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a b s t r a c t 

Commonly, mobile cloud computing assumes that each mobile device of a user is paired with a user- 

controlled surrogate in the cloud to overcome resource limitations on mobiles. Our Avatar platform lever- 

ages this model to support efficient distributed computing over mobile devices. An avatar is a per-user, 

always-on software entity that resides in the cloud and acts as the surrogate of the mobile. Mobile-avatar 

pairs participate in distributed computing as a unified computing entity in such a way that the workload 

and the demand for resources on the mobiles remain low. This paper presents Moitree, the middleware 

of the Avatar platform, which provides a common programming and execution framework for mobile 

distributed apps. Moitree allows the components of a distributed app to execute seamlessly over a set 

of mobile-avatar pairs, with the provision of offloading computation and communication to the cloud. 

The programming framework has two key features: user collaborations are modeled using context-aware 

group semantics - groups are created dynamically based on context; data communication among group 

members is offloaded to the cloud through high-level communication channels. A prototype of Moitree, 

along with several apps, has been implemented and evaluated on Android devices and on a cloud running 

Android x86 avatars. 

© 2019 Elsevier Inc. All rights reserved. 
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. Introduction 

Execution and communication offloading from mobile devices

o their software surrogates in the cloud has proven to improve

pp response latency, reduce wireless communication overhead

nd energy consumption on mobiles, and improve the availability

f mobile apps ( Satyanarayanan et al., 2009; Chun et al., 2011;

uervo et al., 2010; Kosta et al., 2013; Zhang et al., 2014 ). These

urrogates can be instantiated as virtual machines (VMs), con-

ainers, or even processes. Microprocessor manufacturers have

ecently started providing shielded application execution over un-

rusted cloud platforms ( SGXenabled, 2019 ), thus offering privacy

uarantees that the surrogates are truly personal and protected

rom the cloud providers ( Baumann et al., 2014 ). Therefore, a

onverging model for mobile cloud computing assumes that each

obile device of a user is paired with a user-owned and controlled

urrogate in the cloud. The computation can be executed on the

obiles or in their surrogates in the cloud, based on performance

r privacy requirements. Let us note that such a model is in line
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ith new privacy laws, such as the European Union’s General

ata Protection Regulation (GDPR) ( Gdp, 2019 ), which allow users

ontrol over their personal data. 

Our Avatar platform ( Borcea et al., 2015 ) leverages this model

o support efficient mobile distributed computing apps executed

ver sets of mobile/surrogate pairs. Each mobile device is aug-

ented by an avatar, a per-user always-on software entity that

esides in the cloud and acts as the surrogate of the mobile device.

obile/avatar pairs participate in distributed computing as unified

omputing entities in such a way that the workload and the

emand for storage, bandwidth, and energy on the mobiles remain

ow. Apps supported by Avatar allow people to collaborate within

roups defined by friendship, common interests, geography, etc.

xamples of distributed apps include finding people of interest in

 crowd using face recognition techniques (e.g., a lost child), real-

ime dating based on learned facial preferences ( Neog et al., 2016 ),

nd mobile multi-player gaming. Other areas for applications are

obile health, public safety, vehicular traffic management, and

ollaborative sensing. 

This paper presents Moitree 1 , the middleware of the Avatar

latform. Moitree provides a set of APIs and libraries for
1 This article extends the work presented in the conference paper ( Khan et al., 

016 ) published in IEEE Mobile Cloud 2016 
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developing cloud-assisted mobile distributed apps, as well as run-

time support to execute these apps. Moitree focuses on manag-

ing the distributed computation, the communication, and the mo-

bile/avatar set that represents the group of users collaborating

within the distributed app. For other functionality, the apps can

use the programming support provided by the local OS. 

Programming apps over mobile/avatar pairs is different from

traditional distributed programming. The first difference is that

the end points in the computation are mobile/avatar pairs with

different capabilities - mobiles have multiple types of sensors

and user interaction capabilities; avatars have more powerful

computation, storage, “unlimited” energy, etc. Developers need

an intuitive and common programming interface to transparently

use these computing end points. Apps need to read sensor/user

inputs on the mobiles, but should offload most of the commu-

nication/computation to the avatars, without affecting negatively

the user experience. Moitree’s main novelty is that it allows the

components of a distributed app to execute seamlessly over a set

of mobile/avatar pairs representing a group of collaborative users,

with the provision of offloading computation and communication

to the cloud. 

The second difference with traditional distributed computing is

that the apps require user collaboration based on natural context,

such as location, time, social relationships, etc. Therefore, man-

aging the dynamic set of participating users (i.e., mobile/avatar

pairs) in real time is important. Moitree facilitates the collabo-

ration among participating users through two key features. First,

user collaborations are modeled using context-aware group se-

mantics; groups are created dynamically based on context and

are hierarchical. Moitree updates group membership based on

the current context of users (e.g., a group for “visitors of the

Statue of Liberty” changes dynamically over time). The group

hierarchy allows programmers to naturally organize users into

groups/subgroups and manage their collaborations within different

scopes. Second, data communication among group members is

offloaded to the cloud through high-level communication channels.

This avoids communication problems due to mobility and the dual

nature of a user end-point (i.e., mobile and/or avatar). In addition,

it can reduce the bandwidth and energy consumption on the

mobiles. 

We implemented a prototype of Moitree on Android devices

and an OpenStack-based cloud running Android x86 avatars. We

have developed two proof-of-concept apps in order to evaluate the

programming effort minimized by Moitree. One of the apps finds

a lost child at a crowded event by performing face recognition

on the photos taken by people attending the event; the other is

a dating app based on users’ preferences about partners’ faces.

Although both apps use face recognition to achieve their goals,

the work-flow and their use of Moitree API is different from

each other. The number of lines of code of Moitree-based app

implementations is significantly lower when compared to their

implementations done without Moitree. In addition, experimental

results demonstrate that Moitree helps these apps improve the

overall response time through the use of cloud support. We also

performed experiments with micro-benchmarks on top of our

prototype to evaluate the efficiency, scalability, and overhead of

the middleware. The results show that Moitree scales well with

a large number of concurrent API calls, while consuming small

amounts of resources (CPU, memory, and energy). 

To the best of our knowledge, Moitree is the first middleware

for distributed mobile cloud computing. To summarize, its main

contributions are: (1) Common app execution environment on

mobiles and avatars that allows seamless offloading of app com-

ponents; (2) High-level distributed programming model for mobile

cloud apps, which uses context-aware group-based abstractions

to manage user collaboration; and (3) Transparent management
f communication, including end-point mapping to mobiles or

vatars. 

Compared with our preliminary description of

oitree ( Khan et al., 2016 ), this paper presents the updated design

f Moitree, with a focus on the novel programming and system

hallenges and their solutions. In addition, it includes a new and

etailed app usage case to illustrate the main features of the mid-

leware. Furthermore, the paper describes the novel aspects of our

rototype, which include app execution, offloading, and scalability.

inally, the evaluation presents new results, e.g., offloading, stress

est, resource overhead, and benefits of reusing groups. 

The rest of the article is organized as follows. Section 2 presents

n overview of the Avatar platform and Moitree. Section 3 presents

he key ideas of the Moitree high-level programming model.

ection 4 presents the Moitree API and sample code snippets

f the API usage. The design of the Moitree middleware is dis-

ussed in Section 5 , and the implementation of the middleware

s presented in Section 6 . Section 7 validates the programming

odel with two proof-of-concept applications and shows macro

 micro-benchmark results for the middleware. Related work is

iscussed in Section 8 , and the paper concludes in Section 9 . 

. Overview 

.1. Background: Avatar platform 

In Avatar, a mobile user is represented by one mobile device

nd an associated “Avatar” hosted in the cloud. An avatar is a

er-user software entity which acts as a surrogate for the user’s

obile device. Avatars save energy on the mobiles and improve

he response time for many apps by executing certain tasks on be-

alf of the mobiles. Avatars are always available, even when their

ssociated mobile devices are offline because of poor network

onnectivity or simply turned off. Each avatar coordinates with its

obile device to synchronize data and schedule the computation

f apps on the avatar and/or mobile device. A mobile device does

ot interact directly with the avatars of other mobile users. All

ser-to-user communication is offloaded to the cloud (i.e., always

oes through the avatars) in order to reduce wireless bandwidth

sage at mobile devices. 

Although containers can be used to host avatars, our prototype

s implemented using virtual machines (Android x86) for flexibility

nd ease of prototyping. The OS and the runtime (Dalvik or ART)

re the same in avatars and mobiles. Thus, the same app or app

omponents (e.g., functions, threads, etc.) can run on both of them.

or each user, the platform maintains a mobile-avatar pair. When

 user installs an app running over the Avatar platform, the same

pp gets installed on both mobile and avatar. Users can install as

any Avatar apps as they want on their devices. Standard An-

roid apps can co-exist with Avatar apps on the mobiles without

onflicts. 

.2. Moitree motivation and challenges 

Programmers have to devote a substantial effort to develop

istributed applications over mobile-cloud platforms such as

vatar if they use standard programming frameworks (e.g., de-

eloping apps directly in Android). For example, they have to

rite code for discovering potential participants for a collaborative

pp, managing participating users, distributing the computation

nd data among users and mobile/avatar pairs, and managing

ommunication among the set of mobile-avatar pairs. All these

edious tasks are not directly related to the app logic. Therefore,

esigning a middleware that provides high-level abstractions and a

rogramming model for collaborating users will help programmers

o reduce the programming effort significantly. 
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Fig. 1. Execution of distributed apps facilitated by Moitree. 
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c  
Such a middleware has two types of challenges: program-

ing/API challenges and system challenges. The programming

hallenges are: (P1) How to provide a high level abstraction (i.e.,

iding low-level system details) of the distributed computation

odel provided by Avatar? (P2) How to model a collaboration

mong various participants? (P3) How to model the dynamic

ontext of a distributed computation (e.g., compute only on partic-

pants present at a specific location during a specific time range)?

P4) How to offload user-to-user communication to the cloud and

ow to design an API to facilitate easy data communication among

articipating users? 

In order to support such a high-level API, the middleware run-

ime system needs to overcome the following system challenges:

S1) How to run on heterogeneous resource constrained devices

e.g., smart phones, smart watches)? (S2) How to model and han-

le the expected asynchronous behavior of user-to-user communi-

ation? (S3) How to support applications that need fast/real-time

ata communication? (S4) How to maintain good scalability to

nsure the middleware remains responsive at high loads? 

.3. Moitree at a Glance 

While Avatar provides a specification for running mobile collab-

rative apps on a cloud-assisted distributed computing platform,

oitree provides an API set and a runtime system to develop

nd execute these apps. The API set is designed to addresses

he programming challenges (P1-P4) described in Section 2.2 . A

ontext-aware group abstraction models the set of collaborating

sers in a distributed computation. The API employs dynamic

roup membership to support context changes for the group par-

icipants. Several abstract communication channels are designed

o handle communication offloading and simplify data commu-

ication among participants. These communication channels are

riented toward group communication and abstract the low-level

etworking details. 

Moitree is also designed to overcome the system challenges

S1–S4) described in Section 2.2 . To increase responsiveness and

calability of the middleware, all the system components are

ept loosely-coupled. The middleware is designed as a Message-

riented Middleware (MOM)( Curry, 2004 ) which uses events and

essages between components to perform a system-wide task.

oth loosely-coupled and MOM design help the middleware to

upport heterogeneity and asynchronous behavior. Callback-based

ommunication is employed to cope with asynchronous behavior.

o make the middleware lightweight and data communication fast,

he middleware is designed to (i) use lightweight and efficient

ata structures for events/messages, (ii) reduce the time for data

erialization, (iii) reduce the amount of processing needed for

aking event/message routing decisions. 

Fig. 1 shows an overview of Moitree, where two users’ mobile-

vatar pairs are running a distributed app. The app uses the

oitree API for performing collaborative computation on top of
he Avatar platform. The middleware translates the API calls and

xecutes them on the platform. Instances of Moitree middleware

un on mobiles and avatars. Moitree also has a few cloud services,

hich facilitate the distributed execution environment. 

.4. CASINO: collaborative offloading framework 

Moitree aims at solving the programming and system chal-

enges to enable the development and execution of mobile-cloud

istributed apps. However, the execution environment of a

obile-cloud distributed app consists of multiple mobile devices

nd multiple avatars, and thus it is substantially more complex

han that of a conventional mobile app or a non-distributed

obile app with cloud assistance. Therefore, the combination of

ffloading tasks to the avatars and scheduling the tasks on a set of

obiles and avatars becomes a major challenge, particularly when

rying to minimize the overall app completion time. 

A few challenges that must be addressed include how to

esolve the dependencies between different components of code

i.e., tasks), how to schedule them in a way that can optimize the

otal completion time (i.e., when and where each task should be

xecuted), and how to orchestrate the execution of the scheduled

asks. 

To address these challenges, we have designed

ASINO ( Debnath et al., 2018 ) to collaboratively offload and

chedule the tasks in each mobile-cloud distributed app. CASINO

upplements and work synergistically with Moitree. How program-

ers can utilize CASINO’s API and how CASINO collaborates with

oitree are described in Section 5.3 . The evaluation of CASINO

nd the findings are described in Section 7.5 . 

. Programming model 

In a Moitree application, a set of users collaborate with each

ther to finish a global task. Each user willing to participate

n such a task installs the app; the installation results in app

nstances on both the user’s mobile and the user’s avatar. During

he collaboration, participating users may play different roles

nd need to communicate with each other. When developing a

oitree program, in addition to implementing the core operations

hat fulfill app-specific functionality (e.g., face recognition), pro-

rammers must effectively manage collaborations, such that core

perations can be orchestrated and conducted efficiently on sets

f mobile/avatar pairs of the participating users. Moitree provides

wo key concepts for a program to manage collaborations: user

ollaborations are modeled using group semantics - groups are

reated dynamically based on context and are hierarchical; data

ommunication among group members is offloaded to the cloud

hrough high-level communication channels. To explain these

oncepts, we start by introducing a few app examples. 

.1. App examples 

With Moitree’s dynamic group management and easy com-

unication mechanism, developers can build different types of

istributed apps in a simpler and more effective way. For example,

nding people of interest in a crowd can be very useful in certain

cenarios. But, this can be very challenging to implement in a dis-

ributed app without infrastructure support due to the difficulties

n organizing and coordinating the work done by the participating

sers. This section will present three apps that demand and

eceive very different capabilities from Moitree. 

.1.1. LostChild 

One app example is to find a lost child by checking if the

hild happens to appear in photos taken by nearby people. Using
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l  
the location and time associated with the photos in which the

child appears could help a parent locate the child or at least to

narrow down the area where the child is. The likelihood of finding

such photos is high in crowded/touristic places. The feasibility

of such an app is further demonstrated by real-life situations

in which police have caught criminals with the help of tourists’

photos ( News, 2019 ). 

Let us consider that Alice is visiting Times Square in New York

with her mother Mary, and she gets lost. Mary would immediately

use this app, called LostChild, to try to find Alice. We also assume

that many other people in Times Square have this app installed.

Specifically, Mary broadcasts a set of photos of Alice’s face through

the app, which are received by the LostChild app instances of

other visitors and are compared to faces extracted from photos

they have taken recently. If a match is found, the location and time

information of the photo is sent back to the LostChild instance

on Mary’s phone, where the information can be summarized

to form a trajectory of Alice’s movement on a map in order to

find her. 

The LostChild app can run only on mobile devices, only on

avatars, or on a set of mobile devices and avatars. For example,

the app runs on mobile devices when they have photos not

backed up to the cloud yet or when the users choose not to share

photos with the cloud due to privacy concerns. However, running

instances of the app on avatars and processing the photos there

can reduce the response time and the energy consumption of

mobile devices. More importantly, this can increase the chance

of finding matching photos in cases when mobile devices are not

online, but the photos have been synchronized with their associ-

ated avatars (i.e., the synchronization happens in the background

when wireless bandwidth and power are plentiful at mobiles).

Let us note that privacy-preserving techniques can be used to

store the photos in the cloud, as well as to perform face matching

computations ( Almalki et al., 2016 ). 

3.1.2. FaceDate 

FaceDate is another example to run face recognition and utilize

Moitree’s dynamic group management feature ( Neog et al., 2016 ).

With the app, each user uploads a few photos of herself as her

profile photos, and trains the app with some other photos of faces

she likes. Upon user request, FaceDate examines the photos of

the users currently located in the proximity of the requester, and

performs face matching in real-time to match the profile photos

with the photos liked by users. If a mutual match between the

requester and another user is found, these two users are notified

and given the option to start communication. 

This app uses the location of the requester as a context to find

nearby users and form a dynamic group. It then runs mutual face

recognition on the requester and other users in the proximity.

Although both LostChild and FaceDate use face recognition to find

people of interest, the pair-wise communication pattern used by

FaceDate makes it more challenging to build. 

3.1.3. Divert 

Divert ( Pan et al., 2017 ) is a distributed vehicular rerouting sys-

tem for congestion avoidance, which consists of instances of a mo-

bile app on the drivers’ smart phones and a server in the cloud for

app coordination. By diverting a number of drivers to new routes

(i.e., rerouting), it can avoid traffic congestion and save valuable

time for the drivers. DIVERT offloads a large part of the rerouting

computation at the vehicles (i.e., smart phones in the vehicles) to

improve driver privacy and overall system scalability. The vehicles

exchange messages with each other to make collaborative rerout-

ing decisions. The server is used just to determine an accurate

global view of the traffic and distribute it to individual vehicles. 
With Moitree, the problem can be modeled as follows. All cars

n a city form a global group, and cars on each road segment

orm a local, dynamic group. The cars in each local group compute

n average speed of that segment (in a distributed way). The

lobal group periodically collects these data from the local groups

nd creates an up-to-date global map of the traffic. This map is

epresented as a directed, weighted graph, where the weights are

he travel time for each segment, computed based on the reported

verage speeds on the segments. The global map is distributed to

ll vehicles, which then communicate within their local groups to

ake collaborative rerouting decisions. 

.2. Dynamic and hierarchical groups 

A context-aware group represents the fundamental unit of

omputation and communication for apps developed over Moitree.

uch a group is a set of users selected and organized based

n app-specified context properties (e.g., location, time, social

ontext, etc.). For example, in the LostChild app, a group will be

ormed with the users present in Times Square and surrounding

reas during the time Alice was lost. Operations performed by

he group members are similar (e.g., searching for Alice’s face in

he photos), and communication is conducted within the group

e.g., broadcasting Alice’s photos). Groups are app-specific, and

n app can create as many groups as it needs. Thus, a user can

e a member of multiple groups within the same app or across

ifferent apps at the same time. 

Members in a group may change dynamically due to context

hanges of participating users. The group concept and its dynamic

roup membership support in Moitree shield programmers from

andling context changes. Moitree selects and maintains group

embers automatically based on properties specified by the

rogrammers. For example, in LostChild, a group is formed for a

eographic region around Time Square and for a one hour time

nterval. The middleware will add and remove group members

ynamically based on the users entering or leaving the region

uring this time. 

Groups in the same app can form a hierarchical tree structure

ith the groups at lower levels being subgroups of the ones at

pper levels; the root is the group of all the participating users.

ubgroups are created within a group since there are tasks to be

nished collaboratively by only some of the users in the group.

or example, subgroups can be recursively created in divide-and-

onquer strategies when the problem space is partitioned, and

ach subgroup is in charge of the tasks in a partition. Specifically,

ary’s phone may be overwhelmed by a large number of re-

ponses from participants in LostChild. To avoid this performance

ottleneck, a more scalable design is to geographically partition

he task as well as participating users (i.e., assign a subgroup

or each sub-region). When each member in a subgroup finishes

xamining its photos taken in the region, it sends the matching

nformation to the leading member in the subgroup ( Section 4

efines the group leader concept), where the information is

ummarized and the summary is sent back to Mary. It’s worth

oting that the leading member can be chosen following different

olicies (e.g., based on resource condition, etc). Since summarizing

he information is comparatively less expensive than doing facial

ecognition, there is no significant overhead on the leading mem-

er. Subgroups may overlap since a visitor may appear in different

egions, but this does not affect the tree structure of the groups. 

.3. Communication channels 

A communication channel is created by Moitree to support

ollaboration between the members in a group. It provides high-

evel messaging support to simplify programming and leverages
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he avatars in the cloud to deliver messages so as to minimize

he resource usage on mobiles. Moitree supports four types of

ommunication channels: (i) broadcast for sending messages to

ll members of the group; (ii) scatterGather for sending messages

o all members of the group and then receiving answers from

ome group members as a function of their computation results;

iii) anycast for sending messages to a random member of the

roup; (iv) pointToPoint for sending messages to a specific member

f the group. The broadcast channel is unidirectional, and the other

hree are bidirectional. As an example, the LostChild app can use

he scatterGather channel to distribute the child’s photos and get

ack the result. 

Messages can be designated as persistent by the programmers.

ersistent messages are particularly useful for forwarding data to

he members joining the group after the group has been estab-

ished. For example, in LostChild, if Alice’s photos were broadcasted

sing persistent messages, persons who entered the Times Square

fter Mary broadcasted Alice’s photos could still obtain these

hotos. In Moitree, persistent messages are stored in the cloud

nd are distributed to new members when they join the group. 

. Moitree API 

The Moitree API is designed to be asynchronous and event-

riven. This design is compatible with the loosely-coupled,

istributed, and message-oriented middleware design. At the same

ime, since Android SDK and Java Swing GUI toolkit also follow

imilar design principles, the Moitree API helps maintain a familiar

rogramming style for Java/Android programmers. 

.1. API Overview 

As summarized in Table 1 , the API can be broadly divided into

hree categories: (1) creating and managing groups and group

ierarchies, (2) managing group membership, and (3) supporting

ommunication within each group. The API methods are orga-

ized and exposed to programmers using three main classes. The

vatar class provides methods for group creation and joining. The

vatarGroup class offers methods for group management (e.g.,

eave/delete the group, create subgroups) and group communica-

ion. The MembershipProperties class has methods for specifying

he group properties. 

To use the Moitree API, an app needs to first instantiate an

vatar object, which is a singleton representing the mobile-avatar

air. This object is used to invoke any subsequent Moitree API. To

et the instance of the Avatar object, the programmer needs to

all an API with two parameters: (i) the fully qualified name of

he app’s main class (e.g. “edu.njit.lostchild.MainActivity”), which

s used by the middleware to connect to the app instance; (ii)

he context object of the application (defined by Android), which

s used by the middleware for communication with other app

nstances. 

.2. Group creation and group hierarchy 

Group creation is done through the createGroup API, which

akes four parameters. The parent parameter specifies the par-

nt group and is used for forming the group hierarchy. The

rop parameter is an instance of the MembershipProperties class.

t specifies the context properties that must be satisfied by

roup members (i.e., region and time interval), as explained in

ection 4.3 . Some groups may need leaders to implement func-

ions such as consensus or scheduling among their members. If the

nableLeader parameter is set to true , then the user who creates

he group becomes the leader. If the leader leaves the group, the

iddleware selects a new leader. The method sendToLeader allows
ny user to send messages to the leader without knowing the ID

f the leader. This simplifies programming and improves execution

eliability. To run leader-specific functionality, an app instance

eeds to know whether it is the leader. This can be achieved by

alling the method getLeader . The grpLifetime parameter specifies

hat a group has to be deleted by the middleware in the absence

f any group communication for the grpLifetime duration. In this

ay, when a group is inactive, it allows Moitree to remove it and

e-allocate its resources. The app receives an exception when one

f its groups is removed. 

To respond to group creation and receive group information, a

rogram can register a callback function as shown below: 

When a group is created, the callback function is invoked in

he instances of the group members and an AvatarGroup object ‘g’

s pushed to each instance by the middleware. The AvatarGroup

bject is used to communicate with app instances belonging to

he group members. Different members in the group may receive

roup objects with different content, such as the ID and channel

nformation. When a new member is added to a group at a later

ime (i.e., dynamic group membership), the callback function is

lso invoked on the instance of this member. 

In group hierarchy, a user in a subgroup can get a reference to

he parent group using the getParent method or to the root group

sing getRoot . Similarly, a user in a group can receive references

o its subgroups (i.e., one level down in the hierarchy) using the

etChildGroups method. 

.3. Group membership 

In addition to the method that populates members in a group

utomatically based on the MembershipProperties specified at

roup creation, Moitree allows users to join a specific group by

alling the joinGroup method. For example, a new user is invited

o a multi-player mobile game and is provided the group ID and

he credentials; then the new user can invoke joinGroup to join

he group. A user can leave a group by calling removeFromGroup . 

.4. Group communication 

Moitree supports four types of communication channels, as

escribed in Section 3.3 . A channel is instantiated by Moitree upon

ts first invocation in the app. The communication on all channels

s asynchronous. Programs can send messages by calling the

orresponding API methods and receive responses later through

allback methods. Thus, each sending communication channel is

aired with a receiving callback method (except for broadcast,

hich is unidirectional). 

We use the scatterGather channel to illustrate how channels are

sed in apps. The scatterGather channel combines OneToMany and

anyToOne communication topologies. The initiator sends data to

ll group members, and then, based on their computations, some

roup members will send back results to the initiator. To send data

hrough a scatterGather channel, an app can invoke the following

ethod: group.scatterGather(data, true, MessageType.DATA); the data 

s of type byte[], and the message is marked as persistent (i.e., the

econd parameter is set to true ). The scatterGather API also allows

he app to deliver data through a particular channel identified

ith its channelID (refer to Table 1 ). To send back results, the API

an be called with results tagged with MessageType.RESULT . 

To receive data sent through the channel, a program needs to

mplement and register callbacks as follows: 
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Table 1 

Moitree API. 

Group Management API - Avatar and AvatarGroup Class 

Method Description 

createGroup (AvatarGroup parent, 

MembershipProperties prop, boolean 

enableLeader, double grpLifetime) 

Creates a group with members selected based on membership properties prop ; if enableLeader is true, the 

group has a special member with leader role. grpLifetime specifies how long the group should exist without 

receiving any messages from the members. 

changeParentGroup (AvatarGroup 

newParent) 

This method is used to re-organize the group tree. 

onCreateGroup (AvatarGroup grp) Callback method registered to Moitree for delivering newly created AvatarGroup object. Moitree pushes this 

group parameter to callbacks registered by initiator’s and participants’ apps. 

joinGroup (AvatarUser u, AvatarGroup g, 

Credential c) 

Joins an already existing group. The credential ensures that the user has appropriate permissions to join 

the group. Credentials are generated when a group is created and distributed to the members as part of 

group creation. 

removeFromGroup (AvatarUser u) Removes user u from a group. 

deleteGroup (Credential c) Deletes an existing group. Credentials are used to ensure that the callee has permission to delete the group. 

getMembers () Returns the list of group members. 

getLeader () Returns the group leader. 

getRoot () Returns a reference to the root of the group. 

getParent () Returns a reference to the parent of the group. 

getChildGroups () Returns the list of children groups of the group. 

Group Membership API - MembershipProperties Class 

Method Description 

setTimeBound (Time from, Time to) Used to set the time property for identifying users active in the given time interval (typically used in 

conjunction with the location property). 

setLocationBound (LatLng center, double 

radius) 

Used to specify a circular region where a user is/has been/will be (typically used in conjunction with the 

time property). 

setLocationBound (LatLngBounds 

rectRegion) 

Used to specify a rectangular region where a user is/has been/will be (typically used in conjunction with 

the time property). 

setSocialNetwork (SocialNetwork 

network, Activity a) 

Used to identify group members who are part of the user’s social network based on activities such as 

friendship, work, sports, etc. 

setList (List 〈 Users 〉 users) Used to add specific users to a group. 

Group Communication API - AvatarGroup Class 

Method Description 

setReadCallBack (ReadCallBack callBack) Registers callback methods for incoming messages. ReadCallBack is an interface with four callback methods 

corresponding to broadcast, anycast, scatter-gather, and point2point. 

broadcast (byte[] msg) Used to broadcast messages to a group. 

anycast (byte[] msg) Used to send a message to a random member of the group. 

scatterGather (ChannelID cid, byte[] msg) Used to broadcast messages to a group and get responses from group members back to the broadcaster. An 

app can use as many scatterGather channels as required by using different ChannelID for different channels 

pointToPoint (byte[] msg, AvatarUser to) Used for user-to-user communication. 

sendToLeader (byte[] msg) Used for sending a message to the group leader. 
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In addition to communication channels between group mem-

bers, Moitree provides a sync API for synchronizing data between

the mobile and the avatar of the same user. Developers can use

this API to add any specific directory for synchronization. For

example, the developer could invoke avatar.addSyncableDir(DIR)

to synchronize the directory ‘DIR’ on the storage of the mobile
evice and with the avatar. Once a file is created or modified in

he directory, the Sync Service of the middleware (to be intro-

uced in Section 5 ) starts to transfer the new file. Note that we

lso developed an advanced file system ( Paiker et al., 2017 ) for

chieving more sophisticated synchronization features on top of

vatar. 
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4

pp described in Section 3.1 , to illustrate how Moitree can significantly 

s

 use a dedicated avatar that works as the leader of the main group for 

t  city). This avatar does not need to be paired with any mobile device. 

U d segments of the city. The first car entering an empty road segment 

( eader. Any subsequent cars entering that segment become part of that 

g ts in a subgroup can leave the road segment quickly. In such a case, 

M bgroup associated with their new road segment. When a leader leaves 

a g subgroup members. 

ain avatar operates. First, it creates a group for the whole city (line 

7 2), which is invoked when the main avatar receives updates of the 

t in avatar uses these messages to update the global city map (line 10). 

P  the city (line 16). 

cle. The code segments prepare hierarchical group structures, manage 

c

ction. There are two types of onCreateGroup callbacks received by cars. 

O e main group (line 5). When a car enters a road segment, it tries to 

c ) and becomes the leader of that group. Moitree decides whether there 

i gment (lines 8–13). If there is, the createGroup request is ignored, and 

t r callback for this group is also configured in lines 16–21. The callback 

i ate the subgroup leader with their current average speed (line 19). 
.5. API usage example 

In this section, we use Divert, the traffic congestion avoidance a

implify distributed app development. 

Since this app needs a server in the cloud for coordination, we

he city (i.e., the group that contain all the current vehicles in the

nder the main group, there are subgroups representing each roa

i.e., without vehicular traffic) creates the group and becomes its l

roup. It is worth noting that both the leader and the participan

oitree removes them from that subgroup and adds them to the su

 subgroup, Moitree elects a new leader from among the remainin

The following pseudo-code demonstrates how the dedicated, m

). Then, it sets up the sendToLeader callback function (lines 8–1

ravel times for each road segment from subgroup leaders. The ma

eriodically, it broadcasts the up-to-date city map to all vehicles in

Next, we show the code segments that run at every user/vehi

ommunication, and compute new routes. 

The following pseudo-code shows the hierarchical group constru

ne is for the main group creation. Every car becomes part of th

reate a subgroup for that segment (with the main group as parent

s already an existing group with a leader for the corresponding se

he car is joined to the existing group by Moitree. The sendToLeade

s invoked at the subgroup leader when subgroup participants upd
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Fig. 2. Components of the Moitree Middleware. 

 report speeds to the subgroup leader (line 10) and how the leader 

his code is executed as long as the vehicles are still on the same road 

itree removes them from the subgroup and the current onCreateGroup 

he next road segment and Moitree joins it to that segment. 

group, sets up the callback functions for receiving the broadcast from 

erform rerouting (lines 5–6). For the sake of brevity, this pseudo-code 

nformation from the global map. In reality, there is one more step 

the subgroup in selecting the new path to avoid congesting nearby 
The next pseudo-code shows how the members of a subgroup

sends travel time updates to the main group leader (lines 5–7). T

segment (i.e., members of the same subgroup). If they are not, Mo

ends. A new onCreateGroup will be invoked once a vehicle enters t

The following pseudo-code, executed by all members of a sub

the main group leader (lines 2–8), compute the new paths and p

assumes that the new path is selected locally based only on i

(not shown) that includes coordination with other members of 

segments. 
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Fig. 3. App State Diagram. 
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. Moitree middleware design 

The design of the Moitree middleware has several important

bjectives, which are crucial for keeping the Avatar platform

sable and efficient. First, it must maintain a stable and seam-

ess mobile-avatar pair for each user. Second, the design must

ide low level details of the underlying system. Third, it must

ffectively translate high-level Moitree API calls to low level

nstructions (i.e., provide execution environment). Fourth, it must

anage provisioning for computation offloading. Finally, it must

lue all the participating entities together by taking care of the

ommunications among them. 

.1. Structure and components 

Moitree is designed as a Message-Oriented Middleware

MOM) ( Curry, 2004 ) to keep the system loosely coupled. With

his design, operations and system state changes are driven by

synchronous messages and events. 2 An RPC-based design is

ot selected since RPC uses blocking calls and different system

omponents are expected to be strongly coupled. 

As shown in Fig. 2 , the Moitree middleware runs on mobile-

vatar pairs. In each mobile-avatar pair, the mobile device runs

he Moitree Mobile Middleware (MMM), and the avatar runs the

oitree Avatar Middleware (MAM). The two components work

ollaboratively to efficiently handle events and messages, manage

ata synchronization, and route network communications, making

obile-avatar pairs a stable, efficient, and unified environment for

pps to run. Both MMM and MAM expose the same API for appli-

ations. The sub-components of MMM and MAM are introduced

elow. 

.2. App execution 

The API Support Library (ASL) is embedded in each app. It trans-

ates API calls to corresponding events/messages and then sends

hese events/messages to MMM or MAM, depending on where

he API calls are made. Since Moitree APIs are asynchronous and

ased on callbacks, ASL is also used to register and keep track of

allbacks. For example, when an app makes a createGroup() API

all from the mobile, the ASL translates it to an event named

RE AT E _ GROUP and sends it to the MMM. When a response to

he call arrives, ASL uses the registered callback to deliver the

esponse to the app. 

With the message-oriented middleware structure of Moitree,

he state changes in an app are driven by messages and events, as

llustrated in Fig. 3 . The state transitions are managed by ASL. 

When a user launches an Avatar app on her mobile, the app

nters its initial state – “Started”, which is equivalent to Android’s

nStart life-cycle state. Once the instance of the app on avatar gets

nitialized and callbacks are successfully registered on both the

obile device and the avatar, the app enters the “Initialized” state.

n this state, the app can react to events and messages. When the

pp receives and handles an “onCreateGroup” event through its

roup callback method, it becomes a participant in a distributed

omputation and enters a “Ready” state. In this state, an app

an participate in multiple computations (and thus its user is a

ember of multiple groups). All groups are maintained in separate

hreads with separate data structures for improved reliability and
solation. 

2 In a MOM design, the term message refers to both events and messages. How- 

ver, the paper uses events and messages to refer to two different types of mes- 

ages, with events mainly for delivering Moitree control information or commands 

e.g., creating a group or deleting a group member) and messages mainly for deliv- 

ring app data (e.g., Alice’s photos in the LostChild app). 

O  

r  

P  

o

 

t  
The transition from the “Ready” state depends on whether the

pp runs at a group initiator or at a group participant. When group

nitiators start the first communication within the group, the app

nters the “Coordinating” state. Once it receives all the results

rom participants, it goes back to the “Ready” state. When an app

n “Ready” state at a participant receives data in its communication

hannel callbacks for the first time, it will enter the “Participat-

ng” state. After a participating app finishes the computation

nd sends the results back to the initiator, it goes back to the

Ready” state. Note that an app can have multiple active groups

nd those groups can be in “Coordinating” and “Participating”

tates. In this sense, “Coordinating” and “Participating” can be

alled group states rather than app states. 

Android can kill the app if the mobile is short of memory. In

hat case, the app enters the “Stopped” state. The middleware can

tart the app again if necessary. These state transitions are shown

ith dashed lines in the figure. 

.3. App offloading 

In the initial version of Moitree ( Khan et al., 2016 ), apps used

tatic partitioning to tell the middleware which parts are to be

xecuted in the mobile and the avatar, respectively. In the current

ersion of Moitree, we use the CASINO framework ( Debnath et al.,

018 ), introduced in Section 2.4 , to perform distributed computa-

ion offloading and scheduling. With this framework, programmers

an mark any function or class with the @Offloadable annotation.

uring the execution, the CASINO uses mobile devices’ profiling

nformation (e.g., CPU, network, battery status, etc.) to decide

hether an ‘offloadable’ component should be executed in the

obile or offloaded to the avatar. 

CASINO provides a simple, but customizable way for synchro-

izing computational states between mobile and avatar. This is

one by using distributed shared variables. Using CASINO’s anno-

ations, programmers can mark a variable with @SyncrhonizedField .

his variable will be available in both mobile and avatar. The value

s synchronized depending on how the programmer configures the

ynchronization policy, which can be either lazy or eager . The eager

ynchronization immediately makes the shared variable consistent

n both mobile and avatar, but this naturally incurs more overhead.

n the other hand, the lazy policy updates the value when it is

equested/read. This has less overhead, but the latency is higher.

rogrammers can configure the nature of synchronization based

n the use case and latency tolerance of the app. 

We designed a scheduling algorithm to execute offloadable

asks in a sequence so that the overall completion time of the
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Fig. 4. Group Management Service. 
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distributed computation is minimized. The offloading framework

interacts with Moitree through the Offloading Manager in Fig. 2 .

This middleware component provides dedicated communication

support to offload tasks as necessary. 

5.4. App communication and data synchronization 

The apps, including the embedded ASLs, run in different

processes from the mobile middleware/MMM or the avatar mid-

dleware/MAM. Therefore, inter-process communication (in the

form of messages and events) is needed between apps and the

middleware. The IPC manager (see Fig. 2 ) serves as the gateway

that takes care of this communication. 

The Event Manager (EM) and the Message Handler (MH) are

in charge of handling events and messages, respectively. Each

of them consists of a queue and a dispatcher. The queue is for

organizing events/messages. The dispatcher watches the queue

for incoming events/messages and dispatches them based on the

meta-data embedded in their headers. EM and MH are designed

following the observer pattern for a loosely coupled structure. 

The Network Manager (NM) (see Fig. 2 ) is in charge of inter-

device routing (i.e., route to an avatar or to a mobile device).

NM performs object serialization/deserialization as necessary. The

header fields used for inter-device routing are: source and chan-

nelType . Once the event/message is routed to the correct device,

EM and MH are in charge of intra-device routing using the header

fields appId, groupId, channelId . 

The Sync Manager (SM) (see Fig. 2 ) takes care of data synchro-

nization between the mobile and the avatar. Specifically, the apps

specify the directories containing the data sets that are needed on

both the mobile device and the avatar. These directories and files

are synchronized by our overlay file system ( Shan et al., 2016 ) that

allows Moitree apps to access files concurrently at mobiles and

avatars in a manner that is efficient, consistent, and transparent to

locations (i.e., mobile or avatar). 

5.5. Moitree cloud services 

Moitree uses three cloud services, as shown in Fig. 2 : Group

Management Service (GMS), Storage Service (SS), and Directory

Service (DS) . 

GMS is the most important, and it is designed to handle group

operations, events, and communication. It runs as a cloud service

on a group of dedicated servers, named GMS servers. As shown

in Fig. 4 , GMS consists of a group manager for maintaining the

hierarchical structures of groups and a membership manager for

maintaining the list of current members in each group. To support

communication within a group, for each group, there is an event

broker in charge of delivering events and a group communication

manager for maintaining communication channels and forwarding

messages to recipient avatars. The handling of events and mes-

sages is separated, since this helps preventing a large number of

messages from delaying a few important events. GMS gives higher

priority to event handling when allocating network resources

because events are associated with important group/system state

changes that must be reflected in real-time in apps. 

To avoid a potential bottleneck in the system, GMS is designed

to scale according to the load. When the number of groups

managed by a GMS instance reaches a threshold, a new GMS

instance is created. The middleware directs any new group cre-

ation requests to the new instance. All GMS instances can work

independent of each other. For example, if the cloud consists of

geographically isolated clusters, one GMS instance is instantiated

in each cluster for serving group related requests for that region.

If the load increases in any cluster afterward, multiple instances

can be instantiated to serve the new requests. 
There are alternative GMS designs that may help reducing

he workload on GMS servers. For example, event/message for-

arding can be offloaded to group leader avatars. However, this

equires that group and channel information be duplicated to

hese avatars, leading to privacy concerns and additional overhead

o maintain the information consistent. Another design is to save

arge messages in a shared key-value store. Instead of forwarding

omplete messages, the GMS servers just forward the keys of

he messages. When an avatar receives a message key, it reads

ut the message from the shared storage. However, this method

ncreases the workload of the storage service. Thus, we have not

dopted these designs. It is worth noting that privacy preserving

perations ( Borcea et al., 2016; Ghinita et al., 2007; Mokbel et al.,

006 ) can be used to hide users’ location and context information

rom the cloud providers. 

The Storage Service (SS) provides a shared and permanent stor-

ge space for the middleware and is implemented as a key-value

tore. SS maintains an app registry, which serves the purpose of

nding which app is installed on which user’s device and avatar.

ther information about users (e.g., the locations where they have

ppeared and the corresponding time) is also stored in SS to assist

he DS component. Finally, SS could be used for sharing large

essages among participants in an optimized way. Note that each

vatar has a virtual disk directly attached to it as its private and

rimary storage for the apps, which is not part of SS. 

The Directory Service (DS) is used by GMS to select appropriate

andidates for joining a group. It provides answers to queries such

s “which users have the LostChild app installed and were present

n Times Square between 5 PM and 6 PM today?”. The mobile

arriers can provide user location and time data to serve such

ueries. The directory service uses SS as its data repository. 

.6. Moitree app security model 

Moitree apps use the same security model enforced by the

ndroid platform. Moitree is designed to work at the application

evel, and it does not need any special system level permission.

oitree and all apps developed on top of it use the same permis-

ion model that regular Android apps use. In this way, Moitree

nsures that all Android-enforced security and permission models

re followed by Moitree apps. 

Users install Moitree apps from the Moitree App Store. Al-

hough this type of app side-loading is permitted in Android,

t skips the Google Play Store’s security checking (e.g., malware
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Fig. 5. End-to-end response time of LostChild app when major computation work- 

load is at the mobile and avatar, respectively. 
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hecking). There are two approaches Moitree can take to overcome

his limitation: (i) introducing a similar security check for malware

n Moitree App Store, (ii) distribute Moitree and its apps via

oogle Play Store. Either of them can be used in the future. 

. Moitree implementation 

We have implemented a prototype of Moitree based on Java

nd Android. Various implementation techniques are used in

ifferent com ponents. For exam ple, the IPC manager is imple-

ented based on the Binder mechanism of Android with each

vatar app working as a Binder client and the IPC manager as

 Binder service. Compared to alternative implementation tech-

iques, e.g., Android’s BroadcastReceiver mechanism, the Binder

echanism offers faster communication. The network manager

nd GMS use a TCP library named Kryonet (2019) in their im-

lementations. The Storage Service is implemented based on the

edis (2019) key-value database. In the rest of this section, we

ocus on implementation techniques that are general and can be

pplied to other programming languages and platforms. 

Moitree runs on devices with different capabilities (e.g., smart

atches, smart phones, tablets, and x86 virtual machines). The

vailable main memory and maximum heap size are very different

n such a wide variety of devices. For example, a Pixel smart

hone has 4 GB of memory, whereas the Samsung Gear Live smart

atch has only 512 MB of memory. Therefore, the footprint of

oitree has to be as small as possible, especially for supporting

evices with small RAM size. To achive this goal, we made the

ollowing implementation decisions. 

First, all the middleware components (except the networking

odule) are designed and implemented from scratch. We avoided

sing alternative open-source libraries due to their large foot-

rints. Second, there is only one middleware instance per device.

nly the API Support Library (ASL) is embedded in each app on

he device. Furthermore, ASL contains only simple and lightweight

arts (e.g., data definition, APIs, etc.), whereas the middleware

nstance contains the major functionalities. Finally, to further save

emory, we implemented a different lower-footprint networking

odule for the Moitree instances running on smart watches. 

. Performance evaluation 

To validate Moitree, we built and evaluated two apps: LostChild,

lready described in the paper, and FaceDate ( Neog et al., 2016 ),

hich will be briefly discussed in this section. We also evaluated

oitree with micro-benchmarks. The evaluation has four goals: (1)

erifying the effectiveness of the programming model in reducing

rogramming complexity and effort by implementing two apps;

2) validating the app performance benefits when using avatars vs.

sing only mobiles by showing the improvements in running-time

nd resource usage; (3) testing the efficiency of the API support

ibrary; and (4) measuring the scalability, efficiency, and overhead

f the middleware. 

.1. Experiment settings 

We deployed the Moitree prototype in our OpenStack-based

rivate cloud comprised of 8 servers with Intel Xeon E5-2620 CPU

nd 80GB of RAM. The avatars hosted in this cloud run Android

86 VMs, specifically Android Marshmallow version 6.0. Each

M is configured with 6 virtual CPU cores and 3 GB of RAM.

e deployed GMS as a cloud service on a few servers, with one

nstance on each server. The number of servers running GMS is

djusted dynamically with the workload, and GMS requests are

venly distributed to these servers for load balancing. We used

everal types of Andoid mobile devices: Nexus 5, Nexus 6, Nexus
X, and Moto X Pure. The API Support Library is distributed via

ur private maven repository; the apps import it with a single line

f code in their Android build script (gradle). 

.2. App performance and programming benefits 

We evaluated the performance of two apps built using Moitree:

ostChild and FaceDate ( Neog et al., 2016 ). FaceDate is a mobile,

ocation-based app that matches people based on their face pref-

rences in real-time. Each FaceDate user uploads their profile face

hoto and trains the app with photos of faces they like. Upon user

equest, FaceDate detects other users located in the proximity of

he requester and performs face matching in real-time. If a mutual

atch is found, the two users are notified and given the option to

tart communicating. 

.2.1. Running time improvement 

We first measured the response time of the LostChild app

n two scenarios: (1) the major computation workload in the

pp, including face detection and recognition, is handled on the

obiles, and (2) the major workload is executed at the avatars.

ote that, in both scenarios, mobile to mobile communication is

ediated by the Moitree services in the cloud. 

In the experiments, we used one mobile device as the initiator

f LostChild request and three other mobile devices as partici-

ants. Their avatars were instantiated on the same server. Each

articipant has a database of 47 images containing 60 faces stored

n her avatar (i.e., some photos contain more than one face). Each

articipant returns a result because all participants have photos

f the lost child. The training process for face recognition is done

efore the app starts. 

Fig. 5 shows the end-to-end response time from submitting the

nitial request until receiving the final results, as well as the time

pent on the major computation workload and the time spent

n network and middleware operations. The results demonstrate

hat avatars help reduce the end-to-end response time by 51%,

ompared to the scenario in which the mobiles handle the major

orkload. A substantial part of the improvement is achieved by

ffloading the major computation workload to the avatars. We

lso observe that the time spent on Moitree and networking is

educed by more than 40% after offloading the major computation

orkload to avatars. This is because the network communications

ssociated with the major computation workload move along with

he workload and are conducted in the cloud. 

We also varied the number of participants from 2–7, and varied

he number of servers used to host the participant avatars in

ostChild. It is worth noting that we wanted to study how the
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Fig. 6. End-to-end response time of LostChild app with an increasing number of 

participants. The curves marked with “single-serv” are obtained with all participant 

avatars running on the same server; and the curves marked with “multi-serv” are 

obtained with each participant avatar running on a different server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. End-to-end response time of FaceDate app with an increasing number of 

participants. 

Fig. 8. End-to-end response time for FaceDate app with an increasing number of 

queriers and one positive responder. 
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response time varies when multiple avatars are instantiated in the

same server and in multiple servers. Due to our cluster setup with

8 servers, we varied the number of participants from 2–7. Fig. 6

shows the response time when face detection and recognition

were executed on avatars. The curves marked with “single-serv”

are obtained with all participant avatars running on the same

server; and the curves marked with “multi-serv” are obtained with

each participant avatar running on a different server. Since the

initiator receives multiple responses, one from each participant,

the figure shows both the median response time and the longest

response time. In a real-life situation, most participants are not

expected to send responses. Therefore, the curves for the longest

response time represent the worst case scenarios. 

As the figure shows, the response times range generally be-

tween 450 ms and 700 ms, which are reasonable values. At the

same time, the application scales well with the number of partic-

ipants for this experiment. Increasing the number of participants

only slightly lengthens the median response times. However, it

has more impact on the longest response times. There are two

reasons. First, our current Moitree implementation sequential-

izes the communication among the members and adds a few of

milliseconds to every message transmission. Second, participant

avatars do not send responses back to the initiator at the same

time; for most requests, we noticed one or two straggler responses

with extra-long turn-around times. We are currently optimizing

the message delivery part of the middleware. 

We also notice that, as expected, running one avatar per

server reduces response times, especially when the number of

participants is high, because running all avatars on one server may

cause the avatars to compete for the computational and network

resources on the server. 

We have also done the same experiment with FaceDate . The

result is shown in Fig. 7 . The difference with the LostChild exper-

iment is that, in this case, each user has fewer photos (6 images

per user) to run face recognition on. As a result, the time needed

for face detection is significantly lower. However, it has one extra

hop of network communication between the mobile-avatar pair

(for FaceDate’s pair-wise matching), which is part of the app

design and cannot be further minimized. 

7.2.2. Benefits of reusing groups 

When multiple users initiate the creation of different groups

described by the same properties (e.g., location, time), Moitree

can verify if a group with the same properties already exists

and simply return a reference to this group. Thus, the overhead

associated with group creation and management is drastically
educed. This optimization is evaluated with the FaceDate app.

or this experiment, there is only one participant who responds

ositively and there are a varied number of initiators/queriers. The

articipant is a member of all the groups initiated by the queriers.

ig. 8 shows the average end-to-end latency for the queriers. The

esults for the “No Group Reuse” case show a significant increase

n latency for each addition of a querier because a new group is

reated for each new query. However, the latency for the “Group

euse” case is substantially lower. 

.2.3. Programming effort comparison 

We used the LostChild app to quantify the benefits of the

oitree programming model. The app can act as a good test for

oitree for two reasons. It represents typical mobile distributed

pps that may involve a large number of mobile users. At the

ame time, its implementation must deal with the common issues,

hich are faced in developing other mobile distributed apps, such

s, identifying and coordinating groups of participants. 

We implemented two version of the app, one with Java and

XTA ( Gong, 2001 ), and the other with Java and Moitree. JXTA is se-

ected to compare to Moitree for two reasons: (1) JXTA is designed

or peer-to-peer systems, in which peers are conceptually similar

o sets of autonomous avatar/mobile pairs, and (2) it also has

roup concepts, which are different from those used in Moitree. 

We compared the sizes of the source code of these two im-

lementations. In this comparison, we only counted the lines

ritten by our programmers. The code in other libraries (e.g.,

penCV, 2019 for face recognition and Kryonet, 2019 for network

ommunication) is not counted toward the effort to develop the

pp. The app implementations include mostly group management
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Fig. 9. IPC latency of BroadcastReceiver-based mechanism and Binder-based mechanism. 
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nd group communication features; the rest is done through

ibrary function invocations. 

The implementation with Moitree has 85 lines, whereas the

mplementation with JXTA has 178 lines. Moitree decreases LOC by

 factor of more than 2. Similarly, FaceDate implementation with

oitree has 109 lines, whereas the version without Moitree needs

31 lines. This is a promising result that illustrates how Moitree

an simplify the programming of mobile distributed apps. 

.3. Stress tests on key operations 

While Moitree shows good overall performance when tested

ith the two apps, we also wanted to understand if any of the

oitree components are potential performance bottlenecks when

he middleware is under heavy workload. To investigate this issue,

e tested Moitree with a few micro-benchmarks. The tests cover

he major operations in Moitree for handling the interactions

etween the participants in an app, including inter-process com-

unication, data serialization and de-serialization, and API calls. 

.3.1. IPC performance 

For every event/message communication, several IPC calls take

lace throughout the system (e.g., between ASL and the middle-

are). This can potentially be a major bottleneck for real-time

pps and apps that need a large amount of data communication.

hus, we tested the IPC performance in Moitree first. 

In the Moitree prototype implementation, we tried two

ndroid mechanisms for IPC. One is a lightweight Android mech-

nism named BroadcastReceiver (BR), which was used in an early

ersion of the prototype. The other is a stable and efficient IPC

echanism named Binder, which is used in the current prototype.

he experiments evaluated both IPC mechanisms to justify the use

f Binder in Moitree. 

We performed two different experiments using a test app, with

ne experiment testing latency and the other testing throughput.

pecifically, to test the latency of IPC communication, we used the

pp to send a data packet to the mobile/MMM component of the

iddleware. Once the data packet is received by the MMM, it is

ent back immediately. Using the round-trip latency, the app can

et the latency of one way IPC. Fig. 9 a shows the one way latency

or both the BR-based and Binder-based mechanisms when the

acket size is varied from 0.5 KB–500 KB. Generally, when the

acket size is small ( < 5 KB), the effect of meta-data is noticeable.

hus, the end-to-end latency does not increase significantly with

acket size. However, when the packet size keeps increasing,

he end-to-end latency starts to increase linearly, indicating that

he IPC mechanism in Moitree is scalable to data size variations.
he figure also shows that the IPC mechanism based on Binder

ncurs much lower latency than that using BroadcastReceiver. 

To test the throughput of IPC communication, we used the

pp to send a batch of packets with the same size (1 KB) to the

iddleware, one after the other, which were then bounced back

y the middleware. We varied the batch size from 1–100, and for

ach batch size, we measured the time from sending out the first

acket to receiving the last packet. Fig. 9 b shows that the time

ncreases linearly with the batch size, indicating that the cost of

oitree handling each packet does not increase, and Moitree is

apable to scale under heavy workload. 

.3.2. Serialization and deserialization performance 

Through its high level API, Moitree receives and returns high

evel objects (e.g., Java objects). When these objects are exchanged

hrough IPC and network communication, Moitree has to perform

erialization and deserialization. These operations can be a poten-

ial bottleneck, particularly when objects are frequently exchanged.

In our implementation, objects exchanged between different

oitree components are written using the Parcelable (2019) in-

erface for serialization/deserialization. For the objects exchanged

hrough network across different devices, we used the Kry serial-

zer (2019) in the Kryonet communication library. Both Parcelable

nd Kryo serializers are much faster than the standard Java

erializable interface ( Serialization, 2019 ). 

We used an app to test the performance of Moitree’s serial-

zation and deserialization. We ran an instance of the app on a

obile and another instance on an avatar. The instance on the

obile sends data packets of different sizes to the instance on

he avatar. We measured the serialization time in the Network

anager of the mobile middleware and the deserialization time

n the Network Manager of avatar middleware. Fig. 10 shows the

ime taken to serialize or deserialize each packet for packet size

aried from 50 bytes to 800 kilobytes. Even for a packet as large

s 800 KB, the serialization time is only a few milliseconds and

eserialization time is under 1 ms, suggesting that Moitree can

erform serialization/deserialization efficiently. 

.3.3. Performance of API support library 

To test the performance of Moitree’s handling of API calls, we

sed an app to issue a batch of API calls back-to-back from a

obile, and measured the end-to-end latencies of these calls. The

PIs called in each batch were randomly chosen, and the batch

ize was increased from 10 to 100. The processing of each API call

ay involve many steps. Starting from the app layer, messages

nd events are generated and passed through the software layers

n mobile and avatar as well as the GMS service layer before the

esults are returned. Thus, the experiment can assess the overall
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Fig. 10. Network serialization and deserialization delay. 

Fig. 11. Average end-to-end latency for concurrent API calls in Moitree (including 

network communication). 

Fig. 12. Average processing time for API calls in Moitree on mobile and avatar (no 

network communication). 
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performance exhibited by various components in the middleware

during the processing of the API calls. 

Fig. 11 shows the average latency for each batch size. The

average latency increases with batch sizes, since larger batches

incur more network communication. When the batch size is 100,

the average latency reaches 2.4 ms. Most of the time is spent on

network communication (i.e., queuing and data transferring). To

exclude the time on network communication, we instrumented the

middleware to measure the network communication time. Fig. 12

shows the time incurred only by the middleware components

without the part incurred by network communication. Processing

an API call takes approximately 320 μs, and the time does not

change much with batch sizes. The average time per API call is

computed for each batch. This demonstrates that Moitree can

efficiently handle API calls at a high speed. 
.4. Resource overhead incurred by Moitree 

We want to understand how much resource Moitree consumes

n mobile devices to ensure that Moitree does not affect user ex-

erience or other functionalities on mobile devices. We measured

he resource overhead of Moitree during all its different phases,

pecifically (1) how much CPU resource and energy is consumed

y launching and initializing the Moitree middleware, (2) after

oitree is initialized, how much memory resource, CPU resource,

nd energy Moitree middleware consumes, (3) when loading an

pp, whether using Moitree may introduce significant delay, and

4) during the exeucution of an app, how much memory, CPU, and

nergy Moitree middleware consumes. 

Resource Usage for Initializing Moitree. When Moitree is launched

n a mobile device, resources are needed to start various back-

round services in the mobile middleware instance. This incurs

ittle resource consumption, only 6% CPU usage and 0.16 mAh of

nergy. The energy consumption was measured using Qualcomm’s

repn profiler ( Tre, 2019 ) on a Nexus 5X device with a battery

apacity of 2700 mAh. 

Resource Usage for Maintaining Moitree Services. After Moitree

as been launched and initialized, memory is needed by the

ervices in the mobile middleware (MMM) to maintain the data

tructures. At the same time, the services must wake up period-

cally to check data synchronization and communication requests

nd to maintain the mobile-avatar pairing. The MMM compo-

ent consumes 22.60 MB of memory, which is very low when

omparing to the DRAM capacities in popular Android phones

1 GB–3 GB). The CPU usage is minimal (about 1%) without re-

uests from apps. As shown in Table 2 , the energy consumption

uring this phase is also negligible (5.5mJ/s, or 2.5-month of usage

o drain a fully charged battery). 

Application loading time. An app running over Moitree must reg-

ster with the IPC mechanism and initialize an Avatar object and

ther necessary data structures before it can call any Moitree API.

his may increase the time used for loading an app. To measure

he potential increase of loading time, we implemented an Android

est app in two ways. First, we implemented it into a standard

ndroid app without Moitree initialization, and measured the time

aken to fully load the app with Android ActivityManager’s log.

he time was mainly spent on loading standard Android support

ramework and initializing and making the user interface visible.

hen, we re-implemented the app with Moitree and measured the

oading time spent on Moitree initialization. 

As shown in Table 3 , initializing Android’s support framework

nd initializing user interface take 228.1ms and 41.9 s, respectively.

oitree-related initialization takes only 4.1 ms, which is less 2%

f total app loading time, indicating that using Moitree only

inimally affects the app loading time. 

App execution energy consumption. As shown in Table 2 , the

nergy consumed per average API call is very low. With a 2.3 mJ

nergy consumption for each call, a full battery charge allows one

nd a half million calls. When serving API calls, most energy is

onsumed on data transmission. As shown in Table 2 , Moitree

ntroduces a relatively high overhead (3.3x) on network commu-

ication when compared to using only plain TCP (0.5 mJ/KB with

oitree and 0.15 mJ/KB for plain TCP). This is mainly because

oitree uses the Kryonet (2019) communication library to simplify

rogramming at the cost of increased energy consumption. The

ther reason is that MMM supports high level data communication

hannels, which introduce overhead, and makes routing decisions,

hich incur additional energy consumption on tasks such as

ueuing, dispatching, and routing. 

Since conventional apps may also use Kryonet for data com-

unication, we wanted to know how much energy consumption

s actually incurred by Moitree. For this purpose, we developed
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Table 2 

Moitree’s energy consumption on phones. 

Component Energy Consumed Comment 

Initializing MMM 0.16 mAh 16,875 times with a fully charged battery 

MMM in idle state 5.5 mJ/s Middleware could run for two and half month before draining the battery 

Moitree API calls 2.3 mJ/call One and half million API calls with a full battery 

Data transfer by middleware & Plain TCP 0.5 mJ/KB & 0.15 mJ/KB Energy consumed in addition to WiFi being ON for the transfer 

Table 3 

App initialization time. 

Android Framework Initialization (ms) Moitree Initialization (ms) Android App UI Initialization (ms) 

Average 228.1 4.1 41.9 

St Dev 23.6 0.5 5.0 

Fig. 13. Power consumption overhead caused by sending and receiving data with a Moitree-based app compared to an app without Moitree support. The packet size is 

50 KB. 
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wo apps, which send and receive packets using Moitree APIs and

ryonet library, respectively. We run the two apps separately on

 mobile device and measure the energy consumption incurred by

he data communication in the apps using the Trepn profiler. The

acket size is 50 KB. Fig. 13 compares the energy consumption

ncurred by the two apps sending and receiving packets, when the

umber of packets is varied from 10 0–80 0. Compared to the gap

etween Moitree communication and TCP communication (3.3x),

he energy consumption gap between Moitree communication and

ryonet library communication is much narrower (50%–100%). 

.5. Computation offloading performance 

Moitree uses CASINO ( Debnath et al., 2018 ) for collaborative

omputation offloading and scheduling. CASINO works in two

teps. First, it computes a near-optimal solution for the distributed

cheduling problem, which can be shown as a Q m 

| prec| ∑ n 
j=1 C j 

lass problem. The schedule decides where the tasks of a dis-

ributed mobile-cloud app execute (i.e., at the avatars or the

obiles) and when they execute based on dependency constraints.

econd, the tasks are offloaded as decided by the schedule and

xecuted. The scheduling problem is NP-hard. By employing a

reedy algorithm, CASINO can generate a good schedule in poly-

omial time: O( mn 2 logm ), where n is the number of jobs and m

s the number of devices (i.e., mobiles and avatars). Although it

annot generate an optimal solution, CASINO achieves reasonably

ear-optimal results in a realistic time frame, which is essential for

 dynamic offloading scheduler. Our evaluation of the scheduler in

ASINO ( Debnath et al., 2018 ) shows that using a greedy algorithm

s a reasonable compromise between schedule optimality and

xecution overhead. 
Table 4 shows the overhead introduced by CASINO’s execution

anager. For different state sizes (shown in column 1), the time

eeded to execute the offloaded computation varies dramatically

column 2). However, the overhead incurred by code interception

nd state initialization is minimal and kept almost stable (column

). Code interception is needed to make the annotation-based

PI work (i.e., @Offloadable). The overhead needed to transfer

he states locally (column 4) is even lower than the overhead of

nterception and state initialization. Across all the state sizes, the

verhead is less than 2% of the execution time. This indicates that

he runtime overhead of CASINO is very low. 

. Related work 

Although assisting mobile devices with cloud resources is

 very active research area ( Satyanarayanan et al., 2009; Chun

t al., 2011; Cuervo et al., 2010; Kosta et al., 2013; Zhang et al.,

014 ), Moitree is the first middleware for cloud-assisted mobile

istributed apps. Recently, a few works have investigated cloud

upport for mobile distributed computing ( Kosta et al., 2013;

hang et al., 2014 ). Clone2Clone ( Kosta et al., 2013 ) offloads

eer-to-peer networking to the cloud, thus enabling more effi-

ient communication among mobile users. Moitree, on the other

and, provides full system support for the execution of mobile

istributed apps and a high-level API for programming distributed

pps over mobile/avatar pairs. Sapphire ( Zhang et al., 2014 ) is a

istributed programming platform for mobile cloud applications

hat separates the application logic from the deployment logic.

hus, programmers can modify distributed application deploy-

ents without changing the application code (e.g., change the

aching behavior). This work is complementary to Moitree and

ould be leveraged by the Avatar platform to allow for dynamic
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Table 4 

Overhead Introduced by CASINO’s Execution Manager. 

State Size (Kb) Execution Time Including 

Offloading (ms) 

Overhead - Interception 

and State Initialization (ms) 

Overhead - State 

Sync (ms) 

Overhead 

Percentage 

237.31 3212 2.11 0.06 0.06% 

61.36 664 2.75 0.07 0.40% 

36.44 490 2.93 0.08 0.61% 

6.70 145 2.79 0.06 1.97% 
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management of non-functional app features. It should be noted

that Moitree is not used just for offloading of computation and

communication to the cloud; rather, it is a programming model

to build mobile distributed apps based on dynamic context such

as social groups, time, and location, while providing computation

and communication offloading to improve efficiency. 

Moitree has clear advantages in terms of latency, energy-

efficiency, and availability over middleware platforms for pro-

gramming distributed apps designed for purely mobile environ-

ments ( Lin et al., 2008; Liu et al., 2005; Mamei and Zambonelli,

2004; Murphy et al., 2006 ). Among the middleware for dis-

tributed programming over mobile ad hoc networks (MANET),

LIME ( Murphy et al., 2006 ) and TMACS ( Lin et al., 2008 ) propose

group abstractions similar to Moitree. LIME ( Murphy et al., 2006 )

provides a framework in which mobile agents can form groups

based on context-awareness. Moitree’s programming model has

two main advantages over LIME: it provides more flexible com-

munication abstractions, and its supporting middleware performs

transparent dynamic group management. TMACS ( Lin et al., 2008 )

proposes an object-oriented distributed middleware framework for

MANET. In Moitree, groups are defined based on users and their

activities rather than the types and scopes of objects as in TMACS.

This makes mobile distributed programming simpler and more

natural. MELON ( Collins and Bagrodia, 2014 ) is a general purpose

coordination language for MANET that supports asynchronous

exchange of persistent messages. Although MELON provides an

API similar to Moitree, it does not support group management or

different types of communication between group members. 

Pogo ( Brouwers and Langendoen, 2012 ) and Mo-

biSoC ( Gupta et al., 2009 ) are closer to Moitree because they

use server-side resources to provide middleware platforms for

specific areas of mobile computing. Pogo ( Brouwers and Langen-

doen, 2012 ) proposes a middleware for distributed mobile phone

sensing. Unlike Pogo which focuses on sensing, Moitree provides

a general programming model for mobile distributed computing.

Furthermore, Pogo does not explicitly use group abstractions

such as Moitree. Also, the assignment of mobile sensing devices

to a particular researcher is done by an administrator in Pogo,

while Moitree groups are handled dynamically by the middleware.

MobiSoC ( Gupta et al., 2009 ) supports mobile social computing

and provides a high-level API based on people and places, similar

in nature with the one provided by Moitree. Both platforms use

groups as main abstractions. But unlike MobiSoC which main-

tains global state about communities at the server-side, Moitree

provides a distributed architecture in which apps work in peer-to-

peer fashion. Furthermore, MobiSoC focuses on mobile social apps,

while Moitree enables general-purpose mobile distributed apps. 

CAMCS ( OSullivan and Grigoras, 2016 ) presents a mobile-cloud

middleware which uses a software entity called CPA (similar to

avatars) in the cloud. CPAs represent mobile users within the

mobile-cloud platform and use cloud-based services to complete

tasks assigned to them in a disconnected, asynchronous fashion.

Although CAMCS is similar with Moitree in using CPAs, it does not

provide a programming framework for collaborative computating

among a group of users. 
Other mobile-cloud middlewares and frameworks have been

roposed to secure resource discovery ( Reiter and Zefferer,

016 ), allocate response resources during disaster scenarios

 Guerdan et al., 2017 ), support mobile crowdsensing

 Girolami et al., 2017 ), provide hierarchical trust management

rotocols ( Guo et al., 2017 ), and use IoT sensors in the cloud

 Das et al., 2017 ). Moitree differs from all of them in one impor-

ant aspect: it provides programming and execution support for

obile distributed apps assisted by the cloud. 

. Conclusion and future work 

To the best of our knowledge, Moitree is the first middleware

or mobile distributed apps assisted by the cloud. Even though the

oncepts of Moitree are general and applicable to any distributed

obile cloud platform, we have designed and implemented it for

ur Avatar platform. The results of our evaluation are promising.

oitree is able to reduce the number of lines of code to less than

alf when compared to an existing solution. In addition, Moitree

cales well when multiple APIs are invoked concurrently and helps

sers with faster response times and lower energy consumption

n mobile devices at the cost of a reasonable latency overhead. 

As future work, we plan to merge Moitree with our

ther systems that support the Avatar architecture: the

ASINO ( Debnath et al., 2018 ) framework for dynamic offloading

f Moitree apps, the OFS ( Shan et al., 2016 ) file system that allows

oitree apps to consistently and concurrently access and share

les at mobiles and avatars, and the P2F2 ( Almalki et al., 2016 )

ystem for privacy-preserving face finding in mobile cloud apps. 
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