetic
target data samples are from the same distribution.
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Fig. S2 5 choose 1 - KS tests. Top left - KS tests on two groups of targets (i.e. G1 (G2)
with low - L (high - H) values of the parameter). Top right - KS test on cGAN samples
corresponding to the two groups of target data (i.e. cGAN-G1 (cGAN-G2) with low - L
(high - H) values of the parameter). Bottom left - KS test of cGAN-G1 versus target-G1.
Bottom right - KS test of cGAN-G2 versus target-G2.
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Fig. S3 5 choose 2 - KS tests. Panels are arranged in a similar fasion as Fig. S2. Top:
L-H, L-H. Bottom: L-H, H-L.
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Fig. S4 5 choose 3 - KS tests. Panels are arranged in a similar fashion as Fig. S2. From
top to bottom: (1) L-H L-H L-H, (2) H-L L-H L-H, (3) L-H H-L L-H, (4) L-H L-H
H-L.
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Fig. S5 5 choose 4 - KS tests. Panels are arranged in a similar fashion as Fig. S2. From
top to bottom: (1) L-H L-H L-H L-H, (2) H-L L-H L-H L-H, (3) L-H H-L L-H L-H,
(4) L-H L-H H-L L-H, (5) L-H L-H L-H H-L, (6) H-L H-L L-H L-H, (7) H-L L-H
H-L L-H, (8) H-L L-H L-H H-L.
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Fig. S6 5 choose 5 - KS tests. - Panels are arranged in a similar fashion as Fig. S2.
From top to bottom: (1) L-H L-H L-H L-H L-H, (2) H-L L-H L-H L-H L-H, (3) L-H
H-L L-H L-H L-H, (4) L-H L-H H-L L-H L-H, (5) L-H L-H L-H H-L L-H, (6) L-H
L-H L-H H-L L-H H-L, 7) H-L H-L L-H L-H L-H, (8) H-L L-H H-L L-H L-H, (9)
H-L L-H L-H H-L L-H, (10) H-L L-H L-H L-H H-L, (11) L-H H-L H-L L-H L-H,
(12) L-H H-L L-H H-L L-H, (13) L-H H-L L-H L-H H-L, (14) L-H L-H H-L H-L
L-H, (15) L-H L-H H-L L-H H-L, (16) L-H L-H L-H H-L H-L.
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5-choose-3

9/720

38/7209/720
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Total = 56/2160

5-choose-4
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5-choose-5
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13/2889/288
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Fig. S7 Summary of KS test results for all 5 choose k synthetic target data
cases. The demoninators are the total number of tests, and the numerators are the num-
ber of those tests for which the null hypothesis was rejected. Top left quadrants: These
KS tests are taken to be the ground truth as they compared target G1 versus target G2.
Top right quadrants: These KS tests compared cGAN-G1 versus cGAN-G2. Bottom left
quadrants: These KS tests compared target-G1 versus cGAN-G1. Bottom left quad-
rants: These KS tests compared target-G2 versus cGAN-G2.

3.3 Output of cGAN samples in feature space for
synthetic target data

Fig. S8 Performance of cGAN on synthetic targets from 2 groups with distinct
parameter structures - AP features. KDE plots (main diagonals) and scatter plots
(lower and upper triangles) for Group 1 (G1) target data (magenta), Group 2 (G2) target
data (green), cGAN samples for G1 (blue) and cGAN samples for G2 (red). Lower main
diagonal and lower triangle - only 1 parameter (gNaT ) is distributed differently in the G1
target data than in the G2 target data, and the other 4 parameters have the same distribution
in the G1 and G2 target data. We refer to this scenario as “5 choose 1” in the Supplementary
Methods. Upper main diagonal and upper triangle - Four parameters (all parameters except
gNaT ) are distributed differently in the G1 target data than in the G2 target data. We refer
to this scenario as “5 choose 4” in the Supplementary Methods.
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target-G2cGAN-G1target-G1 cGAN-G2

Fig. S9 Performance of cGAN on synthetic targets from 2 groups with distinct
parameter structures - HP features. KDE plots (main diagonals) and scatter plots
(lower and upper triangles) for Group 1 (G1) target data (magenta), Group 2 (G2) target
data (green), cGAN samples for G1 (blue) and cGAN samples for G2 (red). Lower main
diagonal and lower triangle - only 1 parameter (gNaT ) is distributed differently in the G1
target data than in the G2 target data, and the other 4 parameters have the same distribution
in the G1 and G2 target data. Upper main diagonal and upper triangle - Four parameters
(all parameters except gNaT ) are distributed differently in the G1 target data than in the
G2 target data.
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3.4 Output of cGAN samples in feature space for
experimental target data
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Fig. S10 Box and whisker plots of the action potential (AP) features extracted from the
mechanistic model voltage traces obtained by pushing forward the cGAN parameter samples
with experimental target data.
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Fig. S11 Box and whisker plots of the membrane hyperpolarization (HP) features extracted
from the mechanistic model voltage traces obtained by pushing forward the cGAN parameter
samples with experimental target data.
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