
BWS: Balanced Work Stealing for Time-Sharing Multicores

Xiaoning Ding
Intel Labs, Pittsburgh, PA

xiaoning.ding@intel.com

Kaibo Wang
The Ohio State University

wangka@cse.ohio-state.edu

Phillip B. Gibbons
Intel Labs, Pittsburgh, PA

phillip.b.gibbons@intel.com

Xiaodong Zhang
The Ohio State University

zhang@cse.ohio-state.edu

Abstract
Running multithreaded programs in multicore systems has
become a common practice for many application domains.
Work stealing is a widely-adopted and effective approach
for managing and scheduling the concurrent tasks of such
programs. Existing work-stealing schedulers, however, are
not effective when multiple applications time-share a single
multicore—their management of steal-attempting threads
often causes unbalanced system effects that hurt both work-
load throughput and fairness.

In this paper, we present BWS (Balanced Work Stealing),
a work-stealing scheduler for time-sharing multicore sys-
tems that leverages new, lightweight operating system sup-
port. BWS improves system throughput and fairness via two
means. First, it monitors and controls the number of awake,
steal-attempting threads for each application, so as to bal-
ance the costs (resources consumed in steal attempts) and
benefits (available tasks get promptly stolen) of such threads.
Second, a steal-attempting thread can yield its core directly
to a peer thread with an unfinished task, so as to retain the
core for that application and put it to better use. We have
implemented a prototype of BWS based on Cilk++, a state-
of-the-art work-stealing scheduler. Our performance evalu-
ation with various sets of concurrent applications demon-
strates the advantages of BWS over Cilk++, with average
system throughput increased by 12.5% and average unfair-
ness decreased from 124% to 20%.

Categories and Subject Descriptors D.4.1 [Operating
Systems]: Process Management—Scheduling; D.3.4 [Pro-
gramming Languages]: Processors—Run-time environments
Keywords work stealing; multicore; time sharing; fairness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’12, April 10–13, 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

1. Introduction
In the multicore era, an application relies on increasing its
concurrency level to maximize its performance, which often
requires the application to divide its work into small tasks.
To efficiently distribute and execute these tasks on multi-
cores, fine-grained task manipulation and scheduling must
be adopted [Saha 2007]. A common practice is that the appli-
cation spawns multiple worker threads (workers for brevity)
and distributes the tasks dynamically among its workers with
a user-level task scheduler.

Work stealing [Blumofe 1994, Burton 1981], as a stan-
dard way to distribute tasks among workers, has been widely
adopted in both commercial and open-source software and
libraries, including Cilk [Blumofe 1995, Frigo 1998] and
Cilk++ [Leiserson 2010], Intel Threading Building Blocks
(TBB) [Kukanov 2007], Microsoft Task Parallel Library
(TPL) in the .NET framework [Leijen 2009], and the Java
Fork/Join Framework [Poirier 2011]. In work stealing, work-
ers execute tasks from their local task queue. Any newly
spawned tasks are added to the local queue. When a worker
runs out of tasks, it steals a task from another worker’s queue
and executes it. Work stealing has proven to be effective in
reducing the complexity of parallel programming, especially
for irregular and dynamic computations, and its benefits have
been confirmed by several studies [e.g., Navarro 2009, Neill
2009, van Nieuwpoort 2001].

Existing work-stealing schedulers, however, are not ef-
fective in the increasingly common setting where multiple
applications time-share a single multicore. As our results
show, state-of-the-art work-stealing schedulers suffer from
both system throughput and fairness problems in such set-
tings. An underlying cause is that the (time-sharing) operat-
ing system has little knowledge on the current roles of the
threads, such as whether a thread is (i) working on an un-
finished task (a busy worker), (ii) attempting to steal tasks
when available tasks are plentiful (a useful thief), or (iii) at-
tempting to steal tasks when available tasks are scarce (a
wasteful thief). As a result, wasteful thieves can consume
resources that should have been used by busy workers or

useful thieves. Existing work-stealing schedulers try to miti-
gate this problem by having wasteful thieves yield their cores
spontaneously. However, such yielding often leads to signifi-
cant unfairness, as a frequently yielding application tends to
lose cores to other concurrent applications. Moreover, sys-
tem throughput suffers as well because the yielded core may
fail to go to a busy worker or may be switched back to the
wasteful thief prematurely.

In this paper, we present BWS (Balanced Work Stealing),
a work-stealing scheduler for time-sharing multicore sys-
tems that leverages new, lightweight operating system sup-
port. BWS improves both system throughput and fairness us-
ing a new approach that minimizes the number of wasteful
thieves by putting such thieves into sleep and then waking
them up only when they are likely to be useful thieves. (Use-
ful thieves become busy workers as soon as they successfully
steal a task.) Moreover, in BWS a wasteful thief can yield its
core directly to a busy worker for the same application, so as
to retain the core for that application and put it to better use.

We have implemented BWS in Cilk++ and the Linux ker-
nel, and performed extensive experiments with concurrent
running benchmarks. Our experiments show that, compared
with the original Cilk++, BWS improves average system
throughput by 12.5% and reduces average unfairness from
124% to 20%. The experiments also show another benefit of
BWS, which is to reduce the performance variation. On av-
erage, BWS reduces the performance variation by more than
11% as measured by the coefficient of variation of execution
times.

The rest of the paper is organized as follows. Section 2
presents further background on prior work-stealing sched-
ulers and their limitations, and the limitations of current OS
support for work stealing. Section 3 and Section 4 describe
the design and implementation of BWS, respectively. Sec-
tion 5 provides a comprehensive evaluation of BWS. Sec-
tion 6 discusses related work. Finally, Section 7 concludes
the paper.

2. Problem: Time-Sharing Work-Stealing
Applications

In this section, we first discuss the basics of work stealing in
more detail, and then look into the challenges of work steal-
ing in multiprogrammed environments. Next, we describe
ABP, a state-of-the-art work stealing scheduler, and discuss
its limitations. Finally, we discuss the limitations of current
OS support for efficient and fair work stealing.

2.1 Work Stealing Basics
A work-stealing software system provides application de-
velopers with a programming interface for specifying par-
allel tasks over a shared memory. The system handles the
tasks as parallel procedure calls, and uses stack frames as the
major data structure for bookkeeping task information. To
minimize the overhead associated with handling fine-grained

tasks, it uses lazy task creation techniques [Mohr 1991]. We
will refer to an application developed and supported by a
work-stealing software system as a work-stealing applica-
tion. In practice, such applications span a wide spectrum, in-
cluding document processing, business intelligence, games
and game servers, CAD/CAE tools, media processing, and
web search engines.

A user-level task scheduler manages tasks and distributes
then dynamically among the worker threads (workers). It
uses a queue to manage the tasks ready to execute for each
worker, one queue per worker. During the execution, each
worker dequeues the tasks from its queue and executes them.
New tasks dynamically generated in the execution (e.g., by
a spawn or parallel for in Cilk++) are enqueued into the
worker’s task queue. When a worker runs out of tasks, the
worker (thief) selects another worker (referred to as a victim)
and tries to steal some tasks from the victim’s task queue. If
there are available tasks in the victim’s queue, the steal is
successful, and the thief dequeues some tasks from the vic-
tim’s queue and continues to process the tasks. Otherwise,
the thief selects another victim. Recall from Section 1 that
workers processing and generating tasks are busy workers,
and that we informally distinguish between useful thieves,
who help distribute tasks promptly whenever there is avail-
able parallelism, and wasteful thieves, who waste resources
on unsuccessful steal attempts.

2.2 Issues of Work Stealing with Multiprogramming
Rapid increases in the number of cores and memory capacity
of multicore systems provide a powerful multiprogramming
environment for concurrently running multiple jobs and par-
allel applications. One multiprogramming management op-
tion is to time-slice all the cores so that each application
is granted a dedicated use of the cores during its schedul-
ing quanta. This approach suffers from low efficiency when
some applications can only partially utilize the cores. Sim-
ilarly, a static partitioning of the cores among the applica-
tions (i.e., space-sharing) suffers from the same inefficien-
cies. Approaches such as process control that dynamically
partition the cores among the applications at process granu-
larity [McCann 1993, Tucker 1989] improve upon the static
case, but their OS-level mechanisms are slow to react to ap-
plication phase changes. Moreover, such approaches impose
a space-sharing paradigm into standard (time-sharing) oper-
ating systems. Thus, work stealing has been advocated as a
powerful and effective approach to scheduling in multipro-
grammed multicores [Blumofe 1998], where several parallel
applications are executed concurrently.

However, early studies on work stealing in multipro-
grammed environments demonstrated a tension between
how aggressively thieves try to steal work (in order to
quickly balance loads) and the wasted resources such steal
attempts incur [Blumofe 1998]. In effect, work stealing is
a double-edged sword. When a thief cannot obtain tasks
quickly, the unsuccessful steals it performs waste computing

resources, which could otherwise be used by other threads.
More importantly, the execution of thieves may impede the
execution of busy workers that would generate new tasks,
causing livelock where no workers make useful progress. If
unsuccessful steals are not well controlled, applications can
easily be slowed down by 15%–350% [Blumofe 1998].

2.3 The ABP Algorithm and its Limitations
To handle the above problems, work-stealing schedulers
(e.g., those in Cilk++ and Intel TBB) implement a yielding
mechanism, based on the solution proposed by Arora, Blu-
mofe, and Plaxton (referred to herein as ABP, and shown in
Algorithm 11) [Arora 1998, Blumofe 1998]. When a worker
runs out of tasks, it yields its core spontaneously to give way
to other threads (line 16). The worker is repeatedly switched
back to make steal attempts, and if the attempts fail, the
worker yields the core again. It repeats these operations un-
til it successfully steals a task or the computation completes.

Algorithm 1 – ABP Work Stealing Algorithm
1: t : a task
2: w : current worker
3: v : a victim worker w selects to steal from
4:
5: procedure RANDOMSTEAL(w)
6: Randomly select a worker v as a victim
7: if w can steal a task t from v then
8: enqueue t
9: end if

10: end procedure
11:
12: repeat
13: if local task queue is not empty then
14: dequeue a task t and process t
15: else
16: yield()
17: RandomSteal(w)
18: end if
19: until work is done

2.3.1 Drawbacks of ABP
ABP, while the state-of-the-art, suffers from two critical
drawbacks for time-sharing multicores: significant unfair-
ness and degraded throughput. Workers in ABP use the yield
system call to relinquish their cores. When they get switched
back (i.e., rescheduled by the OS) to continue stealing is
determined by OS scheduling policies and the workloads
on the system, instead of the availability of tasks ready for
steals. If thieves for an application cannot resume steal-

1 Detailed implementations may vary in different work-stealing software
systems. For example, Cilk++ implements the algorithm faithfully, while
in Intel TBB a worker yields its core when the number of failed steals
exceeds a threshold. Though the implementations may vary, the problems
we identify (and address) are the same.

ing when tasks become available (i.e., when they transi-
tion from wasteful thieves to useful thieves), the concur-
rency level of the application is limited. Significant unfair-
ness arises when such limiting of concurrency is applied
unevenly across co-running applications. As will be illus-
trated below and demonstrated in Section 5, such scenarios
are common when ABP is used in multiple work-stealing
applications co-running on time-sharing multicores. The un-
fairness also arises when work-stealing applications share
the same set of cores with non-work-stealing applications
(e.g., pthread applications). In general, the more frequently
a work-stealing application yields its cores, the more its ex-
ecution is delayed.

While unfairness arises whenever yielding thieves are not
switched back for their work in time, throughput is degraded
whenever wasteful thieves either (i) fail to yield their cores
or (ii) yield their cores but are switched back prematurely.
Depending on OS scheduling policies, there are cases in
which yield calls return without actually relinquishing the
cores, for example, when the caller is the only ready thread
or the thread with the highest priority on the core. This
makes the yielding mechanism ineffective. Because the OS
is not aware of whether or not a thread is a wasteful thief,
multiple wasteful thieves may be scheduled on the same
core. Such thieves yield the core back and forth wasting
resources without making progress. If there are suspended
threads (perhaps from a different application) that are ready
to do useful work, these threads are needlessly delayed,
reducing overall system throughput.

2.3.2 Illustrative Examples
We will now provide a quantitative illustration of the above
problems using a few representative experiments. We select
four benchmarks, BFS, EP, CG, and MM, and run them on
a 32-core machine. (Please refer to Section 5 for benchmark
description and machine configuration.) In the experiments,
we first run each benchmark alone to get its solo-run exe-
cution time. Then, we run two benchmarks concurrently to
see how much their executions are slowed down due to the
co-running. As they may have different execution times, we
run each benchmark multiple times so that their executions
are fully overlapped.

We first use our results for BFS and EP to illustrate the
fairness problem. Compared to the solo-runs, BFS is slowed
down significantly by 377%, while EP is slightly slowed
down by 5%. We define unfairness as the difference between
the two slowdowns, in this case 372%. Though BFS creates
32 workers and can achieve a speed up of 21 when it runs
alone on the 32 cores, we find that it has only about 5 active
workers when it co-runs with EP. This experiment clearly
confirms that the actual concurrency levels of work-stealing
applications can be seriously limited when they co-run with
other applications, because their workers may yield cores
prematurely and may not be rescheduled in time.

To illustrate the throughput problem, we use our results
for CG and MM. After we run each of CG and MM alone to
obtain its solo-run execution time, we run them concurrently
in two different scenarios. In the first scenario, the number
of workers in each application is 32, and in the second
scenario, CG has 16 workers and MM has 32 workers. The
first scenario represents the case in which the number of
thieves in CG is not controlled and its workers may yield
cores frequently. The second scenario represents the case in
which the number of thieves of CG is under control, and
yieldings are less frequent than those in the first scenario.
This is because each worker has more work to do and spends
a larger proportion of its time working than in the first
scenario. We compare the execution times of CG and MM
in these two scenarios against their solo-run execution times
with 32 workers.

In the first scenario, due to the co-running, the execu-
tion time of CG is significantly increased by 144%, while
the execution time of MM is increased by only 37%. In the
second scenario, the execution time of CG is increased by
97%, and the execution time of MM is increased by 12%.
In both scenarios, the execution of CG is delayed by much
larger percentages than the execution of MM. This unfair-
ness is caused because the workers in CG yield cores more
frequently than the workers in MM. Compare to the first
scenario, reducing the number of workers in CG in the sec-
ond scenario improves the performance of both applications.
This indicates that in the first scenario, the yielding mech-
anism is only partially successful in reducing the resource
waste caused by steal attempts.

The experiments also show that co-running the two work-
stealing applications together may increase the throughput
compared to time-slicing all the cores (so that each appli-
cation gets all the cores during its slice). This is indicated
by the slowdowns of the benchmarks being less than 100%
in the second scenario, and is consistent with previous stud-
ies [Iancu 2010]. We have also co-run CG and MM with
a non-yielding work-stealing scheduler, and found that CG
was slowed down by more than 600% and MM was slowed
down by about 100%. This significant performance degrada-
tion confirms the observation in a previous study [Blumofe
1998]. It also demonstrates the need for a work-stealing
scheduler that can make efficient use of computing resources
on multicores.

2.4 OS Limitations and Insufficient Mechanisms to
Support Work Stealing

As discussed above, the OS has little knowledge on the
current roles of the threads, such as whether a thread is a
busy worker, a useful thief or a wasteful thief. As a result,
it may, for example, suspend a busy worker to schedule a
wasteful thief. Moreover, it is unable to properly schedule
thieves, likely either (i) delaying an application’s execution
by schedling too few (useful) thieves, or (ii) reducing system
throughput by scheduling too many (wasteful) thieves.

Operating systems do provide several mechanisms that
could address this lack of user-level information, through
its existing API. One type of such mechanisms is policy-
based. For example, an application can choose one of a few
pre-cooked scheduling algorithms, or a thread can adjust its
scheduling priority. However, these mechanisms depend on
the scheduling policies hard-coded in the OS, which lack the
flexibility to meet the customized scheduling requirements
of work-stealing applications.

The other type of mechanisms increases the flexibility by
enabling a thread to voluntarily suspend its execution. But,
which thread the core will be granted to is still determined by
OS scheduling policies. Operating systems usually provide
three suspension mechanisms, but none of them can meet the
requirements of work-stealing schedulers for fairness and
throughput efficiency.

The first suspension mechanism, the yield system call,
makes its caller thread relinquish its core without blocking.
The OS scheduler puts back the caller into a ready thread
queue, and makes a rescheduling decision to allow other
threads to run. The caller will be rescheduled automatically
later by the OS scheduler. The other two suspension mecha-
nisms are sleeping based. A thread can be put into sleep by
waiting for a condition denoted by a variable to become true.
When the thread sleeps, the core is granted to other threads.
When the condition is met, the thread is woken up and put
back to the ready thread queue to be scheduled. A thread can
also be put into sleep by waiting for a timer to expire.

The above mechanisms incur unfairness when a work-
stealing application time-shares the same set of cores with
other applications. No matter which of the three suspension
mechanisms is used, if the workers relinquish their cores
frequently, other applications can take advantage of this and
get more chances to run. The problem is more serious if the
yield mechanism is used, because yield indicates that the
caller is currently not eager to run and the OS scheduler
is usually reluctant to reschedule it very soon. As we have
explained, the use of the yield system call in work-stealing
schedulers also incurs performance concerns, because the
yield callers may fail to yield their cores, or may be switched
back prematurely due to other yield calls.

In summary, current operating systems do not provide
the mechanisms that can meet the requirements of work-
stealing schedulers. This makes work-stealing schedulers
unable to effectively address the fairness and throughput
issues when they adjust the concurrency levels of work-
stealing applications. To solve this problem, we propose
a new task scheduling algorithm and new OS support to
establish a balanced work-stealing (BWS) system, which
will be presented in the next section.

3. The Design of BWS
In this section we describe the design of BWS, includ-
ing the work-stealing algorithm used in BWS and the new

OS support. Our design is motivated by the considerations
and issues outlined in the previous section. Our goals are
to maximize throughput and minimize unfairness. We de-
fine unfairness to be the difference between the larger and
smaller slowdowns among co-running applications, where
slowdown is relative to the application’s performance in iso-
lation.

3.1 BWS Overview
BWS abides by the following three principles in order to
minimize the extent that thieves impede busy workers, the
resource waste, and the unfairness.

• The priority principle. The timeslices that the OS sched-
uler allocates to a work-stealing application should be
used for processing tasks first. Only extra timeslices that
are not being used by workers for processing tasks are
used for thieves to do work stealing. This is mainly to pre-
vent the execution of thieves from impeding the execution
of busy workers. It also helps to put computing resources
to best use.

• The balance principle. To maintain a high throughput for
a work-stealing application, the cost of having steal at-
tempts must be paid in order to quickly distribute dynam-
ically generated tasks. However, the cost must be con-
trolled: too many thieves will not improve application
throughput.

• The efficiency principle. Both throughput and fairness are
improved by having each application running at high par-
allel efficiency. If an application phase can make highly
productive use of additional cores, its concurrency level
should be increased in order to acquire more time slices.

At a high level, BWS enforces the priority principle by
making thieves yield their cores to busy workers. It achieves
the balance principle by dynamically putting thieves into
sleep or waking them up. It realizes the efficiency principle
by waking up sleeping thieves whenever there are tasks
waiting to be stolen, in order to increase the application’s
concurrency level.

In more detail, the work-stealing algorithm in BWS ad-
justs the number of sleeping thieves based on how easily
thieves can find tasks to steal. When it is easy for thieves to
find tasks, more thieves are woken up to maximize through-
put. Otherwise, if a thief has performed a number of unsuc-
cessful steals, it puts itself into sleep and relinquishes its core
to save computing resources. Every time a thief fails to steal
from a victim, it checks the status of the victim. If the victim
is working on an unfinished task but is currently preempted,
the thief yields its core directly to the victim. Otherwise, the
thief tries to steal from another victim.

Our design relies on two operating system features not
found in current operating systems, which we now intro-
duce:

Efficiency or Throughput

Fairness

BWS

ABP

Low High

Low

High

No

Yielding

Figure 1. BWS improves both fairness and throughput,
compared to current work-stealing implementations

• The OS discloses the running status of the workers to the
work-stealing scheduler.

• The OS provides a new yielding facility, which enables a
worker to yield its core directly to one of its peer workers.

These are discussed in further detail in Section 4. The first
mechanism enables the work-stealing scheduler to find a
thread that needs computing resources in a timely manner.
The second mechanism enables the above step where a thief
yields its core directly to the (busy but preempted) victim.

Note that BWS’ use of sleep/wake-up to adjust the num-
ber of executing thieves has two key advantages over ABP’s
use of yield. First, it prevents thieves from being scheduled
prematurely. While yielded threads can be switched back at
any time, sleeping thieves cannot be switched back as long
as they are asleep. Second, because the action of waking-up
a thread indicates there are some tasks waiting to be pro-
cessed by the thread, the thread can be rescheduled at the
earliest time supported by the OS scheduler. Thus, awakened
thieves can resume stealing promptly to increase the appli-
cation’s concurrency level. Yielded threads, in contrast, have
low OS priority to be rescheduled.

Figure 1 depicts a qualitative comparison of BWS, ABP,
and a work-stealing scheduler without any yielding mech-
anism. The X-axis represents how efficiently computing
resources are used to execute work-stealing applications.
The more efficient, the higher throughput the system will
achieve. The Y-axis shows the fairness. With the “No Yield-
ing” scheduler, unsuccessful steals waste computing re-
sources and delay task processing. Thus, the efficiency and
system throughput are low. ABP improves efficiency and
throughput, but at the cost of fairness. Compared with ABP,
BWS addresses the fairness issue, and further improves effi-
ciency and throughput.

3.2 BWS Work Stealing Algorithm
Waking up sleeping thieves requires the involvement of non-
sleeping workers to detect the availability of tasks and make
wake-up system calls. Busy workers generate new tasks and
have the information on whether tasks are available. Thus,
an intuitive solution is to have busy workers wake up sleep-
ing workers. However, this violates the work-first principle,
because work overhead is increased.2 To minimize the im-

pact on work overhead, BWS lets thieves wake up sleeping
workers.

Algorithm 2 shows the work stealing algorithm. As dis-
cussed above, management work is conducted by thieves to
minimize the work overhead. Thus, we present only the al-
gorithm for stealing. This algorithm is called whenever the
worker’s local task queue is empty.

When a thief steals a task successfully, it tries to wake up
two sleeping workers (lines 11–15 in Algorithm 2). How-
ever, because a thief turns into a busy worker when it gets a
task to process, waking up other workers will delay the exe-
cution of the task. To minimize the overhead, BWS offloads
this management work to other thieves. For this purpose,
BWS uses a counter (referred to as the wake-up counter) for
each worker to bookkeep the number of wake-ups it desires
to issue. The actual wake-up operations are to be carried out
by other thieves. Thus, this worker starts to process the task
immediately after it updates its wake-up counter. When a
thief finds a preempted busy worker (lines 18–19), it yields
the core to the busy worker.

A thief carries out management work only when it cannot
get a task or yield its core to a busy worker (lines 21–40).
Specifically, if the victim is a busy worker and the wake-up
counter of the victim is greater than 0, it reduces the wake-
up counter of the victim by 1 and increases the wake-up
counter of itself by 1, implying that it will handle one wake-
up operation for the worker. Then, it continues to steal. If
the victim a thief tries to steal from is sleeping and the thief
has pending wake up operations to process, it wakes up the
sleeping worker.

To avoid the high cost associated with global synchro-
nization impacting scalability, workers in BWS function in a
peer-to-peer manner. Each thief relies on the information ac-
cumulated in its two local counters to determine whether it is
a useful thief or a wasteful thief. One is the wake-up counter.
The other is the steal counter. When a worker becomes a
thief, it starts to count how many unsuccessful steals it has
made with the steal counter. It is considered to be a useful
thief as long as the counter value is below a pre-set thresh-
old. When the counter value exceeds the threshold, it con-
siders whether to sleep. It first checks the wake-up counter.
If the wake-up counter is 0, it is considered to be a wasteful
thief and is put into sleep. Otherwise, it reduces the wake-up
counter by 1 and resets the steal counter. This is to cancel out

2 Work overhead measures the overhead spent on task scheduling. It is de-
fined as the ratio between the execution time of a work-stealing application
running with a single thread (with the overhead to support task schedul-
ing) and the execution time of its sequential version (without any schedul-
ing overhead) [Frigo 1998]. As a key principle for designing work-stealing
schedulers, the work-first principle requires that the scheduling overhead
associated with each task (and finally work overhead) be minimized [Frigo
1998]. For example, techniques like lazy task creation [Mohr 1991] have
been used to reduce the overhead of task generation to a level similar to that
of function calls. The violation of work-first principle causes performance
degradation, because tasks in a work-stealing application are usually very
small [Kumar 2007, Sanchez 2010].

Algorithm 2 – BWS: Balanced Work Stealing Algorithm
1: Local Variables:
2: t : a task
3: n : value of the steal counter of a worker
4: c : value of the wake-up counter of a worker
5: w : current worker
6: v : a victim worker w selects to steal from
7:
8: procedure RANDOMSTEAL
9: repeat

10: Randomly select a worker v as a victim
11: if w can steal a task t from v then
12: enqueue t
13: w.c← w.c + 2
14: reset w.n
15: return
16: else
17: if v has an unfinished task then
18: if v has been preempted then
19: yield core to v
20: else
21: if v.c > 0 then
22: v.c← v.c− 1
23: w.c← w.c + 1
24: end if
25: end if
26: else
27: if v is sleeping and w.c 6= 0 then
28: wake up v
29: w.c← w.c− 1
30: end if
31: end if
32: w.n← w.n + 1
33: end if
34: if w.n > SleepThreshold then
35: if w.c = 0 then Sleep
36: else
37: w.c← w.c− 1
38: end if
39: reset w.n
40: end if
41: until work is done
42: end procedure

a wake-up operation, because carrying out both of the wake-
up and sleep operations increases the number of unnecessary
context switches and incurs unnecessary overhead.

4. The Implementation of BWS
BWS relies on two new OS supporting mechanisms, which
require only slight changes to the Linux kernel (about 100
lines of code in two existing files concerned with thread
scheduling in Linux kernel 2.6.36). First, BWS needs the

OS to disclose whether a worker is currently running on a
core. On current operating systems, an application can only
get brief running status of its threads, e.g., whether a thread
is sleeping or whether it is terminated. However, whether a
thread is currently taking a core and running is not directly
disclosed by the OS. To provide the support, we add a new
system call, which returns to the calling thread the running
status of a peer thread (identified by its thread id) in the same
application.

Second, we implement a new yielding support to allow
a thread (yielder) to yield its core to a designated second
thread (yieldee) in the same application. When the yielder
makes a yield to call (with a thread id argument), it is sus-
pended. The rest of its timeslice is passed to the designated
yieldee. Then the yieldee is scheduled immediately on the
core that the yielder was running on, using the remaining
time-slice offered by the yielder.

With the OS support, we implement a prototype of BWS
based on Intel Cilk++ SDK preview (build 8503). The imple-
mentation must handle and prevent a special case, in which
all the thieves are sleeping, because then parallelism changes
in the application would go undetected. To avoid this case
in the implementation, BWS uses a thief as a “watchdog”,
which executes a similar algorithm to Algorithm 2. One dif-
ference between the watchdog worker and other thieves is
that the watchdog worker does not go to sleep. The other
difference is that, when the watchdog worker steals a task, it
wakes up sleeping workers itself (instead of relying on other
thieves). Before the watchdog worker begins to process the
task, it appoints one of the workers it wakes up as the new
watchdog worker. Then, it becomes a normal worker.

5. Experiments
With the prototype implementation, we tested the perfor-
mance of BWS. In this section, we first introduce our ex-
perimental setup, then present the experimental results.

5.1 Experimental Setup
We carried out our experiments on a workstation with four
2.26GHz Intel Xeon 7560 processors. Each processor has 8
cores. The memory size is 64GiB. The operating system is
64-bit Ubuntu Linux 10.04LTS. The kernel version is 2.6.36.
The kernel parameter sched compat yield is set to 1.3 The
SleepThreshold is set to 64.

We selected the following benchmarks and measured
their execution times in varying scenarios. All the selected

3 With the default Linux kernel configuration, whether a thread calling
yield can actually yield the core depends on the unfinished time quantums
of this thread and other threads co-running with it on the core. Work-
stealing applications usually cannot perform well with this configuration,
and their performance is similar to that without yielding operations. In
the experiments, we changed the configuration to improve the throughput
of work-stealing applications with the original Cilk++ and to make the
comparison fair.

group 1 BFS, EP, MM, RayTracer, LOOP
group 2 CG, CLIP, MI

Table 1. Benchmarks are divided into two groups based on
scalability: good (group 1) and fair (group 2).

benchmarks are computation intensive to minimize the per-
formance impact of I/O operations.

• BFS traverses a graph with 10 million nodes using a
breadth-first algorithm.

• CG and EP benchmarks were adapted from their OpenMP
implementations in the NPB NAS benchmark suite [Jin
1999]. CG finds an estimation of the smallest eigen-
value of a large sparse matrix with a conjugate gradient
method. EP computes a large number of gaussian pseudo
random numbers with a scheme well suited for paral-
lel computing. The problem size for both benchmarks is
class B.

• CLIP executes a parallelized computational geometry
algorithm to process a large number of polygon pairs.
The algorithm implements a common operation in spa-
tial database systems, which is to compute the areas of
the intersection and the union of two polygons [Wang
2011].

• MI implements the matrix inversion algorithm. The size
of the matrix is 500× 500.

• MM is an example application in the Cilk++ package
that multiplies two matrices. The size of each matrix is
1600× 1600.

• RayTracer is a 3D renderer that renders an 800 × 600
image using ray tracing techniques. It casts 4 rays of light
from each pixel to generate a vivid 3D world.

• LOOP is a micro-benchmark. It creates 32 threads, each
of which performs a busy loop until the main thread
notifies them to finish.

The above benchmarks except LOOP were developed
with Cilk++. LOOP was developed with pthreads, and is
used as a representative of non-work-stealing multi-threaded
programs. The computation carried out in LOOP is very sim-
ple, in order to minimize the interference from other factors
that may affect the performance of co-running applications,
such as contention for cache space and memory bandwidth.

Based on the scalability of the benchmarks, we divide
them into two groups. In the first group, BFS, EP, MM,
RayTracer, and LOOP show good scalability, with speed-
ups exceeding 20 when 32 cores are used. In the second
group, CG, CLIP, and MI are not as scalable as those in the
first group. Although allocating more cores to each of the
benchmarks can improve the performance marginally, the
speed-ups are below 16 with 32 cores.

0

50

100

150

200

250

300

350

400

S
lo

w
d

o
w

n
s
(%

) Cilk++ BWS

(a) Co-runs of benchmarks in group 1

0

50

100

150

200

250

S
lo

w
d

o
w

n
s

(%
)

Cilk++ BWS

(b) Co-runs of benchmarks in group 2

0

50

100

150

200

250

300

350

400

S
lo

w
d

o
w

n
s

(%
) Cilk++ BWS

(c) Co-runs of benchmarks from different groups

Figure 2. Slowdowns of benchmarks with the original Cilk++ and the Cilk++ with BWS scheduler. Subfigure (a) shows the
slowdowns of the benchmarks from group 1 when they co-run, Subfigure (b) shows the slowdowns of the benchmarks from
group 2 when they co-run, and Subfigure (c) shows the slowdowns for the co-runs of benchmarks from different groups.

In the experiments, we first run each benchmark alone to
get its solo-run execution time, averaged over 5 runs. Then,
we run two benchmarks concurrently. As benchmarks have
different execution times, we run each benchmark multiple
times (between 8 and 100 times, depending on the bench-
mark’s solo-run time) so that their executions are fully over-
lapped. We call the concurrent executions of two bench-
marks a co-run. For each benchmark in a co-run, we average
its execution times, compare the average execution time (Tc)
against its solo-run execution time (Ts), and calculate the
slowdown, which is (Tc − Ts)/Ts. For each possible com-
bination of two benchmarks, we first co-run the two bench-
marks with the original Cilk++ (with ABP). Then we co-run
them with the Cilk++ with the BWS scheduler, and com-
pare their slowdowns with the two different systems. We set
the number of threads in each benchmark to be 32. As the
benchmarks in each combination have the same number of
threads, in the ideal case, they show similar slowdowns.

To measure unfairness and performance, we define the
unfairness metric and system throughput metric as fol-
lows. The unfairness metric is the difference between the
larger slowdown and the smaller slowdown between the co-
running benchmarks. We use Weighted-Speedup to measure
system throughputs, which is the sum of the speedups of the
benchmarks (i.e. Σ(Tb/Tc)), where Tb is the execution time
of a benchmark in the baseline case [Mutlu 2008, Snavely
2000]. As an example, suppose two benchmarks have the

same solo-run execution time, and when they co-run, each of
them is slowed down by 100%. In our setting Tb = Ts, so the
weighted-speedup throughput of the co-run is 1/2+1/2 = 1.
A throughput of 1 implies that the co-run’s throughput is the
same as if the benchmarks were run consecutively.

5.2 Performance in Terms of Fairness, Throughput,
and Execution Time Variation

In this subsection, we show that the BWS scheduler can ef-
fectively achieve both goals of reducing unfairness and im-
proving system throughput. We will also show that BWS can
reduce the performance variation of work-stealing applica-
tions, as a by-product.

Figure 2 compares the slowdowns of the benchmarks for
both the original Cilk++ (with ABP) and the Cilk++ with
BWS scheduler. In each subfigure, the last two bars show
the average unfairness. As shown in the figure, with the orig-
inal Cilk++, when two benchmarks co-run, one benchmark
may be slowed down by a much larger degree than the other
benchmark. Usually, the one that is less scalable shows a
larger slowdown. For example, when CLIP and MM co-run,
CLIP is slowed down significantly by 358%, while MM is
slowed down by only 7%. When MI and EP co-run, MI is
slowed down dramatically by 304%, and EP is only slowed
down by 5%. The reason is that the workers in the less scal-
able benchmarks are more likely to run out of tasks and yield
their cores. BFS is slowed down by large percents when it
co-runs with other benchmarks in group 1. This is because

the granularity of the tasks in BFS is very small. Workers
in BFS perform steals frequently, and relinquish cores fre-
quently on unsuccessful steals. On average, the unfairness is
73% for benchmark pairs from group 1 (in Figure 2(a)), and
160% for benchmark pairs from group 2 (in Figure 2(b)),
and 151% for the remaining benchmark pairs which mix the
benchmarks from both groups (in Figure 2(c)).

Our BWS scheduler can avoid the execution of a work-
stealing application being excessively delayed. Thus, for
each pair of co-running benchmarks, the difference between
their slowdowns can be significantly reduced. For exam-
ple, when CLIP and MM co-run, their slowdowns are 36%
and 47%, respectively. When MI and EP co-run, the slow-
downs are 61% and 56%, respectively. On average, the BWS
scheduler can significantly reduce the unfairness to 30% for
benchmark pairs from group 1, to 22% for benchmarks from
group 2, and to 13% for the remaining benchmark pairs.

Our BWS scheduler not only improves fairness, but also
increases system throughput. Figure 3 shows the throughputs
of the co-runs for both the original Cilk++ and the Cilk++
with BWS scheduler. For fair comparison, when we calcu-
late the throughput of a co-run for the two different sys-
tems, we use the same baseline, in which each benchmark
runs alone with the original Cilk++ for the same amount
of time.4 For the co-runs of the benchmarks from group 1,
BWS improves throughput by 4% on average over the orig-
inal Cilk++. These benchmarks have good scalability, and
their workers spend only a small amount of time on stealing
with the original Cilk++. Thus, there is only a limited op-
portunity for BWS to show improvements. In contrast, the
benchmarks in group 2 have only fair scalability, and their
workers spend more time on stealing than those in group
1. Thus, for the co-runs of these benchmarks, BWS im-
proves throughput by much larger degrees (33% on average).
For the co-runs of benchmarks from different groups, BWS
improves throughput moderately: the average throughput is
11% higher than that with the original Cilk++.

To understand how BWS improves system throughput
and fairness, we have instrumented the OS scheduler to
monitor the context switches during the co-runs. We select
the co-runs of benchmarks from different groups. For each
execution of a benchmark, we collect the number of context
switches, as well as the numbers of the following two types
of context switches: 1) a to-thief context switch that grants
the core to a thief, and 2) an external context switch that
grants the core to a thread from another application.

Compared to the original Cilk++, BWS incurs far fewer
context switches. For example, BWS incurs 98% fewer con-
text switches for the co-run of CLIP and MM, and 99%

4 Each benchmark has similar solo-run execution times with the two dif-
ferent systems (the difference is less than 5%), except CG and CLIP. With
BWS, the solo-run execution time of CG is decreased by 25%, while the
solo-run execution time of CLIP is increased by 17%. On average, the
benchmark solo-runs are slowed down by 0.4% with BWS, compared with
their solo-runs with the original Cilk++.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

T
h

ro
u

g
h

p
u
t Cilk++ BWS

(a) Co-runs of benchmarks in group 1

0

0.5

1

1.5

2

2.5

T
h

ro
u

g
h

p
u

t

Cilk++ BWS

(b) Co-runs of benchmarks in group 2

0

0.5

1

1.5

2

T
h

ro
u
g

h
p
u
t Cilk++ BWS

(c) Co-runs of benchmarks from different groups

Figure 3. Throughputs of different co-runs with the original
Cilk++ and the Cilk++ with BWS scheduler. Subfigure (a)
shows the throughputs of the co-runs with benchmarks from
group 1, Subfigure (b) shows the throughputs of the co-runs
with benchmarks from group 2, and Subfigure (c) shows the
throughputs of the co-runs with benchmarks from different
groups.

fewer context switches for the co-run of MI and EP. For
most co-runs, the numbers of context switches are reduced
by more than 70%.

With the original Cilk++, a significant amount of con-
text switches (93%) are to-thief switches. For example, when
CLIP co-runs with MM, 98% of the context switches in-
volving CLIP are to-thief switches, and 99% of the context
switches involving MM are to-thief switches. The high per-
centages of to-thief context switches are caused by schedul-
ing multiple thieves on the same core so the thieves yield
the core back and forth quickly. BWS greatly reduces the
to-thief context switches. With BWS, only 32% of context
switches in the co-runs are to-thief context switches. The

reduction of context switches and to-thief context switches
shows that BWS improves system throughput by prevent-
ing thieves from being scheduled prematurely and by having
thieves preferentially yield cores to threads that are making
progress.

To show how BWS improves fairness, we compare the
numbers of external context switches incurred by the orig-
inal Cilk++ and by BWS. For BFS and the benchmarks in
group 2, BWS significantly reduces the number of exter-
nal context switches by 45%–96%. For example, when MI
co-runs with EP, the number of external context switches in
each execution of MI is reduced by 80% with BWS. This
shows that with BWS, applications in group 2 become less
likely to give up cores to their co-running applications, and
thus excessive execution delay is avoided. We did not see
such an obvious trend for the benchmarks in group 1 (ex-
cept BFS). While the number of external context switches
are reduced for some benchmarks (e.g., MM), the number is
increased for others (e.g., EP).

Another important finding is that with the original Cilk++,
the benchmarks usually show large performance variations,5

which are caused by frequent core yieldings across applica-
tions. Taking CG as an example, when it co-runs with MM,
its execution time varies in a wide range from 35 seconds to
65 seconds. With BWS, its execution time varies in a much
smaller range from 23 seconds to 29 seconds.

To monitor the performance variation, for each bench-
mark in each co-run, we calculate a Coefficient of Variation
(CV) of its execution times. For each benchmark, we average
its CV values across all the co-runs that include the bench-
mark, and show the average CV value in Figure 4(a). We also
calculate an average CV value and show it in Figure 4(b) for
each of the following types of executions.

• Type 1: Executions of a benchmark in group 2 with an-
other benchmark in group 2

• Type 2: Executions of a benchmark in group 2 with a
benchmark in group 1

• Type 3: Executions of a benchmark in group 1 with a
benchmark in group 2

• Type 4: Executions of a benchmark in group 1 with a
benchmark in group 1

As shown in Figure 4(a), with the original Cilk++, bench-
marks in group 2 and BFS show larger performance vari-
ations than other benchmarks, because their workers yield
cores more frequently in the co-runs. Compared to their
co-runners, the performance of benchmarks EP, MM, Ray-
Tracer, and LOOP changes only slightly across different co-
runs.

As shown in Figure 4(b), type 2 executions show the
largest performance variations among the four types of exe-

5 Note that the impact of these variations is minimized in our co-run exper-
iments because each benchmark is run many times in a tight loop.

15
20
25
30
35
40

A
v

e
ra

g
e

C

V
 (

%
) Cilk++

BWS

0
5

10
15

A
v

e
ra

g
e

C

V
 (

%
)

(a)

0

5

10

15

20

25

30

35

40

A
v

e
ra

g
e

C

V
 (

%
) Cilk++

BWS

(b)

Figure 4. Performance variation of the benchmarks

cutions. This is because the benchmarks in group 2 may be
slowed down by the largest percentages when they co-run
with benchmarks in group 1. Type 3 executions show the
smallest performance variations, because the performance of
the benchmarks in group 1 is minimally impacted by bench-
marks in group 2.

BWS reduces external context switches by letting work-
ers relinquish their cores to their peer workers in the same
application. Thus, it reduces the performance variation. For
all the benchmarks, it reduces the average CV values to less
than 10%. For type 2 executions, it can reduce the average
CV value from 37% to 10%.

5.3 Experiments with Alternative Approaches
In Cilk++, a worker yields its core whenever it runs out
of local tasks or its steal attempt fails. The execution of a
work-stealing application is delayed if its workers relinquish
the cores prematurely by this yielding mechanism. Thus, an
intuitive proposal to reduce the execution delay is to lower
the chance that workers yield their cores prematurely. For
example, in Intel TBB, a worker does not yield its core until
the number of failed steals exceeds a threshold, which is two
times the number of workers. When the threshold is reached,
the worker yields its core on each unsuccessful steal. For
convenience, we call this method delay-yielding. Another
method is that a worker yields its core once every time it
has conducted a number (e.g., 64 in the experiments below)
of failed steals. We call this method selective-yielding.

We have implemented these methods into Cilk++, and re-
peated all the co-runs for each of the methods. The thresh-
old is 64 (i.e. 2 × 32) for the delay-yielding method. Fig-
ure 5 compares the average unfairness and average through-
put of the two methods against that of the original Cilk++
and BWS. Compared to the original Cilk++, the two meth-
ods can slightly reduce unfairness. However, they undesir-
ably lower system throughput. For example, the selective-
yielding method can reduce the average unfairness from
124% to 108%, which is still serious. But it lowers the av-
erage throughput by about 8% from 1.2 to 1.1. In contrast,
BWS both minimizes unfairness and improves throughput.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

20

40

60

80

100

120

140

A
v
er

ag
e

T
h
ro

u
g
h

p
u

t

A
v

er
ag

e
U

n
fa

ir
n

es
s(

%
) Average Unfairness Average Throughput

Figure 5. Average unfairness and average throughput for
the original Cilk++, two alternative approaches, and BWS

The delay-yielding method or selective-yielding method
can only modestly reduce unfairness. There are two reasons.
First, the methods still use yield calls to relinquish cores.
Second, in a work-stealing application, new tasks are dy-
namically generated by workers processing tasks. Though
the methods enable a worker to continue stealing after un-
successful steal attempts, the worker still may not be able
to steal a task before it relinquishes its core if existing tasks
are all being processed and new tasks have not been gener-
ated. In a multi-programmed environment, workers process-
ing tasks may be preempted. This makes it more difficult for
a worker to find a task to steal in a limited number of at-
tempts. In contrast, BWS keeps useful thieves running and
only puts wasteful thieves into sleep.

5.4 Parameter Sensitivity
In BWS, SleepThreshold is an important parameter. A large
threshold value can help reducing unfairness by maintain-
ing the concurrency level of a work-stealing application.
However, a large threshold value may increase the resource
waste and impact system throughput, because thieves are
kept awake for a longer time with a larger threshold value.
With the experiments in this subsection, we measure the im-
pact of the threshold value on both fairness and throughput.

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
 0

 0.5

 1

 1.5

A
v
e
ra

g
e
 U

n
fa

ir
n
e
s
s
 (

%
)

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

Threshold

Average Unfairness
Average Throughput

Figure 6. Average unfairness and average throughput
achieved by BWS, when varying SleepThreshold from 32
to 4096

In the experiments, we vary the value of SleepThreshold
from 32 to 4096, and execute all the co-runs on the Cilk++
with BWS scheduler. In Figure 6, we show the average un-
fairness and average throughput of these co-runs. When the
threshold is less than 256, increasing the value can effec-
tively reduce unfairness, especially when the threshold is
small. For example, increasing the threshold from 32 to 64,
the average unfairness value can be reduced from 32% to
20%. But the improved fairness comes at the cost of reduc-
ing the throughput from 1.44 to 1.35.

Increasing the threshold from 256 to 4096 both reduces
the average throughput from 1.33 to 1.29 and increases the
average unfairness from 19% to 23%. The reason that the
fairness no longer improves when we increase the threshold
beyond 256 is as follows. In some co-runs of benchmarks
with different degrees of scalability, the benchmarks with
better scalability are slowed down by larger percentages than
their co-runners, and the difference between the slowdowns
increases with the threshold.

Please note that the average unfairness and average
throughput with the original Cilk++ are 124% and 1.20,
respectively. Thus, Cilk++ with BWS always performs bet-
ter than the original Cilk++, no matter which value from
32 to 4096 is chosen for SleepThreshold. However, values
between 32 and 256 are clearly preferable to larger values.

5.5 Validation of Optimization Techniques
To get good performance, BWS uses a few techniques. One
important technique is that the thieves in an application carry
out most management work, e.g., inspecting the local data
structures of their peer workers to collect information, mak-
ing scheduling decisions, and waking up sleeping workers.
This technique minimizes work overhead. The other criti-
cal technique is to keep the solution decentralized to avoid
global coordination. Instead of maintaining global informa-
tion, such as the number of available tasks or the number of
busy workers, BWS executes the workers in an application
in a peer-to-peer way. The workers accumulate partial infor-
mation with simple data structures, e.g., wake-up counters
and steal counters, and make scheduling decisions based on
the information. This makes the solution scalable.

We have designed experiments to validate these optimiza-
tion techniques. In the first experiment, we run the work-
stealing benchmarks with a downgraded BWS, in which
busy workers are in charge of waking up sleeping workers.
With the downgraded BWS, when a busy worker generates
a new task, it wakes up two sleeping workers if there are
any, and a thief goes to sleep when its number of unsuccess-
ful steals exceeds a threshold. The work overhead impacts
not only the performance of work-stealing appliations when
they run concurrently, but also their solo-run performance.
Thus, we collect the solo-run execution times of the bench-
marks to factor out any interference from co-running. We
run each benchmark with 32 workers on 32 cores. Compared
to BWS, with the downgraded BWS, the benchmarks are

slowed down by 7% on average due to the increased work
overhead. Among the benchmarks, MI is slowed down by
the largest percentage (35%).

In the second experiment, we show the extent to which
collecting global information in a work-stealing application
can degrade the performance. We implement and use an-
other work-stealing scheduler, named WSGI (work-stealing
with global information), which collects the number of busy
workers, the number of non-sleeping thieves, and the num-
ber of sleeping thieves. By dynamically putting thieves into
sleep or waking up sleeping thieves, WSGI tries to keep
a fixed ratio between the number of busy workers and the
number of non-sleeping thieves. We set the ratio to 2 in
the experiment to guarantee that available tasks can be dis-
tributed quickly to thieves [Agrawal 2008]. As we do in
the previous experiment, we collect the solo-run execution
times of the work-stealing benchmarks on 32 cores, with
32 workers in each benchmark. We compare the execution
times against those with BWS. The comparison shows that
the benchmarks are 43% slower with WSGI than they are
with BWS. Among the benchmarks, CLIP shows the largest
slow-down (177%). The performance degradation is due to
the contention on the locks protecting the global informa-
tion. This experiment clear demonstrates the importance of
keeping the BWS design decentralized.

6. Related Work
6.1 Work Stealing in Multiprogrammed Environments
To efficiently execute work-stealing applications in multi-
programmed environments, two solutions have been pro-
posed: ABP (as discussed in this paper) and A-Steal. A-
Steal [Agrawal 2008] assumes there is a space-sharing OS
job scheduler that allocates disjoint sets of cores to differ-
ent applications. Based on whether the cores are efficiently
used in one epoch, a work-stealing application requests that
the OS job scheduler adjust the number of cores allocated
to it for the next epoch. Based on the number of cores the
OS grants it, the application in turn adjusts the number of
workers it will use in the next epoch, in order to have ex-
actly one worker per allocated core. Similar solutions were
also proposed earlier to schedule parallel applications with
user-level task scheduling on multiprogrammed multipro-
cessors [Agrawal 2006, Tucker 1989].

While the ABP solution has the fairness and through-
put problems detailed in this paper, A-Steal can hardly be
adopted on conventional multicore systems, where operat-
ing systems are usually designed for time-sharing the cores
among applications. Space-sharing is typically used on batch
processing systems. For both high performance and high ef-
ficiency, a space-sharing system requires that each applica-
tion predicts the number of cores it needs and then read-
ily adjusts to the number of cores allocated [McCann 1993,
Tucker 1989]. Most applications must be redesigned on con-
ventional systems to meet these requirements. At the same

time, accurately predicting the demand for cores can be very
challenging, considering various execution dynamics that
can affect the demand such as paging, contention, irregu-
larity in computation, etc.

Moreover, A-Steal’s epoch-based adjustments work well
only when the application’s execution phases are much
longer than the epoch length, so that the statistics collected
in an epoch can be used to predict the number of cores pre-
ferred by the application in the next epoch. To amortize
overheads, typical epoch lengths in A-Steal are tens to hun-
dreds of milliseconds. However, our experiments show that
parallel phases in some work-stealing applications can be
as short as hundreds of microseconds. Such applications re-
quire much shorter epoch lengths, which may significantly
increase the overhead to collect global information on exe-
cution efficiency, and thus limit application scalability. BWS
does not suffer from these shortcomings.

6.2 System Support for User Level Thread Scheduling
Previous studies have proposed OS support for user level
thread scheduling [Anderson 1992, Black 1990, Marsh
1991, Polychronopoulos 1998]. For example, scheduler ac-
tivations [Anderson 1992] enable user-level thread sched-
ulers to communicate with the OS scheduler via upcalls
and downcalls. This provides a user-level thread scheduler
with more control over the cores allocated to the application.
For example, when a user-level thread is blocked, the user-
level thread scheduler can be notified by the OS to perform
rescheduling to prevent the kernel thread executing the user-
level thread from being blocked. Usually, intensive modifi-
cations to the OS must be made to provide the support, and
they have not been adopted by mainstream operating sys-
tems.6 We believe that the OS support proposed for BWS,
in contrast, are sufficiently lightweight to be adopted into
Linux and other mainstream operating systems.

Though the tasks in work-stealing applications are called
“threads” in some early articles, they are different from the
user-level threads targeted in the above proposals. The gran-
ularities of the tasks in work-stealing applications can be
very small, e.g., hundreds of CPU cycles. To minimize work
overhead, lazy task creation and other similar techniques
have been used to make them more like local procedure calls,
rather than entities ready to be scheduled like user-level
threads [Mohr 1991]. For example, the major data structure
for a task is a stack frame. There are neither private stacks,
contexts, priorities, nor preemption in scheduling the tasks.
At the same time, the fine granularities also dictate that the
management costs and scheduling overheads be kept very
low. BWS is designed with the full consideration of these
features of work-stealing applications, including its OS sup-
port, without requiring intensive modifications to the OS ker-
nel.

6 The idea of scheduler activations was once adopted by NetBSD and
FreeBSD.

In the Exokernel design, the OS provides applications
with a yield to mechanism [Engler 1995], which allows each
application to schedule its kernel threads at user level. BWS
could exploit this feature.

6.3 Other Related Work
Besides the ABP and A-Steal algorithms, there are other
work-stealing algorithms proposed for various purposes
such as improved data locality [Acar 2000] and exten-
sions to distributed memory clusters [Blumofe 1997, Di-
nan 2009]. These studies did not address multiprogramming
issues. Hardware support and OS support have been pro-
posed to reduce the overheads of running work-stealing ap-
plications [Kumar 2007, Lee 2010, Sanchez 2010], e.g., task
stealing overheads; these are orthogonal to BWS.

7. Conclusion
This paper introduced BWS (balanced work stealing), a
novel and practical solution for efficiently running work-
stealing applications on time-sharing multicores. BWS ad-
dresses the fairness and system throughput problems of ex-
isting work-stealing approaches via two means. First, it re-
duces the costs associated with wasteful thieves by putting
such thieves into sleep and then waking them up only when
they are likely to be useful thieves. Second, it minimizes
unfairness by enabling thieves to yield their cores directly
to busy workers for the same application, thereby retaining
the cores for that application and putting them to better use.
BWS reduces scheduling overheads through a decentralized
design in which thieves perform scheduling bookkeeping
and wake up sleeping workers when appropriate. The de-
sign relies on two new system calls added to the OS: one
that returns the running status of a peer thread and another
that yields the caller’s core directly to a peer thread. The
required changes to the OS are minimal (100 lines of code
in two thread scheduling files in Linux).

Our evaluation with a prototype implementation in Cilk++
and the Linux kernel shows that compared to the origi-
nal Cilk++, BWS improves average system throughput by
12.5% and reduces average unfairness from 124% to 20%,
while also reducing application running time variance. Cur-
rently, we are making efforts to merge BWS into production
work-stealing libraries and systems.

As part of future work, we intend to extend BWS to
improve the fairness and throughput of work-stealing ap-
plications in virtualized environments, where physical CPU
cores are usually over-committed with multiple virtual cores.
Work-stealing applications face similar issues in these en-
vironments as they do in multi-programmed environments.
Virtual cores running thief threads may impede the execution
of other virtual cores doing useful work. However, due to the
semantic gap challenge and the simple interface between hy-
pervisor and virtual machines, addressing these issues seems

more challenging in virtualized environments than in tradi-
tional multiprogrammed environments.

Acknowledgments
We thank Frans Kaashoek for his helpful suggestions as the
shepherd for this paper, and the anonymous reviewers for
their constructive comments. This research was supported
by the National Science Foundation under grants CNS-
0834393, CCF-0913150, and CNS-1019343 to the Com-
puting Research Association for the CIFellows Project. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion or the Computing Research Association. This work was
done under the umbrella of the Intel Science and Technology
Center for Cloud Computing.

References
[Acar 2000] Umut A. Acar, Guy E. Blelloch, and Robert D. Blu-

mofe. The data locality of work stealing. In ACM SPAA ’00,
pages 1–12, 2000.

[Agrawal 2006] Kunal Agrawal, Yuxiong He, Wen-Jing Hsu, and
Charles E. Leiserson. Adaptive scheduling with parallelism
feedback. In ACM PPoPP ’06, pages 100–109, 2006.

[Agrawal 2008] Kunal Agrawal, Charles E. Leiserson, Yuxiong
He, and Wen-Jing Hsu. Adaptive work-stealing with parallelism
feedback. ACM Trans. Comput. Syst., 26(3), September 2008.

[Anderson 1992] Thomas E. Anderson, Brian N. Bershad, Ed-
ward D. Lazowska, and Henry M. Levy. Scheduler activations:
Effective kernel support for the user-level management of paral-
lelism. ACM Trans. Comput. Syst., 10(1):53–79, February 1992.

[Arora 1998] Nimar S. Arora, Robert D. Blumofe, and C. Greg
Plaxton. Thread scheduling for multiprogrammed multiproces-
sors. In ACM SPAA ’98, pages 119–129, 1998.

[Black 1990] David L. Black. Scheduling support for concurrency
and parallelism in the mach operating system. IEEE Computer,
23(5):35–43, May 1990.

[Blumofe 1995] Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
In ACM PPOPP ’95, pages 207–216, 1995.

[Blumofe 1994] Robert D. Blumofe and Charles E. Leiserson.
Scheduling multithreaded computations by work stealing. In
IEEE FOCS ’94, pages 356–368, 1994.

[Blumofe 1997] Robert D. Blumofe and Philip A. Lisiecki. Adap-
tive and reliable parallel computing on networks of workstations.
In USENIX ATC ’97, pages 133–147, 1997.

[Blumofe 1998] Robert D. Blumofe and Dionisios Papadopoulos.
The performance of work stealing in multiprogrammed environ-
ments. Technical Report TR-98-13, Department of Computer
Science, University of Texas at Austin, 1998.

[Burton 1981] F. Warren Burton and M. Ronan Sleep. Executing
functional programs on a virtual tree of processors. In ACM
FPCA ’81, pages 187–194, 1981.

[Dinan 2009] James Dinan, D. Brian Larkins, P. Sadayappan, Sri-
ram Krishnamoorthy, and Jarek Nieplocha. Scalable work steal-
ing. In ACM SC ’09, pages 53:1–53:11, 2009.

[Engler 1995] Dawson R. Engler, M. Frans Kaashoek, and
James O’Toole Jr. Exokernel: An operating system architecture
for application-level resource management. In ACM SOSP ’95,
pages 251–266, 1995.

[Frigo 1998] Matteo Frigo, Charles E. Leiserson, and Keith H. Ran-
dall. The implementation of the Cilk-5 multithreaded language.
In ACM PLDI ’98, pages 212–223, 1998.

[Iancu 2010] Costin Iancu, Steven Hofmeyr, Filip Blagojevic, and
Yili Zheng. Oversubscription on multicore processors. In IEEE
IPDPS ’10, pages 1–11, 2010.

[Jin 1999] Haoqiang Jin, Michael Frumkin, and Jerry Yan. The
OpenMP implementation of NAS parallel benchmarks and its
performance. Technical Report NAS-99-011, NASA, 1999.

[Kukanov 2007] Alexey Kukanov. The foundations for scalable
multi-core software in Intel threading building blocks. Intel
Technology Journal, 11(4):309–322, November 2007.

[Kumar 2007] Sanjeev Kumar, Christopher J. Hughes, and Anthony
Nguyen. Carbon: Architectural support for fine-grained paral-
lelism on chip multiprocessors. In ACM ISCA ’07, pages 162–
173, 2007.

[Lee 2010] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi
Huang, and Charles E. Leiserson. Using memory mapping to
support cactus stacks in work-stealing runtime systems. In ACM
PACT ’10, pages 411–420, 2010.

[Leijen 2009] Daan Leijen, Wolfram Schulte, and Sebastian Bur-
ckhardt. The design of a task parallel library. In ACM OOP-
SLA ’09, pages 227–242, 2009.

[Leiserson 2010] Charles Leiserson. The Cilk++ concurrency plat-
form. J. Supercomput., 51(3):244–257, March 2010.

[Marsh 1991] Brian D. Marsh, Michael L. Scott, Thomas J.
LeBlanc, and Evangelos P. Markatos. First-class user-level
threads. In ACM SOSP ’91, pages 110–121, 1991.

[McCann 1993] Cathy McCann, Raj Vaswani, and John Zahorjan.
A dynamic processor allocation policy for multiprogrammed
shared-memory multiprocessors. ACM Trans. Comput. Syst., 11
(2):146–178, May 1993.

[Mohr 1991] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy
task creation: A technique for increasing the granularity of paral-

lel programs. IEEE Trans. Parallel Distrib. Syst., 2(3):264–280,
July 1991.

[Mutlu 2008] Onur Mutlu and Thomas Moscibroda. Parallelism-
aware batch scheduling: Enhancing both performance and fair-
ness of shared DRAM systems. In ACM ISCA ’08, pages 63–74,
2008.

[Navarro 2009] Angeles Navarro, Rafael Asenjo, Siham Tabik, and
Cǎlin Caşcaval. Load balancing using work-stealing for pipeline
parallelism in emerging applications. In ACM ICS ’09, pages
517–518, 2009.

[Neill 2009] Daniel Neill and Adam Wierman. On the ben-
efits of work stealing in shared-memory multiprocessors.
http://www.cs.cmu.edu/∼acw/15740/paper.pdf, 2009.

[Poirier 2011] Yolande Poirier. Java and parallelism computing: An
interview with Java developer and researcher Dr. Gilda Garreton.
http://www.oracle.com/technetwork/articles/java/gildagarreton-
416282.html, 2011.

[Polychronopoulos 1998] Eleftherios D. Polychronopoulos,
Xavier Martorell, Dimitrios S. Nikolopoulos, Jesus Labarta,
Theodore S. Papatheodorou, and Nacho Navarro. Kernel-level
scheduling for the nano-threads programming model. In ACM
ICS ’98, pages 337–344, 1998.

[Saha 2007] Bratin Saha, Ali-Reza Adl-Tabatabai, Anwar M. Ghu-
loum, et al. Enabling scalability and performance in a large scale
CMP environment. In ACM EuroSys ’07, pages 73–86, 2007.

[Sanchez 2010] Daniel Sanchez, Richard M. Yoo, and Christos
Kozyrakis. Flexible architectural support for fine-grain schedul-
ing. In ACM ASPLOS ’10, pages 311–322, 2010.

[Snavely 2000] Allan Snavely and Dean M. Tullsen. Symbiotic
jobscheduling for a simultaneous multithreaded processor. In
ACM ASPLOS ’00, pages 234–244, 2000.

[Tucker 1989] Andrew Tucker and Anoop Gupta. Process con-
trol and scheduling issues for multiprogrammed shared-memory
multiprocessors. In ACM SOSP ’89, pages 159–166, 1989.

[van Nieuwpoort 2001] Rob V. van Nieuwpoort, Thilo Kielmann,
and Henri E. Bal. Efficient load balancing for wide-area divide-
and-conquer applications. In ACM PPoPP ’01, pages 34–43,
2001.

[Wang 2011] Fusheng Wang, Jun Kong, Lee Cooper, et al. A
data model and database for high-resolution pathology analytical
image informatics. J. Pathol. Inform., 2:32, July 2011.

