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Abstract
In clouds where CPU cores are time-shared by vir-
tual CPUs (vCPU), vCPUs are scheduled and de-
scheduled by the virtual machine monitor (VMM)
periodically. In each virtual machine (VM), when
its vCPUs running I/O bound tasks are desched-
uled, no I/O requests can be made until the vC-
PUs are rescheduled. These inactivity periods of
I/O tasks cause severe performance issues, one of
them being the utilization of I/O resources in the
guest OS tends to be low during I/O inactivity peri-
ods. Worse, the I/O scheduler in the host OS could
suffer from low performance because the I/O sched-
uler assumes that I/O tasks make I/O requests con-
stantly. Fairness among the VMs within a host can
also be at stake. Existing works typically would ad-
just the time slices of vCPUs running I/O tasks, but
vCPUs are still descheduled frequently and cause
I/O inactivity.

Our idea is that since each VM often has ac-
tive vCPUs, we can migrate I/O tasks to active vC-
PUs, thus mitigating the I/O inactivity periods and
maintaining the fairness. We present VMIGRATER,
which runs in the user level of each VM. It in-
corporates new mechanisms to efficiently monitor
active vCPUs and to accurately detect I/O bound
tasks. Evaluation on diverse real-world applications
shows that VMIGRATER can improve I/O perfor-
mance by up to 4.42X compared with default Linux
KVM. VMIGRATER can also improve I/O perfor-
mance by 1.84X to 3.64X compared with two re-
lated systems.

1 Introduction

To ease management and save energy in clouds,
multiple VMs are often consolidated on a physical
host. In each VM, multiple vCPUs often time-share
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Figure 1: I/O inactivity.

a physical CPU core (aka. pCPU). The VMM con-
trols the sharing by scheduling and descheduling
the vCPUs periodically. When a vCPU is sched-
uled, tasks running on it become active and make
progress. When a vCPU depletes its time slice, it
is descheduled, and tasks on it become inactive and
stop making progress.

vCPU inactivity leads to a severe I/O inactivity
problem. After the vCPU is descheduled, the I/O
tasks on it become inactive and cannot generate I/O
requests, as shown in the first two curves in Fig-
ure 1. The inactive periods can be much longer
than the latencies of storage devices. Typical time
slices can be tens of milliseconds; the storage de-
vice latencies are a few milliseconds for HDDs and
microseconds for SSDs. Thus, during the I/O in-
active periods, I/O devices (both physical and vir-
tual devices) may be under-utilized. The under-
utilization becomes more serious with a higher con-
solidation rate (i.e., the number of vCPUs shared
on each pCPU), because a vCPU may need to wait
for multiple time slices before being rescheduled.
The I/O throughput of a VM drops significantly
with a consolidation rate of 8 as recommended by
VMware [47], based on our evaluation in Section 5.

The I/O inactivity problem becomes even more
pronounced when I/O requests are supposed to be
processed by fast storage devices (e.g., SSDs). Usu-
ally, a vCPU remains active during I/O requests, so
it can quickly process them. A similar situation is



when a computation task and an I/O task run on the
same vCPU. When the I/O task issues a read request
and then waits for the request to be satisfied, the
computation task is switched on. At this moment,
the vCPU is still running; thus, when the read re-
quest is satisfied, the vCPU can quickly respond to
the event and switch the I/O task back. However, if
the time slice of the vCPU is used up by the com-
putation task in one scheduling period, the I/O task
cannot proceed until the next period, causing the I/O
task to be slowed down significantly.

Worse, the I/O inactivity problem causes the I/O
scheduler running in the host OS to work extremely
ineffectively. To fully utilize the storage devices,
based on the latencies of I/O devices, system de-
signs would carefully control the factors affecting
the latencies experienced by I/O workloads (e.g.,
wake-up latencies and priorities). Thus, I/O work-
loads running on bare-metal can issue the next re-
quest after the previous request is finished. I/O
inactive periods make these mechanisms ineffec-
tive. Moreover, non-work-conserving I/O sched-
ulers [40] would often hold an I/O request until the
next request from the same I/O task comes in (re-
fer to §2.2). By serving the requests from the same
task continuously, which have better locality than
requests from different tasks, such I/O schedulers
can improve I/O throughputs. However, since an
I/O workload cannot continue to issue I/O requests
after its vCPU becomes inactive, the I/O scheduler
in the host OS must switch to serve the requests
from other I/O tasks, which greatly reduces locality
and I/O throughput, as we will show in our evalua-
tion.

Last but not least, the I/O throughput of a VM can
be “capped” by its amount of CPU resource. If the
vCPUs in a VM (V Ma) are assigned with smaller
proportions of CPU time on each pCPU than the
vCPUs on another VM (V Mb), the I/O workloads
on V Ma will get less time to issue I/O requests and
may only be able to occupy a smaller proportion
of the available I/O bandwidth. Since the actual
I/O throughputs of the VMs are affected by both
I/O scheduling and vCPU scheduling, it is difficult
for the I/O scheduler to ensure fairness between the
VMs.

All the above problems share the same root cause,
I/O inactivity, and existing works mainly try to curb
vCPU inactivity but ignore this root cause. Existing
works primarily follow two approaches: 1) shorten-
ing vCPU time slices (vSlicer [49]); and 2) assign-
ing higher priority to I/O tasks running on active
vCPUs (xBalloon [44]). Unfortunately, vCPUs with
either approach are still descheduled frequently and

cause I/O inactivity.
Since a VM often has active vCPUs, our idea to

mitigate I/O inactivity is to try to efficiently migrate
I/O tasks to active vCPUs. By evenly redistribut-
ing I/O tasks to active vCPUs in a VM, I/O inac-
tivity can be greatly mitigated and I/O tasks can
make progress constantly. This maintains both per-
formance and fairness for I/O tasks as they are run-
ning on bare-metal. The fairness of I/O bandwidth
among VMs on the same host is also maintained.

We implement our idea in VMIGRATER, a user
level tool working in each VM. It is transparent as
it does not need to modify application, OS in VM,
or VMM. VMIGRATER carries simple and efficient
mechanisms to predict whether a vCPU will be de-
scheduled and to migrate the I/O tasks on this vCPU
to another active vCPU.

VMIGRATER adds only small overhead to appli-
cations for two reasons. First, I/O bound tasks
use little CPU time, so the I/O tasks migrated by
VMIGRATER hardly affect the co-running tasks on
the active vCPUs. Second, VMIGRATER migrates
more I/O bound tasks to the active vCPUs with
more remaining time slices, so all vCPUs’ loads in
the same VM are well balanced. By reducing I/O
inactivity with low overhead, VMIGRATER makes
applications run in a fashion similar to what they do
on bare-metal, as shown in Figure 1.

VMIGRATER has to address three practical issues.
First, it needs to identify I/O tasks. To address this
issue, VMIGRATER uses an event-driven model to
collect I/O statistics and to detect I/O bound tasks
quickly. Second, VMIGRATER needs to determine
when an I/O bound task should be migrated. To
minimize overhead, VMIGRATER only migrates an
I/O bound task when the vCPU running this task
is about to be descheduled. VMIGRATER monitors
each vCPU’s time slice and uses the length of the
previous time slice to predict the length of the cur-
rent time slice. Third, VMIGRATER needs to decide
where a task should be migrated to keep it active.
Based on the collected time slice and I/O task infor-
mation, VMIGRATER migrates I/O tasks from to-be-
descheduled vCPUs to the active vCPUs based on
their remaining time slice and the loads of the tasks.

We implemented VMIGRATER in Linux and eval-
uated it on KVM [30] with a collection of micro-
benchmarks and 7 widely used or studied programs,
including small programs (sequential, random and
bursty read) from SysBench [7], a distributed file
system HDFS [5], a distributed database Hbase [2],
a mail server benchmark PostMark [6], a database
management system LevelDB [3], and a document-
oriented database program MongoDB [35]. Our



evaluation shows that:

1. VMIGRATER can effectively improve appli-
cation throughput. Compared to vanilla
KVM, VMIGRATER can improve applica-
tion throughputs by up to 4.42X. With
VMIGRATER, application throughput is 1.84X
to 3.64X higher than that with vSlicer or xBal-
loon.

2. The effectiveness of VMIGRATER increases
with consolidation rate. Compared to
vanilla KVM, VMIGRATER improves applica-
tion throughput from 1.72X to 4.42X when the
number of consolidated VMs increases from 2
to 8.

3. VMIGRATER can maintain the fairness of the
I/O Scheduler in VMM. Compared to vanilla
KVM, VMIGRATER reduces unfairness be-
tween VMs by 6.22X. When VMs are assigned
with the same I/O priority but different CPU
time shares, the VMs can still utilize similar
I/O bandwidth.

The paper makes the following contributions.
First, the paper identifies I/O inactivity as a major
factor degrading I/O throughputs in VMs, and quan-
tifies the severity of the problem. Second, it designs
VMIGRATER, a simple and practical user-level solu-
tion, which greatly improves the throughput of I/O
applications in VMs. Third, VMIGRATER is im-
plemented in Linux, and is evaluated extensively to
demonstrate its effectiveness.

The remainder of this paper is organized as fol-
lows. §2 introduces the background and motiva-
tion of VMIGRATER. §3 presents the design prin-
ciples, architecture, and other design details of
VMIGRATER. §4 describes implementation details.
§5 presents evaluation results. §6 introduces related
work, and §7 concludes the paper.

2 Background and Motivation
This section first introduces vCPU scheduling
(§2.1) and I/O request scheduling (§2.2) as the
background. Then it explains three performance
problems caused by I/O inactivity in virtualized sys-
tems (§2.3) to motivate our research.

2.1 vCPU Scheduling
To improve resource utilization in virtualized sys-
tems, a pCPU is usually time-shared by multiple
vCPUs. A vCPU scheduler is used to periodically
deschedule a vCPU and schedule another vCPU.
For instance, KVM uses completely fair scheduler
(CFS) [13, 44] to schedule vCPUs onto pCPUs.
CFS uses virtual runtime (vruntime) to keep track

of the CPU time used by each vCPU and to make
scheduling decisions. With a red-black tree, it sorts
vCPUs based on their vruntime values, and period-
ically schedules the vCPU with the smallest vrun-
time value. In this way, CFS distributes time slices
to vCPUs in a fair way.

2.2 I/O Request Scheduling
I/O requests are scheduled by the I/O scheduler in
the VMM. There are two types of I/O schedulers:
work-conserving schedulers [19, 38] and non-work-
conserving schedulers [51, 27]. A work-conserving
I/O scheduler always keeps the I/O device busy by
scheduling pending I/O requests as soon as possible.

Non-work-conserving I/O schedulers, such as an-
ticipatory scheduler (AS) [27] and Completely Fair
Queuing (CFQ) [12], are now widely used. A non-
work-conserving scheduler waits for a short pe-
riod after scheduling a request from a task, expect-
ing that other requests from the same task may ar-
rive. Because requests from the same task usu-
ally show good locality (i.e., requesting the data
at the locations close to each other on the disk),
if there are requests from the same task arriving,
the scheduler may choose to schedule these re-
quests, even when there are requests from other
tasks arriving earlier. It switches to serve the re-
quests from other tasks when the waiting period
expires and there are not requests from the same
task. Compared to work-conserving I/O schedulers,
non-work-conserving schedulers can improve I/O
throughput by exploiting locality. The length of
waiting periods is selected to balance improved lo-
cality and the utilization of I/O devices. To enforce
fairness between I/O tasks, an I/O request sched-
uler controls the distribution of disk time among the
tasks.

2.3 Performance Issues Caused by I/O
Inactivity

We use experiments to show that serious per-
formance issues will be caused by I/O inactiv-
ity. Specifically, we use SysBench [7] to test I/O
throughput in three settings. In the Bare-metal set-
ting, we run SysBench on the host. In the No shar-
ing setting, we run SysBench in a VM; the VM is
the only VM in the host. In the Vanilla setting, we
consolidate 2 VMs on the same host. In the exper-
iments, each VM has 4 vCPUs, and the host has
4 cores. Thus, in the No-sharing setting, there is
one vCPU on each core, and in the Vanilla setting,
each core is time-shared by 2 vCPUs. The VMs are
configured to have the same I/O bandwidth quota in
KVM [30]. In each VM, the CPU workload in Sys-
Bench [7] is run as a compute-bound task, and keep
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Figure 2: Three performance issues caused by I/O inactivity. “Bare-metal” means physical server; “No sharing” means
only one VM running on the host; “Vanilla” means two VMs consolidated and managed by vanilla KVM on one host.
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be effectively reduced.
the vCPUs always busy. Note that we select these
workloads and settings mainly to ease the demon-
stration and analysis of the performance issues. Our
evaluation with real workloads and normal settings
(§5) show that these performance issues can actually
be more severe.

Figure 2 (a) and Figure 2 (b) show that I/O in-
activity significantly reduces I/O throughput in two
different ways. In the experiment shown in Fig-
ure 2 (a), we run only one instance of I/O bound
task (i.e., I/O workload of SysBench). Among the
three settings, No sharing has roughly the same I/O
throughput as Bare-metal; but the I/O throughput in
the vanilla setting is about half of those of the other
two settings. This is because the VM running the
I/O bound task only obtains 50% of CPU time on
each core. Thus, the I/O bound task is only active
for 50% of the time, as illustrated in Figure 1.

In the experiment shown in Figure 2 (b), we run
two instances of I/O bound task, one in each VM.
For brevity, we refer to the I/O bound task in the
first VM as I/O bound task 1, and refer to the task
in the other VM as I/O bound task 2. The bars in
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I/O inactivity periods.
the figure show the throughputs of these tasks, as
well as the total I/O bandwidth. As shown in the fig-
ure, in the Vanilla setting, the total throughput drops
by 72.1% compared to bare-metal and no sharing,
which is more than 50%.

Figure 3 explains the reason. The non-work-
conserving I/O scheduler in the VMM serves an
I/O bound task in a VM for a short period before
the vCPU running the task is descheduled. Then,
it waits for 8ms without seeing any requests from
I/O bound task 1. Thus, it has to switch and start
to serve the I/O-bound task in the other VM (i.e.,
I/O-bound task 2). The changes between tasks are
caused by I/O inactivity. They incur costly disk
seeks. The wasted waiting time further reduces I/O
throughput.

Figure 2 (c) illustrates the unfairness issue caused
by I/O inactivity. It shows that two I/O bound tasks
on two VMs with the same I/O priority achieve
quite different I/O throughputs because the two
VMs are assigned with different CPU time shares.
In the experiments, for the Vanilla setting, we
launch two VMs with the same I/O priority, and run
an instance of I/O bound task on each of the VMs.
We assign to the VMs with 20% and 80% of CPU
time, respectively. For the Bare-metal setting and
No sharing setting, we launch two instances of I/O
bound task on the host and the VM, respectively.
The two instances of I/O bound task are assigned
with the same I/O priority but different CPU time
shares (20% and 80%, respectively).

As shown in the figure, the two I/O bound tasks
achieve similar I/O throughputs in the Bare-metal
and No sharing settings. However, in the Vanilla



setting, the I/O bound task in the VM with a larger
CPU time share achieves a much higher (5.8x)
throughput than that of the I/O bound task in the
other VM. Figure 4 explains the cause of this fair-
ness issue. Since VM1 is allocated much less
CPU time than VM2, it experiences much longer
I/O inactivity periods. As a result, the I/O scheduler
serves VM2 for much longer time than VM1.

There are two approaches that may be used to im-
prove I/O throughput. One approach [48, 10, 49]
uses smaller time slices (e.g., vSlicer), such that
vCPUs are scheduled more frequently, and thus be-
come more responsive to I/O events. As shown in
Figure 5 with the curve labeled with vSlicer, this ap-
proach reduces the length of each vCPU inactivity
period. But I/O inactivity periods become more fre-
quent, and the portion of time in which an I/O task is
inactive may not be reduced. Moreover, vSlicer in-
curs frequent context switches between vCPUs and
increases the associated overhead. The other ap-
proach [31, 44] lifts the priority of I/O tasks. For
example, xBalloon controls how vCPUs consume
time slices such that more CPU time can be reserved
for the execution of I/O bound tasks on the vCPUs.
While this actually lengthens I/O active periods, as
shown in Figure 5 with the curve labeled with xBal-
loon, vCPUs still must be descheduled when they
run out of time slices, and I/O inactivity problems
are still incurred.

3 VMIGRATER Design
In this section, we first introduce the design princi-
ples and overall architecture of VMIGRATER. Then,
we present the design details of each key com-
ponent, focusing on how VMIGRATER monitors
the scheduling and descheduling of vCPUs to keep
track of their time slices (§3.2), quickly detects I/O-
bound tasks (§3.3), and migrates I/O-bound tasks
with low overhead (§3.4). Finally, we analyze the
performance potential of VMIGRATER (§3.5).

3.1 Design Principles and Overall Ar-
chitecture

The design of VMIGRATER follows three princi-
ples:
• Fair: the design of VMIGRATER must not affect
vCPU scheduling (e.g., allocating more CPU time
to the vCPUs running I/O tasks) or I/O scheduling
in the VMM to avoid any potential unfairness be-
tween VMs.
• Non-intrusive: For the wide adoption of
VMIGRATER, the design must be non-intrusive.
It should minimize or avoid the modifications to
VMM and guest OSs, and should be transpar-
ent to applications. Thus, we choose to design
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Figure 6: Overall Architecture of VMIGRATER.
VMIGRATER in the user space of guest OSs. This
also helps maintain the original vCPU scheduling
and I/O scheduling decisions of the VMM. How-
ever, this poses a few challenges, since the migra-
tion of I/O bound tasks relies on some key informa-
tion about vCPU scheduling (e.g., remaining time
slice of a vCPU), which is not easy to obtain in the
user space.
• Low overhead: VMIGRATER needs to migrate I/O
bound tasks. Frequent migrations may incur high
overhead. The design of VMIGRATER must effec-
tively control the frequency of migrations.

Figure 6 shows the overall architecture of
VMIGRATER and its position in the software stack.
VMIGRATER resides in each VM, and runs at the
user level. Following the above principles, three key
components are designed as follows.

vCPU Monitor (§3.2) monitors the scheduling
and descheduling of vCPUs. The objective is to
measure time slice lengths for each vCPU and use
the lengths to predict whether a vCPU is about to
be preempted. The prediction is then used to make
decisions on when an I/O bound task should be mi-
grated and where it should be migrated.

Task Detector (§3.3) detects I/O activities to
quickly determine whether a task is I/O-bound.

Task Migrater (§3.4) makes migration decisions
and actually migrates I/O-bound tasks. It makes mi-
gration decisions based on the vCPU scheduling in-
formation from the Task Migrater and I/O activities
of the tasks from the Task Detector. Specifically, it
tries to migrate an I/O bound task detected in the
Task Detector when the vCPU running the task is
about to be descheduled. It migrates the task to an-
other vCPU which may not be descheduled in near
future.

3.2 vCPU Monitor Design
The vCPU Monitor uses a heartbeat-like mecha-
nism to detect whether a vCPU is running or has
been descheduled, with timer events being heart-
beats. The idea is that, when a vCPU is desched-
uled, it cannot process timer events, and the heart-
beat pauses. Specifically, vCPU Monitor runs a



sleeping thread, namely vCPU Monitor thread, on
each vCPU. The sleeping thread is woken up by a
timer periodically. When it is woken up, it checks
the current clock time, and compare the time with
the time it observes last time. A time difference
longer than the period for waking up the thread in-
dicates that the vCPU was descheduled earlier, and
has just been rescheduled.

This mechanism is as shown in Figure 7. The
vCPU Monitor thread can detect that the vCPU is
rescheduled at time t2 and time t6. The thread keeps
track of the timestamps when the vCPU is resched-
uled (e.g., t2 and t6) and the timestamps immedi-
ately before them (e.g., t1 and t5). The time slice
lengths can be estimated from these timestamps
(e.g., t5− t2).

Note that, since a vCPU may be scheduled or de-
scheduled while its vCPU Monitor thread is sleep-
ing, the exact time of the vCPU being resched-
uled/descheduled cannot be obtained, and thus ac-
curate time slice lengths cannot be measured with
this method. Waking up the vCPU Monitor thread
more frequently improves the accuracy of estima-
tion; but it increases the overhead at the same time.
Considering that typical time slice lengths are tens
of miliseconds, VMIGRATER sets the length of the
periods for waking up vCPU Monitor threads to 300
µs to make a trade-off between accuracy and over-
head.
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3.3 Detecting I/O bound Tasks
Some applications have bursty I/O operations.
Thus, VMIGRATER needs to quickly respond
to workload changes in each application.
VMIGRATER migrates an application when it
becomes I/O bound, and stops migration when its
I/O phase finishes. However, traditional methods
(e.g., Linux top [45] and iotop [26]) for detecting
tasks’ I/O utilization usually take long time (e.g.,
seconds). Using these methods may miss the I/O
phases in such applications. For instance, the time
for an SSD to handle 100MB sequential read is only
100ms. Thus, a much faster method for detecting
I/O bound tasks is needed.

VMIGRATER uses an event-driven method to de-
tect I/O-bound tasks quickly. This method monitors
the I/O events triggered by I/O requests, and col-
lects the time spent on processing these I/O events.

VMIGRATER periodically calculates the fraction of
time spent on processing I/O events. (The duration
of each period in our design is 5 milliseconds.) It
determines that a task becomes I/O bound when the
fraction exceeds a threshold.

3.4 Migrating I/O bound Tasks
Task Migrater relies the information from vCPU
Monitor and Task Detector to make migration deci-
sions. It first needs to decide which I/O tasks should
be migrated. To minimize the overhead, Task Mi-
grater only migrates I/O bound tasks when vCPUs
running them are to be descheduled shortly. To find
these tasks, Task Migrater estimates the remaining
time slice for each vCPU1. If the remaining time
slice is shorter than the length of two periods for
waking up vCPU Monitor threads (i.e., 600 µs)2,
Task Migrater determines that the vCPU is about to
be descheduled. Task Migrater then checks the tasks
scheduled on the vCPU. If there is an I/O bound task
reported by Task Detector, Task Migrater migrates
the task.

Second, Task Migrater needs to decide which
vCPU the I/O bound tasks should be migrated to. A
naı̈ve approach is to migrate I/O tasks to the vCPU
with the longest remaining time slice. However, this
method has two problems if Task Migrater needs to
migrate multiple I/O bound tasks: (1) the I/O bound
tasks are migrated to the same vCPU and cannot
make progress concurrently; (2) the vCPU might be
overloaded by accepting all these tasks, and the per-
formance of its existing tasks is degraded.

Task Migrater migrates I/O tasks to vCPUs in
a globally balanced way. Specifically, Task Mi-
grater ranks active vCPUs based on the lengths of
their remaining time slices, and ranks the I/O bound
tasks to be migrated based on their I/O load lev-
els. It migrates the I/O bound tasks with heavier
I/O load levels to the vCPUs with longer remain-
ing time slices. This migration mechanism can pre-
vent the above problems because it distributes I/O
bound tasks among active vCPUs. At the same time,
it helps maintain high I/O throughput because the
tasks with the most I/O activities are scheduled on
the vCPUs that are least likely to be descheduled
shortly.

1The remaining time slice of a vCPU at a moment (e.g., t7 in
Figure 7) is estimated using the length of time slice assigned to
the vCPU before the most recent descheduling of the vCPU (e.g.,
t5 − t2) and the CPU time that has already been consumed by
the vCPU after the most recent rescheduling of the vCPU (e.g.,
t7− t6).

2This is to tolerate the inaccuracy in the estimation of time
slices and remaining time slices.



3.5 Performance Analysis
We use Equation (1) to show the performance po-
tential of VMIGRATER. For simplicity, we assume
each VM has at least one active vCPU at any given
time. Thus, an I/O application can be kept ac-
tive with VMIGRATER, except when it is being mi-
grated.

SpeedupvMigrater =
Tns×N

Tns +Nmigrate×Cavg

=
N

1+ Nmigrate×Cavg
Tns

(1)

Equation (1) calculates the speedup of an I/O ap-
plication with VMIGRATER relative to its execution
without VMIGRATER on a VM. N is the number of
vCPUs consolidated on each pCPU (i.e., consolida-
tion rate). Tns is execution time of the I/O appli-
cation on a VM when its execution is not affected
by I/O inactivity problem. This can be achieved
by running the application on a vCPU with a dedi-
cated pCPU. It reflects the best performance that an
I/O application can achieve on a VM. Nmigrate is the
number of migrations conducted by VMIGRATER.
Cavg is the average time cost incurred by each mi-
gration.

The numerator of equation (1) is the execu-
tion time of an I/O application on a VM without
VMIGRATER. With N vCPUs consolidated on a
pCPU, in each period of N time slices, the I/O ap-
plication can be active only for a period of one
time slice. Thus, its execution time is roughly
N × Tns. The denominator is the execution time
with VMIGRATER, which is determined by the time
spent on application execution and the time spent on
migration.

Equation (1) shows that Nmigrate must be reduced
to improve the performance of VMIGRATER. Sup-
pose VMIGRATER migrates the I/O application by a
minimum number Nmin of times in an optimal sce-
nario. Thus, Nmin = Tns/Tts, where Tts is the length
of a time slice allocated to a vCPU. In this optimal
scenario, the I/O application is moved to a vCPU
when the vCPU is just rescheduled; it stays there
until the timeslice of the vCPU is used up; it is then
moved to another vCPU which is newly resched-
uled.

Replacing Tns with Tts×Nmin in equation (1), we
get:

SpeedupvMigrater =
N

1+ Nmigrate×Cavg
Nmin×Tts

(2)

Equation 2 shows that the speedup is determined
by N and Nmigrate×Cavg

Nmin×Tts
; N, Carg, and Tts are con-

stants for an application. We denote Nmigrate
Nmin

as
PvMigrater, which has a value greater than 1. The
speedup is mainly determined by PvMigrater. When

PvMigrater approaches to 1, the speedup approaches
to N. Our experiments show that the speedup with
VMIGRATER matches the speedup calculated by
Equation 1.

4 Implementation Details
We have implemented VMIGRATER on Linux. The
implementation of vCPU Monitor relies on a re-
liable and accurate clock source to generate timer
events. The traditional system time clock can-
not satisfy this need when vCPUs time-share a
pCPU [44]. Instead, we use the clock source
CLOCK MONOTONIC [18], which is more reli-
able and can provide more accurate time measure-
ment. The implementation of Task Detector lever-
ages BCC [11, 24] to monitor I/O requests. BCC
is a toolkit supported by Linux kernel for creating
efficient kernel tracing and manipulation programs.

The implementation of Task Migrater uses two
mechanisms, PUSH and PULL, to migrate tasks.
A PUSH operation is conducted by the source
vCPU of a task to move the task to the destina-
tion vCPU, while a PULL operation is initiated by
the destination vCPU to move a task to it from the
source vCPU. Usually PUSH operations are used.
PULL operations are only used when source vCPUs
are descheduled and cannot conduct PUSH opera-
tions. VMIGRATER’s source codes are available on
github.com/hku-systems/vMigrater.

5 Evaluation
Our evaluation is done on a DELLTM PowerEdgeTM

R430 server with 64GB of DRAM, one 2.60GHz
Intel R© Xeon R© E5-2690 processor with 12 cores, a
1TB HDD, and a 1TB SSD. All VMs (unless speci-
fied) have 12 vCPUs and 4GB memory. The VMM
is KVM [30] in Ubuntu 16.04. The guest OS in each
VM is also Ubuntu 16.04. The length of a vCPU
time slice is 11ms, and the wait time of the CFQ I/O
scheduler in VMM is set to 8ms, as recommended
by Red Hat [41, 42, 40].

We evaluate VMIGRATER using a collection
of micro-benchmarks and 7 widely used applica-
tions. Micro- benchmarks include SysBench [7] se-
quential read, SysBench random read, and bursty
read implemented by us. As summarized in Ta-
ble 1, applications include HDFS [5], LevelDB [3],
MediaTomb [9], HBase [2], PostMark [6],
Nginx [37], and MongoDB [35]. To be close to real-
world deployments, PostMark is run with ClamAV

(antivirus program) [17] to generate the workload
of a complete mail server with antivirus support;
LevelDB and MongoDB are deployed as the back-
end storage of a Spark [52] system.



ApplicationWorkload
HDFS Sequentially read 16GB with HDFS TestDFSIO [25].
LevelDB Randomly scan table with db bench [4].
MediaTomb Concurrent requests on transcoding a 1.1GB video.
HBase Randomly read 1GB with HBase PerfEval [25].
PostMark Concurrent requests on a mail server.
Nginx Concurrent requests on watermarking images [1].
MongoDB Sequentially scan records with YCSB [8].

Table 1: 7 applications and workloads.
Most of the experiments are conducted with the

SSD. Only the experiments in §5.4 (fairness of
I/O scheduler) use the HDD, because they need a
non-work-conserving I/O scheduler (e.g., CFQ) and
CFQ is used in Linux to schedule HDD requests.

We compare VMIGRATER with two related solu-
tions: xBalloon [44] and vSlicer [49]. Because they
do not have open-source implementations, we im-
plemented them based on the description in the cor-
responding papers.

Our evaluation aims to answer the following
questions:
§5.1: Is VMIGRATER easy to use?
§5.2: How much performance improvement can be

achieved with VMIGRATER, compared with
vanilla KVM and two related solutions? What
is the overhead incurred by VMIGRATER?

§5.3: What is VMIGRATER’s performance when the
workload in a VM varies over time?

§5.4: Can VMIGRATER help the I/O scheduler in the
VMM to achieve fairness between VMs?

5.1 Ease of Use
With VMIGRATER, all 7 real applications we evalu-
ated could run smoothly without any modification.
When we evaluate these applications, VMIGRATER
runs at the user-level of the guest OS. There is no
need to change any parts of the VM or the VMM.

5.2 Performance Improvements
We first demonstrate that VMIGRATER can greatly
improve the throughput of I/O intensive appli-
cations in each VM. For this purpose, we vary
the number of VMs hosted on the server from 1
to 8. The co-located VMs run the same work-
loads. Specifically, we run the workloads with the
micro-benchmarks and the real applications in the
VMs. For each workload, we run one instance
of the workload in each VM. When we run HDFS,
LevelDB, HBase, and MongoDB, we also run the
TeraSort benchmark [25] in each VM, which is
compute-bound. We measure the throughputs of
the benchmarks and real applications. When only
one VM is hosted on the server, the I/O inactiv-
ity problem does not happen; the benchmarks and
applications achieve the highest performance. We
refer to this setting as No sharing, and use the
performance under this setting as reference perfor-

mance. We normalize the performance under other
settings (i.e., 2/4/8 VMs consolidated on the server)
against the reference performance, and show the
normalized performance. Thus, the normalized per-
formance of 1 is the best performance that can be
achieved. The closer the normalized performance is
to 1, the better the performance is.

Figure 8 shows the normalized throughputs for
micro-benchmarks when the number of consoli-
dated VMs is varied from 2 to 8. With VMIGRATER,
the benchmarks consistently achieve better perfor-
mance than they do on vanilla KVM. At the same
time, the performance advantage with VMIGRATER
becomes more prominent when more VMs are con-
solidated. On average, with VMIGRATER, the
throughputs of these benchmarks are improved by
97%, 225%, and 431% than those on vanilla KVM
for the settings with 2 VMs, 4 VMs, and 8VMs, re-
spectively.

Similar performance improvements are also ob-
served with real applications, as shown in Figure 9.
On average, with VMIGRATER, the throughputs of
these applications are 72%, 192%, and 342% higher
than those on vanilla KVM for the settings with 2
VMs, 4 VMs, and 8VMs, respectively.

Compared to vSlicer and xBalloon, the appli-
cations can also achieve better performance with
VMIGRATER. As shown in Figure 9, On average,
with VMIGRATER, the throughputs of these appli-
cations are 88.41%, 74.86%, and 121.22% higher
than those with vSlicer for the settings with 2 VMs,
4 VMs, and 8VMs, respectively; and the through-
puts are 3.29%, 83.78%, and 175.37% higher than
those with xBalloon under these three settings.

VMIGRATER can significantly improve the
throughput of I/O applications when all the con-
solidated VMs are equipped with VMIGRATER.
However, since VMIGRATER is implemented at the
user space, it is possible that not all the VMs
have VMIGRATER deployed. We wonder whether
VMIGRATER can still effectively improve perfor-
mance in this scenario. To answer this question,
we run HDFS or LevelDB in one of the collocated
VMs and enables VMIGRATER in this VM; in other
VM(s), we run the IS benchmark in NPB bench-
mark suite [36], and disable VMIGRATER in the
VM(s). Figure 10 shows that the effectiveness of
VMIGRATER is not affected. On average, with
VMIGRATER, the throughputs of these applications
are improved by 62.72%, 176.92%, and 218.75%
than those on vanilla KVM for the settings with 2
VMs, 4 VMs, and 8VMs, respectively.

To understand how the performance improve-
ments are achieved, we profile the executions of the
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Figure 8: Normalized throughputs of micro-benchmarks
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Figure 9: Normalized throughput of real applications

 0

 20

 40

 60

 80

 100

H
D

FS

LevelD
B

H
D

FS

LevelD
B

H
D

FS

LevelD
B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

%
)

     2 VMs                       4 VMs                             8 VMs      

Vanilla
vMigrater

Figure 10: Normalized throughputs of HDFS and
LevelDB when VMIGRATER is enabled in one of the
consolidated VMs.
real applications. We collect the number of migra-
tions and the time during which I/O bound tasks
“run” on descheduled vCPUs (i.e., I/O inactivity
time). We show the data in Table 2 and Table 3.

VMIGRATER greatly improves application per-
formance by first dramatically reducing I/O in-
activity time. As shown in Table 2, on aver-
age, VMIGRATER reduces I/O inactivity time by
860.27%, 657.87%, 562.92%, respectively, relative
to vanilla KVM, vSlicer, and xBalloon.

When I/O inactivity time has been dramatically
reduced, as we have analyzed in Section 3.5,
VMIGRATER maintains high throughputs by min-
imizing the time spent on migrating tasks, which
is determined by the number of migrations and the
time to finish each migration. As shown in Ta-
ble 3, for most applications, the PvMigrater values are
very close to 1. This confirms that the migration
mechanisms in VMIGRATER are well designed. On
one hand, they have effectively migrated I/O bound
tasks to keep them active and minimize I/O inactiv-
ity. On the other hand, they only migrate the tasks
for close-to-minimal times, so as to keep the time
spent on migration low. We notice that the PvMigrater

value is the highest (1.34) for MediaTomb among
these applications, and its Speedup is the lowest
(1.41). This confirms the performance analysis in
Section 3.5.

We also notice that the I/O throughputs that appli-
cations can achieve reduce slightly when the consol-
idation rate increases. This is caused by the special
design with the vCPU scheduler in KVM (i.e., CFS
in Linux), which allocate smaller time slices with
higher consolidation rates. This reduces the oppor-
tunity to migrate I/O bound tasks. This problem can
be mitigated by waking up Task Detector threads
more frequently.
Application Vanilla vSlicer xBalloon vMigrater Ratio
HDFS 121.82s 92.91s 75.27s 6.62s 18.39
LevelDB 129.45s 101.55s 79.84s 17.86s 7.25
HBase 98.13s 69.37s 75.71s 18.93 5.19
MongoDB 39.49s 30.34s 40.57s 3.49s 11.31
PostMark 225.32s 168.01s 113.01s 12.92s 17.44
MediaTomb 108.61s 89.46s 116.96s 34.95s 3.11
Nginx 59.15s 61.72s 42.37s 8.03s 7.37

Table 2: I/O inactivity time (seconds) of 7 applica-
tions. Four VMs are used. The last column is the ratio be-
tween the I/O inactive time with vanilla KVM and that with
VMIGRATER.

Application Nmigrate Nmin PvMigrater Speedup
HDFS 3363 3181 1.05 1.86
LevelDB 2154 2003 1.07 1.75
HBase 3454 3181 1.08 1.76
MongoDB 1545 1363 1.13 1.70
PostMark 5181 4818 1.07 1.82
MediaTomb 2454 1818 1.34 1.41
Nginx 4181 4090 1.02 1.73

Table 3: VMIGRATER only migrates I/O bound tasks
for close-to-minimal times. Two VMs are used.

Improved I/O throughputs can translate to lower
response times. Figure 11 shows normalized re-
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Figure 11: Normalized response times of HDFS, HBase,
PostMark, LevelDB, MongoDB, MediaTomb, and Nginx.
Two VMs are used.
sponse time of the real applications with vanilla
KVM, vSlicer, xBalloon, and VMIGRATER. With
vanilla KVM, the response time is almost dou-
bled when 2 VMs time-share the server, relative
to that under the “No sharing” setting. With vS-
licer, the response times of the applications can
be slightly lowered by 11.56% relative to those
with vanilla KVM. xBalloon and VMIGRATER can
significantly reduce response times (61.97% and
66.67% on average for the applications, relative to
those with vanilla KVM). With xBalloon, response
times are low mainly because the applications are
given higher priorities on active vCPUs, and thus
can proceed more quickly when their vCPUs are
active. With VMIGRATER, response times are low
mainly because, with minimized I/O inactivity, the
applications can proceed constantly. As a result, the
responses times with VMIGRATER are almost the
same to those under the “No sharing” setting.
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Figure 12: Slowdowns of compute-bound applications
with vSlicer, xBalloon, and VMIGRATER, relative to
their executions with vanilla KVM.

An important requirement on the solutions for
improving the performance of I/O-bound applica-
tions on VMs is minimal impact on other applica-
tions. We have examined the impact on compute-
bound applications by comparing the performance
of Hadoop, Spark, and ClamAV with each of vS-
licer, xBalloon, and VMIGRATER against that with
the vanilla KVM. Hadoop is a Hadoop TeraSort
workload; Spark is a Spark WordCount workload;
ClamAV performs virus scanning. We vary the num-
ber of VMs from 2 to 8. In each VM, one of these
workload is co-run with an I/O bound workload
(PostMark with ClamAV, HDFS with Hadoop, and
LevelDB with Spark). Each VM has 12 vCPUs.

Figure 12 shows that the slowdowns with
VMIGRATER are smaller than those with vSlicer
and xBalloon consistently across all the scenarios.
On average, the slowdowns are 7.44%, 23.56% and
59.22% with VMIGRATER, vSlicer and xBalloon,
respectively. The slowdowns are large with vS-
licer and xBalloon because xBalloon prioritizes I/O-
bound tasks and delays compute-bound tasks, and
vSlicer increases costly vCPU switches.
5.3 Robustness to Varying Workloads
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Figure 13: Throughput improvement of HDFS, HBase,
PostMark, and MongoDB with vSlicer, xBalloon, and
VMIGRATER, in VMs with increasing workload, rela-
tive to the executions with vanilla KVM.

We show with experiments that VMIGRATER is
robust and can tolerate workload variation in VMs.
In the experiments, We run two 2-vCPU VMs on
two pCPUs. In each VM, we run an I/O-bound
workload (HDFS, HBase, PostMark, or MongoDB).
We also runs a set of threads on a separate com-
puter, each of which emulates a client submitting
compute-bound tasks to the VMs in a back-to-back
manner. To serve multiple clients concurrently, the
CPU usage of the compute-bound tasks submitted
by a client is throttled below 20% in each VM.
The compute-bound tasks are TeraSort in the VMs
with HDFS, HBase, and MongoDB, and ClamAV in the
VMs with PostMark. We increase the number of
clients from 5 to 40, and measure the throughputs
of the I/O-bound workload.

Figure 13 shows the throughput improvement of
the I/O-bound applications with vSlicer, xBalloon,
and VMIGRATER, relative to the executions with
vanilla KVM. Before the number of clients reaches
10, VMIGRATER can barely improve I/O through-
puts; but it does not degrade performance. This
is because the VMs are not fully loaded in these
cases, and their vCPUs cannot completely consume
their time-slices. Thus, the I/O inactivity prob-
lem rarely happens. When the number of clients
keeps growing, the I/O inactivity problem be-
comes increasingly serious; there is more potential
for VMIGRATER to improve I/O throughputs; and



VMIGRATER becomes more effective. When the
number of clients reaches 40, the throughputs with
the vanilla drop significantly; with VMIGRATER,
the applications can still maintain their throughputs
as high as those with a few clients.
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Figure 14: Throughput changes of HDFS when the num-
ber of clients increases from 8 to 36.

To demonstrate that VMIGRATER can quickly re-
spond to workload changes, Figure 14 shows how
the throughput of HDFS changes when we increase
the number of clients from 8 to 36 in 11 seconds.
The clients are added at different rates (4 at the
time of about 4 seconds, 8 at about 8 seconds, and
16 at about 11 seconds) to generate different lev-
els of workload change intensity. As shown in the
figure, at the moments when the workload changes
in the VM, because VMIGRATER cannot correctly
estimate the length of time slices, the throughput
of HDFS drops temporarily. However, VMIGRATER
can quickly adapt and the throughput picks up in
about a half second.

5.4 Maintaining Fairness
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Figure 15: Throughputs of HDFS in the two VMs with
equal I/O bandwidth shares but different CPU time
shares.

To demonstrate that VMIGRATER can help main-
taining I/O fairness, we consolidate two 12-vCPU
VMs and make them share 12 pCPUs. Each VM
runs an instance of HDFS (I/O-bound) and an in-
stance of TeraSort (compute-bound) concurrently.
We adjust the system settings controlling the I/O
bandwidth shares and CPU time shares of the VMs,
so that equal shares of I/O bandwidth but differ-
ent shares of CPU time are allocated to the VMs.
Figure 15 shows the I/O throughputs achieved by
the two instances of HDFS in the two VMs, when

the CPU time share of one VM is varied from
90% to 60% and the other VM uses the remain-
ing share of CPU time. Without VMIGRATER, there
is a strong correlation between I/O throughputs and
CPU time shares, despite that the two instances are
expected to achieve similar I/O throughputs. With
VMIGRATER, the I/O throughputs are largely inde-
pendent of the CPU time shares of the two VMs.
The I/O throughput in the VM with a larger share of
CPU time is slightly higher, because the I/O-bound
tasks in the VM are migrated less frequently.
6 Related Work
Shortening time slices. Many efforts have focused
on shortening the time slices of vCPUs [10, 49, 48]
in order to process I/O events more frequently.
There are two issues with these solutions: (1) I/O
inactivity periods still exist and degrade I/O perfor-
mance; (2) frequent context switches between vC-
PUs are caused and degrade system performance
[21, 46, 32]. These solutions require intensive mod-
ifications to both the VMM and guest OS kernel.
Dedicating CPUs. Dedicating CPUs [43, 14] aims
to solve the problems caused by vCPUs contend-
ing pCPU resource by reducing the number of vC-
PUs sharing a pCPU or dedicating a pCPU to each
vCPU. However, this may lower the utilization of
hardware resource and overall system throughput.
Task-aware priority boosting. There are de-
signs [21, 31, 15, 44, 39, 20, 29, 50, 23, 34, 22, 33,
16, 28] to prioritize latency-sensitive tasks to im-
prove their performance. For example, task-aware
VM scheduling [31] prioritizes I/O bound VMs;
xBalloon preserves the priority of I/O tasks by pre-
serving CPU resource for I/O tasks [44]. However,
the vCPUs are still descheduled with these designs;
so the I/O inactivity periods still exist.
7 Conclusion and Future Work
This paper identifies I/O inactivity problem in VMs
which has not been adequately studied before. It
presents VMIGRATER, a simple, fast and transpar-
ent system that can greatly mitigate I/O inactivity.
VMIGRATER mainly aims to mitigate the perfor-
mance degradation caused by disk (HDD or SSD)
I/O inactivity periods in VMs. As future work, we
will extend it for network I/O.
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