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Abstract—Expensive page table walks triggered by frequent
TLB misses have incurred major performance bottlenecks for
data-intensive workloads that are dominated by memory accesses
with weak locality. Since it is hard to reduce TLB misses
for such workloads, reducing page table walk overhead (i.e.,
the overhead of each TLB miss) is an increasingly important
direction for improving application performance. The direction
is more compelling for workloads running in virtual machines
(VMs). In virtualized environments, each TLB miss triggers a
two-dimensional page table walk, which has a significantly higher
overhead than that on native systems.

This paper presents HUGEGPT, a software approach to
reducing two-dimensional page table walk overhead in virtualized
environments. HUGEGPT ensures that page tables used in guest
systems are physically held in the huge pages formed in the host.
This brings two-fold benefits: 1) the number of steps walking
down the host page table is reduced; 2) the misses of page walk
caches incurred by accessing the leaf nodes on host page tables
can be eliminated. Extensive evaluation based on the prototype
implementation and diverse real-world applications shows that
HUGEGPT can efficiently reduce address translation overhead
and improve application performance in virtualized clouds.

Index Terms—Virtualization, Memory Management, Page Ta-
bles, Operating Systems, TLB

I. Introduction
TLB misses have become the major performance bottle-

neck for the workloads with big memory footprints [1]–[17].
Previous works [1], [18], [19] show that performance of big
memory workloads can be degraded by as much as 50% due
to the high overhead incurred by TLB misses. This problem
becomes more pronounced in clouds and may keep increasing
in future computer systems. In clouds, hardware supported
memory virtualization (i.e., nested paging such as Intel ex-
tended page tables [20] and AMD nested page tables [21])
enables two-dimensional page walk to resolve TLB misses.
This increases the TLB miss overhead by up to 6x [10], [19],
[20]. With the upcoming 5-level page tables [22], [23], this
increase is more than 8x.

Reducing the overhead incurred by TLB misses heavily
relies on the hardware designs in memory management units
(MMUs). Thus, existing research mostly concentrates on new
hardware designs, which reduce either the number of TLB
misses [1], [3], [6]–[8], [10], [11], [13], [18], [24]–[37] or the
overhead of each TLB miss [19], [38].

It usually takes a long time before new hardware designs
become available in real systems. Thus, to reduce address
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translation overhead on existing hardware, the mainstream
approach is to use huge pages (e.g., 2MB page) [3], [6], [13],
[15]–[17], [32]. A TLB entry buffering the address mapping
for a huge page has a much larger coverage than that for
a base page (4KB page) — with an entry for a huge page,
accessing any addresses within this huge page will not incur
TLB misses. With the larger coverage, TLB misses may be
significantly reduced and address translations are accelerated.

Though using huge pages proves to be very effective for the
data accesses with strong locality (e.g., accesses repeatedly
hitting the same huge page), it is usually considered to be
ineffective in accelerating the address translation for the ac-
cesses with weak locality. For example, huge pages can hardly
reduce TLB misses for random or quasi-random accesses (e.g.,
modern applications like graph computing) that seldom hit the
same huge page. For data with weak locality, using huge pages
is even considered to be harmful due to increased memory
fragmentation and false sharing [39], [40].

In this paper, we show that actually huge pages can be
used to effectively accelerate address translation for weak
locality data and the adverse effect is minimal. We achieve
this by using huge pages in a substantially different way from
conventional huge page approaches. We name our approach
HUGEGPT. While conventional approaches use huge pages to
reduce TLB misses, for the effectiveness on weak locality data,
HUGEGPT “exploits” a different capability of huge pages —
their capability to substantially reduce the overhead of the two-
dimensional page walk, i.e., the overhead of each TLB miss
in virtualized clouds. While conventional approaches use huge
pages to save data, HUGEGPT uses huge pages to save meta
data — the page tables used in the guest OS to manage the
memory of a VM. Thus, HUGEGPT does not incur the adverse
effects that are caused by conventional approaches through
saving weak locality data on huge pages.

Our insight is that most overhead in a two-dimensional page
walk is incurred by walking down the host page table to
resolve the entry addresses of the guest page table. This can
be illustrated using Figure 1 (a), which shows that a two-
dimensional page walk may incur as many as 24 memory
accesses. Among these memory accesses, 16 are incurred by
resolving the entry addresses of the guest page table, i.e., 1∼4
for resolving gL4 of the guest page table, 6∼9 for resolving
gL3, 11∼14 for gL2, and 16∼19 for gL1.

Based on our insight, to reduce the overhead of two-
dimensional page walk, the most effective method is to reduce



the overhead incurred by resolving the entry addresses of
the guest page table. We propose HUGEGPT as a software
approach to save guest page tables into host huge pages. This
can reduce this overhead in two ways, as shown by the steps
that are crossed out in Figure 1 (b). First, it eliminates most
page walk cache (PWC) misses. There is no need to buffer
crossed out steps in page walk caches. This not only eliminates
the PWC misses caused by these steps but also reduces the
pressure of PWCs on buffering other steps. Second, it reduces
the steps to walk down the host page table upon a PWC miss
at an earlier step. For example, upon a PWC miss at Step 12,
in Figure 1 (a) 3 steps (i.e., Step 12, Step 13, and Step 14)
are required to get the address of gL2; in Figure 1 (b), only
2 steps (i.e., Step 12 and Step 13) are required.

To realize HUGEGPT, our basic idea is to let guest OS
notify host OS only to store guest page tables on host
huge pages. In the default virtualized system, page faults for
allocating guest page table pages at the guest level need to trap
to the host level and allocate the host physical pages to back
the guest page table pages. Taking this opportunity, HUGEGPT
allocates host huge pages to back the guest page table pages.

To store guest page tables on host huge pages, the host
needs to allocate huge pages to back guest physical memory
regions that store guest page table data. There are two technical
challenges to achieving it.

The first challenge is how to filter out guest page table data
and store it on specific guest physical memory regions at the
guest level. The guest memory allocator does not distinguish
memory allocations for guest page table data and other ap-
plication/system data, such that guest page table pages are
mixed with other application/system data pages and randomly
scattered in the guest physical memory space. To address this
challenge, HUGEGPT modifies the guest memory subsystem
to filter out memory allocations for guest page table data and
allocate huge page sized guest physical memory regions to
store the guest page table data.

The second challenge is how to identify the guest physical
memory regions that store the guest page table data at the
host level. To back guest page tables with host huge pages,
the host needs to figure out the guest physical memory regions
that store guest page table data and create host huge pages to
back these regions. However, due to the semantic gap between
the guest and the host, the host memory allocator cannot figure
out the guest physical memory regions that are used to store
guest page table data. To address this challenge, HUGEGPT
marks all huge page sized guest physical memory regions that
store guest page table data, such that the host can form host
huge pages based on these guest physical memory regions
upon the first page faults on these regions.

The paper makes the following contributions. First, to our
best knowledge, this is the first work that studies how to
store guest page table data on host huge pages to accelerate
two-dimensional page walks in virtualized clouds. Second,
we have proposed HUGEGPT as an efficient system so-
lution that can effectively reduce page walk cache misses
and the steps to walk the two-dimensional page tables for
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Fig. 1: The proposed approach can substantially reduce page walk latency
of the two-dimensional page walks because the lower level page table
entries shaded in the figure are usually cached by TLB and page walk
caches. The proposed approach slightly changes the software, i.e., only
storing guest page table data on host huge pages.

workloads with weak memory access locality. Finally, we
have implemented HUGEGPT based on Linux/KVM, tested it
with diverse real-world applications and extensive experiments
comprehensively, and also compared HUGEGPT with related
systems. Our tests show HUGEGPT can greatly reduce two-
dimensional page walk overhead, resulting in up to 50%
application performance improvement compared to vanilla
Linux/KVM. HUGEGPT also performs better than related
systems (confirmed in §VI-D).

II. Background and Motivation
This section first introduces how the two-dimensional page

walk works (§II-A). Then, it explains why the two-dimensional
page walk is inefficient and experimentally confirms that the
inefficiency can greatly increase average page walk latency and
reduce application performance in virtualized clouds (§II-B).

A. Hardware Supported Memory Virtualization

In the native system, the page walker walks the page table to
translate the virtual address to the physical address upon a TLB
miss. The translation requires up to four memory references
for the 4-level x86 page table structure, which is used by most
modern architectures. In the virtualized system, the hardware
supported memory virtualization, i.e., nested paging such as
Intel extended page table (Intel EPT [20]) and AMD nested
page table (AMD NPT [21]), enables the two-dimensional
page translation.

Figure 1 (a) shows how the two-dimensional page translation
works. The two-dimensional page translation needs to walk
two page tables (the guest/host page table maintained by the
guest/host OS) to translate a guest virtual address (GVA) of
an application running in the guest level to its corresponding
host physical address (i.e., the real physical address) in the host
level. Specifically, the guest page table and the host page table
are first used to translate the guest virtual address (GVA) to the
guest physical address (GPA) in the guest level (Step 1-20). To



obtain the GPA of the GVA, the page walker needs to walk the
host page table to obtain the guest page table entries’ (gL4,
gL3, gL2, and gL1 in Figure 1 (a)) host physical addresses
(Step 1-4, 6-9, 11-14, and 16-19 in Figure 1 (a)). Finally, the
GPA of the GVA is translated to the final HPA by walking the
host page table (Step 21-24 in Figure 1 (a)). Since the guest
page table and the host page table are both 4-level page table
structures, the two-dimensional page translation requires up to
24 memory references [19], [41], [42].

As today’s data-intensive applications are pervasive and
usually need large memory space to hold their working set,
Intel releases the design of 5-level page table [23], which
significantly increases the addressable memory [22]. With such
5-level page table structure, a two-dimensional page translation
requires up to 35 memory references. This further exacerbates
the address translation overhead in virtualized clouds.

B. Inefficient Two Dimensional Page Walk

In modern systems architecture, TLB capacity cannot scale
at the same rate as memory capacity. TLB misses and address
translation overhead have become a major performance bot-
tleneck for workloads with weak memory access locality [1],
[4], [5], [43]. This problem becomes even more pronounced
in virtualization environments, as a TLB miss needs to walk
through two layers of page tables, and the cost can be 6x as
much as walking through one layer of page table in native
environments [10], [20], as introduced in §II-A.

Existing research proposals on reducing address translation
overhead mainly fall into two categories: reducing TLB misses
and their overhead for applications with strong locality [1],
[24], [25], and reducing page walk cache misses and their
overhead for applications with weak locality [38], [44], as
summarized in Table I. HUGEGPT falls into the second
category. In this category, existing works need to modify
hardware [19], [38], [42], [44]. For instance, FPT [38] flattens
the page table through merging adjacent layers of the page
table. For x86 4-level page table, it flattens the page global
directory and the page upper directory, as well as the page
middle directory and the page table entry, thereby translating
18 bits in a single memory access instead of the traditional 9
bits each in two memory accesses. It changes the page table
structure and the page table walker to implement the flattened
page tables. Commodity cloud servers are hard to integrate
the approaches that need to modify the hardware in the near
future. Therefore, we pursue a software solution that does not
need to modify hardware and incur high overhead.

To illustrate the problem, we designed and implemented two
micro-benchmarks. The first micro-benchmark shows almost
no memory access locality. The micro-benchmark randomly
accesses the memory with a total size of 50GB, 100GB,
and 200GB, respectively. The second micro-benchmark shows
weak spatial locality, a better locality than the first micro-
benchmark. It accesses each 4KB memory page once with the
same different working set sizes as those in the first micro-
benchmark. We follow the same approach in the previous
work [47] to generate workloads with weak memory access
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Fig. 2: Throughputs of native system, and HUGEGPT. Throughputs are
normalized to vanilla Linux/KVM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50GB
100GB

200GB

(a) Workload w/ weak memory access locality

N
or

m
al

iz
ed

 A
ve

ra
ge

P
ag

e 
W

al
k 

La
te

nc
y Native

HugeGPT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50GB
100GB

200GB

(b) Workload w/ no memory access locality

N
or

m
al

iz
ed

 A
ve

ra
ge

P
ag

e 
W

al
k 

La
te

nc
y Native

HugeGPT

Fig. 3: Average page walk latency of native system and HUGEGPT.
Average page walk latencies are normalized to vanilla Linux/KVM.

Workload
locality

High
level idea

Previous
works

Hardware
approaches

Software
approaches

Strong
locality Reducing TLB misses

ASAP [1],
POM-TLB [24],
CA-paging [45],

RMM [25]

Gemini [46],
Transparent

Huge Page [3], [32]

Weak
locality

Reducing page walk
cache (PWC) misses

FPT [38],
Compendia [44]

Our proposed
approach

(HUGEGPT)

TABLE I: A summary of related works based on the locality of workload
memory access patterns. Please note that transparent huge pages are
usually used to store application data on huge pages, so as to reduce
TLB misses and their overhead.

locality. To measure micro-benchmarks’ throughputs, we mea-
sure the memory accesses performed per second.

Figure 2 shows the throughputs of the two micro-
benchmarks when they are tested with native system, vanilla
Linux/KVM, and HUGEGPT, respectively. HUGEGPT offers
44% more throughput compared to vanilla Linux/KVM on
average. This shows the inefficiency of the two-dimensional
page walk used by vanilla Linux/KVM. Compared to the one-
level page walk used in the native environments, the ineffi-
ciency of two-dimensional page walk becomes even worse. To
further understand the inefficiency, we profile the average page
walk latency of the three systems. We show the test results
in Figure 3. Compared to vanilla Linux/KVM, HUGEGPT
reduces the average page walk latency by 41% for workload
with weak memory access locality and 14% for workload with
almost no memory access locality on average.

III. Main Idea and Technical Challenges
As explained and confirmed in §II, two-dimensional page

walk used by vanilla Linux/KVM incurs much longer average
page walk latency compared to the one-level page walk used



in native system. The reason is that vanilla Linux/KVM incurs
more page walk cache misses and steps to walk page tables for
workloads with weak memory access locality in comparison
to native system.

To reduce page walk cache misses and the number of
memory references incurred by two-dimensional page walk,
our main idea is to store the guest page table data on the host
huge page, such that the steps to walk two-dimensional page
tables and the page walk cache misses can be reduced. Since
guest page tables are stored on host huge pages, to obtain
the GPA of the guest page table entry, it only needs to walk
the 3-level host page table, improving the page walk cache
capability and shortening the 24 memory references in the
two dimensional page walk to 20 memory references in the
worst case, as shown in Figure 1 (b).

Intuitively, guest OS accesses application’s whole working
set and has worse locality compared to host OS that only
accesses the page table of the application. Therefore, rows gL4
and gL3 of the guest page table may be cached, as shown
in Figure 1; and columns nL4, nL3, and nL2 of the host
page table may be cached. This is also corroborated by the
previous work [38]. We shaded the cached page table entries
in Figure 1.

Empirically, we profile the average memory references in the
two dimensional page walk. We first get the total memory ref-
erences by collecting the last level cache misses (total ref ).
Then, we calculate the memory references of accessing appli-
cation data by using total working set size divided by page
size (data ref = total working set size/4KB). Next, we
remove memory references incurred by accessing application
data from the total memory references and get the total mem-
ory references incurred by page walks (total ref−data ref ).
Finally, we use total memory references incurred by page
walks divided by the total number of page walks and get the
memory references of each page walk (per pw mem ref =
(total ref −data ref)/num of pw). The test results show
that each page walk incurs about 5 memory references, which
are consistent with the memory references that are not shaded
in Figure 1.

With HUGEGPT, translating the GPA of the GVA to the
final HPA (Step 21-24 in Figure 1) still needs to walk the 4-
level host page table as shown in the last row of Figure 1. This
is because user application data is still stored on base pages
(4KB pages) to avoid the adverse effects caused by transparent
huge pages [48]–[51]. Since the size of the guest page table
data is much smaller than user application data size (around
200MB page table data for 100GB user application data), the
adverse effects of using huge pages are negligible.

Figures 2 and 3 confirm the effectiveness of the proposed
approach, i.e., HUGEGPT. Compared to vanilla Linux/KVM,
HUGEGPT offers up to 96% more throughput and 50%
lower average page walk latency. HUGEGPT provides more
performance improvement for workload with weak memory
access locality than it for the workload with no memory access
locality. This is because it is easier to cache root page table
entries (e.g., nL4, nL3, gL4, and gL3 as shown in Figure 1
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Fig. 4: HUGEGPT system overview. Key components are shaded in
orange.

(a)) for weak memory access locality workload compared
to no memory access locality workload, such that removing
the leaf page table entries can bring more benefits. However,
in the random memory access (no memory access locality),
upper-level page table entries may be poorly cached, so the
effectiveness of removing the leaf page table entries is reduced.

To realize the proposed approach, there are two main
technical challenges. To form host huge pages for storing guest
page table data, it needs to form host huge pages based on the
huge page sized guest physical memory regions that are used
to store guest page table data. The first technical challenge
is how to filter out guest page table data and store it on
specific guest physical memory regions. Memory allocations
of page table pages are mixed with other memory allocation
requests. Since we need to store guest page table pages on
host huge pages, we have to filter out memory allocations of
guest page table pages. The second technical challenge is how
to identify the guest physical memory regions that store guest
page table data at the host level. Due to the semantic gap
between the guest and the host, it is challenging to obtain the
guest information in the host.

IV. System Overview
This section gives a system overview of HUGEGPT. and

explain how HUGEGPT works in two phases.
Figure 4 shows the system architecture of HUGEGPT.

HUGEGPT includes three key components that are shaded in
orange. Page table allocation filter is used to filter out memory
allocations of page table pages. Page table memory allocator
is used to allocate page table pages onto the assigned huge
page sized guest physical memory regions. This is to ensure
guest page table can be stored on host huge pages. Huge pages
requester forms huge pages for the designated huge page sized
guest physical memory regions, such that the guest page table
pages on these huge page sized guest physical memory regions
can be backed by the host huge pages.

HUGEGPT works in two phases. In the first phase, a host
huge page is created upon the first page fault that is requested
from the memory allocation of guest page table page. The
memory allocations mixed with user application data pages,



page table pages, and others are generated ( 1 ). Memory
allocation requests of page table pages are filtered out by the
page table allocation filter ( 2 ). To allocate guest physical
pages to store guest page tables, the page table allocation
requests are sent to the page table memory allocator ( 3 ).
Then, page table memory allocator issues the page fault with
a reserved huge page sized guest memory region which was
assigned by the default guest memory allocator beforehand
( 4 and 5 ). At last, the huge pages requester sends madvise
request with MADV HUGEPAGE command to the default host
memory allocator to form a host huge page based on the
reserved huge page sized guest physical memory region ( 6 ).
When madvise is called with MADV HUGEPAGE command,
the system will directly allocate huge pages if the guest
physical memory region is aligned to huge pages.

In the second phase, as the huge page sized guest physical
memory region has been backed by the host huge page, the
following memory allocations of guest page table pages will be
stored on this reserved huge page sized guest physical memory
region. Specifically, page table memory allocator will not issue
page fault request to the host OS if the reserved huge page
sized guest physical memory region is not used up ( 4 ). As a
side effect, the VM exits caused by page faults are minimized.

V. Design Details
This section first introduces the initialization of HUGEGPT

upon the system starts. Then, it explains how guest page table
memory allocator and guest page table allocation filter work.
At last, it presents how host huge pages are created based on
the huge page sized guest physical memory regions.

A. System Initialization

The goal of the initialization is to setup HUGEGPT before
it is used. The initialization is conducted immediately after the
system starts. In the initialization, HUGEGPT guest page ta-
ble memory allocator first pre-allocates several (configurable)
huge page sized memory regions from the default guest
memory allocator. These reserved guest physical memory
regions are used to store guest page table data of applications
running in virtual machines. Please note that the size of the
reserved guest physical memory regions is small as 100GB
application data only needs around 200MB page table data.
Then, HUGEGPT guest page table memory allocator notifies
the guest physical addresses of these pre-allocated guest
physical memory regions to HUGEGPT huge pages requester
in the host level. Since the notification is not frequent, the
communication overhead between the guest and the host is
small (confirmed in §VI-E). This makes the host know of
the guest physical locations of these huge page sized guest
physical memory regions that are used to store guest page
table data, such that the host can later form huge pages based
on these huge page sized guest physical memory regions.

B. Guest Page Table Allocation

Guest page table allocation in HUGEGPT is designed to
filter out guest page table data and allocate guest page table

pages on the pre-allocated huge page sized guest physical
memory regions. To achieve the goal, we modified kernel
functions for allocating and freeing page table pages in the
guest OS (i.e., pte_alloc_one and free_pmds), such
that they will pass the page allocation and free requests to
HUGEGPT page table memory allocator. This will not only
filter out page allocations for page table data but also store
page table data on reserved huge page sized guest physical
memory regions. Since page table pages are allocated and
freed with dedicated kernel functions, our approach can make
sure that the HUGEGPT page table memory allocator is only
used to manage page table data. Upon the allocation requests
for page table pages, HUGEGPT page table memory allocator
returns free pages from the memory pool of the pre-allocated
huge page sized guest physical memory regions. After the page
table pages are allocated, the page table entries are updated.
This may trigger the first page fault on the huge page sized
guest physical memory region that stores the page table pages.
Upon the first page fault on the huge page sized guest physical
memory region, the host is notified to allocate the host physical
frame to back the huge page sized guest physical memory
region. When page table pages are freed, they are returned to
the HUGEGPT guest physical memory pool.

C. Host Huge Pages Allocation

HUGEGPT’s host huge pages allocation is designed to
create host huge pages based on the reserved huge page
sized guest physical memory regions that are used to store
guest page table data. After HUGEGPT initialization, host
huge page allocation component records the reserved guest
physical locations of the huge page sized guest physical
memory regions. Upon the first page fault of each huge page
sized guest physical memory region, host huge page allocation
component allocates huge page sized host physical memory
region to back huge page sized guest physical memory region,
such that host huge pages are formed. HUGEGPT realizes
it through leveraging the madvise mechanisms. Specifically,
using MADV HUGEPAGE command in madvise can form
huge pages with designated guest physical addresses. This can
minimize the modifications to both the guest and the host OS.

HUGEGPT re-executes the initialization process once the
memory pool of pre-allocated huge page sized guest physical
memory regions are run out of space. In addition, when
HUGEGPT fails to allocate host huge pages (e.g., severe mem-
ory fragmentation), HUGEGPT host huge pages allocation will
fallback to allocate 4KB base pages, in order to make systems
run correctly.

VI. Evaluation
We have implemented HUGEGPT prototype based on

Linux/KVM 5.15. We added and changed around 640 lines
of source code mainly in the page table allocation of the
kernel memory management subsystem. We added a new
kernel file (arch/x86/mm/hugegpt-guest.c) to imple-
ment the guest memory allocator (around 560 lines of source
code). For the host huge pages requester, we added around



Workload
Name Workload Description Working

Set Size
Sphinx Speech recognition like Apple Siri [52]. 30GB
Moses Real time translation like Google translate [53]. 25GB

Masstree In memory K/V store (50% GET, 50% SET) [54]. 25GB
Specjbb Industry-standard JAVA middleware benchmark [55]. 60GB
Shore Transactional database with TPCC [56]. 30GB
Redis Serve requests (random keys,50% SET,50% GET) [57]. 155GB

MemcachedServe requests (random keys,50% SET,50% GET) [58]. 95GB
Canneal Chip design optimizer [59]. 62GB
Graph500 Graph analysis. 123GB

GUPS Giga Updates Per Second benchmark [60]. 128GB
XSBench Monte Carlo neutron transport compute kernel [61]. 84GB
BTree Index lookup benchmark [4]. 125GB

TABLE II: Programs and workloads used to test HUGEGPT.

80 lines of code in arch/x86/kvm/x86.c to realize it.
HUGEGPT works at the VM/process granularity. The Page
Table Allocation Filter of HUGEGPT is used to identify dif-
ferent VMs/processes and decides whether HUGEGPT should
be enabled on each of them.

We have evaluated HUGEGPT extensively with a diverse
set of workloads and compared HUGEGPT to native systems
(without virtualization), vanilla Linux/KVM, Linux transpar-
ent huge page (Linux THP [32]) and Gemini [46]. The objec-
tive of the evaluation is four-fold: 1) to show that HUGEGPT
can improve throughput for throughput-oriented workloads
compared to vanilla Linux/KVM (§VI-B), 2) to show that
HUGEGPT can reduce mean and tail latency of latency-
sensitive workloads compared to vanilla Linux/KVM (§VI-C),
3) to compare HUGEGPT with related systems (§VI-D), and 4)
to evaluate applicability and overhead of HUGEGPT (§VI-E).

A. Experiment Settings

Our evaluation was conducted on a Hewlett Packard En-
terprise (HPE) ProLiant DL580 Gen10 server with four Intel
Xeon Gold 6138 processors, 256GB memory, and two 2TB
SSDs. Each processor has 20 cores. With Linux QEMU/KVM,
we built virtual machines (VMs), each VM with 40 virtual
CPUs (vCPUs) and 240GB memory. We set the number of
application threads equal to the number of vCPUs. Both host
OS and guest OS are Ubuntu Linux 20.04 with Linux kernel
5.15. We test HUGEGPT with a large and diverse set of
workloads generated by typical applications from different
domains (e.g., database server, key/value store, AI workload,
scientific applications, etc.), as summarized in Table II. We
profile these workloads using the Linux Perf tool to read
performance hardware counters. It shows that these workloads
all spend a significant part of execution time (>20%) on page
walks. Hence, these workloads are with weak memory access
locality. Two workloads (i.e., Swaptions and Raytrace) are
not TLB sensitive and page walk intensive. They are used to
test the overhead of HUGEGPT. In the experiments, each VM
encapsulates one workload.

We categorize the benchmarks into two types: throughput-
oriented benchmarks (e.g., GUPS, XSBench, and BTree)
and latency critical benchmarks (e.g., Sphinx, Moses, and
Masstree). We first measure the throughputs of throughput-
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Fig. 5: Throughputs of throughput-oriented workloads. Throughputs are
normalized to vanilla Linux/KVM.
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Fig. 6: Average page walk latencies of throughput-oriented workloads.
Average page walk latencies are normalized to vanilla Linux/KVM.

oriented workloads reported by these workloads. Then, we
collect average and tail latencies reported by the latency sensi-
tive workloads. Some workloads (e.g., Redis and Memcached

workloads in YCSB [62]) report both throughputs and la-
tencies, so we present both of them in the test results. The
performance measurements may vary significantly across dif-
ferent workloads. When we present them in figures, for clarity,
we normalize them against those of vanilla Linux/KVM, as
indicated in the figures.

B. Experiments with Throughput Oriented Workloads

Figure 5 shows the throughputs of throughput-oriented
workloads when three systems (i.e., native system, HUGEGPT,
and vanilla Linux/KVM) are tested with these workloads. On
average, HUGEGPT offers 10% more throughput compared to
vanilla Linux/KVM. With HUGEGPT, page walker does not
need to walk the leaf page table entries of the nested page table
while walking the two dimensional page tables, so HUGEGPT
reduces the page walk cache misses and performs better than
vanilla Linux/KVM. For the average throughput, native system
outperforms HUGEGPT by 68%. This is because TLB and
page walk caches may cache most page table entries in the
native system.

To further understand why HUGEGPT’s throughput is better
than vanilla Linux/KVM and worse than native system, we
profile the average page walk latency when the workload is
tested in different systems. We show the results in Figure 6.
As we expected, HUGEGPT reduces the average page walk
latency by 12% compared to vanilla Linux/KVM and increases
the average page walk latency by 92% compared to native



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Redis
Memcached

Specjbb

Masstree

Moses

Sphinx

Shore

N
or

m
al

iz
ed

A
ve

ra
ge

 L
at

en
cy

Native
HugeGPT

Fig. 7: Average latencies of latency sensitive workloads. Average latencies
are normalized to vanilla Linux/KVM.

system on average. This confirms HUGEGPT’s effectiveness
on improving application throughput by reducing the overhead
of two dimensional page walks in vanilla Linux/KVM.

Figure 5 also shows that HUGEGPT increases the through-
put by the largest percentage (16%) for the Memcached

workload and the smallest percentage (5%) for the BTree and
GUPS workloads. For the Memcached workload, it strides the
memory with weak memory access locality so more page table
entries may be cached by TLB and page walk caches compared
to random memory accesses. Therefore, reducing the leaf page
table entries of the nested page table in HUGEGPT shows
more performance improvement. This is consistent with the
performance observation in §II-B. Since GUPS and BTree

workloads conduct randomly memory accesses, HUGEGPT’s
performance improvement on these workloads is less. For
instance, GUPS is calculated by identifying the number of
memory locations that can be randomly updated in one second,
so it shows almost no memory access locality such that it may
be hard to cache lower level page table entries.

C. Experiments with Latency Sensitive Workloads

Figure 7 shows the average latencies of different systems
when they are tested with latency sensitive workloads. On
average, native system shows the lowest average latency as
most page table entries can be cached while walking the one
level page table. In the worst case, native system only incurs
four memory references. Relative to native system, HUGEGPT
increases the average latency by 16% on average. Compared to
vanilla Linux/KVM, HUGEGPT reduces the average latency
by 8% on average. This is because HUGEGPT reduces the
average page walk latency of the two dimensional page walks
by up to about 50% as explained in §II-B. HUGEGPT reduces
page walk cache misses and the number of memory references
in two dimensional page walks from 24 to 20 in the worst case.

To further pinpoint why HUGEGPT increases the average
latency compared to native system and reduces the average la-
tency compared to vanilla Linux/KVM, we profile the average
page walk latency when the latency sensitive workloads are
tested with the three systems. We show the profiling results in
Figure 10. On average, HUGEGPT increases the average page
walk latency by 62% compared to native system and decreases
the average page walk latency by 8% compared to vanilla
Linux/KVM. This is consistent with the average latency results
and also shows HUGEGPT’s effectiveness on reducing the
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Fig. 8: 95th percentile tail latencies of latency sensitive workloads. Tail
latencies are normalized to vanilla Linux/KVM.
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Fig. 9: 99th percentile tail latencies of latency sensitive workloads. Tail
latencies are normalized to vanilla Linux/KVM.
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Fig. 10: Average page walk latencies of latency sensitive workloads.
Average page walk latencies are normalized to vanilla Linux/KVM.

overhead of two dimensional page walks for latency sensitive
workloads in comparison to vanilla Linux/KVM.

Figure 8 and Figure 9 show the 95th percentile tail latencies
and the 99th percentile tail latencies, respectively, when the
latency sensitive workloads are tested with the three systems.
On average, HUGEGPT provides 8% lower 95th percentile
tail latency 8% lower 99th percentile tail latency compared
to vanilla Linux/KVM, and 32% higher 95th percentile tail
latency and 30% higher 99th percentile tail latency relative to
native system. The tail latency test results are consistent with
the average page walk latency of the three systems as shown
in Figure 10.

Figure 7, Figure 8, and Figure 9 also show that HUGEGPT
shows small performance advantage for some workloads (e.g.,
Moses and Masstree) and large performance advantage for
some other workloads (e.g., Specjbb and Sphinx). This is
because Specjbb and Sphinx show weak memory access
locality. HUGEGPT performs better on these workloads as
explained in §II-B. Memory access patterns in Moses and
Masstree workloads are more random than Specjbb and
Sphinx. HUGEGPT does not show good performance with
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Fig. 11: HUGEGPT’s throughput improvement compared to Linux
transparent huge page (THP) [32] when 4-level and 5-level page table
are used respectively. Throughputs are normalized to Linux THP.
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Fig. 12: HUGEGPT’s throughput improvement compared to Gemini [46]
when 4-level and 5-level page table are used respectively. Throughputs
are normalized to Gemini.

workloads with random memory access patterns as lower page
table entries may not be cached.

D. Comparisons with Related Systems

We compare HUGEGPT with Linux transparent huge page
(THP) and Gemini [46] on x86 4-level page table and 5-
level page table, respectively. To support 5-level page table
and compare these systems in a fair manner, we change our
platform to a DELL PowerEdge R750 server with two Intel
Xeon Gold 6346 processors (32 cores, 2046 TLB entries, and
36MiB last level CPU cache), 256GB of DRAM, and 2TB
SSD. With Linux QEMU/KVM, we built the virtual machine
with 32 vCPUs, and 240GB memory. Both host OS and guest
OS are Ubuntu Linux 20.04 with the same Linux 5.10 kernel
and software configuration, unless otherwise indicated.

Figure 11 and Figure 12 compare HUGEGPT’s throughput
with that for Linux transparent huge page (THP) and Gem-
ini [46], respectively, when 4-level page table and 5-level page
table are used. When the 4-level page table is used, HUGEGPT
outperforms THP by up to 6% and Gemini by up to 21%.
When the 5-level page table is used, HUGEGPT offers up to
15% and 20% more throughput, compared to THP and Gemini,
respectively. HUGEGPT shows better performance with the
5-level page table because the 5-level page table incurs more
page walk overhead. This gives HUGEGPT more potential to
obtain benefits. The comparison also confirms that HUGEGPT
can further improve the throughput of workloads with weak
memory access locality after THP or Gemini is used. As
introduced in §II-B, HUGEGPT is complementary to THP and
Gemini, as they mainly target workloads with strong memory
access locality, and HUGEGPT mainly optimizes workloads
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Fig. 13: Throughputs of throughput oriented workloads when they are
colocated on the same server. Throughputs are normalized to vanilla
Linux/KVM.
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Fig. 14: Average latencies of latency sensitive workloads when they are
colocated on the same server. Average latencies are normalized to vanilla
Linux/KVM.

with weak memory access locality.

E. Applicability and Overhead

To evaluate HUGEGPT’s applicability, we colocate two
virtual machines (VMs) on the server and test HUGEGPT’s
performance when multiple VMs are colocated on the same
server. We choose this test scenario as VMs colocation on
the same server is pervasive in clouds. We mainly test three
settings. In the first setting, two throughput oriented applica-
tions running in VMs are colocated on the same server. In the
second setting, two latency sensitive applications running in
VMs are colocated on the same server. In the last setting, six
throughput oriented applications running in VMs are colocated
on the same server.

Figure 13 shows throughputs of throughput-oriented work-
loads when HUGEGPT and vanilla Linux/KVM are tested
under the aforementioned first setting. Under this setting,
HUGEGPT outperforms vanilla Linux/KVM by 12% on aver-
age. This shows HUGEGPT can improve application perfor-
mance by reducing two dimensional page walk overhead when
multiple page walk intensive throughput-oriented applications
are collocated on the same server. These experiments also
show HUGEGPT’s effectiveness on multi-threaded applica-
tions, multiple processors, and multiple VMs consolidated on
the same server.

Figure 14, Figure 15, and Figure 16 show the average
latency, 95th percentile tail latency, and 99th percentile tail la-
tency, respectively, when HUGEGPT and vanilla Linux/KVM
are tested under the second setting. HUGEGPT decreases the
average latency by 11%, the 95th percentile tail latency by
12%, and the 99th percentile tail latency by 9% on average,
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Fig. 15: 95th percentile tail latencies of latency sensitive workloads when
they are colocated on the same server. Tail latencies are normalized to
vanilla Linux/KVM.
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Fig. 16: 99th percentile tail latencies of latency sensitive workloads when
they are colocated on the same server. Tail latencies are normalized to
vanilla Linux/KVM.
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Fig. 17: Throughputs of six throughput oriented workloads colocated on
the same server. We run two copies of each workload. Throughputs are
normalized to vanilla Linux/KVM.
in comparison to vanilla Linux/KVM. This shows HUGEGPT
can reduce average and tail latencies when latency sensitive
workloads are colocated on the same server.

Figure 17 shows HUGEGPT’s throughput when six work-
loads are colocated on the same server. We run two copies
of each workload (Canneal, GUPS, and BTree). Since copies
of the same workload have similar throughput, we plot the
average throughput for the copies of each workload. The VM
running each workload has 12 vCPUs and 40GB memory. The
working set size of each workload is kept around 35GB. This
prevents the total workload working set size from exceeding
the server’s memory capacity. On average, HUGEGPT outper-
forms vanilla Linux/KVM by 13%. This is consistent with the
test results when two workloads are consolidated on the same
server, as shown in Figure 13.

Figure 18 shows HUGEGPT’s throughput for different page
sizes. We run XSBench to test HUGEGPT’s throughput. We
choose 4KB, 2MB, and 1GB memory page sizes because
current x86 CPU only supports those page sizes. As the page
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Fig. 18: HUGEGPT’s throughputs with different memory page sizes.
Throughputs are normalized to vanilla Linux/KVM.
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Fig. 19: HUGEGPT’s overhead. Swaptions and Raytrace are page
walk non-intensive workloads. Throughputs are normalized to vanilla
Linux/KVM.
size increases from 4KB to 1GB, HUGEGPT’s throughput
improvement relative to vanilla Linux/KVM degrades from
15% to 4%. This is because huge pages (e.g., 1GB) can shorten
page table walk. For instance, the page table for 1GB huge
pages does not need the last two levels that are present in page
tables for 4KB pages. As a result, HUGEGPT cannot obtain
more benefits when the page size becomes very large. On the
other hand, 1GB huge pages are not widely used as they incur
large overhead such as memory fragmentation and CPU waste
for defragmentation [6].

To evaluate HUGEGPT’s overhead, we test the performance
of HUGEGPT and vanilla Linux/KVM with two page walk
non-intensive workloads, i.e., Swaptions and Raytrace. We
show the performance results in Figure 19. When the workload
is page walk non-intensive, there is almost no space for
HUGEGPT to improve application performance compared to
vanilla Linux/KVM, and the performance difference between
HUGEGPT and vanilla Linux/KVM shows HUGEGPT’s over-
head. Figure 19 shows that HUGEGPT does not introduce
much performance overhead (3% on average). HUGEGPT may
introduce overhead as it needs to identify guest page table
pages and allocate huge pages in the host OS.

VII. Discussion
Live Migration. HUGEGPT can support live migration and
restore from a snapshot. It needs the destination host OS to
conduct system initialization as described in §V-A.
Memory Consumption. HUGEGPT consumes negligible ex-
tra memory space to store page table data compared to vanilla
Linux/KVM. In our evaluation, for 100GB of application data,
vanilla Linux/KVM needs around 217MB of memory space to
store page table data, and HUGEGPT needs around 221MB.



In comparison to vanilla Linux/KVM, the extra memory
consumption of HUGEGPT is below 2%.
Memory Fragmentation. HUGEGPT relies on the vanilla
Linux mechanisms for memory defragmentation. To defrag-
ment 200MB of memory (100 2MB pages) in a highly frag-
mented environment, it needs less than 200ms. Memory can be
defragmented when HUGEGPT is in the system initialization
phase or in an asynchronous manner. This can further min-
imize performance interference to application performance,
when memory is heavily fragmented.

VIII. Related Works
Hardware-Assisted Approaches. Prefetched address trans-
lation [1] prefetches page table entries by creating direct
mappings from virtual addresses to corresponding entries. Flat
nested page table [63] leverages the direct mapping idea for
nested page walks. FPT [38], [44] flattens the page table
through merging the adjacent layers of the page table. POM-
TLB [24] uses part of the DRAM space as a very large
level-3 TLB to mitigate address translation overhead. Agile
Paging [18] mitigates two dimensional page walks overhead
by leveraging the nested paging and the shadow paging at the
same time. Gandhi et al. [64] apply direct segment [65] in
virtualized systems; and it requires large contiguous physical
memory space to hold application’s entire dataset. Elastic
cuckoo hashing [19], [42] extends and implements cuckoo
hashing [66] in virtualized environments. CA-paging [45]
mitigates the address translation overhead with software and
hardware codesign. Redundant memory mappings [25] enables
ranges of an arbitrary number of virtually and physically
contiguous pages to increase TLB reach and speedup ad-
dress translation. Midgard [26] proposes a new virtual cache
mechanism that maps virtual memory areas (VMAs) to a
single unified Midgard address space. Since each process
usually has a few frequently used VMAs, Midgard’s TLB
coverage is larger than traditional TLB. TLB coalescing [27]–
[29] increases TLB efficiency by exploiting the contiguity in
virtual-to-physical mappings and merging their TLB entries
into a single entry. Barr et al. [30] study different designs
of MMU caches and conclude that the most effective one
is translation cache (e.g., page walk caches). Hashed page
tables [31], [67] challenge this conclusion and propose to use
the hashing scheme to shorten the page walk latency.

Compared to above approaches, HUGEGPT is designed to
reduce page walk cache misses for workloads with weak
memory access locality. HUGEGPT only needs to slightly
change software and can be easily used in virtualized clouds.
Shadow Paging. Shadow paging [18], [68] is the software
approach to facilitate memory virtualization. It emulates the
guest page table to run the application and the host page table
to run the virtual machine. The page walker walks the shadow
page table (SPT) that merges the address mappings in the
guest page table and the host page table. Any update in the
guest page table (write protected) needs to trap (VM exits)
to the host and update the SPT, in order to keep consistency
between the emulated page tables and the SPT. The overhead

caused by the synchronization is large [69]. Hardware assisted
memory virtualization technology (nested paging) is proposed
to resolve the overhead.
Huge Pages. Many research proposals [3], [6], [13], [15]–[17],
[32] focus on optimizing huge page mechanisms to reduce
address translation overhead. Ingens [32] identifies several
issues in existing Linux huge page mechanisms and addresses
them correspondingly. HawkEye [6] further optimizes Ingens.
Illuminator [13] shows that unmovable pages (e.g., OS kernel
pages) can greatly increase memory fragmentation when huge
pages are used. To address this issue, it proposes to manage
movable, unmovable, and hybrid memory regions separately.
Navarro et al. [3] propose reservation-based huge page man-
agement, huge pages with very large sizes, and a novel
contiguity-aware page replacement algorithm to control mem-
ory fragmentation. Zhu et al. [14] comprehensively analyze
huge page mechanisms and propose Quicksilver to optimize
memory bloat and fragmentation problems. Temeraire [16]
allocates huge pages with different sizes based on appli-
cation memory requests to mitigate memory fragmentation.
Gemini [46] forms well aligned huge pages between guest OS
and host OS to improve TLB efficiency in virtualized clouds.

Existing huge page mechanisms may cause memory frag-
mentation [13]. Since HUGEGPT only stores guest page tables
on host huge pages and the size of guest page tables is very
small (200MB for 100GB application data), the adverse effect
is negligible. Yet, HUGEGPT can work with these approaches
to achieve better performance.

IX. Conclusion and Future Work
This paper presents HUGEGPT, an efficient system solution

to reduce page walk cache misses and the steps to walk the
nested page table in the two dimensional address translation.
HUGEGPT’s main idea is to store guest page table pages on
host huge pages. To realize HUGEGPT, it needs to overcome
several technical challenges, such as filtering out memory allo-
cations of guest page table pages and forming host huge pages
based on huge page sized guest physical memory regions
that store the guest page table data. The evaluation based
on diverse real-world applications shows that HUGEGPT can
efficiently reduce address translation overhead and achieve
better performance compared to vanilla Linux/KVM.

Nested virtualization has been widely used to achieve a vari-
ety of purposes, such as migrating multiple VMs together [70],
supporting legacy applications [71], as well as securing sys-
tems and applications [72], [73]. As future work, we plan to
study how to apply HUGEGPT in nested virtualization and
seek the adoption of HUGEGPT in systems and architectures
utilized in industry.
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