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Abstract—Substantial renovations in hardware cache
have been focused on reducing cache interference between
workloads recently. However, cache conflicts within each
workload are surprisingly overlooked. The paper identifies
that cache conflicts cannot be effectively reduced in virtu-
alized clouds. Enhancements for cache partitioning, such
as Intel cache allocation technology, make cache conflicts
even more serious for cloud workloads.

The paper proposes COPLACE as a low overhead and
highly portable solution for virtualized clouds. COPLACE
enhances the page placement mechanisms implemented in
the host OS, such that it can collaborate with the guest OS
to reduce cache conflicts. With COPLACE, the guest OS
makes page placement decisions; and the host OS helps
enforce the decisions.

Evaluation based on the prototype implementation in
Linux and KVM and diverse real world applications shows
that COPLACE can significantly reduce cache conflicts and
improve application performance.

Keywords-Cache Conflicts, Memory Management, Vir-
tualization, Page Coloring, Page Placement

I. Introduction
Targeting cloud platforms, extensive research efforts

have been focused on reducing cache interference be-
tween workloads, which is caused by workloads shar-
ing last level caches (LLCs). The solutions are LLC
partitioning with various techniques [1]–[17]. Recently,
hardware enhancements in processors, such as Intel
CAT (cache allocation technology) and AMD CAE
(cache allocation enforcement) are designed and utilized
to partition LLCs [2], [3], [5], [17].

While cache interference between workloads is in-
tensively studied, non-interference caching problems
suffered by individual workloads (e.g., those occur even
in dedicated cache space) are largely ignored on cloud
platforms. How LLC partitioning impacts these prob-
lems particularly lacks investigation. Examining these
problems becomes increasingly important on the latest
cloud platforms with workloads using dedicated LLC
partitions.

This paper shows that, in a virtualized cloud, work-
loads suffer from increased last level cache conflicts,
even when there is no cache interference from other
workloads. The conflicts become more serious with

LLC partitioning, because LLC partitioning reduces
the associativity of the LLC space available to each
workload and makes it more difficult for a hardware
cache to reduce cache conflicts. Even worse, on the
processors with non-inclusive LLCs, where L2 cache
misses incur memory accesses, workloads also suffer
from increased L2 cache misses, as shown in §III.

Increased LLC conflicts are incurred in virtualized
clouds, because memory page placement mechanisms
(e.g., page coloring and bin hopping [1], [18]–[20])
become ineffective in reducing LLC conflicts on these
platforms. Implemented in system software, page place-
ment mechanisms reduce cache conflicts by improving
the allocation of memory pages to workloads. They are
important measures particularly when cache associativ-
ities are too low to effectively absorb cache conflicts.
Leveraging the fixed mapping between pages (i.e., page
physical addresses) and cache sets, they first identify
conflicting pages (i.e., pages mapped to the same cache
sets), and then allocate non-conflicting pages to hold the
data to be accessed together. Different mechanisms allo-
cate non-conflicting pages with different page placement
policies. For example, page coloring assumes sequential
memory accesses and allocate non-conflicting pages to
the data with contiguous virtual addresses. Bin-hopping
targets repetitive memory access patterns and allocates
non-conflicting pages to the data consecutively accessed
by a workload.

In virtualized clouds, page placement mechanisms are
equipped at both guest and host layers. However, as
the paper shows in §III, they cannot effectively reduce
cache conflicts, no matter how different page placement
mechanisms are used combinatorially at these layers.
For a workload on a virtual machine (VM), the memory
pages it can use are determined by two independent
page allocations, which are separated by the semantic
gap produced by virtualization: In the host OS, host
physical pages are allocated to the VM without knowing
how they will be allocated to workloads. In the guest
OS, guest physical pages are allocated to the workload
without knowing whether they are conflicting pages
or not. Since neither the host OS nor the guest OS



has a complete control over the page placement of the
workload, neither page placement mechanism can ef-
fectively reduce cache conflicts. Due to the independent
page allocations and the semantic gap between the host
and the guest, their page placement mechanisms cannot
collaborate synergistically in reducing cache conflicts.

The nature of virtualization excludes the unification
of two layers of page allocations into one that directly
allocates host physical pages to the workloads in VMs.
Thus, to reduce cache conflicts, the paper proposes
to create and maximize the synergy between the page
placement mechanisms at the two layers. The synergy
requires the interaction between the guest and the host.
Thus, the key issue in the implementation of the idea
is how to minimize the frequency and complexity of
the interaction. Frequent interaction incurs high over-
head because costly context switches must be involved.
Complex interaction may require the extension to the
guest-host interface and/or substantial changes to the
guest OS, limiting the portability of the solution.

The paper presents COPLACE as a low-overhead and
highly portable solution. COPLACE does not introduce
extra guest-host interaction to existing systems, and
does not change the guest-host interface or guest OSs.
COPLACE achieves this with the following two designs.

First, COPLACE eliminates the interaction required
for making page placement decisions (i.e., which data
in a workload should be allocated with non-conflicting
pages) by relying solely on the guest OS for decision
making. The host does not help the guest in decision
making to avoid cross-layer interaction. It does not
make its own page placement decisions either to avoid
decision conflicts. (The page placement policies imple-
mented in the existing host OS design are removed with
COPLACE.) The page placement mechanisms in the host
only helps enforce the page placement decisions made
by the guest, in order to achieve synergy: when the
guest determines to use non-conflicting pages to hold
some data, the host ensures that the corresponding host
physical pages are really non-conflicting.

Second, COPLACE uses guest physical page addresses
to convey page placement decisions. This eliminates the
the interaction required for transferring page placement
decisions to the host and avoids changing the existing
guest-host interface. Specifically, with existing system
designs, the host presents a virtual LLC to each virtual
CPU (vCPU) socket [21]. Thus, the guest OS can
perform page placement in the same way as it does on
a physical machine. In the VM, to map guest physical
pages to the cache sets in a virtual LLC, the guest OS
uses a fixed set of bits in the guest physical addresses
of the pages. Thus, page placement decisions can be
inferred from guest physical page addresses: the guest
physical pages with the same value on these bits are

considered as conflicting pages, and should be backed
by conflicting host physical pages; the pages with
different values on these bits are considered to be non-
conflicting, and should be backed by non-conflicting
host physical pages. The host must enforce these deci-
sions inferred from guest physical page addresses when
allocating host physical pages to VMs, and maintain
the decisions when performing memory ballooning or
deduplication.

The paper makes the following contributions. First,
to our knowledge, this is the first work that identifies
and studies the cache conflict problem and its causes on
modern processors in clouds. Second, we have proposed
COPLACE as an effective solution that can efficiently
address the problem and the technical challenges of
the solution. Finally, we have implemented COPLACE
based on KVM in Linux kernel 5.3 and tested it with
diverse applications. Our tests show COPLACE can sig-
nificantly reduce cache conflicts and effectively improve
application performance and system efficiency.

II. Background
A. Reducing Cache Interference in Clouds

In clouds, with the fast growing memory capaci-
ties (e.g., Amazon EC2 offering up to 24 TB in one
instance [22]), accessing the data sets that fit into
memory has become a performance bottleneck for many
workloads [10], [23]–[28]. To accelerate the memory ac-
cesses of cloud workloads, hardware cache architecture
and system software recently are undergoing substantial
renovations, focusing on reducing cache interference.
Cache interference is one of the major sources that
increase cache misses in clouds. It happens in a LLC
shared by multiple workloads, where loading data for
one workload evicts the data that is to be accessed by
another workload.

A popular solution is LLC partitioning [1]–[17]. For
example, Intel CAT and AMD CAE allow software to
control the partitioning of the LLC (each partition being
one or multiple cache ways) and the allocation of LLC
partitions to different workloads [3]–[5].

A growing number of processors (e.g., Intel Scalable
Processors and AMD Zen2/3 Processors) are making
their LLCs non-inclusive and using increasingly large
L2 caches (e.g., 1MiB per core in Intel Xeon Gold
6138). This also helps reducing cache interference,
because workload performance relies less on LLC per-
formance. With the non-inclusive cache design, the data
in L2 caches may not exist in the LLC, and upon L2
cache misses, data can be loaded to L2 caches directly
from memory without passing the LLC. Thus, both L2
caches and the LLC become the last line of defense
before hitting the memory wall. Cache conflicts must
be minimized at both cache layers.



B. Reducing Cache Conflicts

Cache conflicts, or conflict misses, occur in a set
associative cache. When data blocks being accessed by
programs are not evenly mapped to cache sets, some
cache sets are mapped with more data blocks than their
capacities. This causes extra misses, which would not
be incurred if the data blocks were evenly mapped to
cache sets. These extra misses are conflict misses.

The key to reducing cache conflicts is to evenly
map data blocks to cache sets. This can be achieved
with hardware approaches by improving the mapping
of memory addresses to cache sets or with software
approaches by improving the mapping of data blocks
to memory addresses. Hardware approaches mainly in-
clude enhancing cache indexing [29], [30] and adjusting
cache associativities [31]. For existing processors and
their caches, software approaches try to evenly distribute
data blocks onto the memory addresses that can be
evenly mapped to cache sets. For system software, this
is achieved by allocating non-conflicting pages to the
data to be accessed together, as explained in Section I
and the next subsection.

C. Memory Management on Virtualized Platforms

On virtualized platforms, the host OS and the guest
OS manage memory independently. The host OS allo-
cates host physical pages to hold guest physical pages,
which form the physical memory space of each VM. In
a VM, the guest OS allocates guest physical pages to
hold guest virtual pages, which form the virtual memory
space of each workload. Two levels of page tables are
used for book-keeping the page allocations and helping
with address translations. In the guest OS, normal page
tables are used to maintain the mapping between guest
virtual pages and guest physical pages. In the host OS,
extended page tables are used to maintain the map-
ping between guest physical pages and host physical
pages. With these two levels of page tables, memory
allocations may change in each layer without notifying
the other layer. For example, upon events such as page
faults, swapping, deduplication, and ballooning, the host
OS may change the host physical pages allocated to
guest physical pages without notifying the guest; the
guest OS can reclaim the guest physical pages of a
workload and allocate them to another workload without
the awareness of the host. Thus, the host physical pages
used by a workload are determined by the independent
page allocation decisions of the two layers. Neither the
guest nor the host has a complete control.

Each OS implements a page placement mechanism
with a certain policy (e.g., page coloring or bin-
hopping). We use LLC and the page placement mech-
anism in the host to explain how it functions. Based
on the mapping between host physical addresses and

App. Workload description
Img-dnn Handwriting recognition based on OpenCV [32].
Sphinx Speech recognition like Apple Siri [33].
Moses Real time translation like Google translate [34].
Xapian Search engine used in websites and S/W frameworks [35].

Masstree In memory K/V store with 50% GET and 50% PUT [36].
Specjbb Industry-standard JAVA middleware benchmark [37].
Silo In-memory transactional database with TPCC [38].

RocksDB Serve requests (random keys,50% SET,50% GET) [39].
PgSql Join two tables in Postgres [40].
Redis Serve requests (random keys,50% SET,50% GET) [41].

MemcachedServe requests (random keys,50% SET,50% GET) [42].
PARSEC Six benchmarks from PARSEC benchmark suite [43].

SPLASH2X Four benchmarks from SPLASH2X benchmark suite [44].

Table I: Programs and workloads used in experiments.
the cache sets in LLC, the mechanism divides host
physical pages into disjoint groups. The pages in the
same group are mapped to the same group of cache sets
(e.g., 64 cache sets with a 4KB page size and a 64B
cache block size). These cache sets are called a cache
color. The number of cache colors is determined by the
number of cache sets. For example, a LLC with 2048
cache sets has 32 cache colors. With a page placement
mechanism, each page is also labelled with a color,
which is the index of the corresponding cache color.
Thus, pages in the same group are in the same color.
When allocating pages, a page placement mechanism
tries to allocate pages in different colors, such that
the data in these pages can be evenly mapped to LLC
cache sets. The page placement mechanism in the guest
functions in the similar way, except that it uses guest
physical addresses and considers the mapping between
guest physical pages and virtual LLC cache sets.

III. Problem Analysis and Motivation
Using experiments, this section demonstrates that

workloads suffer increased cache conflicts on virtualized
platforms. Our experiments were conducted on a HPE
(Hewlett Packard Enterprise) ProLiant DL580 Gen10
server with four Intel Xeon Gold 6138 processors,
256GB memory, two 2TB HDDs, and two 2TB SSDs.
Each processor has 20 cores. Each core has a 32KiB
L1d cache, a 32KiB L1i cache, and a 16-way 1MiB
L2 cache. All the cores in a processor share a 11-
way 27.5MiB LLC. We created a virtual machine using
KVM/QEMU as the virtual machine monitor (VMM).
The virtual machine has one vCPU and 8GiB memory.
Both the host OS and the guest OS are Ubuntu Linux
18.04 with kernel updated to 5.3.

We conducted experiments with a diverse set of work-
loads generated by the benchmarks in Table I. These
benchmarks are typical applications from different do-
mains, e.g., AI training, database server, key value store,
web and search engine. The first 11 benchmarks (includ-
ing the first seven benchmarks from TailBench [45])
are latency sensitive. The rest are throughput oriented.

For throughput oriented workloads, we collect their
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(a) Throughputs with 11-way LLC cache allocation
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(b) LLC miss ratio with 11-way LLC cache allocation
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(c) L2 miss ratio with 11-way LLC cache allocation
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(d) Throughputs with 1-way LLC cache allocation
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(e) LLC miss ratio with 1-way LLC cache allocation
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(f) L2 miss ratio with 1-way LLC cache allocation
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Figure 1: Normalized throughputs and miss ratio increases (LLC and L2 cache) of throughput oriented workloads running in VMs. Throughputs are
normalized against those on the host.

throughputs. For latency sensitive workloads, we collect
mean latencies (i.e., average response times) and tail
latencies (i.e., longest response times). To help analysis,
we also collect the miss ratios of the LLC and L2 cache,
because both incur increased memory accesses due to
increased cache conflicts.

To highlight the impacts of LLC partitioning, we
repeat the experiments for two different LLC space
sizes: We first let the workload use the complete LLC
(i.e., 11 ways). Then, we let it use only 1 LLC way.

Each of the guest and the host may choose page-
coloring or bin-hopping policy in its page placement
mechanism1. To better understand how the choices of
page placement policies affect cache conflicts on virtu-
alized platforms, we test all four different combinations
of the two policies at the two layers. Thus, when we
run a workload in the guest using a page placement
policy (e.g., page coloring), the host may use the same
policy (i.e., page coloring) or a different policy (i.e.,
bin-hopping).

For the same setting (LLC space size and page
placement policy), we run each workload on both the
host and the guest and compare its performance. For
the workload runs on the guest, we run each workload
immediately after the VM is booted. Because the work-
load starts with a clean slate, it can show stable per-
formance across different runs. For ease of presentation
and comparison, we normalize the throughput/latency
of a workload in the guest agaist the corresponding

1For bin hopping, we use the default page placement mecha-
nism implemented in Linux; for page coloring, we implement the
FreeBSD’s page coloring mechanisms [46] into Linux.

measurement in the host.
Figure 1 presents the results of the throughput ori-

ented workloads, including their normalized through-
puts and how their miss ratios are increased in the LLC
and L2 cache when they run in the guest. Figure 2 and
Figure 3 present the normalized latencies and miss ratio
increases for latency-sensitive workloads for two differ-
ent LLC space sizes (11 way and 1 way), respectively.

With these figures, the first subsection below shows
that page placement mechanisms cannot effectively re-
duce cache conflicts on virtualized platforms, no matter
how different page placement policies are combined.
The second subsection shows that cache conflicts be-
come a more serious issue on virtual platforms when
workloads use a LLC partition.

A. Increased Cache Conflicts on VMs

As Figure 1(a) shows, all the throughput oriented
workloads run slower on virtual machines (9.8% on
average), though their performance is sensitive to the
choices of page placement policies in the guest and
the host. Workload water_spatial shows the largest
performance degradation (20% on average for 4 com-
binations of guest/host page placement policies). Inter-
estingly, all the benchmarks perform better when the
host uses page-coloring. On average their throughputs
are 12.9% higher, compared to their runs when the host
uses bin-hopping. The page placement policy choice in
the guest does not have an impact as high as the choice
in the host.

To understand the performance degradation, Fig-
ure 1(b) and Figure 1(c) show the miss ratio increases
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(c) L2 miss ratio with 11-way LLC cache allocation
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(d) 90th tail latency with 11-way LLC cache allocation
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Figure 2: Mean latencies, tail latencies, and miss ratio increases (LLC and L2 cache) of latency-sensitive workloads running in VMs without LLC partitioning.
Latencies are normalized against those on the host.

(i.e., miss ratio on the guest - miss ratio on the host)
in the LLC and L2 cache, respectively. On average,
the LLC miss ratio increase is 3.8%, and the L2
miss ratio increase is 5.6% for these workloads. The
LLC miss ratio increase is the highest with workload
water_spatial. raytrace shows the highest L2 miss
ratio increase. Thus, it also suffers a large throughput
decrease when running in the VM.

These figures also show that LLC miss ratio in-
creases and L2 miss ratio increases are less significant
when the host uses page coloring than it uses bin
hopping. This indicates that using page coloring in
the host helps maintain the effectiveness of the page
placement mechanism in the guest. With page coloring,
the host chooses the colors of host physical pages in
a round-robin manner when allocating host physical
pages to contiguous guest physical pages. Thus, when
the guest selects and allocates non-conflicting guest
physical pages to workloads, it is more likely that the
selected guest physical pages are held in non-conflicting
host physical pages.

The mean and tail latencies of the latency sensitive
workloads in Figure 2 show similar trends. Workload
performance is lower in the VM due to increased cache
misses. For example, compared to the runs in the host,
on average, the mean latency, and 90th, 95th, and 99th
tail latencies of the runs in the VM are higher by 29.4%,
31.7%, 34.1%, and 40.2%, respectively. The latencies
are also sensitive to the choices of page placement
policies. They are lower if the host uses page coloring.

To further confirm that the performance degradation

Workloads VMM
Bin-hopping

VMM
Page-coloring COPLACE

blackscholes 17.7 8.2 1.7
water_spatial 19.9 6.1 1.3

Xapian 22.2 4.8 1.1
Img-dnn 13.8 7.6 1.6

Table II: Conflict levels of four workloads. Conflict levels
are the standard deviations of the number of pages
mapped to LLC colors.

is caused by cache conflicts, we select and analyze 2
benchmarks of each type (throughput oriented or latency
sensitive), one with a large performance degradation,
and the other with an average performance degradation.
During the execution of these 4 benchmarks, we period-
ically sample the memory pages they access and obtain
the host physical addresses. Each time, we sample a
batch of 7040 pages, the total size of which is equal
to the LLC capacity; then we measure whether these
pages are evenly mapped to the cache sets in the LLC
by counting the number of pages mapped to each LLC
color and calculating a standard deviation. We use the
average standard deviation across all batches as the
conflict level of the benchmark.

As shown in Table II, when the host uses bin-hopping,
the conflict levels are much higher than when the host
uses page coloring. The throughput decrease is the
largest with water_spatial and the host using bin-
hopping (Figure 1). The latency increase is the highest
with Xapian and the host using bin-hopping (Figure 2).
Table II shows that the corresponding conflict levels
are also the highest. We have also checked whether
the pages are evenly mapped to L2 cache sets and had
the similar findings. This indicates that cache conflicts



are the cause of increased LLC and L2 miss ratios and
performance degradation.

Though the conflict levels are lower with the host us-
ing page coloring, there is still much potential to further
reduce the levels and thus to improve performance. To
illustrate this, we also show the conflict levels with our
COPLACE solution in Table II. The conflict levels of all
4 benchmarks are below 2.

These experiments show that existing page placement
mechanisms for reducing cache conflicts become less
effective, no matter whether they are deployed in the
host or the guest. Page placement mechanisms rely on
controlling the real physical addresses of application
data sets. However, real physical addresses are not
available to the page placement mechanism in the VM.
At the same time, the page placement mechanism in
the host cannot directly control the memory addresses
of application data sets. Thus, neither is effective.

B. LLC Partitioning Increases Cache Conflicts

To investigate how LLC partitioning affects cache
performance, we created a 1-way partition in the LLC
using CAT and assigned it to the workloads. Then
we compared the performance degradations and miss
ratio increases before and after LLC partitioning for
throughput oriented workloads (Figure 1) and latency
sensitive workloads (Figure 2 and Figure 3).

As shown in Figure 1, throughput degradation and
miss ratio increases (guest executions over host execu-
tions) are more significant after LLC partitioning. On
average, the throughput degradation is 13.8% with the
1-way LLC partition (Figure 1d)), which is 4% higher
than the degradation when the whole LLC is used. LLC
miss ratio increases (8.2% on average, Figure 1(e)) are
also higher, compared to the increases when the whole
LLC is used. With LLC partitioning, the associativity of
the LLC space used by the workload is reduced. This
decreases the capability of LLC hardware to reduce con-
flicts and makes it more difficult for the page placement
mechanisms in software to reduce LLC conflicts.

It is interesting to observe that L2 cache miss ratio
increases (4.8% on average, Figure 1(f)) are also higher
after the LLC is partitioned. The L2 cache was not
partitioned. More L2 misses are incurred after LLC
is partitioned, mainly because increased LLC conflicts
raise the space pressure in the L2 cache.

Figure 3 confirms similar performance trends caused
by LLC partitioning for latency-sensitive workloads.
With LLC partitioning, on average for all workloads,
running them in the VM increases mean latencies,
90th-, 95th-, and 99th-tail latencies by 52.9%, 117.2%,
129.3%, and 164.3%, respectively. These increases are
much more significant than those without LLC parti-
tioning (Figure 3). With LLC partitioning, the LLC miss

ratio increase is 29.2% on average for these workloads,
also much higher than that without LLC partitioning.

Interestingly, we find that tail latencies are more vul-
nerable to cache conflicts. This trend is more prominent
after LLC partitioning, and can be best illustrated with
Img-dnn. Running in the VM, the mean latency of
Img-dnn is increased by 20.6% (without partitioning)
and 29.3% (with partitioning). However, its 99th tail
latency is respectively increased by 44.6% and 344.1%.

The performance degradation comparison (both
throughputs and latencies) also indicates that page
placement mechanisms become more important after
LLC partitioning. With the 1-way LLC partition, the
performance advantage of using page coloring over
using bin-hopping in the host becomes more promi-
nent than that without LLC partitioning. For example,
without LLC partitioning, replacing bin-hopping with
page coloring in the host can improve throughputs by
12.9% for throughput oriented workloads; after cache
partitioning, this number increases to 19.8%. For la-
tency sensitive workloads, without LLC partitioning,
replacing bin-hopping with page coloring can reduce
mean latencies and 95th tail latencies by 21.6% and
18.5%, respectively. However, with LLC partitioning,
these numbers increase to 28.7% and 56.4%. By com-
paring the miss ratio increases before and after LLC
partitioning, we find that replacing bin-hopping with
page coloring in the host can more effectively reduce
LLC and L2 cache misses after LLC partitioning.

While the above observation suggests to improve
the page placement mechanism in the host to reduce
cache conflicts, further improving the design of the page
coloring mechanism does not seem to be an effective
solution. Using page coloring in the host achieves
better performance than using bin-hopping, because this
makes the page placement mechanism in the guest
slightly more effective in identifying conflicting and
non-conflicting pages. However, page coloring is not
specifically designed for this purpose. Thus, for most
pages, the page placement mechanism in the guest still
cannot correctly determine whether they are conflicting
or non-conflicting pages.

This can be indicated by comparing workload perfor-
mance before and after switching the page placement
policy in the guest (page coloring to bin-hopping or vice
versa). Switching page placement policies in the guest
can hardly impact performance, no matter whether the
LLC is partitioned or not. However, when running in the
host, where conflicting and non-conflicting pages can
be correctly identified, most workloads achieve better
performance with bin-hopping than with page coloring.
For example, the average throughput is 6.1% higher
with bin-hopping for throughput oriented workloads.

This motivates us to design COPLACE as a novel
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(b) LLC miss ratio with 1-way LLC cache allocation
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(c) L2 miss ratio with 1-way LLC cache allocation
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(d) 90th tail latency with 1-way LLC cache allocation

N
or

m
al

iz
ed

 9
0t

h 
la

te
nc

y 
(%

)
(r

el
at

iv
e 

to
 b

ar
em

et
al

)

vmm-bin-hopping (vmm-bh)
vmm-page-coloring (vmm-pc)

 0

 100

 200

 300

 400

 500

vm
-bh-silo

vm
-pc-silo

vm
-bh-specjbb

vm
-pc-specjbb

vm
-bh-m

asstree
vm

-pc-m
asstree

vm
-bh-rocksdb

vm
-pc-rocksdb

vm
-bh-xapian

vm
-pc-xapian

vm
-bh-im

g-dnn
vm

-pc-im
g-dnn

vm
-bh-m

oses
vm

-pc-m
oses

vm
-bh-sphinx

vm
-pc-sphinx

vm
-bh-redis

vm
-pc-redis

vm
-bh-m

em
cached

vm
-pc-m

em
cached

(e) 95th tail latency with 1-way LLC cache allocation

N
or

m
al

iz
ed

 9
5t

h 
la

te
nc

y 
(%

)
(r

el
at

iv
e 

to
 b

ar
em

et
al

)

vmm-bin-hopping (vmm-bh)
vmm-page-coloring (vmm-pc)

 0

 100

 200

 300

 400

 500
vm

-bh-silo
vm

-pc-silo
vm

-bh-specjbb
vm

-pc-specjbb
vm

-bh-m
asstree

vm
-pc-m

asstree
vm

-bh-rocksdb
vm

-pc-rocksdb
vm

-bh-xapian
vm

-pc-xapian
vm

-bh-im
g-dnn

vm
-pc-im

g-dnn
vm

-bh-m
oses

vm
-pc-m

oses
vm

-bh-sphinx
vm

-pc-sphinx
vm

-bh-redis
vm

-pc-redis
vm

-bh-m
em

cached
vm

-pc-m
em

cached
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Figure 3: Mean latencies, tail latencies, and miss ratio increases (LLC and L2 cache) of latency-sensitive workloads running in VMs and using a 1-way
LLC partition. Latencies are normalized against those on the host.

approach to effectively reduce cache conflicts in modern
virtualized clouds, which is presented below.

IV. COPLACE Design and Implementation
As shown in §III, on virtualized platforms, the page

placement mechanisms in the guest and host OSs cannot
effectively reduce cache conflicts, due to two layers of
uncoordinated memory management and the semantic
gap produced by virtualization. For virtualized clouds,
it is not possible to reduce one layer of memory man-
agement. Thus, the issue of increased cache conflicts
must be addressed by boosting the synergy between the
page placement mechanisms in the guest and the host.

In existing systems, the page placement mechanisms
in the guest and the host function independently. Thus,
an intuitive design to boost the synergy is to enhance
both of them to make them collaborate. However, this
design requires significant interaction between the guest
and the host OSs, in order to make coherent or comple-
mentary page placement decisions. The interaction may
involve costly context switches between the guest and
the host. At the same time, it may need to change the
guest OS and/or the interface between the guest and the
host. Such changes are undesirable, since they reduce
the portability of the solution.

We recognize that a practical and portable solution
must follow three principles: 1) the guest OS and the
host OS should still be able to allocate and reclaim
memory pages without notifying each other; 2) the
interface between the guest and the host must not be
changed; 3) the guest OS must not be changed. The
first principle is to maintain two layers of memory

management required by virtualization and to minimize
the overhead at the same time. The other two principles
are to maximize the portability of the solution.

guest

host

cache

guest physical pages

host physical pages

0 1 0 1 2 3 2 3

page placement support

0 1 0 1 2 3

page placement support

slice #0 slice #1 slice #2 slice #3

guest virtual pages

page placement 

policies

Figure 4: COPLACE Overview. Numbers in host physical pages
are cache slice indexes that the pages are mapped to.

Following these principles, we design COPLACE. Its
overall architecture is as shown in Figure 4. Since the
guest OS (shown with the top section in the figure) is not
changed, its page placement mechnism is fully-fledged
with two components. One component implements page
placement policies to make page placement decisions
(e.g., page coloring or bin-hopping). It selects page col-
ors upon page allocation requests, such that application
data sets can be evenly mapped to the cache colors in
the virtual LLC. The other component provides page



placement support to enforce page placement decisions,
i.e., allocating pages in designated colors, as shown with
4 colors of pages in the figure. It determines page colors
using guest physical addresses.

The guest page placement mechanism cannot reduce
cache conflicts in real caches. However, its decisions
about how to distribute application data sets are directly
guided by workloads and are adequate. They must be
well leveraged in the solution. Its regular assignments
of guest physical pages based on the decisions can also
be leveraged, such that the solution does not need to
tackle the allocation of guest physical pages and can
focus only on how to allocate host physical pages.

COPLACE fully leverages the guest page placement
mechanism and make it effective by getting the synergy
from the host. It ensures that, for the guest physical
pages deemed by the guest to be in different colors, they
are really mapped to different cache sets in the physical
LLC. This is achieved by making the page placement
support component in the host select host physical pages
carefully based on the structure of physical caches.

Figure 4 illustrates this using a LLC with 4 slices.
Each slice has two ways, 4KB each. The data blocks
in each page are evenly divided and mapped into two
slices, as shown with the dotted arrows. In each slice,
the cache sets that can hold the data blocks from the
same page are also called a cache color (e.g., red or
green). Thus, pages mapped to the same cache color
in the same slices are conflicting pages (e.g., the first
and fifth pages mapped to red cache colors in slices
0 and 1); and slice indexes and cache color together
form a color that labels a host physical page. The host
physical pages in the figure are in 4 different colors. For
the guest physical pages in different colors, their host
physical pages are also in different colors.

Some processors (e.g., Intel Scalable CPUs [47]) use
undisclosed hash functions to map the data blocks in
a page to a few possible cache slices [48], [49]. Thus,
slice indexes cannot be precisely determined. To label a
host physical page with a color, we use cache color
and some of the bits in the page address that are
used to determine cache slices. (Inside a slice, the data
blocks of the page are mapped to a cache color in a
traditional way [50]–[52].) Among the bits determining
cache slices, we select the least significant bits, because
pages with different values in these bits (e.g., base pages
in a huge page) are usually mapped by hardware to
different cache slices to minimize cache conflicts.

For the processors with non-inclusive LLCs, it is
crucial to mitigate cache conflicts for both L2 cache
and LLC. Thus, we use the combination of the cache
color in L2 and the cache color in LLC as the colors
of host physical pages.

When allocating a host physical page to a guest phys-

ical page, COPLACE must select a host physical page in
a particular color. This requirement can reduce the ef-
fectiveness of memory deduplication (e.g., kernel same
page merging in Linux/KVM) [53], [54] and memory
ballooning [53]. For memory deduplication, with this
requirement, the host physical pages holding the guest
physical pages in different colors cannot be merged even
when they have identical contents. To address this issue,
COPLACE allows the memory deduplication component
to disregard this requirement when identical pages are
scarce. For memory ballooning, due to this requirement,
the host physical pages released from one VM may not
be used by another VM if their colors are undesirable.
To address this issue, COPLACE reclaims pages evenly
in all the colors. These enhancements are named eKSM

and eBal in COPLACE (not shown in Figure 4).
V. Evaluation

We have implemented COPLACE based on Linux
KVM. We added/modified 694 lines of source code
mainly in the Linux memory manager component,
KSM [54], and the virtio ballooning driver [55], [56].
With the prototype implementation, we test COPLACE
by running benchmarks in a virtual machine.
A. Experimental Settings

Based on the measurements in §III, benchmarks show
higher performance on a system with the host using
page coloring than that on the vanilla system, where
the host uses bin-hopping. Thus, we choose the system
with the host using page coloring as the baseline system.
We compare the performance of the benchmarks on the
system with COPLACE prototype against their perfor-
mance on the baseline system. For both COPLACE and
the baseline system, bin-hopping is used in the guest
OS. Refer to §III for detailed system configurations.

We test COPLACE using constant and varying work-
loads. A constant workload is generated by running a
benchmark immediately after the VM is launched, and
thus shows stable performance across different runs.
More importantly, on the baseline system, the bench-
mark usually can achieve better performance when the
system is just booted up than later after some other
applications finish their executions on the VM. When a
VM is just launched, some of its guest physical pages
have not be allocated with host physical pages. When
the benchmark saves data into these pages, page faults
are caused at the host level, and the host OS needs to
allocate host physical pages to save the data. On the
baseline system, with the page coloring page placement
mechanism, the host can allocate non-conflicting pages.
This helps reduce cache conflicts caused by accessing
the data. This benefit persists as long as the page still
holds the data, and thus helps improve the performance
of workloads, particularly throughput oriented work-
loads, such as scientific computing applications using
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Figure 5: Normalized throughput and miss ratio increases (LLC and L2 cache) of blackscholes on the baseline system (vmm-pc-vm-bh) and COPLACE.
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Figure 6: Mean and tail latencies of Xapian on the baseline system (vmm-pc-vm-bh) and COPLACE.

static arrays. The benefit reduces when some of the
pages are reclaimed or are used to hold other data. This
usually occurs in service oriented applications, which
use dynamic data structures to save temporary data.

A varying workload is generated by running a bench-
mark after the completion of another benchmark with
a large working set. During the execution of the earlier
benchmark, a large amount of memory is allocated to
the VM to hold the data set of the benchmark. When
the earlier benchmark finishes, the memory becomes
free memory in the guest OS. But the host does not
reclaim the memory, because it is not under memory
pressure. Thus, during the execution of the benchmark
under test, the guest OS can allocate memory to the
benchmark without incurring any page faults at the host
level. (The benchmark under test has a smaller working
set size than the earlier benchmark.) Therefore, the
performance benefit observed with a constant workload
is not available to a varying workload. Even worse,
the performance of the benchmark may be negatively
impacted by the execution of the earlier benchmark,
as we will show in the evaluation, and may change if
another benchmark was selected to run first.

We use constant and varying workloads to create
three different scenarios. A constant workload generated
by a scientific computing application (blackscholes)
represents a scenario in favor of the baseline system.
A constant workload generated by a service oriented
application (Xapian) represents a scenario that is neu-
tral to the baseline system. A varying workload that is
negatively impacted by an earlier workload represents
an unfavorable scenario for the baseline system. We
show that COPLACE outperforms the baseline system
in all these scenarios. We also test how well COPLACE,
specifically its enhanced KSM (eKSM) and enhanced
memory ballooning(eBal), deals with multiple VMs.
B. Experiments with Constant Workloads

We first select blackscholes from PARSEC
benchmark suite to generate a constant workload.

blackscholes computes the price of an array of op-
tions analytically using Black-Scholes Partial Differen-
tial Equation (PDE). Figure 5(a) compares its through-
put on COPLACE and the baseline system. The through-
put is normalized to that on the host (vanilla Linux).
With COPLACE, the throughput of blackscholes is
8.8% and 13.3% higher than it on the baseline system
for the two scenarios using the whole LLC and 1 LLC
way, respectively. With COPLACE, the performance of
blackscholes is only 4% lower than that on the host
on average for the two scenarios. This is partly caused
by the overhead introduced by the second level memory
address translation. As shown in Figure 5(b) and Fig-
ure 5(c), though COPLACE can effectively reduce LLC
and L2 cache misses, the miss ratios are still higher than
those on the host. This may be caused by the guest OS
and other system services running in the guest.

We use Xapian from TailBench to generate an-
other constant workload. Xapian is an open source
search engine that is widely used in websites (e.g.,
the Debian wiki) and software frameworks (e.g., Cat-
alyst). Compared to blackscholes, the performance
of Xapian is improved by larger percentages with
COPLACE. As shown in Figure 6, when LLC is not
partitioned, COPLACE can reduce the mean, 90th, 95th,
and 99th latencies by 29.3%, 18.1%, 16.9%, and 32.3%,
respectively; when the 1-way LLC partition is used,
COPLACE can reduce these latencies by 24.0%, 69.4%,
57.2%, and 121%, respectively. With COPLACE, the
performance of Xapian is still substantially lower than
it on the host, because Xapian is an operating system
intensive workload sufferring significant virtualization
overhead, including extra cache misses introduced by
the operations in the extra layer of operating system.

C. Experiments with Varying Workload
We use SysBench and PgSql to generate a varying

workload. SysBench reads data from a large file into an
array. PgSql executes SQL commands in a PostgreSQL
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Figure 7: Normalized throughputs, and miss ratio increases in LLC and L2 cache when PgSql runs after SysBench in a VM. LLC is not partitioned.

DBMS. The SQL commands join a small table (5MB)
and a large table (500MB) using table-join operations.
Since SysBench is I/O intensive, we are more interested
in the performance of PgSql.

Before we run the varying workload, we have tested
how the performance of PgSql is affected by SysBench.
When PgSql runs after SysBench, its performance is
23.6% lower than it running with a clean slate on a just
booted VM. The reason is as follows. When SysBench
reading file data into an array, two types of guest virtual
pages, the pages for buffering the file data in guest OS
(OS buffer cache) and the pages for saving the array, are
requested from the guest OS in an interleaved manner.
However, the bin-hopping mechanism and the buddy
memory allocator in the guest allocate contiguous guest
physical pages, and then the host allocates contiguous
host physical pages to hold these guest physical pages
upon page faults. Because the two types of guest virtual
pages are requested in an interleaved manner, each
type of the pages may dominate some LLC colors.
When SysBench terminates, the guest physical pages
for the array are reclaimed in the VM; but the memory
pages in OS buffer cache are not. Thus, when PgSql

runs, the previously reclaimed guest physical pages
are reallocated to PgSql, causing its pages unevenly
distributed in different LLC colors. We have checked
the conflict level of PgSql, which is as high as 50.2.
This causes increased cache misses and degrades the
performance of PgSql.

Then, in the VM, we run SysBench followed by
PgSql on both COPLACE and the baseline system.
Figure 7 shows the normalized throughputs and miss
ratio increases of SysBench and PgSql when they run
in the VM, relative to the executions on the host. LLC
is not partitioned. Compared to the baseline system,
COPLACE can substantially reduce the misses in the
LLC and the L2 cache. Thus, with COPLACE, the
throughput of PgSql is 22.5% higher than it on the
baseline system.
D. Dealing with Multiple VMs

The experiments above only test the capability of
COPLACE on reducing cache conflicts on a single
VM. This subsection tests how well COPLACE, specif-
ically its enhanced KSM (eKSM) and enhanced memory
ballooning (eBal), deals with multiple VMs. eKSM

and eBal improve existing memory deduplication and
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Figure 8: Performance of Xapian when it runs on the baseline system,
COPLACE without eKSM or eBal, and COPLACE. Xapian uses a 1-way
LLC partition.
memory ballooning mechanisms, such that the page
placement decisions made in the guest can be well
maintained.

To test eKSM, we launched 11 VMs on the same host.
Each VM runs an instance of Xapian. Each VM has
one vCPU on a dedicated CPU core and uses a 1 way
LLC partition. We compare the performance of three
systems under workload Xapian: the baseline system
(VMM-PC-VM-BH), COPLACE with eKSM disabled, and
COPLACE. Figure 8(a) shows the mean and tail laten-
cies, relative to 11 Xapian instances running on the
host. Though COPLACE without eKSM can effectively
reduce the latencies of Xapian, by making memory
deduplication “cache conflicts aware”, eKSM can futher
reduce reduce mean latency (22.6%) and tail latencies
(9.6% for 90th, 9.9% for 95th, and 23.9% for 99th tail
latency).

To test the effectiveness of eBal, we examine how
Xapian performs when about half of the memory pages
used by it are obtained indirectly through memory
ballooning. In a VM, we run Xapian together with a
memory hog application, which consumes almost all
the free memory space in the VM by creating arrays
and saving data. To avoid the interference from the
memory hog, we use a two-vCPU VM, pin the vCPUs
on two cores, and run Xapian and the memory hog on
different vCPUs. At the same time, we allocate a 1-way
LLC partition for each of them. To make Xapian use
some memory pages obtained through ballooning, we
assign the VM another 20MB memory space (roughly
equal to the working set size of Xapian) using memory



ballooning. Since Xapian requests and frees memory
dynamically, some of the memory pages will be gradu-
ally allocated to Xapian by the guest OS.

Figure 8(d) confirms that eBal increases COPLACE’s
capability to reduce LLC and L2 misses. This is because
eBal can ensure that the memory pages in a VM
can be evenly mapped to different cache colors. Thus,
COPLACE can be more effective in reducing cache
conflicts. For Xapian, eBal helps COPLACE further
reduce mean latency (45.9%) and tail latencies (48.9%
for 90th, 50% for 95th, and 78% for 99th), as shown in
Figure 8(c).

VI. Related Work
Reducing cache conflicts. Extensive research has been
focused on reducing cache conflicting. Both hardware
and software solutions have been developed, as elabo-
rated in Section II. Minimizing cache conflicts requires
the combined efforts from all system layers. COPLACE
is a solution at the system software layer, and is
complementary to the solutions at other system layers.
Compared to other solutions at the system software
layer, such as page coloring and bin-hopping, COPLACE
is designed specifically to virtualized platforms.
Reducing cache interference with partitioning. As
an effective method to reduce cache interference, cache
partitioning has attracted much attention. Page coloring
based software approaches divide cache sets between
workloads [8], [9], [14], [57], [58]. They can reduce
cache interference without increasing cache conflicts,
because cache associativity is not reduced. However,
they incur high overhead when adjusting partition
sizes [57]. Hardware approaches usually partition cache
ways [59], including Intel cache allocation technol-
ogy (CAT) and AMD cache allocation enforcement
(CAE) [3]–[5]. The latest efforts focus on improving
software systems to better utilize CAT [10], [11], [16],
[17], [60]. As the paper shows, hardware approaches
increase cache conflicts. This paper presents COPLACE
to effectively reduce them in virtualized systems.
vCache provides transparent and isolated virtual LLCs
(vLLC) for the workloads in VMs [6]. It designs
architectural support to allow the guest OS to index
the LLC using guest physical addresses. Thus, various
cache optimization techniques can be performed in
the guest OS, including LLC partitioning using page
coloring and page placement mechanisms. Nevertheless,
there are three main issues with vCache that may limit
its effectiveness and adoption. First, virtual-indexed
caches may have inferior performance than real-indexed
cache due to virtual address space changes (e.g., con-
text switches) [1], [61]–[64]. Second, vCache requires
hardware changes, which would not be available in
near future. The last but not least, vCache only targets
LLC; with vCache, L1 and L2 caches are still indexed

with host physical addresses. Thus, cache optimization
techniques for L2 caches may still be ineffective. This
limits its application on modern systems with non-
inclusive cache hierarchy.
Huge pages. Huge pages are mainly used to reduce
TLB misses [25], [65]–[68]. They can also be used
to reduce cache conflicts on virtualized platforms. In
a huge page allocated to a VM, host physical addresses
and guest physical addresses share the same offsets
within the page. Because huge pages are large enough,
the offsets within the pages contain the memory address
bits used to determine cache sets. With the offsets,
the page placement mechanism in the guest OS can
effectively reduce cache conflicts.

However, there are three issues with using huge pages
to reduce cache conflicts: 1) huge pages can signif-
icantly degrade the performance of user applications;
and thus they are usually disabled in many software
systems [68]–[80]; 2) huge pages are not well supported
by cloud providers such as AWS EC2 [81]; 3) mem-
ory fragmentation is a well known problem associated
with using huge pages [25], [82]–[85]. Previous work
has shown that memory can be quickly fragmented in
multi-tenant clouds [86]. When memory is fragmented,
systems usually synchronously compact memory with
a page fault handler. This increases average and tail
latencies of latency critical workloads.

VII. Conclusion and Future Work
With the prevalence of modern processors in clouds,

emerging hardware extensions for cache allocation (e.g.,
Intel CAT) are being widely used to mitigate perfor-
mance problems caused by cache interference between
workloads. However, with these extensions, cache con-
flicts in L2 and last level caches become a serious issue
in virtualized clouds, and this issue is barely noticed.
By identifying and analyzing this issue, the paper tries
to bring the attention of the community to this issue.
The paper also presents COPLACE as an effective sys-
tem solution with low overhead and high portability.
Extensive experiments confirm its effectiveness.

As future work, we want to adapt and test COPLACE
for the systems with non-volatile memory (NVM), such
as Intel Optane DC Persistent Memory Module. When
NVM is used in the memory mode, DRAM acts as its
direct-mapped L4 cache. In virtualized clouds, similar
cache conflict problems are expected to occur in the
DRAM L4 cache. We believe COPLACE can be an
effective solution.
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