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Abstract

The paper focuses on an under-studied yet fundamental issue
on Simultaneous Multi-Threading (SMT) processors — how
to schedule I/O workloads, so as to improve I/O performance
and efficiency. The paper shows that existing techniques used
by CPU schedulers to improve I/O performance are ineffi-
cient on SMT processors, because they incur excessive con-
text switches and spinning when workloads are waiting for
I/O events. Such inefficiency makes it difficult to achieve
high CPU throughput and high I/O throughput, which are
required by typical workloads in clouds with both intensive
I/O operations and heavy computation.

The paper proposes to use context retention as a key tech-
nique to improve I/O performance and efficiency on SMT pro-
cessors. Context retention uses a hardware thread to hold the
context of an I/O workload waiting for I/O events, such that
overhead of context switches and spinning can be eliminated,
and the workload can quickly respond to I/O events. Target-
ing virtualized clouds and x86 systems, the paper identifies
the technical issues in implementing context retention in real
systems, and explores effective techniques to address these
issues, including long term context retention and retention-
aware symbiotic scheduling.

The paper designs VSMT-IO to implement the idea and
the techniques. Extensive evaluation based on the prototype
implementation in KVM and diverse real-world applications,
such as DBMS, web servers, AI workload, and Hadoop jobs,
shows that VSMT-IO can improve I/O throughput by up to
88.3% and CPU throughput by up to 123.1%.

1 Introduction
Simultaneous Multi-Threading (SMT), or Hyper-Threading
(HT) on x86 processors, is widely enabled on most cloud
infrastructures [1–4]. For example, in Amazon EC2 [1], vir-
tual instances can have their virtual CPUs (vCPUs) run on
dedicated hardware threads or time-share hardware threads.
With SMT, multiple hardware threads share the same set of
execution resources in each core, such as functional units and
caches. Thus, when enabled, SMT can effectively improve

resource utilization and system throughput.
On SMT processors, CPU schedulers are critical for achiev-

ing high performance. To make optimal scheduling decisions,
they must fully consider and leverage the performance fea-
tures of SMT processors, particularly the intensive resource
sharing between hardware threads. For example, intensive
study has concentrated on symbiotic scheduling algorithms,
which co-schedule the threads that can fully utilize the hard-
ware resources with minimal conflicts on each core [5–10].

Existing scheduling optimizations for SMT processors, in-
cluding symbiotic scheduling and other enhancements in ex-
isting system software [11–13], mainly target computation-
intensive workloads and aim to improve processor throughput.
However, the techniques that can effectively and efficiently
improve the performance of I/O-intensive workloads on SMT-
enabled systems have not been paid enough attention. These
techniques are particularly important when a system has both
computation workloads and I/O workloads, and requires both
high processor throughput and high I/O throughput.

To improve I/O workload performance, existing CPU sched-
ulers generally use two techniques, polling [14–16] and boost-
ing the priority of I/O workloads [17–19]. However, with these
techniques, I/O workloads incur high overhead on SMT pro-
cessors due to busy-looping and increased context switches,
which can significantly reduce the performance of computa-
tion running on other hardware threads.

This problem is particularly significant and detrimental in
clouds. In clouds, I/O workloads and computation workloads
are usually consolidated on the same server to improve sys-
tem utilization [17, 19–22]. At the same time, virtualization
is dominantly used in clouds, which causes busy-looping and
context switches to incur higher overhead, because extra op-
erations must be carried out to deschedule and reschedule
virtual CPUs, as we will show in §2.

To control the overhead of polling and I/O workload prior-
ity boosting, existing system designs make trade-offs between
the efficiency and the effectiveness of these techniques, which
undermine the performance of I/O workloads. For polling,
existing systems usually incorporate a short timeout to keep
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the busy-looping brief. For priority boosting, it has been a
long-standing dilemma to make I/O workloads preempting
the running workloads promptly or with some extra delay;
to resolve this dilemma, Linux uses a scheduling delay pa-
rameter (tunable, usually a few milliseconds) as a knob to
trade-off I/O workloads responsiveness and the increased con-
text switch overhead.

Instead of improving the effectiveness-efficiency trade-off,
the paper seeks a fundamental solution to the above problem.
The key is a technique that can effectively improve the perfor-
mance of I/O workloads with high efficiency. Our solution is
motivated by the hardware-based design for efficient blocking
synchronization on SMT processors [23]. With the design,
blocking synchronizations can be finished efficiently without
busy-looping or context switches. Specifically, the design al-
lows a thread blocked at a synchronization point to free all
its resources for other hardware threads to use, except for its
hardware context; thus, when the thread is unblocked, it can
resume its execution in a few cycles.

Our solution targets virtualized clouds and x86 SMT pro-
cessors. It is built on a hardware-based blocking mechanism
for vCPUs, named Context Retention. Context retention is
implemented with Intel MONITOR/MWAIT support [24]. With
context retention, when a vCPU is waiting for an I/O event, its
execution context can be held on a hardware thread without
busy-looping involved; upon the I/O event, the vCPU can
resume execution quickly without a context switch.

1.1 Technical Issues

While the rationale of the context retention mechanism is
straightforward, maximizing its potential on improving per-
formance needs to address three technical issues listed below.
These issues arise mainly because context retention may be
long time periods. Many I/O operations have long latencies in
millisecond scale, and the latencies may further increase due
to queueing/scheduling delays. To avoid context switches, the
contexts of the vCPUs waiting for the finish of these opera-
tions need to be retained on hardware threads for the same
amount of time.

First, uncontrolled context retention can diminish the bene-
fits from simultaneous multithreading, because context reten-
tion reduces the number of active hardware threads on a core.
This issue is particularly serious for x86 processors, which
only implement 2-way SMT1. When a hardware thread is
used for context retention, only one hardware thread remains
for computation.

Second, context retention consumes the timeslice of an
I/O workload, and thus reduces its timeslice available for
computation. We found that, if not well controlled, context
retention can even reduce the throughput of I/O workloads.

Third, due to context retention and burstiness of I/O op-
erations [25], the resource demand of an I/O workload may
vary dramatically on a hardware thread. This makes it a chal-
lenging task to improve processor throughput with existing

symbiotic scheduling methods. To determine which work-
loads may make fast progress if scheduled on the same core,
existing symbiotic scheduling methods periodically profile
workload executions and make predictions based on the pro-
filing results. Thus, these methods are effective only when
the workload on each vCPU changes steadily. They must be
substantially extended to handle I/O workloads.

1.2 Major Techniques

We implement our solution and address the above issues
by designing the VSMT-IO scheduling framework. It has
two major components. The Long-Term Context Reten-
tion (LTCR) mechanism is mainly to maximize I/O through-
put with high efficiency. The Retention Aware Symbiotic
Scheduling (RASS) algorithm is mainly to maximize proces-
sor throughput.

The LTCR mechanism mainly addresses the first two issues
identified in Section 1.1. It holds the context of the vCPU
waiting for an I/O event on a hardware thread for an extended
time period. If the expected I/O event happens in this period,
the vCPU can quickly resume and respond to the event. Oth-
erwise, the vCPU is descheduled. The maximum length of the
time period is carefully adjusted in a way that both processor
throughput and I/O throughput can be improved.

With LTCR, the context of an I/O workload can be held for
as long as a few milliseconds, which is more than 10x longer
than the busy-looping timeout used in system software (sub-
millisecond) [14, 15]. This makes LTCR capable of dealing
with relatively high I/O latencies, which are associated with
slow I/O operations (e.g., HDD accesses and SSD writes) or
caused by various system factors (e.g., queueing/scheduling
delay and SSD block erase). In contrast, polling is used only
when I/O workloads interact with low latency devices, e.g.,
local network and NVMe devices [16, 26].

The RASS algorithm mainly addresses the third issue iden-
tified in Section 1.1. On each core, it classifies the vCPUs into
two categories, CPU-bound vCPUs and I/O-bound vCPUs. It
uses one hardware thread for running CPU-bound vCPUs and
the other hardware thread mainly for I/O-bound vCPUs. In
this way, the computation on the CPU-bound vCPUs can over-
lap to the greatest extent with the context retention periods on
the other hardware thread. This effectively improves proces-
sor throughput, since CPU-bound vCPUs can take advantage
of the hardware resources released due to context retention to
make fast progress. RASS schedules CPU-bound vCPUs on
both hardware threads only when I/O-bound vCPUs are not
ready to run. In this case, RASS selects CPU-bound vCPUs
based on the symbiosis between vCPUs (i.e., how well the
vCPUs can share the hardware resources and make progress
when co-scheduled).

With RASS, the first two issues identified in Section 1.1 can

1Though some Xeon Phi processors implement 4-way SMT, the paper
targets 2-way SMT x86 processors because of their overwhelming dominance
in clouds.
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be further mitigated. LTCR mainly targets long context reten-
tions. It limits the lengths of context retentions to mitigate the
resource underutilization they cause and reduce the timeslice
they consume. However, it cannot deal with the issues caused
by relatively short context retentions. For these context reten-
tions, RASS mitigates the resource underutilization issue (the
first issue in Section 1.1) by overlapping computation and
context retention; to mitigate the second issue, it helps ensure
the supply of timeslice to I/O-bound vCPUs by running them
on dedicated hardware threads with high priorities.

The paper makes the following contributions. First, the
paper identifies the efficiency issues in existing CPU sched-
ulers when they are used to improve I/O performance on
SMT-enabled systems, and proposes a novel idea, context
retention, to improve efficiency. Second, it identifies the is-
sues in implementing the idea, and explores effective tech-
niques to address these issues, including long term context
retention and retention-aware symbiotic scheduling. Third,
targeting virtualized clouds and x86 processors, the paper
designs VSMT-IO to implement the idea and the techniques,
and builds a system prototype based on KVM [27]. Forth, it
has evaluated VSMT-IO with extensive experiments and a
diverse set of 18 programs, including DBMS, web servers, AI
workloads, and Hadoop jobs, and compared the performance
of VSMT-IO with the vanilla system and widely-adopted
enhancements. The experiments show that VSMT-IO can im-
prove I/O throughput by up to 88.3% and processor through-
put by up to 123.1%.

2 Background and Motivation
Targeting virtualized clouds, this section demonstrates the
efficiency issues of existing schedulers in improving I/O per-
formance on SMT-enabled systems. It first introduces these
techniques, and experimentally verifies their inefficiency and
the caused performance degradation (§2.1). Then, it explains
why the issues are serious on virtualized platforms (§2.2).

2.1 Inefficient I/O-Improving Techniques

I/O-intensive applications are usually driven by I/O events. A
pattern repeated in their executions is waiting for I/O events
(e.g., queries received from network, or data read from disks),
processing I/O events, and generating new I/O requests (e.g.,
responses to queries, or more disk reads). Thus, high I/O
performance not only depends on fast and well-managed I/O
devices to quickly respond to I/O requests. It also depends on
the applications to promptly respond to various I/O events,
such that new I/O requests can be generated and issued to I/O
devices quickly.

Thus, CPU schedulers play an important role in improv-
ing I/O performance. To increase the responsiveness of I/O
workloads to I/O events, existing schedulers use two general
techniques — polling for low-latency I/O events and priority
boosting for high-latency I/O events. With polling, an I/O
workload waiting for an I/O event enters a busy loop (im-

plemented with PAUSE on x86 processors) with a pre-set
timeout. The workload keeps looping before it is interrupted
upon the expected I/O event or is descheduled due to timeout.
Thus, polling allows a workload to respond to I/O events with
a minimal delay before timeouts. With priority boosting, upon
an I/O event, the priority of the I/O workload is boosted, such
that it can quickly preempt a running workload to respond to
the I/O event.

On virtualized platforms, I/O workloads run on vCPUs;
and vCPU scheduling becomes a key component affecting
I/O performance. For vCPUs, polling may be implemented
in guest OS kernel [28]. However, busy-looping in guest OS
causes unnecessary VM_EXITs and extra overhead on x86
processors when Pause Loop Exiting (PLE) is enabled. Thus,
recent designs (e.g., HALT-Polling [15]) usually implement
polling at the VMM level. Priority boosting may be imple-
mented by adjusting priorities explicitly [17] or by implicitly
associating priorities with CPU time consumption. For ex-
ample, Linux/KVM allows the vCPUs with lower CPU time
consumption (e.g., I/O-bound vCPUs) to preempt the vCPUs
with higher CPU time consumption [17, 29].

Though polling and priority boosting can improve the per-
formance of I/O workloads, they are inefficient on SMT pro-
cessors. The operations associated with these techniques,
busy-looping and context switches, waste the hardware re-
source that can be otherwise utilized by the computation on
other hardware threads. Thus, the inefficiency may not be
an issue when a system has only I/O workloads; but it be-
comes detrimental when I/O workloads are consolidated with
computation workloads. Efficiency can be improved by mak-
ing these techniques less aggressive, e.g., enforcing a shorter
timeout for polling. However, this sacrifices the effectiveness
of these techniques and I/O performance.

We illustrate the inefficiency issue with polling and prior-
ity boosting using the experiments with two combinations
of applications, Sockperf with Matmul, and Redis with
PageRank. Sockperf and Redis are I/O-bound. Matmul
and PageRank are CPU-bound. We run each combination
on a 24-core server (48 hyperthreads) with each application
running in a 48-vCPU VM. This results in 2 vCPUs on each
hyperthread. The VMs are managed by KVM/Linux. Detailed
server/VMs configurations and application descriptions can
be found in §6.

To illustrate the inefficiency issue on a well-tuned system
with high efficiency, we have enhanced the HALT-Polling
implementation in KVM. The enhancement makes HALT-
Polling more effective, so as to further reduce context switches
between vCPUs and make vCPUs more responsive to I/O
events. Specifically, with the “vanilla” implementation, an
idle vCPU is not allowed to perform HALT-Polling when
there is another vCPU ready to run on the same hyperthread.
The enhancement removes this restriction. It also increases the
maximum timeout that is allowed in HALT-Polling. (HALT-
Polling adjusts timeout value dynamically between 0 and
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workloads
KVM w/

enhanced HALT-Polling VSMT-IO

vCPU
switches

spinning
time

perf.
imprv.

vCPU
switches

spinning
time

perf.
imprv.

Sockperf
Matmul 12.5K 40.1% 16.1% 3.3K - 56.5%

8.2% 57.4%
Redis

PageRank 43.9K 27.5% 8.4% 15.1K - 88.3%
7.7% 123.1%

Table 1: Existing techniques handling I/O workloads incur frequent
vCPU switches and massive spinning, and are inefficient on SMT proces-
sors. “vCPU switches” are counts of context switches between vCPUs
every second in the server. The performance improvements are relative
to “vanilla” KVM.

a maximum value.) The enhancement improves the perfor-
mance of the applications by 7.7% ∼ 16.1%.

As shown in Table 1, both application combinations incur
frequent vCPU switches. For example, Redis and PageRank
incur a vCPU switch about every 1 millisecond on each hyper-
thread. At the same time, a substantial portion of CPU time
is spent by polling (e.g., 40.1% for Sockperf and Matmul).
vCPU switches and such massive polling inevitably degrade
performance, as we will show later.
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Figure 1: Tweaking existing techniques for scheduling I/O workload can-
not substantially improve performance. (The throughputs are normal-
ized to those with vanilla KVM.)

The performance advantage of the enhanced HALT-Polling
is achieved by increasing polling to reduce costly vCPU
switches. This demonstrates some potential to tweak existing
designs. However, to improve performance significantly, ma-
jor changes must be made. To illustrate this, Figure 1 shows
how the performance of Redis and PageRank changes when
tweaking the key parameters of polling and priority boosting.
We first tweak the timeout used in HALT-Polling and vary it
from 10 microseconds to 5 milliseconds. Figure 1(a) shows
that increasing timeout only slightly improves performance
when timeout value is small. However, the performance im-
provement of these two applications hits a plateau at about
10% after the timeout value reaches 200 microseconds.

Then, we adjust the scheduling delay parameter in Linux.
The parameter controls the delay between a vCPU being wo-
ken up upon an I/O event and the vCPU preempting another
vCPU. Thus, increasing the parameter essentially reduces the
priority of I/O-bound vCPUs and reduces vCPU switches. As
Figure 1(b) shows, the average performance barely changes;
and increasing this parameter is basically sacrificing I/O per-
formance for higher processor throughputs.

The aim of VSMT-IO is to substantially reduce the over-

head caused by spinning and vCPU switches. The reduced
overhead improves the performance of computation work-
loads. As shown in Table 1, reducing more than 2/3 of vCPU
switches and eliminating spinning lead to significant perfor-
mance improvement to PageRank (123.1% relative to vanilla
KVM or 107.1% relative to enhanced KVM). More impor-
tantly, the performance improvement of computation work-
load is not at the cost of I/O performance. With VSMT-IO, the
throughput of Redis is increased by 88.3% over vanilla KVM
or 73.7% over enhanced KVM. The system I/O throughput is
also increased by 75.1% over enhanced KVM.

2.2 Overhead of Polling and Context Switches

Existing techniques for improving I/O performance are in-
efficient on SMT processors, because context switches and
polling waste the resource that can be otherwise utilized by
the computation on other hardware threads. Targeting vir-
tualized clouds, this subsection highlights the overhead of
these operations with experiments and explains how such
high overhead is incurred.

Hyperthread 1 Hyperthread 2 Relative performance
- Matmul 100%

vCPUs Switches Matmul 32%
HALT-Polling Matmul 73%

Table 2: vCPU switches and HALT-Polling on a hyperthread slow down
the computation on the other hyperthread.

In the experiments, we run a Matmul thread on a hyper-
thread. Then, on the other hyperthread, we make two vCPUs
switch back and forth or make a vCPU repeat the HALT-
Polling loop. We check how the performance of Matmul is
impacted by these operations.

The experiments show that vCPU switches slow down
Matmul by about 70%, and HALT-Polling slows it down by
about 30% (Table 2). While the slowdowns explain the ineffi-
ciency of polling and priority boosting techniques, we were
surprised at these slowdowns. We expected the slowdown
caused by vCPU switches to be around 50%, because there
are two streams of instructions compete for CPU resource
on the hyperthreads, and expected the slowdown caused by
HALT-Polling to be minimal, because PAUSE instruction is
designed to consume minimal resource.

We have diagnosed the slowdowns. vCPU switches cause
large slowdowns mainly because the L1 data cache shared
by both hyperthreads needs to be flushed during vCPU
switches to address the L1 Terminal Fault problem [30, 31].
Other costly operations, including TLB flush [32], handling
rescheduling IPIs [33], and the execution of scheduling algo-
rithm, also contribute to the performance impact incurred by
vCPU switches. The slowdown caused by HALT-Polling is
larger than expected because the operations other than PAUSE
are executed. HALT-Polling is implemented in the VMM.
Thus, VM_EXIT is incurred when a vCPU enters HALT-
Polling. VM_EXITs are costly operations [34]. During the
polling, the instructions controlling the busy-loop are exe-
cuted repeatedly. They are also more costly than PAUSE.

452    2020 USENIX Annual Technical Conference USENIX Association



3 Basic Idea and Technical Issues
As Section 2 shows, polling and priority boosting incur high
overhead on SMT processors; tweaking these techniques
yields only marginal performance improvements. This re-
quires that a new and efficient technique be developed to
handle I/O workloads.

On a SMT processor, an efficient technique must consume
minimal hardware resources. In a scheduling technique for
improving I/O performance, two factors determine its hard-
ware resource consumption. One is how to handle an I/O
workload while it is waiting for the completion of an I/O
operation. The other is how to quickly resume the execution
of the I/O workload upon the completion of the expected I/O
operation. Polling and priority boosting each concentrate on
reducing the resource consumption of only one factor, but at
the cost of high resource consumption in the other factor. Our
solution aims to minimize the resource consumption of both
factors.

Our solution leverages two features of SMT processors:
1) hardware-based blocking support, and 2) intense resource
sharing between hardware threads. With these features, we im-
plement a Context Retention mechanism for vCPUs. While
a vCPU is waiting for the completion of I/O operations, it
can “block” itself on a hardware thread, and release all its
resources for other hardware threads to use, except for its
hardware context. This minimizes the resource consumption
required by waiting for the completion of I/O operations. With
the hardware context, the vCPU can be quickly “unblocked”
without context switches upon the completion of the I/O oper-
ations. This minimizes the resource consumption required to
quickly resume the execution of I/O workloads. Table 3 sum-
marizes the benefits of context retention from the perspectives
of both I/O workloads and computation workloads.

Benefit Overhead

I/O better responsiveness timeslice charged
for context retention

Computation extra resources from reduced
context switches and polling

resource
underutilization

Table 3: A summary of benefit and overhead of context retention.

Though context retention consumes minimal hardware re-
sources, it does incur some overhead, which are as summa-
rized in Table 3 and must be reduced for better efficiency.
From the perspective of computation workloads, because not
all the hardware threads can be used for computation, the
overhead is reflected by resource underutilization. Given that
a x86 core has two hyperthreads, to avoid low utilization, one
must be doing computation while the other does context re-
tention. Even with this arrangement, full utilization may not
be achieved.

From the perspective of I/O workloads, they are charged
for vCPU usage while they retain contexts; so only short
context retention periods are cheaper than descheduling and
rescheduling vCPUs; but longer retention periods are not.
This problem can be illustrated by the performance of I/O

workload Redis in Figure 1(a). Increasing HALT-Polling
timeout improves the performance of Redis when the timeout
value is low. However, after the timeout exceeds 0.5 millisec-
ond, further increasing the timeout degrades its performance.
This is because, with a longer timeout, polling consumes more
timeslice and reduces the timeslice available to the compu-
tation in Redis. Though polling is used in this experiment,
if polling is replaced with context retention, the performance
trend would be similar.

For the above overhead issues, a natural solution is to con-
trol the maximum length of context retention, such that ex-
tended context retention periods will not cause high overhead.
However, this solution cannot deal with the overhead of the
context retention periods that are relatively short. Reducing
this overhead requires some enhancement in vCPU schedul-
ing. For example, resource underutilization can be mitigated
by scheduling a resource-demanding vCPU on a hyperthread
when context retention is in progress on the other hyperthread;
the vCPUs with much timeslice consumed by context reten-
tion can be compensated with extra timeslice.

In addition to the overhead issues, context retention also cre-
ates some challenge on the integration of symbiotic schedul-
ing methods, which are needed for improving CPU perfor-
mance. The key of symbiotic scheduling is to estimate how
well a group of workloads can corun on a SMT core (i.e.,
symbiosis level) [6–9, 35]. This is achieved by monitoring
workload executions periodically. For instance, SOS (Sample,
Optimize and Symbiosis) [5] samples workload executions
periodically in sample phases to determine their symbiosis
levels, and preferentially coschedules tasks with the highest
symbiosis levels in symbiosis phases. Thus, existing symbi-
otic scheduling methods require that the resource demand
of a workload change steadily during its execution. Due to
context retention and burstiness of I/O operations [25], the
resource demand of an I/O workload changes dramatically
during its execution on a vCPU. Existing symbiotic schedul-
ing methods cannot handle such workloads. This issue may be
addressed by coscheduling I/O workloads with computation
workloads, such that symbiosis levels can be lifted by overlap-
ping context retention with resource-demanding computation.
Existing symbiotic scheduling methods can still be used to
handle computation workloads.

4 VSMT-IO Design
We implement our idea and address the technical issues in
VSMT-IO. In this section, we present the overall architecture
of VSMT-IO and its major components.

4.1 Overview

Figure 2 shows the overall architecture of VSMT-IO.
VSMT-IO incorporates four major components:
• The Long Term Context Retention (LTCR) mechanism
on each core implements context retention. To prevent ex-
tended context retention periods causing high overhead (re-
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Figure 2: VSMT-IO Architecture. Key components are in orange.

source underutilization and timeslice consumption), it en-
forces a context retention timeout, and dynamically adjusts
the timeout value.
• The Retention Aware Symbiotic Scheduling (RASS) al-
gorithm is mainly to increase the symbiosis levels of the
vCPUs running on the hypertheads in each core. To achieve
this, RASS classifies vCPUs into two categories, CPU-bound
vCPUs and I/O-bound vCPUs, and schedules CPU-bound
vCPUs on a hyperthread and I/O-bound vCPUs on the other
hyperthread. CPU-bound vCPUs run on both hyperthreads
only when I/O-bound vCPUs are not ready to run. In this
way, the resource-demanding computation on CPU-bound
vCPUs can overlap to the greatest extent with the resource-
conserving context retention periods on I/O-bound vCPUs.
Increased symbiosis levels improve CPU performance and
reduce the overhead of context retentions. At the same time,
using a dedicated hyperthread for I/O-bound vCPUs allows
them to use extra CPU time as a “compensation” for the times-
lice charged in context retention periods, and further prevents
them from being unfairly penalized.
• The Workload Monitor on each core monitors vCPU ex-
ecutions. It characterizes the workloads on the vCPUs and
measures performance. It provides workload information for
RASS to classify and schedule vCPUs and for the workload
adjuster introduced below to adjust the workloads between
cores. It provides performance information for LTCR to adjust
the timeout value.
• The effectiveness of RASS relies on the heterogeneity of
the workloads on each core, some being CPU-bound and
some others being I/O-bound. The Workload Adjuster sup-
plements RASS. It adjusts the workloads on each core to
maintain their heterogeneity by migrating vCPUs between
cores.

4.2 Long Term Context Retention (LTCR)

On x86 processors, we implement vCPU context retention
with the MONITOR/MWAIT support. Specifically, to wait for
an I/O event, a vCPU calls a MWAIT instruction paired with a

Algorithm 1 Context Retention Timeout Adjustment
1: Td : desired timeout value; Te: effective timeout value; Tinit : initial time-

out value; P: time period between two adjustments

2: Td ← Tinit
3: while true do
4: Te← Td , collect performance data for a time period of P
5: if TESTTIMEOUT(Td * 1.1) then
6: Td ← Td ∗1.1; continue
7: else
8: Te← Td , collect performance data for a time period of P
9: end if

10: if TESTTIMEOUT(Td * 0.9) then
11: Td ← Td ∗0.9; continue
12: end if
13: end while

14: function TESTTIMEOUT(T )
15: Te← T , collect performance data for a time period of P
16: Scpu← average speed-up of CPU-bound vCPUs
17: Sio← average speed-up of I/O bound vCPUs
18: if Scpu > 1 and Sio > 1 then return true; end if
19: return false
20: end function

MONITOR instruction that specifies a memory location in guest
OS. The MWAIT instruction “blocks” the vCPU and keeps its
context on the hyperthread. With the MONITOR/MWAIT support,
the MWAIT instruction ends automatically when the content at
the memory location is updated or an interrupt is directed to
the hyperthread. Since both I/O events and timeouts can be
notified with interrupts, we choose to use interrupts to stop
MWAIT. To prevent MWAIT from being terminated by mem-
ory writes prematurely, we set the memory location used in
MONITOR read-only.

The context retention timeout is to balance the cost and ben-
efit of context rentention. Based on the summary in Table 3,
for I/O workloads, lengthening a context retention is always
a gain when it consumes less timeslice than descheduling and
then rescheduling a vCPU. For computation workloads, con-
text retention is rewarding when the amount of resource saved
by reducing context switches and polling exceeds the amount
of resource that cannot be utilized due to context retention. In
the cases where one hyperthread does computation and the
other hyperthread does context retention, context retention
is always rewarding if it is not longer than the time spent
on descheduling and then rescheduling a vCPU, based on
the measurements shown in Table 2. Thus, context retention
timeout can be set to be at least the time required by de-
scheduling and rescheduling a vCPU. Then, longer timeouts
can be tested.

LTCR uses algorithm 1 to adjust the context retention time-
out periodically. The algorithm slightly increases or decreases
the timeout value, checks whether performance is improved
with the new value, and keeps the new value if it is. The al-
gorithm uses the vCPU performance information collected
by the workload monitor to determine whether performance
is improved. Specifically, it uses IPC (instruction per cycle)
to measure the performance of CPU-bound vCPUs, and uses
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the frequency of context retentions (i.e., number of context
retentions per second) to measure the performance of I/O-
bound vCPUs. Then, the algorithm calculates a speed-up for
each vCPU. A speed-up value greater than 1 indicates that
the performance of the vCPU has been improved with the
new timeout value. It averages the speed-up values of CPU-
bound vCPUs, and averages the speed-up values of I/O-bound
vCPUs. The algorithm determines that the performance is im-
proved and the new timeout value should be kept only if both
average values are greater than 1.

4.3 Retention Aware Symbiotic Scheduling (RASS)

RASS schedules the vCPUs on each core with the main aim
of maximizing the computation throughput of the core. This
is achieved by increasing the symbiosis levels of the vCPUs
running on the hypertheads. RASS combines two methods.
One is unbalanced scheduling that maximizes the overlap-
ping between resource-demanding computation and resource-
conserving context retention periods (Section 4.3.1). The
other is symbiotic scheduling based-on cycle accounting to
select CPU-bound vCPUs with high symbiosis levels when
both hardware threads need to run CPU-bound vCPUs (Sec-
tion 4.3.2).

4.3.1 Unbalanced Scheduling

Unbalanced scheduling classifies vCPUs into two categories,
CPU-bound vCPUs and I/O-bound vCPUs, and schedules
them on paired hyperthreads (See Figure 3). The classification
is based on how much time each vCPU spends on context
retention. Specifically, for each vCPU, a context retention rate
is calculated and updated periodically. It is the ratio between
the time spent on context retention in last time period and
the period length. When a new period begins, the vCPUs are
ranked based on their context retention rates. The vCPUs with
higher context retention rates are considered to be I/O-bound,
and the rest are CPU-bound.

computation

Context retention

I/O handling

Computation
(from hyperthread0)

CPU-bound vCPUs mainly 

running on hyperthread0 

I/O-bound vCPUs 

running on hyperthread1

Context retention

I/O handling

Context retention

I/O handling

Figure 3: Computation and context retention are distributed to differ-
ent hyperthreads with unbalanced scheduling.

When the hyperthread running I/O-bound vCPUs is idle, a
CPU-bound vCPU is selected based on the symbiosis level
(Section 4.3.2) and migrated to this hyperthread. This is to
improve the utilization of CPU hardware to further increase
CPU performance. The CPU-bound vCPU can only run with
a priority lower than the I/O-bound vCPUs. It is preempted
and migrated back when an I/O-bound vCPU becomes ready

to run. This is to prevent the CPU-bound vCPU from blocking
I/O-bound vCPUs and degrading I/O performance.

Unbalanced scheduling assumes that each vCPU has been
attached with a weight, e.g., that used in Linux Completely
Fair Scheduler (CFS). When classifying the vCPUs, it tries to
balance the total weight of CPU-bound vCPUs and the total
weight of I/O-bound vCPUs, and make them roughly equal.
This is mainly to balance the load on the hyperthreads and
reduce the migration of CPU-bound vCPUs.

The compensation to I/O-bound vCPUs for the timeslice
consumed by context retentions can also be implemented by
adjusting the weights of vCPUs. For example, the weights
of the vCPUs can be increased based on their context reten-
tion rates. For the vCPUs that spend more time on context
retentions than other vCPUs, their weights are increased by
larger percentages. In this way, fewer vCPUs are classified
as I/O-bound, and share the same hyperthread. However, we
found that this adjustment is not necessary in most cases. The
main reason is that I/O-bound vCPUs usually have low CPU
utilization. Thus, even with context retention, some I/O-bound
vCPUs still cannot fully consume their timeslice. Other I/O-
bound vCPUs that need more timeslice acquire automatically
extra timeslice as compensation. This is because the sched-
uler is work-conserving, and I/O-bound vCPUs have higher
priority than CPU-bound vCPUs on the hyperthread and are
supplied with extra timeslice first.

4.3.2 Symbiotic Scheduling Based on Cycle Accounting

When both hyperthreads need to run CPU-bound vCPUs, the
symbiosis levels between vCPUs must be considered. RASS
determines the symbiosis levels using the cycle accounting
technique [36–39]. It is a symbiotic scheduling technique for
threads. We only adapt its method that estimates the symbiosis
levels between threads and use it on vCPUs.

We select this technique because of its high practicality. To
estimate the symbiosis levels between threads, it samples and
characterizes each individual thread, and inputs the charac-
terization into an interference estimation model. Compared
to SOS (Sample, Optimize and Symbiosis), which samples
the execution of possible thread combinations [5], the cycle
accounting technique has a much lower complexity (O(n) vs.
O(n2)) and thus higher practicality.

The cycle accounting technique uses three parameters,
which are the components of the CPI (cycler per instruction),
to characterize a thread. The base component (B) is the num-
ber of cycles used to finish an instruction when all the required
hardware resource and data are locally available; the miss
component (M) is the number of cycles used to handle misses
(e.g., cache misses and TLB misses); the waiting component
(W) is the number of cycles waiting for hardware resource to
become available. The CPI value is roughly the sum of B, M,
and W.

When the parameters of a thread are being measured, the cy-
cle accounting technique requires that the thread run alone on
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the core without any computation on the other hyperthread so
as to eliminate interference. This incurs non-trivial overhead.
To reduce this overhead, we take advantage of context reten-
tions, and measure the parameters of a CPU-bound vCPU
when it is running on a hyperthread and context retention is
in progress in the other hyperthread. We obtain the base com-
ponent, the miss component, and the CPI of the vCPU using
hardware counters, and calculate the waiting component from
this.

4.4 Workload Adjuster

The effectiveness of RASS relies on the heterogeneity of the
workloads on each core, some being CPU-bound and some
others being I/O-bound. Its performance advantage may di-
minish when workloads become homogeneous due to factors,
such as load balancing and phase changes in workloads. The
workload adjuster is designed to maintain the workload het-
erogeneity on each core.

The workload adjuster measures workload heterogeneity
and characterizes the overall workload type by calculating
the standard deviation and the average value of vCPU context
retention rates. If a group of vCPUs have a small deviation
value, their workloads are generally homogeneous; if the av-
erage context retention rate of a group of vCPUs is very high,
these vCPUs are likely to be I/O-bound; if the average rate
is very low, the vCPUs are likely to be CPU-bound. The
workload adjuster calculates these values for each core, and
updates them periodically to detect the need for workload ad-
justment. When the standard deviation drops below a pre-set
threshold, workload adjustment starts.

To adjust the workloads, the adjuster finds the core with
the smallest deviation. Then, based on the average context
retention rate of the core (e.g., a very small average value of
CPU-bound vCPUs), the adjuster searches for another core,
which is dominated by the other type of vCPUs (e.g., I/O-
bound vCPUs). The search is done by examining the average
context contention rates of other cores. The desired core is
the one with the average context contention rate that differs
from the former average rate by the largest degree (e.g., a very
large average value of I/O-bound vCPUs). After a such core
is found, the adjuster ranks the vCPUs based on their context
retention rates on each of these two cores, selects the vCPU
ranked in the middle on each core, and swaps the two vCPUs.

5 Implementation Details
We have implemented a prototype of VSMT-IO based on
Linux/KVM. We added/modified about 1300 lines of source
code mainly in KVM kernel modules and Linux CFS 2. The
workload monitor and the long-term context retention (LTCR)
components are mainly implemented in a KVM kernel mod-
ule by changing kvm_main.c. In LTCR, the context retention
mechanism needs to be implemented in guest OS to minimize
overhead. Though it can be implemented as an idle driver ker-
nel module [40], we choose to directly change the idle loop

in idle.c to simplify the implementation. Context retention is
implemented with a loop, which repeatedly calls MONITOR,
MWAIT, and the need_sched() function of Linux kernel. It is
inserted at the beginning of each iteration of the idle loop.
Implementing context retention with a loop is to prevent it
from being terminated prematurely by irrelevant interrupts.
The loop terminates when a thread becomes “ready” on the
vCPU (fulfilled with the need_sched() call). Thus, context
retention can finish upon the expected I/O event. The loop
also ends if a timer interrupt “marking” the timeout of the
context retention is received by the vCPU. To differentiate
this interrupt from regular timer interrupts, we change the
two unused bits in the VM execution control register, and use
them as a timeout flag.

Retention aware symbiotic scheduling and workload ad-
juster are implemented based on Linux CFS in fair.c and
core.c. Thus, the original scheduling and load balancing poli-
cies implemented in CFS are followed in most cases, e.g.,
when deciding which I/O-bound vCPU is the next to run on
a hyperthread. However, when deciding which CPU-bound
vCPU is the next to run, the symbiotic scheduling policy in
RASS and the fairness based scheduling policy in CFS have
different objectives, and thus may decide to select different
vCPUs. To coordinate these different objectives, our imple-
mentation let Linux CFS select a few vCPUs based on its
policies. Then, among these vCPUs, RASS selects a vCPU
based on symbiosis.

6 Performance Evaluation
With the prototype implementation, we have evaluated
VSMT-IO extensively with a diverse set of workloads. The
objectives of the evaluation are four-fold: 1) to show that
VSMT-IO can improve I/O performance with high efficiency
and benefit both I/O workload and computation workload,
2) to verify the effectiveness of the major techniques used
in VSMT-IO, 3) to understand the performance advantages
of VSMT-IO across diverse workload mixtures and different
scenarios, and 4) to evaluate the overhead of VSMT-IO.

6.1 Experiment Settings

Our evaluation was done on a DELLTM PowerEdgeTM R430
server with two 2.60GHz Intel Xeon E5-2690 processors
(two NUMA zones), 64GB of DRAM, a 1TB HDD, and an
Intel I350 Gigabit NIC. Each processor has 12 physical cores,
and each physical core has two hyperthreads. With KVM,
we built four VMs, each with 24 vCPUs and 16GB memory.
Both the host OS and guest OS are Ubuntu Linux 18.04 with
kernel updated to 5.3.1. We test VSMT-IO with a large and
diverse set of workloads generated by typical applications
from different domains, as summarized in Table 4. In the
experiments, each VM encapsulates one workload.

We test VSMT-IO under two settings. Under the first set-
ting, we launch two VMs; thus each vCPU has a dedicated

2Source code can be found at https://github.com/vSMT-IO/vSMT-IO.
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App. Workload Description
Redis Serve requests (randomly chosen keys, 50% SET, 50% GET) [42].
HDFS Read 10GB data sequentially with HDFS TestDFSIO [43].

Hadoop TeraSort with Hadoop [43].
HBase Read and update records sequentially with YCSB [44].
MySQL OLTP workload generated by SysBench for MySQL [45].
Nginx Serve web requests generated by ApacheBench [46].
ClamAV Virus scan a large file set with clamscan [47].
RocksDB Serve requests (randomly chosen keys, 50% SET, 50% GET) [48].
PgSQL TPC-B-like workload generated by PgBench [49].
Spark PageRank and Kmeans algorithms in Spark [50].
DBT1 TPC-W-like workload [51].

XGBoost Four AI algorithms included in XGBoost [52] system.
Matmul Multiply two 8000x8000 matrices of integers.

SockperfTCP ping-pong test with Sockperf [53].

Table 4: Benchmark applications used to test VSMT-IO.

hyperthread. We compare VSMT-IO against three compet-
ing solutions: 1) Blocking, which immediately deschedules
the vCPUs waiting for I/O events, and is implemented by
disabling HALT-Polling in KVM; 2) Polling, which is im-
plemented by booting guest OS with parameter idle=poll
configured [41] (timeout is not enforced for best I/O perfor-
mance); and 3) HALT-Polling implemented in KVM, which
combines polling and priority boosting techniques.

Under the second setting, we launch four VMs; thus, each
hyperthread is time-shared by two vCPUs. Without a timeout,
Polling is not a choice for improving I/O performance under
this setting. Thus, we compare VSMT-IO against 1) vanilla
KVM, which uses priority boosting to improve I/O per-
formance, because HALT-Polling implemented in vanilla
KVM is inactive under this setting, and 2) HALT-Polling
enhanced to support time-sharing (described in Section 2.1).

We measure the throughputs of the workloads. We also
collect response times if the workloads report them. The per-
formance measurements may vary significantly across differ-
ent workloads. When we present them in figures, for clarity,
we normalize them against those of Blocking under the first
setting and priority boosting (i.e., vanilla KVM) under
the second setting.

6.2 One vCPU on Each Hyperthread

Under the first setting, I/O workloads can achieve the best
performance with Polling. We want to compare the effec-
tivenss of VSMT-IO on improving I/O performance against
that of Polling by comparing the performance of I/O work-
loads managed with these two solutions. Without a timeout,
Polling incurs high overhead on SMT processors, and de-
grades the performance of other workloads on the proces-
sors. Blocking and HALT-Polling are more efficient solu-
tions than Polling under this setting. We want to compare
the efficiency of VSMT-IO against that of Blocking and
HALT-Polling by comparing the performance of computa-
tion workloads when they are collocated with I/O workloads
managed with these three solutions.

With the above objectives, we launch two VMs. We run
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Figure 4: Throughputs of Matmul and eight I/O-intensive benchmarks
when Matmul is collocated with each of the benchmarks in two VMs.
Each vCPU runs on a dedicated hyperthread. Throughputs are normal-
ized to those of Blocking.

Matmul in one VM, which is computation-intensive, and run
an I/O-intensive benchmark in the other VM. Figure 4 shows
the normalized throughputs of Matmul and eight I/O-intensive
benchmarks selected to co-run with Matmul. Note that the
performance with Blocking is shown with the flat line at
100%.

With VSMT-IO, the I/O-intensive benchmarks achieve sim-
ilar performance as they do with Polling. The largest differ-
ence is with DBT1, 4.1%. This is because DBT1 incurs a large
number of random accesses to the HDD, which have long
latencies exceeding the timeout value used in LTCR. On aver-
age, the I/O intensive benchmarks are only 2.3% slower with
VSMT-IO. This shows that VSMT-IO is highly effective on
improving I/O performance.

The high effectiveness of VSMT-IO is achieved with high
efficiency. This is reflected by Matmul achieving higher
performance with VSMT-IO consistently in all the exper-
iments than it with the other three solutions. On average,
with VSMT-IO the performance of Matmul is 37.9%, 14.5%,
and 27.6% higher than it with Polling, Blocking, and
HALT-Polling, respectively.

6.3 Multiple vCPUs Time-Sharing a Hyperthread

With multiple vCPUs on each hyperthread, context switches
are usually incurred when improving I/O performance. It be-
comes more difficult for I/O-improving solutions to maintain
high efficiency. We want to know to what extent the effec-
tiveness and efficiency of VSMT-IO can be maintained. At
the same time, VSMT-IO can be fully exercised under this
setting. We want to verify the effectiveness of the major tech-
niques in VSMT-IO.

In the experiments, we launch four VMs. On two of the
VMs, we run two instances of the same benchmark, which
is computation-intensive, e.g., Nginx, or AI algorithms in
XGBoost. On the other two VMs, we run two instances of
another benchmark, which is I/O-intensive, e.g., web server,
or file server.

Figure 5 shows the normalized throughputs for eight bench-
mark pairs. In each pair, the first benchmark is I/O intensive,
and the second benchmark is computation intensive. The en-
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hanced HALT-Polling can effectively improve the through-
puts of I/O-intensive benchmarks, because polling can “ab-
sorb” some context switches caused by I/O operations. Com-
pared to vanilla KVM, the throughputs of I/O intensive bench-
marks are increased by 36.9% on average. However, polling
consumes CPU resources and may degrade the performance
of other workloads (e.g., Nginx and Regression). Because
the length of polling is carefully controlled in HALT-Polling,
on average the throughputs of computation-intensive bench-
marks are similar to those with vanilla KVM.

Compared to enhanced HALT-Polling, VSMT-IO can
more effectively improve the throughputs of I/O-intensive
benchmarks. On average, their throughputs are 29.5% higher
than those with enhanced HALT-Polling. More importantly,
this is achieved by improving the throughputs of computation-
intensive workloads at the same time. On average, the through-
puts of computation-intensive workloads with VSMT-IO
are 22.8% and 18.4% higher than those with enhanced
HALT-Polling and vanilla KVM, respectively.
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Figure 5: Throughputs of eight pairs of benchmarks. Each bench-
mark has two instances running on two VMs. Each hyperthread
is time-shared by 2 vCPUs. Throughputs are normalized to those
with vanilla KVM. Benchmarks BinaryClassify, MultipleClassify,
Regression and Prediction are AI algorithms in XGBoost [52, 54].

The results in Figure 5 confirm that VSMT-IO can maintain
its effectiveness and efficiency when each hyperthread is time-
shared by vCPUs. To further investigate how the throughputs
are improved with VSMT-IO, we collect the frequencies of
vCPU switches (shown in Table 5) and profile the workload
on the hyperthreads for I/O-bound vCPUs (results shown in
Table 6).

The effectiveness of VSMT-IO on improving I/O perfor-
mance relies on context retentions holding vCPU contexts
on hyperthreads (the LTCR component). It is reflected by re-
duced context switches. As shown in Table 5, VSMT-IO can
reduce vCPU switches significantly by up to 95% (80% on av-
erage). As a comparison, enhanced HALT-Polling can only
reduce vCPU switches by at most 51% (32% on average). This
explains the superiority of VSMT-IO over HALT-Polling.

The high efficiency of VSMT-IO comes partially from
its capability to reduce vCPU switches. It also comes from
LTCR and RASS controlling the overhead incurred by context

Benchmark Pairs Number of vCPU Switches Per Second

Vallina KVM Enhanced
HALT-Polling VSMT-IO

(RocksDB,Nginx) 29.3k 15.2k 1.9k
(ClamAV,BinaryClassify) 11.8k 8.7k 3.2k

(PgSQL,Regression) 9.5k 8.0k 2.8k
(MySQL,Prediction) 11.5k 9.3k 4.5k

(DBT1,MultipleClassify) 61.3k 29.5k 3.9k
(HBase,PageRank) 23.4k 12.3k 3.9k
(MongoDB,Kmeans) 33.3k 20.8k 9.3k

(HDFS,Hadoop) 34.0k 30.6k 1.7k

Table 5: The number of vCPU switches is substantially reduced with
VSMT-IO for the eight benchmark pairs.

Benchmark
Pairs

Context
Retentions

I/O
Workload

Computation
Workload

(RocksDB,Nginx) 28.1% 34.3% 37.6%
(ClamAV,BinaryClassify) 39.8% 31.6% 28.6%

(PgSQL,Regression) 42.3% 19.2% 38.5%
(MySQL,Prediction) 30.0% 33.5% 36.5%

(DBT1,MultipleClassify) 32.7% 54.4% 12.9%
(HBase,PageRank) 53.9% 31.9% 14.2%
(MongoDB,Kmeans) 34.4% 45.3% 20.3%

(HDFS,Hadoop) 33.0% 45.2% 21.8%

Table 6: Time (percentage) spent by context retentions, I/O-bound
vCPU, and CPU-bound vCPU on the hyperthreads for I/O-bound vC-
PUs.

retentions. While the effectiveness of RASS on controlling
the overhead is self-evident, the effectiveness of LTCR can
be confirmed with the results shown in Table 6. LTCR limits
the context retention lengths to prevent high overhead. As a
result, on the hyperthreads for I/O-bound vCPUs, for most
benchmark pairs, the time spent on context retentions is less
than 40%. With context retention lengths well controlled,
more than 20% of the CPU time on these hyperthreads can
be used by CPU-bound vCPUs to improve CPU throughput.
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Figure 6: Normalized throughputs (relative to those achieved with
vanilla KVM) of two pairs of benchmarks when LTCR and RASS are
enabled separately.

To understand how the two major techniques in VSMT-IO,
LTCR and RASS, improve performance, we enable these tech-
niques separately, and show the performance of two pairs
of benchmarks, HBase with PageRank, and MongoDB with
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Kmeans, in Figure 6. Workload Adjuster is enabled along
with RASS, because it is a supplement to RASS. Figure 6 shows
that the performance improvements of I/O-intensive work-
loads are mainly from the LTCR technique; and the perfor-
mance improvements of computation-intensive workloads are
mainly from the RASS technique. When LTCR is enabled, the
throughputs of I/O-intensive workloads, HBase and MongoDB,
are significantly increased by 41.1% and 44.7%, respectively.
However, it barely increases the throughputs of PageRank and
Kmeans. Further enabling RASS (with Workload Adjuster)
can effectively improve the throughputs of all the workloads.
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Figure 7: Response times of RocksDB, ClamAV, PgSQL, MySQL, DBT1,
HBase, and MongoDB normalized to those with vanilla KVM (shown
with the horizontal line at 100%).

Some benchmarks report response times. Figure 7
compares how their response times are reduced with
VSMT-IO and HALT-Polling. Relative to vanilla KVM,
HALT-Polling reduces the response times by 28.7% on av-
erage. VSMT-IO can reduce the response times by larger per-
centages (50.8% on average). To investigate how VSMT-IO
reduces response times, we monitor the state changes of the
vCPUs during the executions of these benchmarks, collect
the time spent by vCPUs at the following states: 1) Running,
including context retention, on a hyperthread, 2) Ready and
waiting to be scheduled, 2) Waiting for an event. In Table 7,
for each benchmark, we show the time (in milliseconds) spent
in these states for serving a request.

Benchmark Vallina KVM Enhanced
HALT-Polling VSMT-IO

Run Ready Wait Run Ready Wait Run Ready Wait
RocksDB 116.2 132.6 378.1 131.7 88.0 305.4 129.8 69.0 237.2
ClamAV 15.2 45.7 10.9 12.9 29.7 10.5 11.0 21.1 9.5
PgSQL 14.7 37.6 10.1 12.3 27.1 9.4 13.5 19.7 8.7
MySQL 111.4 319.7 88.9 90.7 167.9 89.5 87.5 136.7 80.6
DBT1 346.2 1831.4 1390.2 361.6 842.9 1035.8 306.9 643.2 641.6
HBase 266.2 655.0 901.8 237.8 323.3 795.9 241.6 315.0 654.3

MongoDB 376.1 528.6 1444.1 365.3 345.2 1276.6 351.7 256.0 897.9

Table 7: Time spent by vCPUs in three states when processing a request
with vanilla KVM, enhanced HALT-Polling, and VSMT-IO.

The response times are reduced with VSMT-IO mainly
because vCPUs spend less time on waiting to be scheduled or
for events. As shown in Table 7, VSMT-IO can significantly

reduce the time in the Ready state (53.6% on average). This is
because context retention reduces context switches between
vCPUs, and thus reduces the scheduling delay associated with
the switches. We have noticed that the time in the Waiting state
is substantially reduced for some benchmarks (e.g., DBT1).
This is because finising an I/O operation sometimes need the
collaboration of multiple vCPUs in the VM. For example,
after a vCPU sends out an I/O request and becomes idle,
another vCPU may receive the response and must notify the
former vCPU by sending it an inter-processor interrupt (IPI).
In this case, reducing the Ready time of the latter vCPU (i.e.,
scheduling it earlier) can also reduce the Waiting time of the
former vCPU.

6.4 Applicability and Overhead

VSMT-IO targets heterogeneous workloads with intensive
I/O operations and heavy computation. We want to know how
well VSMT-IO performs for the workloads with different
heterogeneity. This subsection tests the performance and over-
head of VSMT-IO for different workload mixes. We still use
4 VMs to run 4 instances of 2 applications in the experiments.
But we change VM sizes (i.e., the number of vCPUs in a VM)
to change the workload mix. For example, to make the work-
load more I/O-intensive, we increase the sizes of the 2 VMs
running I/O-intensive benchmarks and reduce the sizes of the
VMs running computation-intensive benchmarks. The total
number of vCPUs of the 4 VMs is kept fixed (96 vCPUs).
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Figure 8: Normalized throughputs of VSMT-IO under different work-
load mixes. Throughputs are normalized to those with vanilla KVM.
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Figure 9: Normalized response times of VSMT-IO under different
workload mixes. Response times are normalized to those with vanilla
KVM.

Figure 8 shows the normalized throughputs of two bench-
mark paris, HBase with PageRank, and MongoDB with
Kmeans, when the VM sizes for I/O-intensive benchmarks and
computation-intensive benchmarks are changed from (12,36)
to (36,12). (The ratios of the vCPUs running these bench-
marks vary from 24:72 to 72:24.) Figure 9 shows the re-
sponse times of HBase and MongoDB in these experiments.
Though VSMT-IO can improve performance for all these
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workload mixes, it improves performance by the largest per-
centages when the number of vCPUs running I/O-intensive
benchmarks is the same as the number of vCPUs running
computation-intensive vCPUs.

We also run PageRank and Kmeans in two VMs with
48 vCPUs each, and show the normalized throughputs (la-
beled with “0:96”) in Figure 8. Because both benchmarks
are computation intensive, there is no space for VSMT-IO to
improve performance. The performance difference between
VSMT-IO and vanilla KVM is unnoticeable (less than 2%).
This shows that the overhead of VSMT-IO is very low.

We have also evaluated the performance of VSMT-IO with
8 VMs (192 vCPUs). We find that VSMT-IO consistently
shows better performance than vanilla KVM and enhanced
HALT-Polling, for heterogeneous workloads; but the per-
formance improvement is similar to that with 4 VMs. The
performance advantage of VSMT-IO is more determined by
the mix of workloads than the number of VMs on each server.

7 Related Work
Improving I/O performance in virtualized systems. I/O
performance problems in virtualized systems have been in-
tensively studied; and various solutions have been proposed,
including shortening time slices [55–58], task-aware priority
boosting [17, 18, 59–69], and task consolidation [19, 70–73].
These solutions are not designed for SMT processors, and are
orthogonal to our work. Shortening time slices of vCPUs can
reduce the latency of I/O workloads in virtualized systems.
However, it may incur significant performance degradation
caused by context switches. Task-aware priority boosting im-
proves I/O performance in virtualized systems by prioritizing
I/O-intensive workloads. For instance, xBalloon [17] main-
tains the high priority of I/O-intensive workloads by reserving
CPU resource for them. However, this may hurt the perfor-
mance of computation-intensive workloads. vMigrater [19]
prioritizes I/O-intensive workloads by migrating them away
from to-be-descheduled vCPUs to other vCPUs, such that
they can keep running and generating I/O requests. However,
it is designed for VMs with multiple vCPUs, and may incur
high workload migration cost. Task consolidation solutions
can improve I/O performance by reducing the descheduling
and rescheduling of vCPUs. They consolidate workloads onto
fewer vCPUs if the workloads are I/O-intensive, such that
these vCPUs can be kept active with relatively low cost. These
solutions may also incur high cost due to frequent workload
migrations. Polling is used in these solutions to keep vC-
PUs active. This is inefficient on SMT processors and can be
improved by replacing polling with context retention.
Symbiotic scheduling aims to maximize the throughput of
SMT processors by selecting the tasks with complementary
resource demands and coscheduling them on the same SMT
core [5–10]. For instance, SOS (Sample, Optimize, Symbio-
sis) and its variants [5–10, 35] sample task executions when
they are coscheduled onto the same core, and preferentially

coschedule those with small slowdowns. These solutions only
target processor throughput, and cannot be used to improve
the performance of I/O-intensive workloads.
Other scheduling solutions for SMT processors. Instead of
maximizing processor throughput, some scheduling solutions
aim to secure resources for individual tasks on SMT proces-
sors to ensure their decent performance [11, 35, 74, 75]. For
instance, ELFEN [11] aims to ensure the high performance
of latency-critical tasks when they are collocated with batch
tasks on SMT processors. It puts a latency-critical task and
batch tasks on different hardware threads in the same core,
and “blocks” batch tasks when the latency-ciritical task is
making progress. The efficiency is low with this solution, be-
cause each core has only one active hardware thread at any
moment, and resource is underutilized. Tasks on the same
SMT processor may not share the resources in a fair way.
Various solutions have been proposed to enforce fairness
among the tasks in a SMT-enabled system [76–78]. For in-
stance, progress-aware scheduler [76] periodically estimates
the progress of tasks, and prioritizes the tasks with relatively
slow progress. VSMT-IO is orthogonal to these solutions. It
increases efficiency to improve both CPU performance and
I/O performance.

8 Conclusion and Future Work
Despite the prevalence of SMT processors, the problems with
how to improve I/O performance and efficiency on SMT pro-
cessors are surprisingly under-studied. Existing techniques
used in CPU schedulers to improve I/O performance are se-
riously inefficient on SMT processors, making it difficult to
achieve high CPU throughput and high I/O throughput. Lever-
aging the hardware feature of SMT processors, the paper de-
signs VSMT-IO as an effective solution. The key technique
in VSMT-IO is context retention. VSMT-IO targets virtual-
ized clouds and x86 systems and addresses a few challenges
in implementing context retention in real systems. Extensive
experiments confirm its effectiveness.

NUMA systems have become ubiquitous. Though our eval-
uation demonstrates that VSMT-IO achieves better perfor-
mance than competing solutions, the designs in VSMT-IO
have not been optimized for NUMA systems. As future work,
we want to make VSMT-IO “NUMA-aware” to further im-
prove its performance. For example, the workload adjuster
can be enhanced by adjusting workloads within each NUMA
node before it migrates vCPUs across NUMA nodes.
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