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Abstract—The aim of this article is to improve vehicular traffic
in terms of both travel time and load balance. To achieve this
goal, we propose an optimization model that minimizes the sum
of the total travel time in the road network and a time represen-
tation of the traffic imbalance effects in the network. This paper
presents an analytic formulation of the optimization problem, and
an algorithm, Dynamic Interior Point Method (DIPM), that solves
this optimization through driver rerouting. Unlike user-optimum
traffic optimizations, DIPM leads to better fairness for drivers and
works well in case of congestion. Unlike other system-wide traffic
optimizations, DIPM considers the effects of the driver behavior on
traffic load. Together, these features allow our system to work well
in a potential real-world deployment. DIPM benefits from a central
server that computes driver routes, which is reachable via cellular
networks or vehicular ad hoc networks. Theoretical analysis and
simulation results demonstrate that DIPM is fast and can work in
real-time. The results of extensive simulations with realistic urban
maps and traffic scenarios show that DIPM outperforms other
dynamic rerouting algorithms in terms of travel time. DIPM also
improves fairness when compared with a user-optimum approach.

Index Terms—Travel time optimization, traffic load balance,
vehicular networking, dynamic interior point method.

I. INTRODUCTION

W ITH the rapid mobility increase in urban areas world-
wide, traffic congestion has become an urgent problem

that requires a rapid and effective solution [1]. The Global
Mobility Report in 2017 showed an additional 1.2 billion cars on
the road compared to 2015’s [2]. Americans waste nearly 14.5
million hours every day in traffic congestion [15]. Therefore,
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optimal route planning, which reduces the drivers’ travel time
and relieves congestion, has attracted much attention from
academia and traffic management organizations [3].

All recent solutions are based on accurate and real-time
traffic information acquisition from smart phones or systems
embedded in the cars [6], [7]. Typically, a central entity collects
this information, achieves a global view of the traffic [4], and
predicts better routes for drivers using current and historical
traffic data [5]. The communication is done either over cellu-
lar networks or a combination of vehicular ad hoc networks
(VANETs) and road-side units (RSUs).

Despite their benefits, the current solutions have a number of
problems. First, the drivers’ selfish choice for the optimal route
in the current time slot shifts traffic congestion from one area
to another [8]. Second, many solutions assume that the drivers
will follow the recommended route, but this is not always the
case. Third, there is a lack of solutions that combine analytic
proofs of optimality with practicality in real-world scenarios.
To solve these problems, new algorithms should be designed
to jointly consider the drivers‘ behaviors on route selection,
the road networks’ load, and travel time. Furthermore, these
algorithms must have solid theoretical underpinnings and should
lend themselves to efficient implementations.

This article proposes an optimization model that minimizes
the sum of the total travel time in the road network and a time
representation of the traffic imbalance effects in the network.
The constraints of this optimization are the traffic conditions
and the drivers’ behavior.

Unlike user-optimum traffic optimizations [10], which are
expected to lead to best travel times for drivers, our solution
leads to better fairness for drivers, since it achieves similar
travel time for drivers with the same origin-destination (OD)
pairs. Achieving fairness is important for widespread system
adoption, as a system that is perceived as unfair will not be
used by drivers. Also, the travel times for our solution are close
to the optimal values. Furthermore, our solution balances the
traffic and alleviates congestion, whereas typical user-optimum
optimizations do not work well in case of congestion [21].

Unlike other system-wide traffic optimizations [14], our so-
lution considers the effects of the driver behavior on traffic load
(i.e., the drivers may not follow the suggested routes), and thus
can work better in practice.

This paper presents an analytic formulation of the optimiza-
tion problem, and an algorithm, Dynamic Interior Point Method
(DIPM), that solves this optimization through driver rerouting.
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DIPM benefits from a central server that computes driver routes,
which is reachable via cellular networks or VANETs plus RSUs.

Specifically, the contributions of this article are:
� A system model that includes: (i) two types of commu-

nication architectures, car-to-cloud and VANET-to-cloud,
to realize the implementation of our optimization; and (ii)
Closed-form expressions of the road segments’ traffic con-
dition (congested or not) and the vehicles’ route selection
property (altruistic or selfish).

� A novel optimization model for vehicular traffic. The ob-
jective in the optimization is analytically modeled in a
drift-plus-penalty framework, which considers not only the
total travel time in the road network, but also the traffic load
imbalance based on traffic conditions and drivers’ behavior.

� A Dynamic Interior Point Method (DIPM) that solves
the analytic formulation of our optimization model. This
method is implemented as an iterative algorithm that com-
putes rerouting alternatives for drivers; the rerouting helps
achieve our system-wide optimization objective. We prove
that the DIPM algorithm has a feasible solution, converges
in a finite number of iterations, and has an acceptable
computational complexity.

� Evaluations in MatLab and VanetMobiSim that demon-
strate DIPM performance. Theoretical analysis and sim-
ulation results show that DIPM is fast and can work for
real-time navigation systems. Theoretical analysis also
suggest that DIPM can scale reasonably well. The results
of extensive simulations with realistic urban maps and
traffic scenarios demonstrate that DIPM outperforms other
dynamic rerouting algorithms in terms of travel time. Fur-
thermore, DIPM improves fairness when compared with a
user-optimum approach [21].

The rest of the paper is organized as follows. Section II
discusses related work on traffic congestion avoidance and traffic
load balance. The system framework and the basic traffic models
are described in Section III. Section IV presents the analytic
formulation of our optimization model. The design and analysis
of the DIPM algorithm are presented in Section V. Section VI
contains the evaluation of DIPM. The paper concludes in
Section VII.

II. RELATED WORK

Unbalanced traffic, caused by the vehicles’ choice of over-
lapping shortest routes, is one of the main reasons of traffic
congestion. This type of traffic congestion can be reduced via
path planning and navigation systems. Wang et al. proposed
a highly practical vehicle rerouting system called Next Road
Rerouting (NRR) to aid drivers in making the most appropriate
next road choice toward avoiding unexpected congestion [9].
The rerouting process in NRR is based on a multi-agent 3-tier ar-
chitecture, which includes a traffic operation center, traffic lights,
and vehicles. Jeong et al. proposed a self-adaptive interactive
navigation tool (SAINT), which was tailored for cloud-based
vehicular traffic optimization on road networks [11]. In this
system, the vehicles report their navigation experiences and
travel paths to the vehicular cloud. Based on real-time road

traffic conditions and vehicular trajectories, the vehicular cloud
calculates the road segment congestion estimation. Although
these navigation systems improve the classical path planning
algorithms, they switch the congestion from one area to another,
which postpones the occurrence of traffic congestion, rather than
avoiding it. In addition, these works considered the assignment
as a dynamic process; however, the route selection methods are
seldom discussed.

Pan et al. presented five traffic rerouting strategies designed
to be incorporated in a cost-effective and easily deployable ve-
hicular traffic guidance system that reduces travel time [12]. The
proposed strategies proactively compute individually-tailored
rerouting guidance to be pushed to vehicles when signs of con-
gestion are observed on their routes. An improved real-time path
planning algorithm was proposed by Guo et al., which dispatches
the backlogged vehicles at weighted road intersections based
on the back-pressure ratio [10]. These algorithms can reduce the
traffic congestion on the road network to some extents. However,
they lack an analytic model to describe the problem, and the
navigation results are not proven to be optimal.

Some works have used an optimization model to study the
global traffic balance. Cao et al. proposed a model to predict
the probability of drivers‘ choice on routing results and then
the online strategies automatically controlling the traffic lights’
phases and duration to make sure that the vehicles have low
traveling time [26]. Zhou et al. proposed a two-level hierarchical
control framework for large-scale urban traffic networks [13].
For the application of this architecture in real world, model-
based predictive control was utilized to obtain the best solu-
tions. However, this work modified the traffic lights timing to
achieve the optimal status, rather than controlling the traffic
flow, an approach which may not be immediately applicable in
practice.

The optimization model in [27] is presented for the minimiza-
tion of the probability that vehicles arrive at their destinations
after given deadlines and the minimization of the total travel
time. Cao et al. proposed two optimization models to describe
the problem [14]. The Probability Tail Model (PT model) aims
to obtain an optimal path that minimizes the probability of
arriving at a destination later than a predefined deadline. The
Stochastic Shortest Path Problem With Delay Excess Penalty
Model (SSPD model) had a deterministic travel fee and a random
travel time which aimed to obtain an optimal path that minimizes
the sum of these two types of cost, i.e., the total travel fee
and the expected penalty for arriving at the destination later than
the predefined deadline. This work finds the optimal solution
based on the Partial Lagrange Multiple method. However, these
models did not consider the case that individual drivers’ selection
can influence the future traffic status. On the basis of these two
models, the authors proposed an intelligent routing algorithm
to minimize the traffic jam occurrence by directing the paths
of multiple vehicles cooperatively [15]. The traffic network
optimum is achieved if the probability for spontaneous traffic
jam occurrence over the entire road network during a given
observation time period is minimized. This objective aims to
minimize network breakdown probability, rather than the total
travel time and the load imbalance as in our optimization.
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TABLE I
SUMMARY OF THE MAIN MATHEMATICAL NOTATIONS

Fig. 1. System operation under two architecture types. (a) Car-to-Coud Ar-
chitecture. (b) VANET-to-Cloud Architecture.

Overall, our work differs from previous related work in two
main aspects: (1) we propose an analytic optimization model
that considers the traffic conditions and drivers’ behavior on
rerouting decisions, and (2) we present an algorithm that solves
this optimization. The algorithm periodically optimizes the traf-
fic flow for the road network, and thus minimizes the sum of
the total travel time and a time representation of load imbalance
effects for all drivers in the road network.

III. SYSTEM MODEL

This section presents an overview of our system operation
and formulates the models of time-varying traffic flow and
congestion estimation on road segments. The notation used in
this section is described in Table I.

A. Transportation Architecture and System Operation

As shown in Fig. 1, our system can work with either: (a)
direct communication between the cars and the server using cel-
lular/5 G communication or (b) ad hoc communication (VANET
to RSU) and cellular/wired communication (RSU to server),
which is based on our previous work [10]. The first architecture
is simpler, whereas the second one is more scalable.

In both cases, the system periodically (i.e., in each time
slot) collects real-time traffic information, analyzes the traffic
conditions and generates the input parameters for DIPM, and

Fig. 2. Illustration of traffic flow on road segment.

then sends the rerouting results generated by DIPM to vehicles.
The RSUs in the VANET-to-Cloud architecture aggregate the
results during the traffic collection phase and disseminate the
rerouting results to cars in their coverage area. In this way, the
load on the server can be reduced at the the expense of longer
delays and potentially lost messages in VANET.

In our system, the road network is defined as a weighted
graph. We assume that each road segment between two road in-
tersections is unidirectional; a bidirectional road is split into two
unidirectional segments. For brevity, we use “road segments” to
refer to “unidirectional road segments” in the rest of the paper.
With assistance from RSU, the number of vehicles on each road
segment can be estimated within an acceptable error for different
traffic densities, even when some vehicles are not part of the
system.

The behavior of the drivers is modeled using the binary
“altruism” parameter, which tells DIPM if a driver is expected to
follow the rerouting suggestion or not. To reduce load imbalance
and implicitly traffic congestion, the suggested route for some
drivers may be slightly longer than the optimal route. If they take
this route, we consider them altruistic. If they take the optimal
route (using their own knowledge), we consider them selfish.
This “altruism” parameter is learned over time by analyzing the
driver’s decisions to rerouting suggestions.

B. Traffic Flow Model

We model the vehicles’ traffic flow as an inflow/outflow
system with sequential time slots. As shown in Fig. 2, the number
of vehicles on road segment ri in the current time slot can be
divided into three components: the backlogged vehicles from
the previous time slot, the inflow and outflow of vehicles from/to
the neighbor road segments, and the vehicles that enter the road
network from this segment or have a destination on this segment
(i.e., exit the road network on this segment).

Parameters λi(T ) and μi(T ) denote the inflow rate and out-
flow rate, respectively, of road segment ri in time slot T . They
have variable values in different time slots; however, they are
regarded as constant in each time slot. The parameter ρ is the
duration of each time slot. The traffic volume that starts and
departs from ri in time slot T is ρ[λi(T )− μi(T )]. The lower
bound of ρ should be larger than the computing time for one
DIPM calculation to make sure the vehicles in the road network
can use the results. Furthermore, ρ should not be too low to
avoid unnecessary calculations and waste of system resources
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in relatively stable networks. On the other hand, if ρ is too large,
the system cannot set up the optimization model based on the
latest traffic parameters due to the changes in the real-time traffic
conditions, which will influence the performance of traffic load
balance. Therefore, our system will set ρ as a multiple of the
traffic light’s period, based on the number and speed of the
vehicles in the road network.

The number of vehicles that enter and exit the road network
on ri in time slot T are defined as: Qin

i (T ) and Qout
i (T ). Vehicle

h and vehicle g illustrate this type of traffic in Fig. 2. The number
of backlogged vehicles from the previous time slot isNi(T − 1),
illustrated by the vehicles in the circle in the figure. Specifically,
Ni(T − 1) denotes the number of starting vehicles inside road
segment ri at the beginning of the time slot.

Therefore, the number of vehicles on road segment ri in time
slot T is:

Ni(T ) = Ni(T − 1) + ρ[λi(T )− μi(T )]

+ [Qin
i (T )−Qout

i (T )]. (1)

Let us note the road segment’s total inflow in each time slot
is limited by ci, the capacity of road segment ri:

ρλi(T ) +Qin
i (T ) ≤ ci. (2)

Here, the capacity ci of a road segment can be acquired from its
associated RSU’s cache, if RSUs are deployed, or calculated
based on the segment length and the average inter-vehicular
distance as ci = � Li

dinter
�.

C. Congestion Estimation

The traffic condition is determined by the relation among
density (the number of vehicles per distance unit), flow (the
number of vehicles per time unit), and mean speed [22].

Congestion definition 1 (speed-volume): When the speed on
road segment ri in time slot T is below a given threshold value
and the slope of flow is negative, the road segment ri in time
slot T is congested. The formal definition is:

vi(T ) ≤ vthr
i (T ),

∂q

∂k
≤ 0 (3)

The drawback of this definition is that the threshold value
is difficult to define. Commonly, this value is set to two-thirds
of the legal maximum speed on the road segment. However,
since this value is arbitrary, we consider the following congestion
definition for the rest of the article.

Congestion definition 2 (number of backlogged vehicles): The
road segment ri is congested in time slot T when the number of
backlogged vehicles in the previous time slot is larger than the
sum of outflow and exit vehicles in the current time slot. The
definition can be described as:

Ni(T − 1) > ρμi(T ) +Qout
i (T ). (4)

Using this definition, the traffic condition of a road segment
in a given time slot, αi(T ), is defined as:

αi(T ) = ε[Ni(T − 1)− ρμi(T )−Qout
i (T )]

− ε[ρμi(T ) +Qout
i (T )−Ni(T − 1)] (5)

Here, ε(·) is a unit step function. When the road segment is
congested in time slot T , the value of αi(T ) is 1. Otherwise, the
value of αi(T ) is −1.

IV. ANALYTIC FORMULATION OF OPTIMIZATION MODEL

When all drivers in the road network choose their own optimal
route as perceived at a given time, traffic congestion may occur
because the drivers do not consider the future traffic load on the
roads. While user-optimum optimizations that consider future
traffic load exist [10], they do not work well in practice for three
reasons: (i) they are unfair, as drivers with the same OD pairs
may end up with very different travel times, and this may cause
problems with system adoption, (ii) they are computationally
expensive and the results may arrive too late for effective driver
rerouting, and (iii) they do not work well during congestion,
which sometimes is unavoidable [21].

Therefore, this article focuses on a system-wide optimum
solution to the traffic congestion problem. Existing system-wide
travel time optimizations suffer from two problems. They either
do not consider the driver behavior when making decisions [14],
or do not provide proofs of optimality [12]. Our solution ad-
dresses both problems.

The rest of this section presents a discussion of drivers’ be-
havior and alternative route constraints, followed by the analytic
formulation of our optimization, which aims to minimize the
sum of the total travel time in the road network and a time rep-
resentation of the traffic imbalance effects in the road network.

A. Driver Behavior and Alternative Route Constraints

Given our optimization goal, it is expected that most drivers
will end up with optimal routes, but a small number of
drivers will not be recommended optimal routes. In general,
drivers do not know whether the route recommended by our
system is optimal or not. However, they know that the system
optimizes the total travel time and load balance, and that in
general they will end up with a shorter travel time when they
follow the system’s recommendation. Nevertheless, we assume
that some drivers will not follow the route suggested by the
system and will, instead, follow their individual optimal route.

To model this behavior, we use a parameter βi
m(T ). The value

of βi
m(T ) is 1 when the driver of vehicle m chooses its optimal

road segment ri in time slot T , which means the driver is selfish
for the road network. The value of βi

m(T ) is −1 when the driver
of vehicle m chooses the alternative road segment ri in time slot
T , where ri is a non-optimal segment suggested by our system;
in this case, we say the driver is altruistic for the road network.
The driver altruism can be further defined as:

βi
m(T ) = 2ε[tteopt

m (T )− tteim(T )]

− ε[tteim(T )− tteopt
m (T )]. (6)

Here, tteopt
m (T ) denotes the vehicle m’s optimal travel time in

time slot T , and tteim(T ) is the travel time when vehicle m
chooses the non-optimal road segment ri in time slot T , with
tteim(T ) ≥ tteopt

m (T ). ε(·) is a unit step function, which returns
0 when the variable is negative, and 1 otherwise. The vehicles
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that are not in our system are considered to have selfish driver
behavior with βi

m(T ) = 1. Given our global optimization goal,
the number of vehicles selecting non-optimal routes will be
smaller than the number of vehicles selecting optimal routes:

q∑

m=1

βi
m(T ) ≥ 0. (7)

Here, q is the number of vehicles. If the travel time of the
altruistic road segment is significantly higher than the optimal
segment’s, the drivers may decide to stop using our system.
Therefore, the travel time of the altruistic road segment will
have an upper bound, described as:

Ei
m(T ) ≤ θtteopt

m (T ). (8)

Here,Ei
m(T ) is the extra travel time of vehiclem, which chooses

the altruistic road segment ri in time slot T . It will not exceed θ
percent of the optimal segment’s travel time of vehicle m. The
parameter θ relates to the drivers’ acceptance. In our paper, its
default value equals 0.3 (i.e., 30%).

The detailed method to acquire the travel time estimation of
both tteoptm and tteim is based on our previous work [10]. Our
rerouting algorithm is improved based on Yen’s algorithm [28],
which considers the futile rerouting issue. If the potential rerout-
ing path has a sub-path that is part of the previous shortest path,
the algorithm will remove the edges of this sub-path.

B. Global Traffic Optimization

The objective in our optimization is analytically modeled in
a drift-plus-penalty framework, which considers not only the
total travel time in the road network, but also the traffic load
imbalance based on traffic condition and drivers’ behavior.

The main objective of the optimization is to reduce the total
travel time in the road network. The travel time of vehicle m on
road segment ri in time slot T is defined as followed, based on
work done in [16]:

tteim(T ) =
Li

vleg
i (T )

[
1 + k1

(
Ni(T )

ci

)k2
]
. (9)

Here, Li denotes the length of road segment ri. v
leg
i (T ) is the

legal speed of road segment ri, which is the free flow speed.
k1 and k2 are adjustment parameters, which define the relation
between the speed and the traffic density quantitatively. The
values of k1 and k2 depend on the traffic scenario, which can
be estimated via evaluation and are not the same for all road
networks (we list the values used in our evaluation in Section VI).
Therefore, the total travel time of all the vehicles in the road
network is:

p∑

i=1

q∑

m=1

tteim(T ). (10)

Here, p denotes the number of road segment and q denotes
the number of vehicles. To avoid low-accuracy estimates of TTE
when the number of vehicles on the road segment is inaccurate,
we leverage the work in [10], which adjusts the results of TTE
for different system penetration.

Our secondary optimization objective is to reduce the traffic
load imbalance. The drivers’ behavior for the route selection
(altruistic or selfish) and the traffic conditions will both influence
the traffic load imbalance in the road network. Considering these
two parameters, there are four cases that must be analyzed:
� Case 1: The road segment ri is not congested in time slot
T , and vehicle m selects ri as its altruistic road segment.

� Case 2: The road segment ri is not congested in time slot
T , and vehicle m selects ri as its optimal road segment.

� Case 3: The road segment ri is congested in time slot T ,
and vehicle m selects ri as its optimal road segment.

� Case 4: The road segment ri is congested in time slot T ,
and vehicle m selects ri as its altruistic road segment.

Next, we present analytic formulations to analyze the impacts
of these four cases. The parameter αi(T ) describes the traffic
condition of road segment ri in time slot T . As shown previ-
ously, the vehicle m’s selection (altruistic/selfish) is described
by βi

m(T ). The impact of a vehicle’s route selection can be
estimated by the existed parameters:

Ei
m(T ) = tteim(T )− tteopt

m (T ). (11)

Furthermore, the impact of the road segment’s traffic condi-
tion on the global traffic load can be estimated as:

Bi
m(T ) =

max

{
0,

Li

vleg
i (T )

[
1 + k3

(
Ni(T )−N thr

i (T )

ci

)k4
]}

,

(12)

which means that if the road segment ri is not congested in time
slot T , the number of vehicles on the road segment ri is below
the threshold value, and the vehicles on this segment have no
impact on the global traffic load in this time slot. Otherwise,
Bi

m(T ) is the travel time increase for the road segment ri. The
congestion threshold we use is based on what we estimate in
Eq. (4). In addition, the definitions guarantee that Bi

m(T ) and
Ei

m(T ) have the same unit of measurement (second), in order
to be summed up with the travel time in our optimization. The
values of k3 and k4 depend on how much traffic load balance
the system wants to achieve. If the system wants to balance the
traffic load more, the values of k3 and k4 will be larger. In this
paper, we define k1 = k3, k2 = k4.

By combining the parameters αi(T ) and βi
m(T ), the impact

of the four cases can be estimated quantitatively:

p∑

i=1

q∑

m=1

(
αi(T )B

i
m(T ) + βi

m(T )Ei
m(T )

)
. (13)

Where p is the number of road segments, and q is the number of
vehicles in the road network.

At this stage, we can model our multi-objective global traffic
optimization as follows.

Given:
1) Road network N = {RS,RI}
2) The real-time traffic information of each road segment in

time slot T , including the inflow/outflow rate, the number
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of enter/exit vehicles, and the backlogged vehicles from
previous time slot.

3) The vehicles’ real-time positions and their destinations.
Objective:

min

p∑

i=1

q∑

m=1

[
tteim(T ) + αi(T )B

i
m(T ) + βi

m(T )Ei
m(T )

]

(14)

Subject to: (1), (2), (7), and (8).
This objective is to minimize the sum of the total travel time

and a time representation of the effects of load imbalance. The
traffic load is impacted by drivers ‘behavior and road segments’
traffic conditions as shown in Eq. (13). The constraints for our
proposed objectives are: 1) road segments’ traffic flow conser-
vation between two sequential time slots; 2) upper bound of
the number of inflow vehicles; 3) upper bound of the altruistic
vehicle ratio; 4) upper bound of alternative route’s extra travel
time. The proposed model presents the dynamic relationship
between time slot T − 1 and time slot T , until all the vehicles
in the road network reach their destinations.

Solution: The model outputs the optimal next road segment
and the suggested/altruistic next road segment for each vehicle.
Oftentimes, the suggested segment is the optimal one. In the
other cases, the suggested segment is longer than the optimal
one. In this case, the βi

m parameter models the driver behavior
in time slot T ; it tells us whether the driver chooses the recom-
mended altruistic road segment or the optimal road segment.

V. DIPM DESIGN AND ANALYSIS

This section presents our Dynamic Interior Point Method to
solve the optimization model presented in Section IV, as well
as its performance analysis.

A. Algorithm Design

Our optimization model contains three inequality constraints
and one equality constraint. This model is of the same type as
the one in [17]:

minimize f0(x)

s.t.

Ax = b

fa(x) ≤ 0, a = 1, 2, . . .n. (15)

In all the functions of our model, Ni(T ) can be regarded as
x in Eq. (15). f0(x) is the objective function in Eq. (14), which
denotes tteim(T ) + αi(T )B

i
m(T ) + βi

m(T )Ei
m(T ). The n in

Eq. (15) is the number of inequality constraints, which is 3 in
our case. Therefore, f1(x) is our Eq. (2), f2(x) is our Eq. (7),
and f3(x) is our Eq. (8). The equality constraint Ax = b is our
Eq. (1).

This type of formulation for our optimization model can be
analytically solved by the Interior Point Method (IPM) [17].
However, as we will explain later, using this method directly
is not sufficient for our problem because it can be applied
for only one time slot, and thus cannot guarantee that all the
vehicles arrive at their destinations when the method finishes.

Furthermore, we need to design an algorithm for a computational
solution to our problem. Therefore, we propose the Dynamic
Interior Point Method (DIPM), which is an algorithm that works
for road networks and all time slots, until all vehicles reach
their destinations. In the following, we explain how we use the
original IPM and how we incorporate it in the DIPM algorithm.

IPM uses the indicator function to offset the inequality
constraints, which means that the inequations in constraints
fa(x) ≤ 0 are transformed into indicator functions I−(fa(x)).
The indicator functions are represented as:

I−(u) =

⎧
⎨

⎩
0, u ≤ 0

∞, u > 0.
(16)

Then, the model in Eq. (15) can be reformulated as an equality
constrained problem:

min

(
f0(x) +

3∑

a=1

I−(fa(x))

)

s.t.

Ax = b (17)

This indicator function I−(fa(x)) can be approximated via a
logarithmic barrier, which contains a parameter t:

3∑

a=1

I−(fa(x)) ≈ −1
t

3∑

a=1

log(−fa(x)) (18)

Then, the Eq. (17) can be approximated as:

min

(
f0(x)− 1

t

3∑

a=1

log(−fa(x))

)

s.t. Ax = b (19)

Therefore, the inequality constrained problem in Eq. (15) is
transformed into Eq. (17), and then approximated into Eq. (19).
The Eq. (19) is an equality constrained problem, which can
be solved with the Lagrange function under the KKT condi-
tions [18].

The Lagrange function that considers Ni(T ) as variable is:

L [Ni(T ), ζ
∗(t), ν∗(t)]

= f0(Ni(T )) +

3∑

a=1

ζ∗a(t)fa(Ni(T )) + ν∗(t)(ANi(T )− b).

(20)

Here, ζ∗(t) and ν∗(t) denote the dual operators of the Lagrange
function; ζ∗(t) is − 1

tf∗
a(Ni(T ))

and ν∗(t) is w
t . A and b denote the

coefficients of the constraint in equation (1).
Because IPM cannot take into consideration the traffic flow

across consecutive time slots, it can only be used for each
individual time slot, using the real-time data as static variables in
KKT conditions. Though it is possible to apply IPM repeatedly
at the beginning of every time slot, as implemented in Section VI
as a competing mechanism of DIPM, this method still cannot
detect the traffic flow relationship between time slots, and thus
cannot stop the repeated calculation automatically when all the
vehicles arrive at their destinations.
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DIPM improves the coefficient A as a dynamic variable that
relates to the current time slotT and the previous time slotT − 1
in the barrier function:

[
H AT

A 0

][
ΔNi(T )

Δw

]
= −

[ ∇f(Ni(T ))

A(Ni(T ))− b

]
, (21)

where H can be described as

H = diag[t∇2f0(Ni(T ))−
3∑

a=1

∇2fa(Ni(T ))]

= diag

[
[tγ1 + (1 − γ3(1 + θ))]

Lik1k2(k2 − 1)

(ci)2vlegi (T )

−βm
i (T )Lik3k4(k4 − 1)

(ci)2vlegi (T )

[
Ni(T )−N thr

i (T )

ci

]k4
]
.

(22)

The IPM algorithm considers A as a unit matrix based on
equation 1, and the b coefficient as Ni(T − 1) + ρ[λi(T )−
μi(T )] + [Qin

i (T )−Qout
i (T )]. Since IPM works only in an

individual time slot, it loads Ni(T − 1) as a part of variable b.
Unlike IPM, DIPM works for road networks and all time

slots, and it considers the dynamic flow in current time slot T
and the previous time slot T − 1. The coefficient A is set as a
variable that relates dynamically to the time slot via ΔNi(T ).
In DIPM, the variable b in each time slot is ρ[λi(T )− μi(T )] +
[Qin

i (T )−Qout
i (T )], which transforms Ni(T − 1) as ΔNi(T )

via ΔNi(T ) = Ni(T )−Ni(T − 1). A is I − γ(T ) when
Ni(T − 1) = γ(T )Ni(T ). Therefore,A is a variable that relates
to the time slot T and ΔNi(T ) in the barrier function. The
equation (21) in DIPM is transformed as:

H = diag

[
t∇2f0(Ni(T ))−

3∑

a=1

∇2fa(Ni(T ))

]
(23a)

A = I − γ(T ) (23b)

b = ρ[λi(T )− μi(T )] + [Qin
i (T )−Qout

i (T )] (23c)

Here, I is a unit matrix. γ(T ) is the ratio matrix between
Ni(T − 1) and Ni(T ) for i ∈ {1, 2, . . .m}.

In addition to improving the definitions of variables A and
b to make them work for all the time slots and the whole road
network, DIPM improves the stop criteria used by IPM. The
IPM algorithm has two stop criteria:
� The error between the original optimal results and the

IPM’s results is smaller than the threshold value. When the
parameter t increases during the iteration, the error between
the approximated optimization model in Eq. (19) and the
original model in Eq. (15) will be reduced iteratively.
Therefore, the algorithm will stop at the iteration when
the error is under the threshold value. The default value for
the error threshold is 10−6.

� The number of iterations reaches a maximum value. In our
case, the algorithm’s processing time cannot be larger than
the duration of the time slot because we need to make timely
rerouting decisions. Thus, IPM needs a constraint on the
number of iterations. The default value for the number of
iterations is 1000.

Algorithm 1: DIPM Pseudo Code (Per Time Slot).

1: Input the road network N = {RS,RI} as matrix
2: Input error threshold ε > 0, maximum iteration

number jmax

3: Load the real-time traffic status of road network
4: Initialize road segment id i = 1, iteration time j = 1
5: Transform the variables Ni(T ) and αi(T )
6: Input vehicles’ OD pairs
7: /*Create the optimization model*/
8: Create the objectives as Eq. (14)
9: Set up four constraints Eq. (1) Eq. (2) Eq. (8) Eq. (7)

10: /*Search the optimal arrangement result via IPM*/
11: Transform Eq. (2), Eq. (8), and Eq. (7) via indicator

function as Eq. (17).
12: Approximate indicator function as Eq. (19)
13: Set up the Lagrange multiplier and dual multiplier

ζ∗(t), ν∗(t) via Eq. (2), Eq. (8), and Eq. (7)
14: Create Lagrange function L [x, ζ∗(t), ν∗(t)].
15: /*Do iterations until any stop criteria is satisfied*/
16: while 3

t ≥ ε&&j ≤ jmax do
17: /* 3

t ≥ ε: error is larger than the threshold*/
18: /*j ≤ jmax: maximum number of iterations not

reached*/
19: if Ni = 0 for all i ∈ {1, 2, . . .m} then
20: /*All vehicles in road network reach destinations*/
21: Go to line 30
22: else
23: Find feasible solution of L [x, ζ∗(t), ν∗(t)]
24: Calculate H , A, b, Ni(T ) as x via eq. (23)
25: x = x∗(t)
26: t = jt
27: j ++
28: end if
29: end while
30: Output the optimal rerouting results for each driver

DIPM adds one more stop criterion for termination: the
execution ends when all the vehicles in road network reach
their destinations. This criterion makes sense in experimental
evaluations; in real-life, the algorithm will run continuously.

IPM can calculate the optimal results in one time slot. DIPM,
on the other hand, adapts to the traffic dynamically, as it takes the
results from the previous time slot and uses them in the current
time slot. The full comparison between DIPM and IPM, which
illustrates the improvements of DIPM is presented in Table II.

Algorithm 1 presents the pseudo code of DIPM in one time
slot. At the beginning of the time slot, Lines 1∼6 initialize
the model’s input and collect real-time traffic information. The
algorithm sets up the optimization model via lines 8∼15. Lines
16∼24 execute iterations to obtain the optimal results for DIPM,
and then the algorithm ends by outputting the rerouting results
for all drivers.

B. Algorithm Analysis

Theorem 1: Our optimization model has a feasible solution
and the optimal result is attained.
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TABLE II
COMPARISON OF IPM AND DIPM

Proof: See Appendix A. �
Theorem 2: DIPM converges to optimal results within a fi-

nite number of iterations.
Proof: See Appendix B. �
Theorem 3: The computational complexity of DIPM is

O(KN(p+N logN) + s+
√
n log(n

ε )), where K is the num-
ber of routes provided to vehicles;K is set to 2 in our experiments
(optimal route and alternative route), but can be higher if we
want more alternative routes. p is the number of road segments,
N is the number of road intersections. s is cardinality of the set
of OD pairs for all drivers, where the origin for each driver is
considered its current segment. n is the number of inequational
constraints and ε is the error threshold.

Proof: See Appendix C. �
Remark 1: Compared to the method that repeatedly applies

IPM over all time slots, DIPM reduces the computational com-
plexity by O(Δz(

√
n log(nε ))). Δz denotes the reduction of the

number of time slots. In each time slot, DIPM calculates one
less parameter (i.e., A).

Proof: See Appendix C. �
These theorems and the remark demonstrate that DIPM can

effectively and efficiently find the optimal number of vehicles
on each road segment in each time slot in order to reduce both
the total travel time and the traffic load imbalance in the network
as much as possible.

VI. EVALUATION

We evaluate DIPM using simulations. The evaluation aims to
answer the following three questions: 1) Is DIPM fast enough to
work in a real-time navigation system? 2) Does DIPM performs
better than existing practical solutions, including IPM, dynamic
LET, etc, in terms of travel time? and 3) Does DIPM improve
driver fairness when compared to existing practical solutions
and a user-optimum traffic optimization?

A. Experiment Setup

We conduct our evaluation using MATLAB and VanetMo-
biSim [24], which is a traffic pattern and vehicle mobility
simulator. Specifically, we implement and run DIPM and the
following competing algorithms in MATLAB:
� Static shortest path (SSP) [10]: A static path planning

algorithm that chooses the shortest path based on the traffic
information when the vehicle enters the road network; no
rerouting happens during the travel.

� Entropy-balanced k shortest path (EBkSP) [12]: An im-
proved kSP algorithm that takes into consideration the
impact of each path selection on the density of the affected
road segments.

TABLE III
SYNTHETIC ROAD NETWORKS PARAMETERS

� A* shortest path with repulsion (AR*) [12]: An enhanced
A* algorithm with a weighted vehicle footprint counter and
an improved heuristic function.

� Dynamic traffic assginment (DTA) [21]: A dynamic traffic
assignment method that achieves user equilibrium. De-
spite not being a viable solution for real-time traffic guid-
ance [12], DTA is valuable because it gives us a lower
bound on the travel time and allows us to compare DIPM’s
fairness against a well-known user-optimum approach to
traffic optimization.

The vehicular mobility model is set as polito.uomm extension
in VanetMobiSim. The number of vehicles entering the road
network in different time slots is generated using a Normal
distribution. The system sets an initial number of vehicles at the
beginning of simulation, which considers vehicles starting inside
the road network. The execution of an algorithm in MATLAB
generates rerouting results, which are fed into VanetMobiSim.
Based on the rerouting results, VanetMobiSim simulates the
movement of the vehicles on a map and generates a set of
vehicular trace files as the result of simulation. We measure the
execution time of DIPM in MATLAB, and analyze the trace files
generated by VanetMobiSim to evaluate the DIMP’s solutions
quality. Both MATLAB and VanetMobiSim run on a Windows10
computer with Core i7 processor and 8 Gb memory.

The execution time of DIPM is mainly determined by the
complexity of road network. Therefore, for experiments regard-
ing execution time, we use MATLAB to generate synthetic
road networks with different numbers of road segments and
intersections, as summarized in Table III.

To measure the travel time and fairness, we use a real map
from OpenStreetMap [23]. The map (shown in Fig. 3) is a part
of the road network in Newark, NJ, USA. The details of the map
are summarized in Table IV. This table also contains a few other
key parameters needed by VanetMobiSim for generating traffic
and conducting simulations. The traffic generation model is the
same with the one in [10].

B. DIPM Execution Time

Our goal with these experiments is two-fold: (i) verify if the
measured execution time of DIPM matches the theoretically
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Fig. 3. Map used in simulations: area of Newark, NJ, USA.

TABLE IV
SIMULATION PARAMETERS FOR REALISTIC SCENARIO

Fig. 4. DIPM execution time: the plane is the theoretically estimated time,
and the curve is the measured time.

-estimated execution time, and (ii) understand if the execution
time of DIPM is good enough for a real-time navigation system.

Fig. 4 shows a 3D visualization of the execution time of
DIPM for road networks of different sizes. The plane shows
the execution time estimated theoretically based on the analysis
of the algorithm, for all combinations of the number of road
segments (100–600) and the number of intersections (100–600).
The curve shows the actual execution time measured on our plat-
form for 5 map configurations (100 segments-31 intersections,
200 segments-57 intersections, 300 segments-84 intersections
400 segments-110 intersections, and 500 segments-135 inter-
sections); each data point on the curve is the average execution
time of 20 runs of DIPM with 5 different sets of OD pairs and
different initial values.

Fig. 5. DIPM execution time: estimated time vs. measured time for 5 map
configurations.

Fig. 6. DIPM execution time: estimated time vs. measured time for different
numbers of OD pairs.

The results in Fig. 4 show that execution time measured
in the experiments is very close to the theoretically-estimated
execution time. Fig. 5 shows a 2D visualization of this result. The
estimated time is plotted for the same map configurations as the
measured time. The results illustrate that the difference between
the theoretically-estimated execution time and the measured
execution time is less than 5%.

Fig. 6 shows how the execution time changes with the number
of OD pairs. The map used is the one with 500 road segments
in Table III; the number of vehicles is 1000, and their origin and
destination locations are randomly selected from the OD pairs
based on normal distribution. The results demonstrate that the
two types of execution time match very well. Furthermore, the
execution time increases roughly linearly with the number of
OD pairs.

Thus, even though it is not realistic to generate maps of
all sizes and repeat the experiments with these maps, we can
use the estimated execution time from the theoretical analysis
to quantify how DIPM scales. First, let us note that DIPM’s
execution time for a fairly large map with 600 segments and 600
intersections is 15 seconds on a laptop. Since the travel time
within a road segment usually exceeds 15 seconds, we conclude
that DIPM is fast enough to generate solutions in real-time for
such networks. Based on the DIPM’s theoretical analysis, we
also estimate that DIPM can work for much larger networks,
but it will require more powerful hardware, which is readily
available (e.g., in the cloud).

Fig. 7 demonstrates that DIPM works better than just invoking
IPM repeatedly over the time sots. Specifically, the figure shows
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Fig. 7. Average speed comparison between DIPM and IPM in different time
slots.

Fig. 8. Comparison of average travel time for 3 traffic scenarios.

a comparison of the average speed for all vehicles in different
time slots. We observe that DIPM results in higher speed, and
the difference between DIPM‘s speed and IPM’s speed keeps
increasing over time. The average speeds of IPM and DIPM at
the beginning are the same. Because the number of vehicles is
small at the beginning, Ni(T − 1) equals zero, which means
that the variables A and b in both DIPM and IPM are the same.
Thus, the difference between the two algorithms is negligible at
the beginning. However, after several time slots, the advantage of
DIPM becomes apparent because it can provide optimal dispatch
results dynamically as the number of time slots grows. This
is explained by the dynamic setting of variables A and b in
DIPM. Furthermore, DIPM terminates within 14 time slots.
Under IPM, with these time slots, 12.23% of vehicles cannot
arrive at their destinations; for these vehicles to arrive their
destinations eventually, as many as 18 time slots are needed.

C. Travel Time Comparison

Fig. 8 shows the comparison of the average travel time (per
driver) between DIPM and 4 comparison algorithms, using 3
traffic scenarios. We repeat each simulation 5 times. Across
all scenarios, DIPM performs better than the 3 practical so-
lutions, namely AR*, EBkSP, and SSP. Compared to these
algorithms, the average travel times with DIPM are 19.2%,
9.15%, and 5.39% shorter, respectively. While the average travel
time increases with the number of vehicles (i.e., the traffic slows
down), the performance advantage of DIPM remains stable. For
example, compared to SSP, the average travel time with DIPM is
shorter by 19.41%, 18.9% and 19.29% for 1000 vehicles, 1500
vehicles, and 2000 vehicles, respectively.

Furthermore, based on [25], we added the performance of
“Dynamic LET” in Fig. 8 as an intuitive baseline, which is shown
as a line in the figure. “Dynamic LET” performs path planning
based on Least Expected Time in each time slot in a greedy way.
The simulation results show that the SSP’s average traveling
time bar is above the baseline because SSP does not provide
rerouting in the following time slot. The AR* and EBkSP are
below the baseline because the rerouting of AR* and EBkSP
considers the influence of vehicles’ path choices on the future
traffic conditions. As explained above, DIPM performs best and
it is substantially better than Dynamic LET. Furthermore, the
line named theoretical DIPM shows the theoretical objective
values. The difference between the theoretically-calculated aver-
age travel time and the simulated average travel time is less than
1%. The error is caused by two factors: the error of parameter tte
estimation, and a minor delay at vehicles to receive the optimal
results.

We also notice that DTA performs slightly better than DIPM
(by at most 2.5%). This is because DTA aims to achieve user
equilibrium, with which shortening the travel time is the only
objective. DIPM, on the other hand, aims to achieve system equi-
librium and reduce both the travel time and traffic imbalance.
Furthermore, as shown in Section VI-B, DIPM can work well in
real-time. DTA, on the other hand, cannot, due to its very high
computational complexity coupled with high traffic dynamics
and imperfect traffic knowledge [12].

To investigate how travel times are affected by traffic conges-
tion, we have selected three OD pairs with a reasonable large
number of vehicles (at least 40 vehicles each) and examined the
travel times of these vehicles. We show the travel times in Fig. 9,
one sub-figure for each OD pair. We sort the vehicles based on
their departure times, and use their ranks as their IDs in the
figure, with vehicles departing earlier having smaller IDs. At the
beginning of the simulation, there are no vehicles on the road
network; then, vehicles enter and depart the network gradually.
The first vehicles to enter the network experience lighter traffic.

As shown in Fig. 9, travel times increase for all algorithms
when traffic becomes heavy. The travel times are the longest with
SSP, because SSP cannot reroute vehicles to avoid congestion.
EBkSP, AR*, and DTA can perform better than DIPM when
traffic is light. However, their advantages cannot sustain when
traffic becomes heavy; for vehicles with large IDs, their travel
times are the lowest with DIPM. The reason is that these algo-
rithms give more weight to shortening paths, instead of balancing
traffic load in the network. When traffic is light and congestion
is unlikely, they achieve better performance by making vehicles
traveling shorter distances. But, when traffic is heavy, having
vehicles moving along their shortest paths increases the chance
of traffic congestion, and thus increases the travel times. DIPM,
on the other hand, reduces traffic imbalance and works best for
scenarios with medium to high congestion. These results can
inform a real-life system to decide when to use DIPM.

Furthermore, we analyzed the number of reroutings produced
by each algorithm. This is an important parameter because the
drivers may not use the system if too they have to go through too
many reroutings. Table V shows the mean value and standard
deviation of the number of reroutings for all vehicles. SSP does
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Fig. 9. Effect of congestion for vehicles with the same OD pairs. (a) Travel times for 40 cars with OD pair #1. (b) Travel times for 45 cars with OD pair #2.
(c) Travel times for 50 cars with OD pair #3.

TABLE V
NUMBER OF REROUTINGS FOR ALL VEHICLES

Fig. 10. Fairness comparison through travel time standard deviation.

not provide rerouting, so it is not shown in the table. The results
show that DIPM performs the best, while DTA has the most
reroutings. Since the number of reroutings is relatively low, we
believe that DIPM can be acceptable in practice.

D. Fairness Comparison

As argued in Section I, driver fairness is very important for
widespread system adoption. Fig. 10 shows a fairness compar-
ison between DIPM and the other 4 algorithms. The metric
used in this comparison is the standard deviation of the travel
times for vehicles with the same OD pair (but different departure
times). The results demonstrate that the standard deviation is the
lowest for DIPM. This means that DIPM is fairer than the other
algorithms: vehicles with the same OD pair have similar travel
times. In addition to fairness, the results also emphasize that the
drivers can expect predictable/stable travel times with DIPM.
These benefits come from the combined objectives of DIPM of
reducing both the travel times and the traffic imbalance in the
network.

Aiming to analyze the traffic load balance quantitatively,
Fig. 11 shows the average traffic load ratio in each time slot.
The traffic load ratio is defined as Ni

ci
, where Ni denotes the

number of vehicles on road segment ri in this time slot and ci is

Fig. 11. Traffic load ratio in different time slots.

this road segment’s capacity. Only segments that have vehicles
are included in the the mean value’s calculation. The higher
the ratio is, the heavier the traffic load is in this time slot. The
figure shows that the performances of traffic load ratio as SSP
> EBkSP > AR* > DTA > DIPM. Compared with the other
four algorithms, DIPM’s traffic load ratio ranges from 0.6 to
0.7 in most time slots. According to the standard deviation, the
traffic load is the most stable in DIPM across all time slots,
which means that DIPM’s traffic load balance is better than
the load balance obtained by the other algorithms. The final
question that we address in this evaluation is: what is the cost of
fairness in terms of increased travel time for drivers when com-
pared to DTA, which provides the optimal driver travel times?
We have already seen in Section VI-C that the average travel
time of DIPM is just slightly higher than that of DTA. Now, we
compare the travel times for individual drivers between these
two algorithms.

Specifically, we want to find out how many drivers benefit
from DIPM and use less time to reach their destinations, and
how many vehicles suffer longer travel times. For this purpose,
we show the CDF of the relative travel times in Fig. 12. The
relative travel time for a driver is the ratio between the travel
time with DIPM and the travel time with DTA. Thus, a relative
travel time below 1 means that the vehicle uses less time to reach
the destination with DIPM.

Fig. 12 shows that about 70% of the vehicles have smaller
travel times with DIPM than they do with DTA. This indicates
that, compared to DTA, although DIPM cannot shorten the
average travel time, it can shorten the travel times of most
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Fig. 12. CDF of relative travel time between DIPM and DTA.

vehicles. Another 30% of the vehicles have larger travel times
with DIPM, but only a very small percentage (<3%) have
relative travel times larger than 1.1, and the relative travel times
of all vehicles are lower than 1.2. This is the cost of fairness.
Most of these drivers are altruistic and choose to follow the
alternative routes suggested by DIPM. This indicates that DIPM
can achieve fairness for all drivers, better travel times for most
drivers, and effectively limits the increase on travel times for
altruistic drivers. Thus, DIPM can be a practical solution for
traffic optimization.

VII. CONCLUSION

This paper has proposed a system-wide traffic optimization
model that minimizes the sum of the total travel time and a time
representation of the effects of traffic load imbalance in the road
network. We proposed an analytic formulation for this optimiza-
tion and an algorithm, DIPM, that solves the optimization. The
experimental results have demonstrated that DIPM outperforms
existing practical algorithms in terms of travel time. Further-
more, its travel time benefits become more apparent during
traffic congestion, when most existing solutions do not perform
well. DIPM also improves the driver fairness by providing
similar travel times for drivers with the same OD pairs. Finally,
our results show that DIPM can provide results in real-time. Its
fairness and real-time features make DIPM practical for real-life
traffic navigators. As future work, to ensure the scalability of our
system, we will consider multiple cooperative servers. Then, we
will study how to divide the road network among these servers
and how to execute our algorithm in this distributed setting.

APPENDIX A
PROOF OF THEOREM 1 ON SOLUTION FEASIBILITY

Based on [17], an inequality constrained minimization model
has a feasible solution if the model satisfies two requirements:
1) the objective and inequality constraints are twice continu-
ously differentiable convex functions; and 2) For the matrix
in the equality constraint A, A ∈ Ry×n, its rank should satisfy
rankA = y < n.

In our optimization model, as described in Section V, all the
functions in Eq. (14) take Ni(T ) as their variable after certain
formula transformations. The objective function, tteim(T ) +

αi(T ) ·Bi
m(T ) + βi

m(T ) · Ei
m(T ), can be transformed into

f0(Ni(T )) =
γ1Li

vlegi (T )

[
1 + k1

(
Ni(T )

ci

)k2
]

± Li

vlegi (T )

[
1 + k3

(
Ni(T )−N thr

i (T )

ci

)k4
]
.

(24)

In equation (24), γ1 is a constant ratio; the positive or negative
value of the second term depends on the value of Ni(T ). The
twice differentiation of the function is continuous and convex:

∇2f0(Ni(T )) =
γ1Lik1k2(k2 − 1)

vlegi (T ) · (ci)2

(
Ni(T )

ci

)k2

± k3k4Li(k4 − 1)

vlegi (T ) · (ci)2

(
Ni(T )−N thr

i (T )

ci

)k4

.

(25)

Among the inequality constraints, the first inequality con-
straint, Eq. (2), can be simplified into f1(Ni(T )) = γ2Ni(T ),
∀i ≤ p, utilizing the relationship described in Eq. (1). Since γ2

is a ratio constant, ∇f1(Ni(T )) = γ2, and ∇2f1(Ni(T )) = 0.
Thus, the first inequality constraint also satisfies the first
requirement.

The second inequality constraint described in Eq. (7) can
be divided into two inequality functions with Ni(T ) as their
variables, denoted f2,1 and f2,2. Here, f2,1 is the lower bound
and f2,2 is the upper bound. Since the value of second constraint
is between Ni(T )

2 andNi(T ), both of f2,1 and f2,2 are linear func-
tions. Specifically, ∇f2,1(Ni(T )) = − 1

2 , ∇2f2,1(Ni(T )) = 0,
∇f2,2(Ni(T )) = 1, and ∇2f2,2(Ni(T )) = 0. Thus, the second
inequality constraint satisfies the first requirement.

The last inequality constraint is described in Eq. (8), i.e.,
for ∀i ≤ p, f3(Ni(T )) = Ei

m(T )− θtteoptm (T ) ≤ 0. The model
uses a ratio γ3 to describe the difference between tteim(T ) and
tteoptm (T ), i.e., tteoptm (T ) = γ3tte

i
m(T ), whereγ3 ≤ 1. Thus, the

last inequality constraint f3 can be rewritten as:

f3(Ni(T )) = [1 − γ3(1 + θ)]tteim(T )

= [1 − γ3(1 + θ)]
Li

vlegi (T )

[
1 + k1

(
Ni(T )

ci

)k2
]
.

(26)

The twice differentiation of f3 shown below is continuous and
convex. Thus, it also satisfies the first requirement.

∇2f3(Ni(T )) = [1 − γ3(1 + θ)]
Lik1k2(k2 − 1)

(ci)2vlegi (T )

(
Ni(T )

ci

)k2

.

(27)

The matrix of the equality constraint in the proposed model is
N = {N1(T ), . . . , Ni(T ), . . . Np(T )}T with a rank of 1. Thus,
rankN = 1 < p, where p denotes the number of road segments.
This means that the matrix satisfies the second requirement.

To summarize, the optimization model satisfies both require-
ments. Thus, it has a feasible solution, and the optimal result is
attained.
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APPENDIX B
PROOF OF THEOREM 2 ON DIPM CONVERGENCE

Appendix A has proven that f0(x), f1(x), f2(x), and f3(x)
are continuous twice differentiable functions.

For Eq. (19), assuming x∗(t) is the optimal result of x, when
x = x∗(t), there exists a w that satisfies the KKT conditions:

t∇f0(x) +

3∑

a=1

−1
fa(x)

∇fa(x) +ATw = 0, Ax = b. (28)

Eq. (28) can be considered as a Lagrange function of Eq. 19.
It reaches its minimum value when x = x∗(t). The function can
be further rewritten as:

L [x, ζ∗a(t), ν
∗
a(t)] = f0(x) +

3∑

a=1

ζ∗a(t)fa(x) + ν∗a(t)(Ax− b)

(29)
In Eq. (29), L [x, ζ∗a(t), ν

∗
a(t)] is the Lagrange function;

ζ∗a(t) =
1

−tfa(x)
; and ν∗a(t) = w/t. The function reflects the

approximation of the original model described in Eq. (14). Thus,
the original optimal result opt∗ is greater than the optimal result
of our method, i.e., the minimal value of Lagrange function
f0(x

∗(t)):

opt∗ ≥ L [x∗(t), ζ∗a(t), ν
∗
a(t)]

= f0(x
∗(t)) +

3∑

a=1

(ζ∗a(t)fa(x
∗(t))) + ν∗a(t)(Ax

∗(t)− b)

= f0(x
∗(t)) +

3∑

a=1

(
fa(x

∗(t))
−tfa(x∗(t))

)
+ w/t(Ax− b)

= f0(x
∗(t)) +

3∑

a=1

(
1
−t

)
. (30)

Based on Eq. (30), f0(x
∗(t)) ≤ opt∗ + 3

t . This indicates that
the optimal result of our method f0(x

∗(t)) will approach the
original optimal result opt∗ when t → ∞. Therefore, DIPM
converges.

APPENDIX C
PROOF OF THEOREM 3 ON DIPM COMPUTATION COMPLEXITY

The algorithm includes four steps in each time slot: 1) load the
traffic data of the current time slot; 2) determine optimal routes
and altruistic routes for all vehicles; 3) calculate an optimal
altruistic ratio with DIPM; and 4) update the traffic data to be
used in the next time slot. Among these steps, the second and
third steps are the main parts, and determine the complexity of
the algorithm.

The second step is finished using an enhanced version of the
Yen’s algorithm [19]. The enhancement is to estimate travel
times more accurately by taking into consideration traffic den-
sity, and does not increase complexity. The complexity of Yen’s
algorithm depends on the shortest path algorithm used to com-
pute the spur paths. Let us assume that Dijkstra’s algorithm
is used. With a Fibonacci heap, the complexity of Dijkstra’s
algorithm can be reduced to O(p+N logN) [19], where N
is the number of road intersection and p is the number of

road segments. The Yen’s algorithm makes KN calls to the
Dijkstra’s algorithm when computing the spur paths, whereK is
the number of paths provided for vehicles, with a default value of
2 in our experiments. Thus, the complexity of the second step is
O(KN(p+N logN)). This shows that the complexity of step
2 is mainly determined by the number of the road intersections.

The complexity of step 3 is mainly determined by the number
of iterations. Based on the self-concordance of barrier func-
tion [20], the complexity of IPM algorithm is O(

√
n log(n

ε )),
where n is the number of inequality constraints in the model
(3 in our algorithm), ε is the default value of error.

The DIPM algorithm is called in each time slot to compute the
optimal rerouting for the set of OD pairs. s is cardinality of the
set of OD pairs for all drivers, where the origin for each driver
is considered its current segment. Thus, the complexity of step
3 is O(s+

√
n log(n

ε )).
The overall computational complexity of DIPM algorithm is

O(KN(p+N logN) + s+
√
n log(n

ε )), which is determined
by the size of road network and the number of OD pairs in each
time slot.

The DIPM complexity is reduced in two ways: (1) The barrier
function parameters’ calculation. DIPM need not calculate A in
every time slot. Although b is different from IPM, it still needs
calculation in the barrier function. Suppose that the number of
calculation parameters is � in IPM, therefore it will be �− 1 in
DIPM. In each time slot, DIPM has one less parameter (i.e., A)
calculation; the reduction will be (

√
n log(n

ε )). (2) The number
of time slots. Because DIPM decreases the time for parameters’
calculation, it may end the progress earlier than IPM. Let us
assume that the number of time slots DIPM decreases is Δz.
Therefore, comparing to IPM over all time slots, the reduction
of DIPM in complexity is Δz(

√
n log(n

ε )).
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