
Optimizing Task Scheduling in Cloud VMs with

Accurate vCPU Abstraction

Edward Guo

Hofstra University

Weiwei Jia

The University of Rhode Island

Xiaoning Ding

New Jersey Institute of Technology

Jianchen Shan

Hofstra University

Abstract

The paper shows that task scheduling in Cloud VMs hasn’t

evolved quickly to handle the dynamic vCPU resources. The

existing vCPU abstraction cannot accurately depict the vCPU

dynamics in capacity, activity, and topology, and these mis-

matches can mislead the scheduler, causing performance

degradation and system anomalies. The paper proposes a

novel solution, vSched, which probes accurate vCPU abstrac-

tion through a set of lightweight microbenchmarks (vProbers)
without modifying the hypervisor, and leverages the probed

information to optimize task scheduling in cloud VMs with

three new techniques: biased vCPU selection, intra-VM har-

vesting, and relaxed work conservation. Our evaluation of

vSched’s implementation in x86 Linux Kernel demonstrates

that it can effectively improve both system throughput and

workload latency across various VM types in the dynamic

multi-cloud environment.

CCS Concepts: • Software and its engineering→ Oper-

ating systems; Virtual machines.

Keywords: Task Scheduling, Virtualization, Cloud Comput-

ing, Resource Probing, Operating Systems

ACM Reference Format:

Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan. 2025.

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU

Abstraction. In Twentieth European Conference on Computer Sys-
tems (EuroSys ’25), March 30–April 3, 2025, Rotterdam, Netherlands.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3689031.
3696092

1 Introduction

Cloud virtual machines (VMs) have become the primary

means of provisioning computing resources. Even containers

are often hosted in VMs for lower cost [1] and better per-

formance isolation [2]. Therefore, operating systems (OSes)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1196-1/25/03

https://doi.org/10.1145/3689031.3696092

are increasingly running in the cloud VMs, managing the

virtualized resources. However, as the core component, the

task scheduler hasn’t evolved quickly to efficiently manage

the virtual CPU (vCPU) resource.

The major challenge lies in the dynamic nature of vCPUs,

driven by various reasons. The first is double scheduling

where cloud applications are scheduled on vCPUs while

the vCPUs are scheduled on physical cores by the hypervi-

sor. Unless pinned, vCPUs may be migrated to balance the

load, optimize memory access, or increase energy efficiency,

thereby altering the vCPU topology. Second, due to cloud

multi-tenancy, vCPUs would time-share the physical cores.

This can result in vCPU inactive periods [3] and fluctuations

in vCPU capacity [4]. Lastly, VM migration is the norm prac-

tice, especially in the multi-cloud era [5], to achieve optimal

VM deployment. It also happens frequently with spot VM [6]

which harvests unused cloud resources. Such VM migration

can significantly change vCPU performance features.

Unfortunately, the existing vCPU abstraction cannot ac-

curately depict the aforementioned vCPU dynamics, leading

to mismatches in important performance features, including

capacity, topology, and activity. For example, hypervisors

by default would mistakenly expose vCPUs as static and

symmetric CPUs [4] with an UMA (Uniform Memory Ac-

cess) topology [7]. Being unaware of the dynamic nature of

vCPUs, the scheduler cannot make informed decisions.

To mitigate this issue, one approach is to improve task

scheduling with accurate vCPU information exposed by the

paravirtualized hypervisor. For example, XPV [7] exposes

NUMA (Non-Uniform Memory Access) topology to the VM

from the hypervisor to make NUMA-aware optimizations ef-

fective inside the VM. CPS [8] exposes NUCA (Non-Uniform

Cache Access) topology and core load to the VM to further

optimize the scalability in big VMs. Another approach is to

improve vCPU scheduling [3, 9–15] at the hypervisor layer.

For example, the hypervisor can preempt excessively spin-

ning vCPUs to mitigate the lock-holder preemption (LHP)

problem [16] caused by vCPU inactivity. Some work shares

task information from guest to host to further assist vCPU

scheduling optimizations. For instance, eCS [13] provides

hints from the VM to allow the hypervisor to boost vCPUs

running critical-section tasks. Pillai [12] proposes sharing a

task’s latency requirements so the hypervisor can prioritize

vCPUs running latency-critical tasks.

https://doi.org/10.1145/3689031.3696092
https://doi.org/10.1145/3689031.3696092
https://doi.org/10.1145/3689031.3696092

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

These state-of-the-art approaches require either communi-

cation from the hypervisor to the guest or from the guest to

the hypervisor. This necessitates hypervisor modifications,

posing several limitations. First, integrating modifications

from different solutions is challenging. While some recent

solutions involve relatively light code changes (e.g., CPS [8]

adds 424 lines to KVM [17]), combining these changes to

comprehensively address problems like double scheduling

is complex, especially when the solutions have conflicting

optimization goals. Second, in the multi-cloud era [5], adopt-

ing these modifications is difficult due to the diverse or

closed-source nature of hypervisors. Lastly, exposing more

hypervisor-internal information to guests can resolve more

mismatches in vCPU abstraction but also introduces addi-

tional attack surfaces, raising security concerns such as the

risk of cross-VM side-channel attacks [18].

Thus, we aim to optimize the task scheduling with accu-

rate vCPU abstraction within the VM, which has the best

knowledge of the workloads, without relying on any hy-

pervisor modifications. This approach can avoid the above

limitations and allow users to enhance schedulers for specific

optimization goals in the multi-cloud environment, making

it a versatile and immediate solution that benefits users with-

out waiting for cloud providers to adopt new remedies. To

achieve this goal, we made the following contributions.

Our first contribution (§ 2) is to systematically analyze and

demonstrate through experiments on a commodity system

(x86 Linux VMs on the KVM hypervisor) the three major

impacts of inaccurate vCPU abstraction on task scheduling.

First, the existing optimizations that depend on accurate

CPU abstraction, such as capacity-aware or topology-aware

scheduling [19, 20], cannot function as expected. Second,

the optimizations for unique vCPU performance features

are missing. For instance, there is a lack of consideration

for vCPU inactivity, which can cause wasted vCPU time

and increased workload latency. Third, existing scheduler

design principles may be inappropriately applied. We found

that enforcing work conservation invariant [21] (no task

waiting on a busy CPU when there are idle CPUs) may hurt

the system when a problematic idle vCPU is picked. For

instance, an idle vCPU with extremely low capacity can turn

a task into a straggler [22] delaying other dependent tasks.

Even worse, placing tasks on an idle vCPU stacked with

other vCPUs can cause problems like priority inversion.

Our second contribution (§ 3) is to design vSched, a novel
solution that makes the scheduler aware of vCPU dynamics

through resource probing. A suite of lightweight microbench-

marks (named vProbers) is designed to expose accurate vCPU
abstractions within the VM. Periodic and coordinated sam-

pling is employed to probe dynamic vCPU capacity. To pro-

vide smooth estimation and prevent frequent task migra-

tions, we utilize the exponential moving average (EMA),

which considers the past while prioritizing the present. For

activity, we measure the average vCPU inactive period, re-

ferred to as vCPU latency, to indicate how quickly a vCPU

can schedule tasks. A heartbeat mechanism is designed to

probe vCPU states (inactive/active) without requiring par-

avirtualization [23]. Additionally, the time a vCPU has been

active (or inactive) after the previous state change is tracked

for fine-granular scheduling decisions. Regarding topology,

all levels of hierarchy (stacking, SMT, socket) are dynam-

ically probed by measuring vCPU distance through cache

line transfer latency [24].

Existing optimizations can benefit from the accurate vCPU

abstraction exposed by vProbers. To fully leverage the unique
vCPU characteristics, vSched further introduces three new

optimizing techniques: intra-VM harvesting (ivh), biased

vCPU selection (bvs), and relaxed work conservation (rwc).

The first two techniques are proposed to implement activity-

aware scheduling. Particularly, ivh would proactively mi-

grate a running task from a soon-to-be-inactive vCPU to an-

other unused vCPU where it can continue making progress

by harvesting the otherwise wasted vCPU time, leading to

improved vCPU utilization. Whereas, bvs aims to reduce

workload latency by placing small latency-sensitive tasks on

vCPUs with low runqueue latency. rwc is an effort to adapt

existing scheduler design principles to the virtualized envi-

ronment. Its key idea is to hide the problematic idle vCPUs

(e.g., straggler and stacking vCPUs) from task placement to

avoid system anomalies and improve performance.

Our third contribution (§ 4) is to implement vSched in the

x86 Linux VM. Our primary goal is to show how easily an

existing scheduler can be ported to be vCPU-aware, thereby

enhancing performance. Thus, rather than introducing a new

scheduling class, we extend the Completely Fair Scheduler

(CFS [25]) to implement vSched. Three microbenchmarks

(vcap, vtop, and vact) are implemented to probe capacity,

topology, and activity, respectively. One kernel module is

created to expose the probed results to CFS by dynamically

rebuilding schedule domains [26] and updating per-vCPU

data (e.g., EMA capacity and vCPU latency). A new kernel

function is added to query vCPU states. BPF hooks [27] are

inserted to bypass the original code paths, such as those in

load balancing and CPU selection functions, to realize ivh

and bvs. For rwc, we utilize cgroup [28] to hide the prob-

lematic vCPUs. Our implementation requires no changes to

hardware, hypervisor, or applications, making it a practical

solution. The implementation is open-sourced
1
to aid future

research on scheduling in virtualized systems.

Our final contribution (§ 5) is to evaluate vSched with di-

verse workloads across various VM types in the multi-tenant

environment. We first show that vProbers can accurately

probe the targeted vCPU performance features under sub-

second. Subsequently, upon exposing the probed results to

the kernel, we illustrate that existing optimizations, such as

1https://github.com/vSched

https://github.com/vSched

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU Abstraction EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

capacity-aware and topology-aware heuristics, become more

effective. Additionally, we individually test ivh, bvs, and

rwc to showcase their respective contributions to vSched’s
effectiveness in increasing throughput, reducing latency, and

preventing system anomalies. Through further comprehen-

sive testing, we demonstrate that vSched can benefit a wide

range of real-world workloads on both resource-constrained

and high-performance VMs. Moreover, we show that vSched
can quickly respond to vCPU changes and maintain high

Quality-of-Service (QoS) in dynamic multi-tenant hosts. Fi-

nally, we show that vSched offers large performance gains

at a small cost and it causes a minimal overhead when work-

loads cannot benefit from the accurate vCPU abstraction.

2 Background and Motivation

2.1 vCPU abstraction

Cloud VMs can offer up to hundreds of vCPUs. As software

entities, vCPUs are managed and scheduled by the hypervi-

sor, exhibiting unique performance features that cannot be

accurately depicted by current vCPU abstraction.

vCPU is not always active. Due to cloud multi-tenancy,

vCPUs in one VM may time-share cores with vCPUs from

co-located VMs. When preempted, a vCPU becomes inactive

until rescheduled by the hypervisor. Unlike always-active

cores, vCPUs exhibit several unique characteristics. First, a

running task on a preempted vCPU is technically not run-

ning to make any progress. Second, a vCPU doesn’t have

an intact private cache as a core does. A vCPU cannot al-

low its tasks to effectively build up data in the cache if the

co-running vCPUs constantly pollute the cache during its

inactive periods. Third, the latency to start serving a new or

wakeup task by a vCPU could be much higher than by a core

since it includes both runqueue delay and inactive periods.

Therefore, falsely assuming that vCPU is always active with

an intact private cache and can start serving tasks with low

latency may adversely impact workload performance.

vCPU capacity is not static. CPU capacity is the normalized

measurement of CPU performance (instructions per second).

In cloud VMs, vCPU capacity can be highly dynamic since it’s

determined by the hosting core’s capacity and the percentage

of the CPU time allocated to the vCPU from the hosting core.

The former fluctuates with changes in core frequency (cycles

per second) and contention from the SMT sibling if hardware

threads are used. The latter is influenced by the contention

on the core. Therefore, without accurate vCPU capacity, any

capacity-aware optimizations become inefficient.

By combining the inactivity and dynamic capacity, vCPUs

manifest distinct performance features. Without this knowl-

edge, the scheduler misses opportunities to match vCPUs

with tasks having diverse requirements, as illustrated in Fig-

ure 1 (left), where the states of four vCPUs are depicted over

a repeated period. We assume that the vCPUs are hosted

on four cores with identical capacities. vCPU0 stands out as

vCPU0 vCPU1 vCPU2 vCPU3
vCPU0 vCPU1

active inactive

Thread0Thread1

vCPU2 vCPU3

Thread0Thread1

Socket0Core0 Core1

vCPU4

Thread0Thread1

vCPU5

Thread0Thread1

Socket1Core0 Core1time

Figure 1. Dynamic vCPU capacity, activity and topology.

an ideal match for any task due to its highest capacity and

lowest latency, achieved by exclusively utilizing the core. Be-

tween vCPU1 and vCPU2 which share the same capacity, the

former can better serve latency-sensitive tasks with shorter

inactive periods. Lastly, despite vCPU3 exhibiting the lowest

capacity and yielding lower throughput compared to vCPU1

and vCPU2, it excels in handling sporadic and small tasks.

vCPU can be moved around. The vCPU topology is deter-

mined by the mappings between vCPUs and cores. Figure 1

(right) illustrates different levels of topology based on the

shared resources. vCPU0 and vCPU1 are stacked together,

sharing per-hardware-thread resources such as registers.

Meanwhile, vCPU2 and vCPU3 are mapped to hardware

threads that are SMT siblings, sharing per-core resources

like L1/L2 cache. Lastly, vCPU0-vCPU3 and vCPU4-vCPU5

are mapped to different sockets, thereby sharing per-socket

resources such as the last-level cache (LLC). The vCPU topol-

ogy can dynamically change due to vCPU or VM migration.

However, it often remains opaque or outdated within cloud

VMs [7], impeding any topology-aware optimizations.

2.2 Linux Scheduler

This paper focuses on x86 Linux VMs on the KVM hypervi-

sor, an open-source platform widely used in public clouds.

Linux implements various scheduling classes with distinct

priorities to manage specific types of tasks [29]. The CFS

class, our main focus, handles most tasks. To be scalable,

CFS creates one runqueue per CPU where time is shared

based on the task’s priority. CPU selection and load balanc-

ing are the two critical components in achieving scheduling

goals through task placement and migration. Their heuristics

depend on accurate CPU abstraction.

In particular, the CPU capacity available to CFS tasks is

precisely measured as CFS capacity to accurately match the

CFS task load [30] on that CPU. Runnable tasks are migrated

to balance the load-to-capacity ratio on each runqueue. Even

in the underloaded system (i.e., there are idle CPUs and no

runnable tasks), the active balance is triggered to move a

misfit running task to a CPU with a higher capacity that

can satisfy its CPU utilization. To leverage the CPU topol-

ogy, schedule domains [26] are hierarchically constructed,

grouping cores based on shared resources. At the lowest level

(SMT), each domain contains SMT sibling cores, allowing

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

SMT-aware algorithms like core scheduling [20] to disfavor

an idle hardware thread that has the busy SMT sibling. At

the upper level (socket), each domain includes cores sharing

resources like LLC, which allows placing dependent tasks

within the same socket domain for enhanced communica-

tion. Lastly, CPU state is also considered, with strategies

like small-task packing [21] implemented to prioritize short-

idled CPUs in a shallow sleep state for quicker wake-up and

higher-frequency operation.

However, with the inaccurate vCPU abstraction in Linux

VMs, the aforementioned optimizations are inefficient. Addi-

tionally, workload performance can suffer due to the lack of

consideration for unique vCPU performance features, such

as capacity asymmetry, inactivity, and stacking topology, as

demonstrated by experiments in the following sections. It is

important to note that while these issues are demonstrated

with CFS, they can also manifest in other schedulers that

share similar goals and designs. In addition, although these

issues stem from the same root cause (double scheduling) as

previously identified problems like lock-holder preemption

(LHP) [16], lock-waiter preemption (LWP) [31], and blocked-

waiter wakeup (BWW) [32], the issues discussed in the fol-

lowing sections are uniquely identified from a scheduler

development perspective, crucial for scheduler improvement

within virtualized systems.

2.3 Motivating Experiments

We conduct experiments to demonstrate the performance

issues that can be mitigated if new optimizing techniques can

be designed to consider the unique performance features of

vCPUs. Detailed benchmark descriptions and experimental

settings can be found in the evaluation section (§ 5).

ExtendedRunqueue Latency. Runqueue latency describes

how long a runnable task needs to wait on runqueue before

execution. In an overcommitted VM, it can be extended by

vCPU latency, which is the time a runnable vCPU must wait

on the host runqueue before being rescheduled. Thus, small

latency-sensitive tasks, when scheduled on a vCPU with

high vCPU latency, can suffer from the extended runqueue

latency that dominates the end-to-end execution time.

To illustrate the impact of vCPU latency on the runqueue

latency, we conducted experiments with two overcommitted

32-vCPU VMs. Each VM’s vCPUs are pinned individually on

the same set of 32 cores. One VM executed latency-sensitive

workloads selected from Tailbench [33], while the other VM

stressed its vCPUs using Sysbench [34] to induce vCPU la-
tency in the former. We explored two scenarios: one without

best-effort tasks, where vCPUs of the primary VM remained

idle when the benchmark was inactive, and another with

best-effort tasks, where all vCPUs were kept busy by a back-

ground workload of the lowest priority (sched_idle [29]). The

latter is commonly used to harvest free vCPU cycles [35]

without impeding latency-sensitive tasks. In both scenarios,

CPU bandwidth control [36] is used on the host with other

tunables (e.g., minimum and wakeup granularities [37]) to

adjust vCPU latency without changing capacity.

 0

 20

 40

 60

 80

 100

 120

Img-dnn Silo Specjbb Img-dnn Silo Specjbb

N
o
rm

al
iz

ed
 L

at
en

cy
 (

%
)

 without best-effort tasks with best-effort tasks

2 ms 4 ms 8 ms 16 ms

Figure 2. The impact of vCPU latency on latency-sensitive

workloads. The p95 tail latencies are normalized to when the

vCPU latency is 16 ms. Lower is better.

The results, as depicted in Figure 2, revealed a significant

increase in the 95th tail latency of each benchmark, scaling

up to 20x as vCPU latency increased from 2 ms to 16 ms.

This increase is primarily attributed to vCPU latency, as we
reduced the arrival rate of requests in each benchmark to

minimize the delay on the runqueue while waiting for other

requests to be completed. This finding highlights the critical

importance of considering vCPU latency in vCPU selection

for tasks with different latency requirements (§ 3.2).

Stalled Running Task. A running task, during a vCPU’s

inactive periods, technically ceases to make any progress,

leading to what we term the stalled running task problem.

With CFS, a running task is only migrated if there is an idle

vCPU with the capacity that better fits the task’s CPU uti-

lization requirement. However, no existing migration aims

to prevent a stalled running task. This results in wasted

vCPU time in an underloaded VM, as there exist unused

idle vCPUs where a stalled running task could immediately

progress. Consequently, allocated CPU time is left underuti-

lized. Moreover, the stalled running task may obstruct the

critical path, thereby delaying other dependent tasks.

To illustrate the impact of the stalled running task, we
conducted experiments with two overcommitted 4-vCPU

VMs. Each VM’s vCPUs were pinned individually on the

same set of 4 cores. One VM executed a synthetic single-

threaded program that is CPU-intensive, while the other

VM stressed its vCPUs using Sysbench. We minimized the

wakeup latency and adjusted both the minimum granularity

and CPU bandwidth control on the host so that each vCPU

would be inactive for 5 ms after every 5 ms active period.

The program is executed in two modes: default mode and
migration mode. In the former, the scheduler determined task

placement, while in the latter, the thread circularly migrated

itself among idle vCPUs every 4 ms.

We generate Figure 3 with KernelShark [38] to provide

detailed insights into task execution under the two modes.

In the default mode, the task becomes stalled 50% of the time,

while in the migration mode, the proactive task migration

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU Abstraction EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

can always move the thread before it becomes stalled. As

a result, the vCPU utilization is doubled. This observation

demonstrates the importance of developing a new running

task migration heuristic by considering vCPU inactivity to

optimize workload throughput (§ 3.3).

inactive period

scheduler tick

vCPU0

vCPU1

vCPU2

vCPU3

without proactive migration with proactive migration

migration

Figure 3. Proactive migration can prevent the stalled run-

ning task by harvesting unused vCPU cycles.

Deficient Work Conservation. Most schedulers like CFS,

adhere to the work conservation invariant, considering vio-

lations as bugs [39]. However, some idle vCPUs might be bad

choices for task placement. An idle vCPU with extremely

low capacity compared to others can turn a task into a strag-
gler delaying other dependent tasks. Scheduling tasks to an

idle vCPU stacked with other busy vCPU leads to expensive

vCPU switches. It also shifts the control of task scheduling

from the VM to the host, resulting in double scheduling prob-

lems, such as LHP and priority inversion (i.e., a low-priority

task may interfere with a high-priority task when they are

scheduled on two stacked vCPUs as the host is unaware of

the task priority inside vCPUs). To demonstrate departing

from strict work conservation could improve performance,

we conducted the following experiments.

Idle vCPU with extremely low capacity: We created a VM

with 16 vCPUs pinned on 16 cores. By stressing one core

with a high-priority task on the host, one vCPU has signifi-

cantly lower capacity than the others. Throughput-oriented

benchmarks, particularly synchronization-intensive ones

from Parsec [40], were executed under two scenarios: work-
conserving and non-work-conserving. In the latter, the low-

capacity vCPU was excluded from task placement. The re-

sults in Figure 4 (left) revealed that leaving the straggler

vCPU idle achieves up to 43% higher workload throughput.

Idle vCPU stacked with busy vCPUs: In this experiment,

the 16-vCPU VM was configured with vCPUs stacked in

pairs on 8 cores. Benchmarks were executed under work-
conserving and non-work-conserving scenarios. In the latter,

one vCPU from each stacking group was excluded from

task placement. As depicted in Figure 4 (right, first six bars),

the non-work-conserving scenario yielded up to 30% higher

throughputs without double scheduling issues and expensive

vCPU switches. To demonstrate the priority inversion prob-

lem, we launched a best-effort workload with low priority on

one vCPU of each stack group. We repeated the tests, launch-

ing each benchmark with 8 threads instead. Additionally, the

vCPUs that did not run the low-priority workload were ex-

cluded from task placement in the non-work-conserving sce-

nario. The results, as shown in Figure 4 (right, last six bars),

illustrate that the benchmark suffered from interference from

the low-priority workload under the work-conserving sce-

nario. In the non-work-conserving scenario, throughput can

experience up to a 6.7x improvement.

 0

 20

 40

 60

 80

 100

 120

Canneal
Dedup

Streamcluster

Canneal
Dedup

Streamcluster

Canneal
Dedup

Streamcluster

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(%
)

 Straggler vCPU Stacking vCPU

work-conserving non-work-conserving

Figure 4. Non-work-conserving policy yields better perfor-

mance. Throughput is normalized to that with non-work-

conserving policy. Higher is better.

These observations demonstrate the critical importance of

considering both workload and vCPU characteristics when

making scheduling decisions, rather than strictly adhering

to work conservation principles (§ 3.4).

3 The vSched Approach

read

read

user
kernel

BVS

trigger

IVHRWC

schedule domains

update update

vCPU latency

VTOP get inactive periodsVCAP VACT

update

get task info

PELT

VACT

get state change

update

cgroup

ban vCPUs

read

vCPU selection

guideget task info

running task migration

read

vCPU capacity

read

vCPU state

existing componentvProbers

read

data structure

vSched component

read

Figure 5. vSched Overview.

vSched aims to optimize task scheduling in Cloud VMs via

accurate vCPU abstraction. Figure 5 presents an overview of

vSched, highlighting its user-level and kernel-level compo-

nents and their interactions with other system elements

within the VM. To enhance the effectiveness of existing

capacity-aware and topology-aware heuristics, vcap and

vtop are designed to periodically probe the capacity and

topology of vCPUs, updating the corresponding kernel data

structures. To further capture vCPU dynamics, vact is de-

signed to probe vCPU activity (latency and state) and ex-

poses thesemetrics to the kernel as new vCPU characteristics.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

Leveraging the vProbers (vcap, vtop, vact), vSched intro-

duces a suite of optimization techniques to address the issues

identified in our motivating experiments. To reduce extended

runqueue latency, biased vCPU selection (bvs) is employed

to match latency-sensitive tasks with vCPUs where they can

experience minimal delay. This is achieved by guiding the

vCPU selection process. To address the stalled running task
problem, intra-VM harvesting (ivh) is designed to proac-

tively trigger running task migration to move high-CPU-

utilization tasks from a soon-to-be-inactive vCPU to another

where they can continue making progress. Both bvs and ivh

utilize per-entity load tracking (PELT) [30] to classify tasks

and choose target vCPUs based on the probed vCPU capac-

ity and activity. Finally, relaxed work conservation (rwc)

is proposed to intentionally leave problematic vCPUs idle

by excluding them from task placement using cgroups. The

vSched approach serves as a practical scheduling framework

to make schedulers vCPU-aware. The following section will

discuss each vSched component in detail.

3.1 vCPU Probing

vCPU Capacity. Probing dynamic vCPU capacity poses

several challenges. Firstly, to measure the percentage of CPU

time a vCPU can utilize on a core, a prober must continu-

ally stress the vCPU. This not only consumes vCPU cycles

but also interferes with the user’s workload. Secondly, the

capacities of hosting cores are unknown and need measure-

ment, especially considering their dynamic nature due to

frequency changes or vCPU migration. Thirdly, vCPU capac-

ity cannot be probed individually as capacities of different

vCPUs measured at different times can be misleading.

vCPU

vCPU

sampling period (light)

time... ...

sampling period (heavy)

... ...

core capacity
vCPU capacity
vCPU latency

time

steal time jump

prober
workload
inactive

Figure 6. One sampling period for vcap and vact.

To overcome these challenges, vcap adopts a cooperative
and multi-phase sampling approach, as illustrated in Figure 6.

vcap launches one prober thread per vCPU for simultane-

ous sampling, which is conducted periodically. This allows

vcap to expose the relative capacities of different vCPUs at

the same time with low overhead. There are two types of

sampling periods: light and heavy. During the light phase,

conducted regularly, each prober thread runs at the lowest

priority, ensuring vCPUs are kept busy with a best-effort

task when idle. This allows vcap to profile the percentage

of CPU time a vCPU can share on a core by collecting steal

time [41]—the time a vCPU, with a running task, waits on the

host runqueue. Interference with user workload is minimized

by utilizing otherwise unused vCPU cycles.

In the heavy phase, vcap additionally profiles core capac-

ity by setting prober threads to high priority to guarantee

execution, delicately measuring the amount of work a vCPU

can complete (i.e., vCPU capacity). Alongside steal time, core

capacity is measured. For instance, if prober threads report a

vCPU capacity of 50 while using 50% vCPU time (the other

50% is used by workload and system), the actual vCPU capac-

ity is 100. If the stolen time amounts to 80% of the sampling

period, then the hosting core capacity would be 500. Know-

ing core capacity, vCPU capacity can be easily calculated

during the light sampling phase after probing the percentage

of CPU time the vCPU receives from the core.

All capacities are normalized to show relative performance.

To prevent excessive scheduling events due to capacity fluc-

tuation, history is incorporated using exponential moving

average (EMA), which gives more weight to recent capacity

and decays history for a smooth estimate. To ensure prompt

updates of capacity with high accuracy and low overhead,

the sampling period is set to be long enough (e.g., 100 ms)

for a vCPU to execute at least once on the core. Addition-

ally, the heavy sampling frequency is kept low to restrict

probing costs. In the light phase, vcap consumes minimal

CPU time because vCPUs typically run user workloads or

get preempted during the sampling period.

vCPU Activity. Designing vact presents considerable chal-

lenges, particularly in providing real-time vCPU state with-

out hypervisor support and estimating vCPU latency with

fine granularity. To tackle the first challenge, vact employs

a heart-beat mechanism. It instruments the kernel to record

a system-wide timestamp (e.g., sched_clock [42]) per sched-

uler tick on each vCPU. Upon a vCPU state query, if the

examiner finds that the most recent timestamp reported by

the examinee has been outdated for several ticks, the target

vCPU is considered inactive; otherwise, it is still active. This

approach provides the near real-time state without requiring

hypervisor support and incurs minimal overhead.

To address the second challenge, vact focuses on mea-

suring the vCPU inactive periods to estimate its latency as

these periods can indicate how quickly a vCPU can become

active to respond to events such as rescheduling interrupts.

To achieve this, vact leverages the sample periods of vcap

to gather activity-related information. In particular, vact in-

struments the kernel to check for increases in steal time since

the previous tick on a vCPU. A notable increase in steal time

indicates that the vCPU was preempted and has just been

rescheduled as illustrated in Figure 6. Small jumps are fil-

tered out to eliminate noise caused by instantaneous system

tasks on the host. For each vCPU, vact maintains a preemp-

tion counter which is updated upon each qualified steal time

jump. The user-space component of vact collects this metric

before resetting it at the end of each vcap sampling period.

Using this data, the average vCPU inactive period can be cal-

culated. For instance, if during a sampling period, the stolen

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU Abstraction EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

time is 60 ms and 5 preemptions are detected, the average

inactive period would be 12 ms. The average inactive period

is then exposed as the new vCPU abstraction (vCPU latency).
This method ensures high accuracy with minimal overhead.

vCPU Topology. vtop aims to construct the vCPU topol-

ogy by probing the distance between vCPUs, which can be

estimated by measuring the cache line transfer latency [43].

To achieve this, vtop launches two prober threads on a pair

of target vCPUs, each conducting the following operations:

1) Atomically read and write a 64-byte memory block (the

cache line size) and record the latency. 2) Spin until the other

thread atomically reads and writes the same memory block.

3) Repeat the first step until the block has been successfully

updated a certain number of times or a timeout is reached.

The lowest latency is recorded into a matrix where latencies

between each vCPU pair are stored.

When two vCPUs run on sibling hardware threads, the

latency is low since the block can be fetched directly from

the shared private cache. In the case where two vCPUs are

scheduled to cores in the same socket, the latency is medium
as one vCPU’s copy of the block in its private cache is invali-

dated for cache coherence after the other updates it, leading

to a transfer from the other vCPU’s private cache or the

shared LLC. For vCPUs mapped to cores in different sockets,

cache line transfer occurs through the inter-socket bus [44],

resulting in high latency. When two vCPUs are stacked, the

prober would mostly spin since the stacked vCPUs can never

run simultaneously, resulting in very few cache transfers,

as shown in Figure 7 (vCPU0 and vCPU1). If the number of

successful updates is extremely low after the timeout, we

return infinitely high latency. These distinct latencies enable

vtop to differentiate between various vCPU topologies.

workload prober (spin)inactive

vCPU0

vCPU1

vCPU2

vCPU3

cache line transferprober (read & write)

time

stack

non-stack

Figure 7. Probing vCPU distance with cache line transfer

latency under stacking and non-stacking topologies.

One challenge of this method is to avoid misidentifying

non-stacking vCPUs as stacking ones. Even when two vC-

PUs are not stacked, they might not be active simultaneously

throughout the probing process due to inactive periods or

interference from user workloads. As a result, they could

be incorrectly labeled as stacking vCPUs. For example, con-

sider vCPU2 and vCPU3 in Figure 7: they are not stacked,

but initially, due to the limited overlap between their active

periods, the prober threads mostly spin, resulting in only one

transfer. However, with extended effort, more transfers can

then be observed. Therefore, in vtop, the probing threads

are assigned high priority to minimize interference within

the VM, and the timeout is extended if few transfers occur

to increase the likelihood that both vCPUs are active during

probing, thus helping to avoid misjudgment.

Another challenge is ensuring that measurements are fast

enough to enable periodic probing for prompt detection of

topology changes, especially in large VMs where measure-

ment complexity is exponentially increased. vtop proposes

three optimizations. First, it skips probing between vCPUs

whose distances can be inferred from existing probed results.

For example, if we know that vCPU0 and vCPU1 are stacked,

and vCPU0 and vCPU2 are on different sockets, then vCPU1

and vCPU2 can be skipped since they must also be on differ-

ent sockets. Second, it probes the socket topology first, then

other topologies within each socket can be probed in parallel.

Lastly, it introduces the validation period. A full topology

probing is only conducted if periodic validation fails. The

validation period is much lighter since fewer pairs need to be

probed to validate the current topology. Additionally, the val-

idation can be done with higher parallelism without causing

interference between different probing pairs. For example,

each pair of SMT vCPUs can be validated in parallel, and

once confirmed, one vCPU of each SMT group can partici-

pate in the socket topology validation. These optimizations

significantly reduce the probing time to just a few hundred

milliseconds, as demonstrated later in the evaluation section.

3.2 Biased vCPU Selection (bvs)

idle

sched_idlerunqueue

latency-inactive time

state

inactive

low

active active time

short

pick

high

capacity

Figure 8. bvs heuristic for vCPU search.

bvs is proposed to match small latency-sensitive tasks

with vCPUswhere they canminimize the extended runqueue

latency. bvs is an activity-aware optimization where vCPU

selection considers vCPU latency and state as illustrated in

Figure 8. Initially, PELT and user-space tools [45, 46] are used

to identify small tasks with low latency requirements. When

placing such tasks, bvs prioritizes high-capacity vCPU to

prevent runqueue saturation. bvs then checks the runqueue:

if empty, it examines vCPU latency and idle duration. A

vCPU with low latency and prolonged idleness (i.e., long

inactive time) is selected as it tends to wake up quickly. If low-

priority tasks (sched_idle ones) are in the queue, bvs assesses

vCPU state: if inactive for a long time with low latency, it’s

likely to be active soon and is a good choice. Otherwise, if a

vCPU becomes active recently with sched_idle tasks, it’s an

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

ideal destination as the task can start there immediately and

finishwithin the remaining active period, as highlightedwith

the blue path. vcap and vact expose the median capacity and

latency to allow bvs to quickly identify high-capacity and

low-latency vCPUs. vact tracks average active and inactive

periods, allowing bvs to determine if a vCPU has been long-

inactive or recently active. To reduce the vCPU selection

latency, a first-fit policy is used to quickly pick any acceptable

vCPU as shown in Figure 8. Only when none is found, the

CFS heuristic is used. This allows bvs to perform aggressive

searches without being limited by the CFS heuristic, which

searches vCPUs within the preferred LLC domains.

3.3 Intra-VM Harvesting (ivh)

Proactive task migration is shown to be effective in mitigat-

ing the stalled running task issue by harvesting the unused

vCPU resource. However, a significant obstacle is the migra-
tion delay-the time taken to reschedule a task on the target

vCPU after initiating the migration. This delay, often due to

extended runqueue latency, can greatly diminish the effec-

tiveness of this approach. To overcome this challenge, ivh

proposes an activity-aware running task migration technique

that pre-wakes the target vCPU, initiating migration only

when both the source and target vCPUs are active to mini-

mize migration delay. Additionally, ivh employs a heuristic

similar to bvs to search for a target vCPU capable of quickly

engaging in the migration process. In each scheduler tick,

ivh identifies CPU-intensive tasks (using PELT) that have

been running for a minimum duration (e.g., 2 ms) on a vCPU

with inactive periods. It then aggressively searches for mi-

gration targets. Once a suitable target is found, the migration

proceeds in three steps, illustrated in Figure 9 (left).

Firstly, the source vCPU sends an interrupt to prompt the

target vCPU to initiate the migration and continue executing

the task (1). If the target is idle, it wakes up, sends a task pull

request, and begins spinning until the migration completes

or the source vCPU is preempted (2). Upon receiving the

pull request, a stopper thread [47] is activated to enqueue the

running task, which can then be detached and attached to the

target vCPU’s runqueue (3). Migration to an active vCPU

with sched_idle tasks can be accomplished with minimal

delay, even if the target is identified towards the end of the

source’s active period (Figure 9-middle). ivh would abandon

migration if the target issues a late pull request after the task

has already stalled due to extended delay, as there would be

no benefit (Figure 9-right). Note that frequent taskmigrations

are generally discouraged due to the inability of tasks to

effectively utilize cache [48]. However, tasks targeted by

ivh are less vulnerable to this issue, as the cache is polluted

during vCPU inactive periods even without migration.

3.4 Relaxed Work Conservation (rwc)

rwc proposes intentionally leaving some problematic vCPUs

idle by hiding them from task placement to prevent relevant

move to
idle vCPU

move to
sched_idle vCPU failed migration

tim
e

workload spin sched_idle

search target

1

2

3

send interrupt

no
delay

short
delay

stopper

x

inactive

target target target

long
delay

Figure 9. ivh’s activity-aware running task migration.

issues. To address the straggler problem, vCPUs with capac-

ities significantly lower (e.g., 10x lower) than the average

capacity are considered straggler vCPUs, intended only for

running best effort (sched_idle) tasks. Therefore, vcap, dur-

ing the light sampling, can still run on a straggler vCPU

to probe capacity in case it increases. When other work-

loads, such as synchronization-intensive ones, are present,

the straggler vCPU remains idle. To prevent double sched-

uling problems such as priority inversion and LHP, and to

avoid expensive vCPU switches, only one vCPU from each

stacking group is considered for task placement, while the re-

maining ones are banned from running any tasks, including

vcap, which could lead to priority inversion issues. The only

exception is vtop, which is still allowed to conduct probing

on all vCPUs to detect any changes in stacking topology,

allowing rwc to adjust hidden vCPUs.

4 Implementation Details

vSched has been implemented in Linux kernel v6.1.36 on

top of CFS. Although it can be easily ported to the latest

kernel that uses the Earliest Eligible Virtual Deadline First

(EEVDF) scheduler [48], we found this new scheduler hasn’t

been fully tested and presents issues when interacting with

cgroup [49]. Therefore, we returned to CFS since our main

goal is to demonstrate how accurate vCPU abstraction can

help improve task schedulers that share similar goals. For

the same reason, instead of implementing a new schedul-

ing class using the existing framework (e.g., sched_ext [50]),

we added BPF hooks [27] to CFS core selection paths and

scheduler tick handler to implement the activity-aware op-

timizations (bvs and ivh). Since vProbers are implemented

in user space mostly, the probed results are exposed to the

scheduler through a new kernel module. For example, the

probed topology is stored as three lists for each vCPU to

store the siblings for each topology level. The kernel module

uses rebuild_sched_domains to update the schedule domains

based on those lists. vact instruments the scheduler tick han-

dler to monitor vCPU state changes and provides a kernel

function to query the vCPU state. To implement rwc, vtop

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU Abstraction EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

collaborates with vcap to halt the sampling on the banned

stacked vCPUs and guides cgroup [51] to hide problematic

vCPUs from user workloads. Overall, vSched has a code size

of 1612 Lines of Code (LoCs). The kernel portion, including

the kernel module, kernel functions, and BPF hooks, amounts

to 636 LoCs, and the BPF program involves 417 LoCs. The

user-level portion of vProbers involves 559 LoCs.

5 Evaluation

Our evaluation aims to demonstrate the following:

• The ability of vProbers to expose accurate vCPU abstrac-

tion with high performance (§ 5.2).

• The effectiveness of the probed accurate vCPU abstraction

in enhancing existing scheduling optimizations (§ 5.3).

• The impact of activity-aware optimizing techniques, namely

bvs and ivh, on improving workload latency (§5.4) and

throughput (§5.5), respectively.

• The versatility of vSched in optimizing diverse workloads

across various VM types (§5.6).

• The adaptability of vSched inmaintainingQuality-of-Service

in the face of dynamic vCPU resource changes (§5.7).

• The vSched improvement in multi-tenant hosts under re-

alistic interference from multiple co-located VMs (§5.8).

• The small cost incurred by vSched when offering signif-

icant performance gains, and the minimal overhead in-

curred by vSched when workloads cannot benefit from the

accurate vCPU abstraction (§5.9).

5.1 Evaluation Settings

An HPE ProLiant DL580 Gen10 server (4 Intel Xeon Gold

6138 20-core CPUs, 256 GB memory, and 2 TB SSD) is used

to host Linux VMs on the KVM hypervisor. Hyper-threading

and Dynamic voltage and frequency scaling (DVFS) are en-

abled. Both the host OS and guest OS are kernel v6.1.36. The

CPU bandwidth control is employed on the host along with

sched_min_granularity_ns and sched_wakeup_granularity_ns
to adjust the inactive and active periods of a vCPU to ac-

curately control its capacity and activity (latency and state)

when competing with a CPU-bound vCPU. The vCPU topol-

ogy is controlled by pinning vCPUs on cores using virsh [52].

The values of the tunables in vSched are listed in Table 1.

Table 1. Chosen values of vSched tunables.

Tunables Description Value

vcap sampling period 100 milliseconds

vcap light sampling frequency Every 1 second

vcap heavy sampling frequency Every 5 light samplings

vcap EMA decay factor 50% per 2 periods

vtop sampling frequency Every 2 seconds

vtop targeted cache transfers 500 times

vtop cache transfer timeout 15000 transfer attempts

ivh migration threshold After 2 milliseconds

To showcase vSched’s capacity to benefit diverse work-

loads, we carefully selected 34 benchmarks exhibiting dif-

ferent characteristics across various domains. Specifically,

we chose 8 Tailbench benchmarks [33] to highlight vSched’s
efficacy in enhancing small latency-sensitive tasks. Addition-

ally, we employed 10 Parsec benchmarks and 11 Splash-2x

benchmarks [40] to demonstrate vSched’s effectiveness in
improving throughput-oriented workloads, encompassing

synchronization-intensive and scientific computing work-

loads, respectively. Nginx [53] and Pbzip2 [54] were selected

to illustrate vSched’s impact onmemory-intensiveweb server

operations and parallel file compression tasks. Further, micro-

benchmarks like Hackbench [55], Fio [56], and Sysbench [34]

were utilized to generate synthetic workloads, stressing the

scheduler. We conducted warm-up runs for each benchmark,

followed by five runs to obtain average values.

To demonstrate the applicability of vSched across various

VM types with diverse vCPU performance features, we em-

ploy two representative cloud VMs: the resource-constrained

VM (rcvm) and the high-performance VM (hpvm). rcvm, typ-

ically utilized for cloud resource harvesting or in resource-

limited edge environments [6, 9, 57], is characterized by its

small size and frequent hosting on highly-contended hosts.

It comprises 12 vCPUs, with the first 10 vCPUs mapped to

5 pairs of SMT siblings and the last two stacked together.

Among the first 10 vCPUs, two are designated as straggler

vCPUs. The remaining 8 vCPUs are categorized into four

types: high-capacity-high-latency (hchl), high-capacity-low-

latency (hcll), low-capacity-high-latency (lchl), and low-

capacity-low-latency (lcll), with two vCPUs in each cat-

egory. For example, the hcll vCPU possesses double the

capacity and one-third the latency of the lchl vCPU. In con-

trast, hpvm is larger, spanning multiple sockets with less

contention on the host, often serving performance-critical

workloads. It features 32 vCPUs divided into 4 groups, each

mapped to 4 pairs of SMT siblings in a separate socket. Sim-

ilarly categorized into 4 types, the vCPUs in three groups

mirror those of rcvm, with the last group dedicatedly uti-

lizing the hosting cores. Unlike rcvm, hpvm does not have

stacked or straggler vCPUs.

5.2 Accuracy and Performance of vProbers

To show the advantage of the EMA capacity probed by vcap,

we manually adjust a vCPU’s capacity to observe the probed

result. Figure 10 (a) illustrates the comparison between actual

capacity (solid line) and probed EMA capacity (dotted line).

The EMA capacity successfully provides a trend that matches

the capacity changes while smoothing out spikes to avoid

unnecessary task migrations.

To assess the accuracy of vtop, we created a 8-vCPU VM

with all topology hierarchies. In particular, vCPU0-vCPU3

are pinned to two pairs of SMT siblings in one socket, while

in another socket, vCPU6 and vCPU7 are stacked, and vCPU4

and vCPU5 are mapped to a pair of SMT siblings. Figure 10

(b) presents the probed cache line transfer latency matrix,

showing distinct latency for different topologies, enabling

vtop to accurately update schedule domains. Additionally,

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

 0

 256

 512

 768

 1024

 0 30 60 90 120 150

v
C

P
U

 C
ap

ac
it

y

Time (s)

Actual capacity
EMA capacity

(a) EMA capacity

00
1
2
3
4
5
6
7

6 49 49 116 116 111 111
6 0 48 49 116 115 113 113
49 48 0 7 102 102 102 102
49 49 7 0 95 94 100 100
116 116 102 95 0 6 46 45
116 105 102 94 6 0 46 46
111 113 102 100 46 46 0
111 113 102 100 45 46 ∞ 0

0 1 2 3 4 5 6 7

∞

smt-sibling
stacking
cross-socket

inter-core

vCPU

(units: ns)

(b) Cache line transfer latency

Figure 10. Accuracy measurements of vcap and vtop.

we measured how quickly vtop can probe the topologies

in rcvm and hpvm, respectively. As shown in Table 2, the

probing time is sub-second, especially, validation tasks up to

4x shorter time than full probing, allowing quick detection

of topology changes. Note that validation takes longer in

rcvm compared to the larger hpvm due to the additional

effort made to confirm stacking topology.

Table 2. vtop probing time (unit: ms).

Config rcvm-full rcvm-validate hpvm-full hpvm-validate

Time (ms) 547 388 665 160

5.3 Enhancing Existing Scheduling Optimizations

This section demonstrates the impacts of vProbers on existing
capacity-aware and topology-aware optimizations. For the

former, Linux measures CFS capacity to represent the capac-

ity that can be used for CFS tasks. It excludes the steal time,

enabling better measurement in an overcommitted VM. How-

ever, steal time can only be observed when a vCPU is busy.

A low-capacity idle vCPU without steal time can appear to

be a high-capacity vCPU, misleading the scheduler. To show

how vcap can address such issues, we conducted tests under

two scenarios: asymmetric capacity and symmetric capacity.
In the first scenario, we created a 16-vCPU VM where

the last four vCPUs have 2x higher capacity than others.

Sysbench is launched with 4 CPU-bound threads. As shown

in Figure 11 (a), under CFS, Sysbench spent only 44% of the

time on high-capacity vCPUs, whereas these vCPUs are se-

lected 81% of the time when vcap is enabled. Consequently,

Sysbench achieves a 32% higher throughput with accurate

vCPU capacity. In the second scenario, all vCPUs are set to

have the same capacity and we observe 4% higher through-

put with vcap enabled. This improvement is attributed to

the prevention of adverse task migrations to idle vCPUs that

appear stronger due to the absence of steal time. Profiling mi-

grations during Sysbench execution with and without vcap

revealed a 74% reduction in migrations with vcap enabled,

leading to reduced overhead, as shown in Figure 11 (b).

For topology, we conducted two sets of experiments to

illustrate vProbers’s impact on SMT-aware and LLC-aware

 0

 5

 10

 15

 20

0 3 6 9 12 15

E
x
e
c
u
ti

o
n
 D

is
tr

ib
u
ti

o
n
 (

%
)

vCPU

CFS
CFS + VCAP

(a) Asymmetric Capacity

 0

 50

 100

 150

 200

 0 10 20 30 40M
ig

ra
ti

o
n
 N

u
m

b
er

 p
er

 T
h
re

ad

Time (s)

CFS + VCAP
CFS

(b) Symmetric Capacity

Figure 11. Impact of the accurate vCPU capacity.

optimizations, respectively. In the SMT-aware optimization

experiments, we configured a VM with 32 vCPUs pinned to

16 pairs of SMT siblings on 16 cores and tested under two

scenarios: underloaded system and mixed workloads. In the

underloaded system scenario, Sysbench was initiated with

16 CPU-bound threads. Monitoring the number of cores uti-

lized over time revealed that CFS typically employed 11-12

out of 16 cores due to the absence of SMT topology aware-

ness. Conversely, with vtop enabled, 15-16 cores could be

utilized as idle vCPUs with a busy SMT sibling were ap-

propriately avoided, as demonstrated in Figure 12 (a). In

the mixed workload scenario, we mixed CPU-intensive Mat-

mul (matrix multiplication) with memory-intensive Nginx

or I/O-intensive Fio, each launching 16 threads. Figure 12 (b)

illustrates that, by resolving resource conflicts with accurate

SMT topology, CFS combined with vtop allows for up to

an 18% enhancement in Matmul performance, with a minor

(5%) improvement in Nginx and no degradation in Fio.

 0

 10

 20

 30

 40

 50

 9 10 11 12 13 14 15 16

P
ro

b
ab

il
it

y
 (

%
)

Number of Active Cores

CFS
CFS + VTOP

(a) Underloaded System

 60

 80

 100

 120

CFS w/VTOP

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(%
) Matmul

Fio

 60

 80

 100

 120

CFS w/VTOP

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t

(%
) Nginx

(b)Mixed Workloads

Figure 12. Effective SMT-aware scheduling with vtop.

To illustrate the impact of vtop on LLC-aware optimiza-

tions, we pinned the 32 vCPUs to two sets of 16 cores across

two sockets. Three benchmarks—Hackbench, Dedup, and

Nginx—each showcasing unique intra-thread communica-

tion patterns, were selected. Two instances of each bench-

mark were launched for testing. Figure 13 demonstrates that

vtop’s correct socket topology exposure effectively segre-

gates each instance’s threads into separate LLC domains,

resulting in higher communication efficiency through LLC

with up to a 99% reduction in inter-process interrupts (IPIs)

and a 14.5% increase in instructions per cycle (IPC) on aver-

age. Consequently, workload throughput (averaged across

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU Abstraction EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

two instances) increased by 26% on average compared to CFS.

We utilized IPC to indirectly demonstrate cache efficiency,

as cache miss profiling tends to be less reliable in VMs [58].

 0

 25

 50

 75

 100

 125

 150

 175

Dedup Nginx HackbenchN
o
rm

al
iz

ed
 M

et
ri

cs
 (

%
) Throughput

IPC
IPI

Figure 13. Effective LLC-aware optimizations with vtop. For

each benchmark, the first three bars represent performance metrics

under CFS, while the last three bars depict performance with vtop

enabled. Metrics are normalized to that with vtop disabled.

5.4 Latency Reduction with bvs

To demonstrate the effectiveness of bvs in reducing work-

load latency, we conducted experiments using workloads

from Tailbench. We compared their performance with and

without bvs. vProbers are enabled in both configurations. In

addition, the benchmarks were executed with and without

best-effort tasks, respectively. The best-effort tasks were as-

signed with the lowest priority (sched_idle) to harvest vCPU

cycles when the benchmark was inactive. For the bvs tests,

we created an overcommitted 16-vCPU VM on 16 cores in

one socket, configured with asymmetric vCPU latency and

symmetric capacity. Half of vCPUs have 2x lower latency

than the others. This setupminimizes the noise from capacity

and topology. The results in Figure 14 demonstrate that bvs

can effectively reduce 95th tail latency by 42% on average.

 0

 20

 40

 60

 80

 100

 120

Img-dnn
Masstree

Silo Specjbb
Xapian

Img-dnn
Masstree

Silo Specjbb
Xapian

N
o
rm

al
iz

ed
 L

at
en

cy
 (

%
)

 without best-effort tasks with best-effort tasks

Without BVS With BVS

Figure 14. The effectiveness of bvs. The p95 tail latencies

are normalized to when bvs is disabled. Lower is better.

To show that this improvement stems from reduced run-

queue latency, we provide queue time (runqueue latency),

service time (running time), and end-to-end time reported by

Masstree in Table 3. bvs reduces queue time by 44% and 70%

with and without best-effort tasks, respectively. Due to the

small service times, the runqueue latency reduction directly

translates to lower end-to-end tail latency. Furthermore, we

introduce a new configuration: bvs that doesn’t consider the

vCPU state, to understand how considering the vCPU state

in bvs aids in reducing latency on sched_idle vCPUs running

best-effort tasks. As shown in the table (second-to-last col-

umn), the latencies increase in this new configuration com-

pared to bvs, indicating that prioritizing active sched_idle

vCPUs helps to further reduce workload latency.

Table 3. Masstree p95 latency breakdown (unit: ms).

Setting

No best-effort tasks With best-effort tasks

No bvs bvs No bvs

bvs (no

state check)
bvs

Queue 32.73 9.92 20.66 15.47 11.48

Service 0.36 0.39 0.32 0.36 0.37

End-2-end 33.44 10.25 21.28 16.29 11.95

5.5 Increased Throughput with ivh

ivh proactively migrates running tasks to mitigate the stalled
running task problem. It can effectively improve throughput

in an underloaded system by harvesting unused vCPUs. To

show this, we run various throughput-oriented workloads

with different thread counts in a 16-vCPU VM, overcom-

mitted with another VM on 16 cores in one socket, where

each vCPU shares 50% of core time. The results in Figure 15

illustrate that ivh achieves significant throughput improve-

ments, up to 82%, particularly when there are fewer threads

and more unused vCPUs to harvest. Note that even with 16

threads, there’s a 17% improvement on average. This sug-

gests that in certain phases, the system is underloaded with

only a few active threads, which can be accelerated by ivh.

 0

 30

 60

 90

Streamcluster

Canneal
Blackscholes

Bodytrack

Dedup
Ocean_cp

Ocean_ncp

Radiosity

Radix
FFT Pbzip2

T
h
ro

u
g
h
p
u
t

Im
p
ro

v
em

en
t

(%
)

1 thread 2 threads 4 threads 8 threads 16 threads

Figure 15. Throughput improvement with ivh compared to

when ivh is disabled. Higher is better.

ivh employs activity-aware migration, which involves

pre-waking the target vCPU and executing the migration

only when both the source and target vCPUs are active. To

demonstrate its advantage, we compare ivh with its activity-

unaware counterpart, which migrates tasks directly without

pre-waking the target. We use canneal as an example and

present its performance with and without activity-aware

migration in Table 4. The results indicate that migration

delays resulting from activity unawareness can impede the

effective utilization of unused vCPU cycles.

5.6 Overall Improvement with vSched

We conducted comprehensive experiments with a wide range

of workloads in both rcvm and hpvm to evaluate the overall

performance of vSched. Each workload was executed under

three configurations: CFS, enhanced CFS, and vSched, with

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

Table 4. Canneal execution time (unit: s).

#Threads 1 2 4 8 16

ivh (activity-unaware) 408.0 298.2 210.7 149.8 124.9

ivh (activity-aware) 347.9 274.2 172.7 129.2 100.7

the number of threads equal to or greater than the number of

vCPUs. In enhanced CFS, vProbers and rwc were enabled to

provide accurate vCPU abstraction and hide problematic vC-

PUs. The results are presented in Figure 18 and Figure 19. In

rcvm, enhanced CFS can reduce latency by 1.4x and increase

throughput by 59%, whereas vSched can reduce latency by

1.6x and increase throughput by 69% on average compared to

CFS. In hpvm, compared to CFS, enhanced CFS can reduce la-

tency by 1.5x and increase throughput by 13%, while vSched
can reduce latency by 2.3x and increase throughput by 18%

on average. It is clear that bvs and ivh provide additional

improvements by considering vCPU activity. Moreover, the

overall throughput improvement with vSched is higher in

rcvm where rwc can effectively hide stragglers and stacking

vCPUs, and ivh yields more benefit when stalled running
tasks problems are severe due to high host contention. On the

other hand, vSched achieves more latency reduction in hpvm

where bvs can maximize minimal latency from dedicated

vCPUs. Streamcluster and volrend in hpvm are two excep-

tions, experiencing slight performance degradation when the

correct socket topology is exposed. They employ user-level

spin-based synchronization, which leads to the unaddressed

LHP-like problem [59] that becomes more severe when more

imbalance is tolerated among sockets exposed by vtop.

5.7 Adaptability of vSched

 0

 500

 1000

 1500

 2000

 2500

 3000

Dedicated 30 Overcommitted 60 Asymmetric 90 ConstrainedT
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
)

Time (s)

CFS
vSched

Figure 16. vSched can respond quickly to vCPU changes.

To demonstrate that vSched can maintain high QoS in the

cloud by quickly adapting to vCPU dynamics, we created

a 16-vCPU VM running Nginx to report live throughput

as vCPUs underwent multiple phases of changes with CFS

and vSched. The results are shown in Figure 16. Initially,

vCPUs were dedicatedly hosted on 16 cores in one socket,

and vSched yielded similar performance to CFS since the

existing vCPU abstraction was already accurate. Next, the

VM was overcommitted with a competing VM, with each

vCPU sharing half of a core. Under CFS, the throughput

dropped to half due to contention, whereas vSched main-

tained higher throughput by effectively preventing stalled

running tasks with ivh. We then configured the host to give

half of the vCPUs 2x higher capacity than the others without

changing the overall capacity. CFS struggled to leverage the

high-capacity vCPUs for higher throughput, while vSched
maintained the same throughput since the vCPU utilization

was already maximized with ivh. Finally, we stacked two

vCPUs and significantly reduced the capacity of another two

to simulate a resource-constrained host. vSched can quickly

recover the throughput by using rwc to hide problematic

vCPUs, whereas Nginx suffered lower throughput with CFS.

5.8 vSched Improvement in Multi-tenant Hosts

 0

 500

 1000

 1500

 2000

 2500

Ferret
Facesim

Swaptions

Raytrace

Masstree

Img-dnn

Silo
Specjbb

-10
-5
 0
 5
 10
 15
 20
 25
 30

Intermittent Consistent Transient

Time (s)

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
)

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n
 (

%
)

80 160

CFS Nginx
vSched Nginx

Degradation

Figure 17. vSched improves QoS under varying interference in

a multi-tenant environment. Performance degradation refers to

throughput reduction or latency increase experienced by co-located

VMs under vSched compared to CFS.

In this section, we demonstrate that vSched can maintain

high QoS in a multi-tenant environment where vCPUs are

highly dynamic and unpredictable. We co-located multiple

16-vCPU VMs, allowing their vCPUs to be freely scheduled

on 16 cores. We deployed Nginx in one VM and compared

its live throughput with vSched and CFS while other VMs

ran diverse workloads over time to generate realistic in-

terference. As shown in Figure 17, we first launched two

synchronization-intensive workloads (facesim and ferret)

in two co-located VMs to create intermittent interference.
vSched outperformed CFS, consistently achieving 15% higher

throughput, while the average slowdown of facesim and fer-

ret due to vSched is only 1.2%.

We then terminated facesim and ferret and launched two

computation-intensive workloads (swaptions and raytrace)

to generate consistent interference. The large spikes in Nginx

reflect periods of no interference before the new workloads

were launched in co-located VMs. Under heavier interfer-

ence, Nginx throughput with CFS dropped, while vSched
maintained high QoS, outperforming CFS by 24% on average.

Although swaption and raytrace performance degraded by

2.1% and 1.9%, respectively, due to increased vCPU utilization

from Nginx with vSched, we don’t consider this a penalty, as
vSched simply ensures its VM claims a fair share.

Following the completion of swaption and raytrace, four

latency-sensitive workloads with small tasks were launched

in four co-located VMs to create transient interference. In this

phase, under lighter interference, Nginx throughput under

CFS increased significantly. vSched yielded a similar increase,

as the vCPUs behaved similarly to dedicated vCPUs, leaving

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU Abstraction EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

 0

 50

 100

 150

 200

 250

 300

Blackscholes

Bodytrack

Canneal
Dedup

Facesim
Fluidanimate

Freqmine

Streamcluster

Swaptions

x264
Barnes

FFT Lu_cb
Lu_ncb

Ocean_cp

Ocean_ncp

Radiosity

Radix
Raytrace

Volrend
Water_spatal

Pbzip2
Nginx

Img-dnn
Moses

Masstree
Silo Shore

Specjbb
Sphinx

Xapian

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce
 (

%
)

 throughput-oriented workloads latency-sensitive workloads

CFS
Enhanced CFS

vSched

Figure 18. rcvm results. Both throughput and p95 tail latency are normalized to CFS. Higher throughput and lower latency are better.

 0
 20
 40
 60
 80

 100
 120
 140
 160

Blackscholes

Bodytrack

Canneal
Dedup

Facesim
Fluidanimate

Freqmine

Streamcluster

Swaptions

x264
Barnes

FFT Lu_cb
Lu_ncb

Ocean_cp

Ocean_ncp

Radiosity

Radix
Raytrace

Volrend
Water_spatal

Pbzip2
Nginx

Img-dnn
Moses

Masstree
Silo Shore

Specjbb
Sphinx

Xapian

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce
 (

%
)

 throughput-oriented workloads latency-sensitive workloads

CFS
Enhanced CFS

vSched

Figure 19. hpvm results. Both throughput and p95 tail latency are normalized to CFS. Higher throughput and lower latency are better.

little mismatch in vCPU abstraction for vSched to address.

Surprisingly, the p95 tail latency for latency-sensitive work-

loads was reduced by 3.1% under vSched’s impact. This is

attributed to the prevention of adverse task migrations by

vcap, as shown in Figure 11, which reduces interference with

latency-sensitive workloads compared to CFS.

5.9 Cost and Overhead of vSched

0

1

2

3

Bodytrack

Swaptions

Lu_cb
Img-dnn

Specjbb
Sphinx

Bodytrack

Swaptions

Lu_cb
Img-dnn

Specjbb
Sphinx

0

1

2

3

4

5

T
o
ta

l
C

y
cl

es
 (

×
1
0

1
2
)

C
P

S
 (

×
1
0

1
0
)

HPVM RCVM

CFS Cycles
vSched Cycles

CFS CPS
vSched CPS

Figure 20. vSched cost for throughput-oriented and latency-

sensitive workloads on rcvm and hpvm. Lower total cycles are

better. Higher cycles per second indicate higher vCPU utilization.

To analyze the cost of vSched for various workloads on

diverse VMs, we repeated some tests from Section 5.6 and

collected the total cycles and cycles per second (CPS) con-

sumed by the VM during workload execution under vSched
and CFS. As shown in Figure 20, when running throughput-

oriented workloads, the VMs consumed only 5.5% more cy-

cles but achieved a 38% higher CPS on average under vSched
compared to CFS. This demonstrates that the small vSched
cost can effectively improve vCPU utilization and workload

performance. Notably, bodytrack even consumed 1.7% fewer

cycles, indicating a reduction in workload cycles due to more

coordinated thread execution. For latency-sensitive work-

loads, VMs consumed 50.5% more cycles and achieved 81.4%

higher CPS on average with vSched compared to CFS. De-

spite the higher increase in cycle consumption, the vSched

cost remains small since these workloads are much lighter

with small tasks, evidenced by an average 8.4x lower CPS

compared to the throughput-oriented workloads under CFS.

Moreover, the improved CPS with vSched translated to a

substantial reduction in tail latency, as shown in Section 5.6.

-4

-2

 0

 2

 4

Blackscholes

Bodytrack

Canneal
Dedup

Facesim
Streamcluster

FFT Ocean_cp

Radix
Img-dnn

Moses
Masstree

Silo Shore
Specjbb

Sphinx
Xapian

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n
 (

%
)

throughput-oriented workloads latency-sensitive workloads (p95)

Figure 21. Performance degradation refers to throughput

reduction or latency increase with vSched compared to CFS.

To measure vSched’s overhead, we created a 16-vCPU VM

dedicatedly hosted on 16 cores in one socket. This ensures

that the vCPUs are always active with symmetric capacity

and UMA topology, matching the default vCPU abstraction

exposed to the kernel. In this VM, a workload does not ben-

efit from vSched, which improves performance through ac-

curate vCPU abstraction. Therefore, comparing workload

performance with CFS and vSched in this setup reveals the

extra overhead caused by vSched. The results in Figure 21

indicate that vSched incurs low overhead, with only a 0.7%

performance degradation on average. Throughput-oriented

workloads with high CPU utilization are slightly affected

by probing costs, whereas latency-sensitive workloads with

small tasks even benefit from the probing periods, which

keep vCPUs active and increase core frequency.

6 Discussion

Limitations of vSched. vSched requires changes to the

guest OS and is not compatible with VMs running commer-

cial OSes. Additionally, since vSched is designed to operate

without modifying the hypervisor, it lacks control over vCPU

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

scheduling, limiting its ability to engage in cooperative sched-

uling optimizations that involve information exchange be-

tween the guest and the host to improve resource allocation

to a VM. However, vSched is the best choice for optimizing

resource utilization within a VM when hypervisor modifi-

cations are not feasible, and it can be seamlessly integrated

with any host-side vCPU scheduling enhancements. Lastly,

vSched uses sampling to minimize overhead. While it can

respond to typical vCPU changes [4, 7, 24] within seconds,

solutions like XPV [7] and CPS [8] that expose real-time

vCPU information from the hypervisor are necessary for

sub-second vCPU changes.

vSched Tunables Configuration. The vSched tunables are

experimentally determined in our evaluation. Specifically,

the vcap sampling period is adjusted to be long enough to

include at least one active period for each vCPU. The probing

frequencies are set to ensure that vSched can respond to

vCPU changes within seconds. The vcap EMA decay factor is

calibrated to prevent excessive migrations due to fluctuating

capacity. The vtop targeted cache transfer and cache transfer

timeout are tuned to minimize failed probing attempts that

result from misidentifying non-stacking vCPUs. The ivh

migration threshold is aligned with the scheduler tick, set

to trigger migration proactively within 2 ticks after vCPU

rescheduling. These tunables can therefore be easily auto-

configured across different platforms.

Security Implication of vSched. Probing vCPUs within a

VM may expose it to attacks from a co-located adversarial

VM. The attacker might run concurrently during the victim’s

probing phase, deceiving the victim about its actual capacity

and topology, and thereby manipulating its workload execu-

tion. However, performing such attacks is challenging, if not

impractical. The attacker lacks control over the placement of

its vCPUs and has limited knowledge of the victim’s vCPU

topology. Additionally, since probing is integrated with the

victim’s workload execution, and given the presence of other

co-running VMs, identifying distinct probing patterns be-

comes difficult. It’s also unrealistic for vSched to exploit the

probed results for attacks without precise host information.

7 Related Work

Task scheduling optimizations mostly stem from new hard-

ware features, such as multicore [39], DVFS [21], hierarchical

memory [7], and special instruction sets [60], to name a few.

vSched aims to improve scheduling on virtualized resources.

Existing solutions achieve this goal by exposing accurate

vCPU information to the VM. XPV [7] exposes NUMA topol-

ogy changes to the VM, enabling NUMA-aware optimization.

CPS [8] reveals NUCA topology and core load changes to

improve scalability. UFO [61] provides VMs with the number

of cores allocated, allowing the VM to optimize the number

of online vCPUs for latency-critical tasks. I-Spinlock [31]

addresses LHP and LWP problems by ensuring that a thread

only acquires a lock when it can complete the critical section

within the vCPU quantum exposed by the hypervisor. How-

ever, these solutions require hypervisor modifications, which

increase security risks and are hard to deploy in multi-cloud

scenarios. However, the new scheduling heuristics in vSched
can be integrated into these paravirtualized solutions, and

we plan to explore this integration in future work.

vCPU scheduling optimizations are developed at the hy-

pervisor layer to provision high-quality vCPUs that can best

serve VM workloads. UFO [61] isolates vCPUs from differ-

ent VMs, as well as the vCPU threads and emulator threads

within each VM, to reduce vCPU latency for latency-critical

tasks. DASEC [9] implements dynamic asymmetric vCPU

scheduling to shift inter-vCPU interference away from tasks

on the critical path, redirecting it to non-critical tasks. Some

solutions enhance vCPU scheduling by receiving hints from

the VM. Pillai [12] proposes sharing task information be-

tween the guest and host, allowing a vCPU to be boosted

when running latency-sensitive tasks. eCS [13] enables the

hypervisor to boost vCPUs running critical-section tasks

based on VM-provided hints. CPS [8] notifies the hypervisor

when vCPUs within the same cache group are executing in-

teractive threads, helping to avoid migrations of such vCPUs.

UFO [61] shares scheduling frequency information within

the VM to the hypervisor, offering a hint for determining the

optimal number of cores to allocate to the VM for lower tail

latency. However, combining these solutions is challenging,

particularly when their optimization goals conflict. Despite

this, vSched, as an orthogonal solution, can help better lever-

age the high-quality vCPUs provided by these optimizations.

Resource probing tools are implemented to increase user

visibility in the cloud. CacheInspector [58] probes CPU cache

resources available to the VM, improving QoS for cache-

sensitive workloads. vMitosis [24] probes NUMA topology

to optimize page table access within the VM. vtop extends

it by probing additional topologies and reducing the probing

time from tens of seconds to hundreds of milliseconds.

8 Conclusion

This paper employs innovative probing techniques to unveil

the accurate vCPU abstraction, enabling the scheduler to

make well-informed decisions. Coupled with virtualization-

aware heuristics leveraging the probed results, significant

throughput and latency enhancements are achieved in the

dynamic multi-cloud environment. We plan to extend our

probing efforts to other resources for further optimizations.

9 Acknowledgments

We thank the anonymous reviewers for their constructive

comments, and Alain Tchana for his helpful suggestions as

the shepherd for this paper. Edward Guo and Jianchen Shan

are supported in part by NSF CNS-2324923. Weiwei Jia is

supported in part by NSF grant CRII-SHF-2348066.

Optimizing Task Scheduling in Cloud VMs with Accurate vCPU Abstraction EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

References

[1] Zhang, Yanqi and Goiri, Íñigo and Chaudhry, Gohar Irfan and Fonseca,

Rodrigo and Elnikety, Sameh and Delimitrou, Christina and Bianchini,

Ricardo. Faster and Cheaper Serverless Computing on Harvested

Resources. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 724–739, 2021.

[2] Davood Ghatrehsamani, Chavit Denninnart, Josef Bacik, and Mohsen

Amini Salehi. The Art of CPU-pinning: Evaluating and Improving

the Performance of Virtualization and Containerization Platforms. In

Proceedings of the 49th International Conference on Parallel Processing,
pages 1–11, 2020.

[3] Weiwei Jia, Cheng Wang, Xusheng Chen, Jianchen Shan, Xiaowei

Shang, Heming Cui, Xiaoning Ding, Luwei Cheng, Francis CM Lau,

Yuexuan Wang, et al. Effectively Mitigating I/O Inactivity in vCPU

Scheduling. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 267–280, 2018.

[4] Matthew Elbing and Jianchen Shan. The Linux Load Balance: Wasted

vCPUs in Clouds. In 2020 IEEE Cloud Summit, pages 174–175. IEEE,
2020.

[5] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil

Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam

Mittal, Scott Shenker, et al. SkyPilot: An Intercloud Broker for Sky

Computing. In 20th USENIX Symposium on Networked Systems Design
and Implementation, pages 437–455, 2023.

[6] Amazon. EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.
[7] Bao Bui, Djob Mvondo, Boris Teabe, Kevin Jiokeng, Lavoisier Wapet,

Alain Tchana, Gaël Thomas, Daniel Hagimont, Gilles Muller, and Noel

DePalma. When extended para-virtualization (XPV) meets NUMA.

In Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–15,
2019.

[8] Yuxuan Liu, Tianqiang Xu, Zeyu Mi, Zhichao Hua, Binyu Zang, and

Haibo Chen. CPS: A Cooperative Para-virtualized Scheduling Frame-

work for Manycore Machines. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 4, pages 43–56, 2023.

[9] Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding.

Achieving Low Latency in Public Edges by Hiding Workloads Mutual

Interference. In Proceedings of the 13th Symposium on Cloud Computing,
pages 477–492, 2022.

[10] Jianchen Shan, Xiaoning Ding, and Narain Gehani. APPLES: Efficiently

Handling Spin-Lock Synchronization on Virtualized Platforms. IEEE
Transactions on Parallel and Distributed Systems, 28(7):1811–1824, 2016.

[11] Weiwei Jia, Jianchen Shan, Tsz On Li, Xiaowei Shang, Heming Cui, and

Xiaoning Ding. vSMT-IO: Improving I/O Performance and Efficiency

on SMT Processors in Virtualized Clouds. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 449–463, 2020.

[12] Vineeth Pillai. Dynamic vCPU Priority Management in KVM. https:
//lwn.net/Articles/955145/.

[13] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Scaling Guest OS

Critical Sections with eCS. In 2018 USENIXAnnual Technical Conference
(USENIX ATC 18), pages 159–172, 2018.

[14] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang. Schedule

Processes, not vCPUs. In Proceedings of the 4th Asia-Pacific Workshop
on Systems, pages 1–7, 2013.

[15] Kenta Ishiguro, Naoki Yasuno, Pierre-Louis Aublin, and Kenji Kono.

Revisiting VM-Agnostic KVM vCPU Scheduler for Mitigating Exces-

sive vCPU Spinning. IEEE Transactions on Parallel and Distributed
Systems, 2023.

[16] Thomas Friebel and Sebastian Biemueller. How to Deal with Lock

Holder Preemption. Xen Summit North America, 164, 2008.
[17] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.

KVM: the Linux Virtual Machine Monitor. In Proceedings of the Linux
symposium, volume 1, pages 225–230. Dttawa, Dntorio, Canada, 2007.

[18] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.

Last-level Cache Side-channel Attacks are Practical. In 2015 IEEE
symposium on security and privacy, pages 605–622. IEEE, 2015.

[19] Linux Kernel Documentation. Capacity Aware Scheduling. https:
//docs.kernel.org/scheduler/sched-capacity.html.

[20] Linux Kernel Documentation. Core Scheduling. https://docs.kernel.
org/admin-guide/hw-vuln/core-scheduling.html.

[21] Julia Lawall, Himadri Chhaya-Shailesh, Jean-Pierre Lozi, Baptiste Lep-

ers, Willy Zwaenepoel, and Gilles Muller. OS Scheduling with NEST:

Keeping Tasks Close Together on Warm Cores. In Proceedings of the
Seventeenth European Conference on Computer Systems, pages 368–383,
2022.

[22] James Cipar, QirongHo, Jin Kyu Kim, Seunghak Lee, Gregory R Ganger,

Garth Gibson, Kimberly Keeton, and Eric Xing. Solving the Straggler

Problem with Bounded Staleness. In 14th Workshop on Hot Topics in
Operating Systems (HotOS XIV), 2013.

[23] Pan Xinhui. Implement vCPU Preempted Check. https://lwn.net/
Articles/704904/.

[24] Ashish Panwar, Reto Achermann, Arkaprava Basu, Abhishek Bhat-

tacharjee, K Gopinath, and Jayneel Gandhi. Fast Local Page-tables for

Virtualized NUMA Servers with vMitosis. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 194–210, 2021.

[25] Linux Kernel Documentation. CFS Scheduler. https://docs.kernel.org/
scheduler/sched-design-CFS.html.

[26] Linux Kernel Document. Scheduler Domains. https://docs.kernel.org/
scheduler/sched-domains.html.

[27] Roman Gushchin. [PATCH rfc 0/6] Scheduler BPF. https://lwn.net/
ml/linux-kernel/20210916162451.709260-1-guro@fb.com/.

[28] Paul Menage at Linux Kernel Document. Control Groups. https:
//docs.kernel.org/admin-guide/cgroup-v1/cgroups.html.

[29] Viresh K. Fixing SCHED_IDLE. https://lwn.net/Articles/805317/.
[30] Jonathan C. Per-entity Load Tracking. https://lwn.net/Articles/

531853/.
[31] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. The

Lock Holder and the Lock Waiter Pre-emption Problems: Nip Them

in the Bud using Informed Spinlocks (I-Spinlock). In Proceedings of
the Twelfth European Conference on Computer Systems, pages 286–297,
2017.

[32] Xiaoning Ding, Phillip B Gibbons, Michael A Kozuch, and Jianchen

Shan. Gleaner: Mitigating the Blocked-Waiter Wakeup Problem for

Virtualized Multicore Applications. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 73–84, 2014.

[33] Harshad Kasture and Daniel Sanchez. Tailbench: a Benchmark Suite

and Evaluation Methodology for Latency-critical Applications. In 2016
IEEE International Symposium on Workload Characterization, pages
1–10.

[34] Alexey Kopytov. Sysbench. https://github.com/akopytov/sysbench.
[35] Song L. Introduce cpu.headroom knob to CPU con-

troller. https://lore.kernel.org/lkml/20190408214539.2705660-1-
songliubraving@fb.com/.

[36] Linux Kernel Documentation. CFS Bandwidth Control. https://docs.
kernel.org/scheduler/sched-bwc.html.

[37] SUSE. Tuning the task scheduler. https://documentation.suse.com/
sles/15-SP4/html/SLES-all/cha-tuning-taskscheduler.html.

[38] Steven Rostedt. Using KernelShark to analyze the real-time scheduler.

https://lwn.net/Articles/425583/.
[39] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien

Quéma, and Alexandra Fedorova. The Linux Scheduler: a Decade of

Wasted Cores. In Proceedings of the Eleventh European Conference on
Computer Systems, pages 1–16, 2016.

[40] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.

The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In Proceedings of the 17th international conference on

https://aws.amazon.com/ec2/spot/
https://lwn.net/Articles/955145/
https://lwn.net/Articles/955145/
https://docs.kernel.org/scheduler/sched-capacity.html
https://docs.kernel.org/scheduler/sched-capacity.html
https://docs.kernel.org/admin-guide/hw-vuln/core-scheduling.html
https://docs.kernel.org/admin-guide/hw-vuln/core-scheduling.html
https://lwn.net/Articles/704904/
https://lwn.net/Articles/704904/
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://docs.kernel.org/scheduler/sched-domains.html
https://docs.kernel.org/scheduler/sched-domains.html
https://lwn.net/ml/linux-kernel/20210916162451.709260-1-guro@fb.com/
https://lwn.net/ml/linux-kernel/20210916162451.709260-1-guro@fb.com/
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://lwn.net/Articles/805317/
https://lwn.net/Articles/531853/
https://lwn.net/Articles/531853/
https://github.com/akopytov/sysbench
https://lore.kernel.org/lkml/20190408214539.2705660-1-songliubraving@fb.com/
https://lore.kernel.org/lkml/20190408214539.2705660-1-songliubraving@fb.com/
https://docs.kernel.org/scheduler/sched-bwc.html
https://docs.kernel.org/scheduler/sched-bwc.html
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://lwn.net/Articles/425583/

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Edward Guo, Weiwei Jia, Xiaoning Ding, and Jianchen Shan

Parallel architectures and compilation techniques, pages 72–81, 2008.
[41] Anthony O Ayodele, Jia Rao, and Terrance E Boult. Performance

Measurement and Interference Profiling in Multi-tenant Clouds. In

2015 IEEE International Conference on Cloud Computing, pages 941–949.
IEEE, 2015.

[42] Linux Kernel Documentation. Clock sources, Clock events,

sched_clock() and delay timers. https://docs.kernel.org/timers/
timekeeping.html.

[43] Georgios Chatzopoulos, Rachid Guerraoui, Tim Harris, and Vasileios

Trigonakis. Abstracting multi-core topologies with MCTOP. In Pro-
ceedings of the Twelfth European Conference on Computer Systems, pages
544–559, 2017.

[44] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hacken-

berg. Memory Performance of AMD EPYC Rome and Intel Cascade

Lake SP Server Processors. In Proceedings of the 2022 ACM/SPEC on
International Conference on Performance Engineering, pages 165–175,
2022.

[45] Linux Kernel Documentation. Utilization Clamping. https://docs.
kernel.org/scheduler/sched-util-clamp.html.

[46] Jonathan Corbet. Improved response times with latency nice. https:
//lwn.net/Articles/887842/.

[47] Linux Kernel v6.1.36. Stopper thread. https://elixir.bootlin.com/linux/
v6.1.36/source/kernel/stop_machine.c#L384.

[48] Jonathan Corbet at LWN. An EEVDF CPU scheduler for Linux. https:
//lwn.net/Articles/925371/.

[49] Peter Zijlstra. [RFC][PATCH 00/10] sched/fair: Complete EEVDF. https:
//lore.kernel.org/lkml/20240405102754.435410987@infradead.org/.

[50] Jonathan Corbet. The extensible scheduler class. https://lwn.net/
Articles/922405/.

[51] Red Hat Resource Management Guide. Default Cgroup Hier-

archies. https://access.redhat.com/documentation/en-us/red_
hat_enterprise_linux/7/html/resource_management_guide/sec-

default_cgroup_hierarchies.
[52] Libvirt Virtualization API. virsh. https://www.libvirt.org/index.html.
[53] Will Reese. Nginx: the high-performance web server and reverse proxy.

Linux Journal, 2008(173):2, 2008.
[54] Jeff Gilchrist. Parallel BZIP2 (PBZIP2). http://compression.great-

site.net/pbzip2/?i=1.
[55] Ubuntu Manpage. hackbench - scheduler benchmark/stress test. https:

//manpages.ubuntu.com/manpages/xenial/man8/hackbench.8.html.
[56] Jens Axboe. fio - Flexible I/O tester. https://fio.readthedocs.io/en/

latest/index.html#.
[57] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, KeWang, Brian

Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh

Elnikety, et al. Providing SLOs for Resource-Harvesting VMs in Cloud

Platforms. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 735–751, 2020.

[58] Weijia Song, Christina Delimitrou, Zhiming Shen, Robbert Van Re-

nesse, Hakim Weatherspoon, Lotfi Benmohamed, Frederic De Vaulx,

and Charif Mahmoudi. CacheInspector: Reverse Engineering Cache

Resources in Public Clouds. ACM Transactions on Architecture and
Code Optimization, 18(3):1–25, 2021.

[59] Stijn Schildermans, Jianchen Shan, Kris Aerts, Jason Jackrel, and Xi-

aoning Ding. Virtualization Overhead of Multithreading in X86 State-

of-the-Art & Remaining Challenges. IEEE Transactions on Parallel and
Distributed Systems, 32(10):2557–2570, 2021.

[60] Mathias Gottschlag, Philipp Machauer, Yussuf Khalil, and Frank Bel-

losa. Fair Scheduling for AVX2 and AVX-512 Workloads. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 745–758,
2021.

[61] Yajuan Peng, Shuang Chen, Yi Zhao, and Zhibin Yu. UFO: The Ultimate

QoS-Aware Core Management for Virtualized and Oversubscribed

Public Clouds. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), pages 1511–1530, 2024.

https://docs.kernel.org/timers/timekeeping.html
https://docs.kernel.org/timers/timekeeping.html
https://docs.kernel.org/scheduler/sched-util-clamp.html
https://docs.kernel.org/scheduler/sched-util-clamp.html
https://lwn.net/Articles/887842/
https://lwn.net/Articles/887842/
https://elixir.bootlin.com/linux/v6.1.36/source/kernel/stop_machine.c#L384
https://elixir.bootlin.com/linux/v6.1.36/source/kernel/stop_machine.c#L384
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lore.kernel.org/lkml/20240405102754.435410987@infradead.org/
https://lore.kernel.org/lkml/20240405102754.435410987@infradead.org/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/resource_management_guide/sec-default_cgroup_hierarchies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/resource_management_guide/sec-default_cgroup_hierarchies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/resource_management_guide/sec-default_cgroup_hierarchies
https://www.libvirt.org/index.html
http://compression.great-site.net/pbzip2/?i=1
http://compression.great-site.net/pbzip2/?i=1
https://manpages.ubuntu.com/manpages/xenial/man8/hackbench.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/hackbench.8.html
https://fio.readthedocs.io/en/latest/index.html#
https://fio.readthedocs.io/en/latest/index.html#

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 vCPU abstraction
	2.2 Linux Scheduler
	2.3 Motivating Experiments

	3 The vSched Approach
	3.1 vCPU Probing
	3.2 Biased vCPU Selection (bvs)
	3.3 Intra-VM Harvesting (ivh)
	3.4 Relaxed Work Conservation (rwc)

	4 Implementation Details
	5 Evaluation
	5.1 Evaluation Settings
	5.2 Accuracy and Performance of vProbers
	5.3 Enhancing Existing Scheduling Optimizations
	5.4 Latency Reduction with bvs
	5.5 Increased Throughput with ivh
	5.6 Overall Improvement with vSched
	5.7 Adaptability of vSched
	5.8 vSched Improvement in Multi-tenant Hosts
	5.9 Cost and Overhead of vSched

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

