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Reestablishing Page Placement Mechanisms for
Nested Virtualization

Xiaowei Shang, Weiwei Jia, Jianchen Shan, Xiaoning Ding, and Cristian Borcea

Abstract—Page placement mechanisms have long been used to reduce cache conflict misses. They become more important in
clouds where the emerging way-based cache partitioning is used for better workload isolation but at a cost of increased cache conflicts.
However, page placement mechanisms become ineffective in virtualized environments, such as clouds, because the real locations of
memory pages (i.e., their host physical addresses) are hidden from guest OSs. The paper proposes XPLACE as a solution to
reestablish page placement mechanisms under the nested virtualization configuration. To keep high portability and low overhead,
XPLACE follows an approach that creates a synergy between the host and guest VMs, such that the page placement mechanism inside
each guest VM becomes effective even if its page placement decisions are made based on the guest physical addresses of memory
pages. The paper addresses the technical issues for implementing this approach in the nested virtualization setting, particularly how to
create the synergy with the obstacle created by guest hypervisors sitting between the host and guest VMs. Evaluation based on the
prototype implementation and diverse real world applications shows that XPLACE can greatly reduce cache conflicts and improve
application performance in the nested environment.

Index Terms—Cache Conflicts, Nested Virtualization, Multi-Core, Memory Management, Page Coloring, Page Placement
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1 Introduction

Recently, it has become mainstream to manage last-level cache
(LLC) space using new CPU hardware supports, such as Intel
cache allocation technology (CAT) [1], [2], [3]. This is particularly
important for cloud platforms, where the performance isolation
between workloads is critical, but may be destroyed through the
sharing of LLC space. With these hardware supports, system
software can perform way-based LLC partitioning (i.e., different
cache partitions containing different cache ways) and assign dif-
ferent workloads with different LLC partitions [1], [4].

Though way-based LLC partitioning mitigates the interference
between workloads, it increases cache conflicts (a.k.a. conflict
cache misses). It turns a high-associativity LLC into multiple
low-associativity partitions. Cache conflicts increase because the
associativity reduces. (Fully associative caches yield no conflict
misses.)

Native systems rely on page placement mechanisms (e.g., page
coloring and bin hopping) to reduce cache conflicts [5]. Page
placement mechanisms (PPMs) try to map virtual pages to differ-
ent cache sets in LLC, such that the accesses to the data in these
pages will hit different LLC sets, and will not cause conflicts.
This is achieved by controlling the mapping (i.e., placement) of
virtual pages to physical pages and leveraging the fixed mapping
between physical memory pages and the sets in LLC. PPMs
are implemented in operating systems where the placement of
virtual pages is achieved via the careful allocation of physical
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pages to virtual pages. Specifically, they extract “page colors”
from physical page addresses based on the set indexing of LLC.
Physical pages with different colors are mapped to different LLC
sets. When allocating physical pages, they choose the pages in
different colors. Thus, the corresponding virtual pages are also
mapped to different LLC sets.

For a few decades, PPMs have been widely used in mainstream
operating systems, such as Linux, Windows, and FreeBSD [5],
[6], [7]. They played an important role in improving LLC per-
formance when LLC associativity was low. The increase of LLC
associativity later reduces the dependence on PPMs. But PPMs
are still equipped and enabled in most OSs, including the guest
and host OSs/hypervisors in virtualized clouds. In view of the fact
that way-based LLC partitioning in clouds reduces associativity
and increases cache conflicts, it is natural to resort to PPMs and
expect they can mitigate this issue.

However, virtualization makes existing PPMs completely inef-
fective in clouds [8]. The effectiveness of a PPM in mitigating
LLC conflicts depends on its capability to properly “place” virtual
pages onto the physical pages in different colors. On virtualized
platforms, this is to place guest virtual pages (GVPs) into host
physical pages (HPPs) in different colors1. However, none of the
existing PPMs is managing such a cross-layer placement. For
example, a PPM in a guest OS only manages the placement of
GVPs in guest physical pages (GPPs) within a VM.

It is compelling to re-establish PPMs on virtualized platforms,
because way-based LLC partitioning is increasingly supported by
cloud system software and hardware processors, such as AMD,
ARM, and PowerPC. A cross-layer page placement mechanism
must be established not only under the conventional, non-nested

1. The fixed mappings of HPPs to LLC sets are the indispensable leverage
for a page placement mechanism to eventually correctly map virtual pages
to LLC sets. Physical pages in VMs, including guest physical pages (GPPs)
in non-nested virtualization, and GPPs and guest hypervisor physical pages
(GHPPs) in nested virtualization, do not have fixed mappings to LLC sets.
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virtualization configurations (NNVC), but also under the nested
virtualization configurations (NVC), which become indispensable
in many scenarios and is offered in most public clouds, including
Azure, Google Cloud, and Amazon AWS.

To establish a cross-layer placement mechanism that can prop-
erly place GVPs onto HPPs in different colors, the key is a
synergy between the PPMs at different system layers, including
the guests, guest hypervisors (only under NVC), and the host.
After all, the mapping between GVPs and HPPs ( f : GV P 7→HPP)
is the composition of the mappings managed by these PPMs.
For NNVC, there are two mappings: 1) the guest mapping g
between GVPs and GPPs (g : GV P 7→ GPP) controlled by the
guest PPM and 2) the host mapping h between GPPs and HPPs
(h : GPP 7→ HPP) controlled by the host PPM. Under NVC, they
include three mappings: 1) the guest mapping g, 2) an interposition
mapping i : GPP 7→ GHPP, which is the mapping between GPPs
and guest hypervisor physical pages (GHPPs), and is controlled by
the guest hypervisor, and 3) the host mapping h : GHPP 7→ HPP.
In short, under NNVC, the fact f = h ◦ g determines that a
desirable f should come from the synergy between h and g;
under NVC, f = h ◦ i ◦ g requires the synergy between all the
three mappings h, i and g. Note that each mapping changes with
the page allocation and deallocation at the corresponding layer.
To keep synergy, mappings at other layers may need to change
accordingly.

The establishment of a PPM across two layers has been studied
and tested under NNVC in our previous work [8]. Under NNVC,
for high portability, changes to guest OSs are usually avoided,
including the changes to g. Thus, the synergy can only be achieved
by adjusting h based on g. Note that adjusting h does not require
the detection of g, i.e., monitoring all the allocations of GPPs
to GVPs. Because the allocation of GPPs to GVPs is frequent,
monitoring them will cause high overhead. Instead, to adjust h
to g, we leverage a special feature of g: because the PPM in the
guest functions as if it was on a physical machine, it extracts
“virtual colors” from GPP addresses based on the set indexing of
its virtual LLC, and places GVPs into GPPs in different “virtual
colors”. With the above feature of g, we only need to adjust h to
ensure that the GPPs in different virtual colors can be mapped to
the HPPs in different real colors. In this way, the adjustment of h
is completely within the host and does not incur any interactions
with guests. Thus, it has high portability and low overhead.

To reestablish PPMs under NVC, this paper designs XPLACE.
The main challenge is that the solution must be implemented with
low overhead at the host level (for high portability). However,
compared to NNVC, the interposition of the guest hypervisor and
i increases the design complexity (i.e., dealing with one extra
layer of mapping) and implementation challenge (i.e., monitoring
the changes in i and even g at the host level) for such as a
solution. XPLACE takes advantage of the associative property of
mapping composition to explore a viable approach that limits the
solution within the host and keeps the overhead low. Specifically,
it innovatively adjusts h′ = (h ◦ i) to g, in light of the fact that
f = (h ◦ i) ◦ g = h′ ◦ g. This enables XPLACE to leverage the
aforementioned special feature of g to eliminate the overhead and
implementation challenges in monitoring the page allocations in
guests. However, the fact that h′ is the composition of h and i
still causes some challenges to XPLACE design. Because adjusting
i is obviously not possible without changing guest hypervisors,
adjusting h′ can only be achieved by adjusting h based on i.
This requires that the host must perform cross-layer monitoring

to detect the dynamic changes of i, i.e., the allocations of GHPPs
to GHPs in guest hypervisors. To detect changes of i, XPLACE

uses the shadow page table mechanism, which is implemented to
support page address translations under NVC. With the shadow
page table mechanism, the VM page table is set to be “write-
protected” by the host, and a change in i triggers a trap to the
host. Thus, the host can take this opportunity to check and adjust
h accordingly.

The paper makes the following contributions. First, to our
knowledge, this is the first work that studies the cache conflict
problem in the nested virtualization environment. Second, we
have proposed XPLACE as an effective solution that can effi-
ciently mitigate LLC conflict problem for nested virtualization;
XPLACE addresses a few technical challenges, such as memory
fragmentation. Finally, we have implemented XPLACE based on
KVM in Linux kernel 5.3 and tested it with diverse applications
in the nested virtualization environment. Our tests show XPLACE

can significantly reduce cache conflicts and effectively improve
application performance and system efficiency.

2 Background
2.1 Page Placement Mechanisms and Cache Conflicts

Page placement mechanisms (PPMs) were introduced when cache
associativity was low (e.g., 1∼4) in early computer systems. Be-
cause hardware caches could not effectively absorb conflict misses
due to the low associativity, page placement mechanisms were
used as effective software mitigation. They were implemented and
are still being used in main-stream system software, such as Linux,
Windows, and FreeBSD [5], [6], [7].

A PPM reduces cache conflicts by improving the “placement”
of virtual pages in physical pages, i.e., the allocation of physical
pages to virtual pages. Leveraging the fixed mapping between
physical pages and cache sets, it divides physical pages into
disjoint groups. The pages in the same group are mapped to the
same group of cache sets. For example, if each cache block is
64B, each group contains 64 cache sets because the page size is
4KB (4KB/64B=64). These cache sets are called a cache color.
The number of cache colors is determined by the number of cache
sets. For example, an LLC with 2048 cache sets has 32 cache
colors if each cache color contains 64 cache sets (2048/64=32).

When allocating physical pages, a PPM needs to examine and
consider the cache color that the physical page is mapped to. Thus,
it uses the cache color indexes to “label” the pages and calls them
page colors. The color of a page can be determined by examining
its physical address based on the set indexing of the cache. For
brevity, in the paper, the physical pages in the same color are
called conflicting pages, and the physical pages in different colors
are called non-conflicting pages.

For a set of virtual pages, to avoid the cache conflicts caused
by visiting the data in these pages, the PPM allocates the physical
pages in different colors to hold these virtual pages. In this way,
the virtual pages are essentially mapped to different cache colors.
Different page placement mechanisms use different policies to
determine which virtual pages should be allocated with physical
pages in different colors. For example, page coloring targets the
workloads with sequential data access patterns and allocates non-
conflicting pages to the virtual pages that are contiguous in virtual
memory space. Bin-hopping targets repetitive data access patterns
and allocates non-conflicting pages to the virtual pages that are
consecutively accessed by each workload.
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2.2 Two Types of Cache Partitioning Techniques

LLC partitioning mitigates the interference between workloads
caused by sharing LLC space. There are two types of LLC
partitioning techniques: 1) set-based LLC partitioning, where
different LLC partitions contain different cache sets; and 2) way-
based LLC partitioning, where different LLC partitions contain
different cache ways.

Leveraging PPMs, set-based LLC partitioning assigns different
workloads with the physical pages in different colors, such that
these workloads can use different cache colors [9], [10]. Set-based
cache partitioning has not been adopted in mainstream systems
due to two issues: 1) cache and memory co-partitioning, i.e., large
memory space must be reserved for a large cache partition, and
2) high overhead of recoloring virtual pages, i.e., replacing their
physical pages from one color to another, since costly memory
copying is involved in copying the page contents to new physical
pages [10].

In clouds, the de facto practice is to use way-based cache
partitioning with the hardware support built in processors, e.g.,
Intel CAT and AMD CAE. These supports allow the software to
assign different LLC ways to different workloads [4]. For example,
on Intel Xeon Gold 6138 processor, 20 cores share an 11-way
LLC. If 11 workloads run on the processor, one in each VM, a VM
can use a partition of 1 LLC way, similar to a direct mapped cache.
Because the associativity of an LLC partition can be very low
after way-based partitioning, LLC conflicts once again become a
serious performance issue. Our experiments show that, without
PPMs reducing LLC conflicts, the performance of cache-sensitive
applications can be reduced by 51% with a 11-way partition; the
performance degradation increases to 97% with a 1-way partition.
Mitigating this issue relies on PPM to be effective.

The paper targets virtualized systems that use way-based LLC
partitioning and studies how to reestablish PPMs to deal with the
increased LLC conflicts on these systems. When PPMs become
effective, they may be used to perform set-based LLC partitioning
in VMs. We consider this to be beyond of the scope of the
paper. First, set-based LLC partitioning has not been adopted in
mainstream systems due to the issues mentioned above. Second,
way-based LLC partitioning has become a de-facto solution. The
scenarios that require the use of set-based LLC partitioning are
rare.

2.3 Nested Virtualization and Its Memory Management

With virtualization technology, a hypervisor/host OS creates and
manages virtual machines by emulating device hardware and
allocating hardware resources dynamically. VMs have the same
interfaces and functionalities of physical machines and can run
unmodified operating systems (i.e., guest OSs) and applications.

Conventionally, hypervisors run directly on real hardware.
Nested virtualization allows hypervisors (i.e., guest hypervisors)
to run in VMs so as to host VMs inside VMs [11]. There are
scenarios where the support of nested virtualization is indis-
pensable. For example, Microsoft Windows 11 includes a type-1
hypervisor Hyper-V in it, which is to run Windows XP and the
legacy applications relying on Windows XP; nested virtualization
must be supported to run Windows 11 inside a VM [12]. There
are also some scenarios where using guest hypervisors brings
convenience. For example, using a guest hypervisor to contain
multiple VMs can allow the migration of multiple VMs together
to simplify management [11]; an extra layer of the hypervisor
can help homogenize the diverse cloud infrastructures [13] or

serve as a security monitor to isolate and protect VMs [14]; with
nested virtualization, cloud users can also deploy their preferred
hypervisors.
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Fig. 1: Page mappings (g, i, h, and h′) and LLC indexing c in
nested virtualization.

Virtualization and nested virtualization allow unmodified op-
erating systems and hypervisors to run inside virtual machines.
Thus, memory is managed independently at each system layer
using separate page tables. As shown in Figure 1, a guest OS
uses its guest OS page table to maintain the mapping (g) from
guest virtual pages (GVPs) to guest physical pages (GPPs); a
guest hypervisor uses its guest hypervisor page table to maintain
the mapping (i) from GPPs to guest hypervisor physical pages
(GHPPs); and the host OS page table is used to maintain the
mapping (h) from GHPPs to host physical pages (HPPs). The
figure also shows the mapping of HPPs to LLC (c) controlled by
hardware.

The mainstream hardware only supports the page translation in
NNVC that uses two levels of page tables (i.e., two-dimensional
page translation). However, the page translation under NVC re-
quires the use of the information in three levels of page tables. To
enable NNVC on the mainstream hardware, the host must merge
two levels of page tables (usually the guest hypervisor page table
and the host OS page table) into a shadow page table (SPT), in
order to reduce the number of levels to 2. This is as illustrated in
Figure 1 using the mapping h′ between GPPs and HPPs. To merge
the page tables, the host sets the guest hypervisor page tables to
be “write-protected”. Any update to a guest hypervisor page table
(e.g., the allocation of a GHPP to a VM) will triggers a trap to the
host. Thus, the host can take this opportunity to check the update
and propagate the update to the shadow page table accordingly.
When the host updates its host OS page table, it also propagate
the changes to the SPT to keep consistency.

2.4 Ineffective Page Placement on Virtualized Platforms

As explained in Subsection 2.1, a PPM can reduce cache conflicts
because it optimizes the mapping of virtual pages to cache colors.
This can be achieved because 1) the PPM optimizes the mapping
of the virtual pages to physical pages, and 2) the physical pages
have fixed mappings to cache colors. On virtualized platforms, the
virtual pages are the guest virtual pages (GVPs) at the guest level;
each layer has its own type of physical pages, i.e., guest physical
pages (GPPs), guest hypervisor physical pages (GHPPs), or host
physical pages (HPPs). Because only HPPs have fixed mapping
to cache colors, an effective PPM must optimize the mapping of
GVPs to HPPs.

The mapping of GVPs to HPPs is the composition of the
mappings at all different layers, including guest, guest hypervisor
(only under NVC), and host. Currently, every PPM independently
manages the mappings at its own layer. There is not a coordination
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mechanism to optimize the composition mapping. Because GVPs
cannot be properly “placed” on HPPs, LLC conflicts cannot be
reduced with these PPMs. As shown in [8], LLC conflicts may
increase by up to 44% on VMs under NNVC, relative to native
systems. This problem can cause a 20% performance degradation
under NNVC and may become even more pronounced under
NVC.

CoPlace has been developed as a solution for NNVC [8].
This paper targets NVC and aims to develop a mechanism that
coordinates the PPM in the host to the PPMs at upper layers
and makes them function effectively as a cross-layer PPM. Note
that we are not to improve existing page placement mechanisms
which have already been proven to be very effective in reducing
cache conflicts in a single layer after years of development and
tuning. Instead, we aim to ensure that PPMs in multiple layers can
coordinate to function correctly.

3 Possible Approaches
Since the issue is caused by managing the mapping from GVPs to
HPPs and then to cache sets, it may be solved by replacing these
mappings with a direct mapping from virtual pages to LLC sets
(i.e., using guest physical addresses in LLC set indexing) [15].
However, the implementation of this virtual address indexing
scheme requires changing hardware cache designs and compli-
cates shared data handling.

Another intuitive approach is to unify the mappings at different
layers into one direct mapping from GVPs to HPPs. On the one
hand, the nature of virtualization excludes such unification. On the
other hand, this disallows the flexibility that different guests can
adopt different page placement mechanisms that best benefit their
workloads.

The causes that make existing PPMs ineffective are similar
under NNVC and NVC. Another idea to solve this problem is
to try COPLACE in the host under NVC. However, COPLACE

was designed for non-nested virtualization which only incorpo-
rates the guest OS and the host OS. In the nested virtualization
environment, the guest hypervisor introduces an extra layer of vir-
tualization, making COPLACE unable to control the allocation of
memory pages to a guest VM. Thus, CoPlace may not effectively
reduce cache conflicts under NVC.

To show this, we compare the performance of COPLACE with
XPLACE, the approach proposed in this paper. We test the perfor-
mance of two throughput oriented applications from PARSEC [16]
benchmark suite, canneal and ocean_ncp, and two latency
sensitive applications from TailBench [17], Specjbb and
Masstree.

Please note that we test the performance of these applications
with an application running in a dedicated VM on the server in
this section. In Section 6, we extend the experiments to test the
performance of the same application running in multiple VMs that
are co-located on the server.

Figure 2a shows the throughputs of these applications with
XPLACE and COPLACE. We control the LLC space allocated
to each application, and measure the performance with three
different LLC space sizes (1-way, 6-way, and 11-way). On av-
erage, XPLACE outperforms COPLACE by 51% for 11 way LLC
allocation, 72% for 6 way LLC allocation, and 97% for 1 way
LLC allocation. This matches the LLC miss ratio increase as
shown in Figure 2d. In comparison to COPLACE, XPLACE offers
14%, 25%, and 42% lower LLC miss ratio increase with 11 way
LLC allocation, 6 way LLC allocation, and 1 way LLC allocation,
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Fig. 2: CoPlace Is Ineffective under NVC.

respectively, for the throughput oriented applications. We notice
that XPLACE is more effective in improving throughput when
fewer LLC ways are used, as cache conflicts are more serious.

For latency sensitive applications, Figure 2b and Figure 2c show
their mean latencies and 99th tail latencies with XPLACE and
COPLACE and under three different LLC space sizes, 1-way, 6-
way, and 11-way, respectively. Compared to COPLACE, XPLACE

reduces mean latency by 31% and 99th tail latency by 51% on
average. Similar to what has observed with throughput oriented
applications, XPLACE demonstrated similar trends with latency
sensitive applications. It is more effective in reducing latencies
when fewer cache ways are used, and the latency reduction corre-
lates well with the reduction of LLC misses shown in Figure 2d.

4 Problem Overview and Challenges
This section analyzes and then formally defines the problem of
reestablishing page placement mechanisms on virtualized plat-
forms. Then it explains the challenges in establishing a cross-layer
page placement mechanism under NVC.

4.1 Problem Statement and Analysis

On the existing hardware and the layered software architecture for
virtualization, for a workload, its virtual pages (V ) are mapped
to HPPs by the composition mapping f of a few component
mappings, i.e., f = h ◦ g under NNVC and f = h ◦ i ◦ g under
NVC. These component mappings change with page allocations
and deallocations. The HPPs are further mapped to LLC cache
colors by mapping c. All these mappings are as shown in Figure 1
under NVC. Without loss of generality, we assume that g, i, and h
are injective, and c is non-injective.

The problem of reestablishing page placement mechanisms on a
virtualized platform is to make c◦ f an injective mapping on any
Pv, which is a subdomain of V containing a group of GVPs that
are selected by a PPM to reduce LLC conflicts. The injectivity
of c◦ f ensures that different GVPs in Pv are mapped to different
LLC colors. Without loss of generality, we assume that a PPM is
equipped in the guest. Since the workload runs in the guest, the
guest PPM is the one that decides which GVPs should be included
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in the same subdomain Pv to avoid conflicts. We also assume that it
controls the size of Pv for the number of GVPs in Pv not exceeding
the count of LLC colors, such that all GVPs in Pv can be mapped
to different LLC colors.

Since f is a composition of its component mappings and c is a
fixed mapping built in hardware, to make c ◦ f injective on Pv, a
solution to the problem must effectively controls f by managing
its component mappings. In the paper, we use synergy to refer
to the capability of the component mappings to build up a f that
makes c◦ f injective on Pv.

The problem should be considered under a portability con-
straint: for the high portability of a solution, changes should be
limited within the host OS; and changes to guest OSs or guest
hypervisors should be avoided. Under this constraint, the synergy
between the component mappings of f can only be achieved
by adjusting h to respond to the changes in other component
mappings; and the problem becomes how to dynamically adjust h
upon the changes of other component mappings, so as to keep
c◦ f an injective mapping on any Pv.

Solving this problem relies heavily on the information main-
tained at the guest layer and guest hypervisor layer. It needs to
be aware of each subdomain Pv formed in the guest, monitor
every change of the other component mappings (g and i), and
adjust h accordingly to prevent c◦ f becoming non-injective on Pv.
However, with the semantic gap and layered architecture formed
by virtualization, memory management and dynamic changes in
page mappings in one layer are transparent to other layers. To
monitor and obtain all the information above, both implementation
challenges and overhead are daunting.

4.2 Challenges on Nested Virtualization Systems

The challenges in solving the problem under NNVC first lie in the
complexity of the problem, most of which is introduced by guest
hypervisors. Compared to the 2-layer architecture under NNVC,
this extra layer not only introduces one more mapping (i) that
must be dealt with in the solution, but also adds an obstacle
that impedes the solution implemented in the host from getting
enough information of the guest. The challenges also lie in the
fact that the solution for NNVC is ineffective under NVC, as we
show in Section 3, and cannot be easily extended to address these
challenges, as we will explain below.

CoPlace addresses the challenge under NNVC by first reformu-
lating the problem into a “stronger” problem, which “implies” the
original problem and is irrelevant to the mapping g in the guest.
The reformulation leverages a special feature of g formed by the
PPM in each guest: because the PPM performs page placement
as if it was on a physical machine, the GVPs in Pv are mapped
to different virtual cache colors in the virtual LLC. Let c′ be the
mapping between GPPs and virtual LLC colors. c′ is injective on
any g(Pv).

Instead of solving the original problem, which requires the
detection of every change in g, CoPlace tries to solve a “stronger”
problem: how to ensure that the GPPs in different virtual colors are
backed by the HPPs in different real colors. Under the portability
constraint, this stronger problem can be further reformulated as
how to manage h, such that a fixed and injective mapping
t between the virtual colors and the real colors of all GPPs
can be formed and maintained, i.e., managing h, such that
∀GPP,c ◦ h = t ◦ c′, where t is injective. The special feature
above determines that a solution of this stronger problem is also a
solution of the original problem.

The reformulations turn a cross-layer synergy problem between
g and h into a single-layer injectivitiy problem (i.e., maintaining a
t in the host). CoPlace solves this problem by initiating a table t
when a VM is created, and referring to t for the colors of the HPPs
when it selects HPPs to back GPPs. This solution relies only on
the information available in the host. Though virtual colors is the
information of the guest, it is also available to the host as a part
of VM interface: the virtual LLC is created and configured by the
host; and the GPPs are managed by the host and provided to the
VM as its physical memory space.

The effectiveness of the CoPlace approach is built upon the 2-
layer guest-host architecture: with the host being the layer immedi-
ately under the guest, it can utilize the information shared as a part
of the VM interface; with the host being the only layer between
the guest and hardware, it can control the mapping between virtual
colors and real colors. Under NVC, the interposition of the guest
hypervisor layer makes the approach ineffective. It also creates
a substantial obstacle for the host to gain the above capabilities.
Extending this approach must overcome this obstacle.

5 XPLACE Design
5.1 Basic Idea and Overview

Solving the problem under NVC requires a synergy between
three page mappings (i.e., g, i, and h) that are managed at three
different system layers. Our solution is based on the feature of the
multi-layered software architecture and the associative property
of mapping composition. We first take the guest hypervisor and
the host as a “composite host”, and then consider the problem of
adapting this “composite host” to create a synergy between it and
its guest. Specifically, we take f = h ◦ i ◦ g as f = h′ ◦ g where
h′ = h◦ i, and then consider how to adjust h′ dynamically. We take
the guest hypervisor and the host as a “composite host” for two
reasons: 1) COPLACE takes the guest hypervisor and the guest
as a “composite guest”, and proves to be an ineffective approach
(§3); and 2) the eventual solution will be built in the host, and the
host has direct interactions with the guest hypervisor. Consider
them as a “composite host” help leverage the existing cross-layer
mechanisms, such as shadow page table, as we will explain below.

Under this 2-layer conceptual architecture of guest and “com-
posite host”, after the problem reformulations that are similar to
those in COPLACE (§4.2), the problem becomes how to manage
h′, such that a fixed and injective mapping t between the virtual
colors of GPPs and the real colors of the HPPs backing these
GPPs can be formed and maintained, i.e., managing h′, such
that ∀GPP,c◦h′ = t ◦ c′, where t is injective. The reformulations
are also to minimize the reliance of XPLACE on the information
in the guest.

Since h′ is a composition of mapping i and mapping h, man-
aging h′ needs to 1) monitor and handle the changes of i, and
2) control the changes to h. The monitoring and handling of
the changes of i are implemented in the host page placement
mechanism. Without changing the existing layered structure, it
looks to be a challenging issue to monitor and handle the changes
of i, because the solution is in the host, and i is managed in
the guest hypervisor. We address these issues by leveraging the
shadow page table (SPT) mechanism. SPT is an “already-to-use”
mechanism for the bookkeeping of h′ in the host. With SPT, any
change to i (e.g., the allocation of a GHPP to back a GPP) will
incur a trap to the host. Taking this opportunity, the host can
examine this change by checking the corresponding GPP (for a
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virtual color), its GHPP, and then the HPP (for the real color).
If this change may make t become non-injective, the host page
placement mechanism adjusts h by replacing the HPP backing the
GHPP with another HPP with a desired color, such that t can
continue to be injective. This will be explained in §5.2.

To control the changes to h, we enhance the memory manage-
ment components that may change the page mappings in the host.
These components include buddy allocator, which allocates host
physical pages with low memory fragmentation, memory dedu-
plication, which merges physical pages with identical contents to
reduce physical memory consumption, and memory ballooning,
which adjusts the physical memory space available to the work-
loads in each VM. These components need to refer to shadow
page tables for the virtual colors of GPPs and to coordinate the
requirement of keep t injective with their original design goals.
We introduce the enhancements in §5.3 and §5.4.

HostGuest OS Guest 
Hypervisor

GVP3

GVP2

GVP1

GPP2

GPP3

GPP1

“color” GPPs 
using virtual 
LLC conf.

HPP4
HPP3GHPP3

GHPP2

GHPP1

HPP2

Page 
Alloc.

HPP1

Page    Realloc.

Guest PPM

❼

❻

❹

❺

❸❷ ❶

Host PPM

g i h

t

Fig. 3: XPLACE PPM Creates Synergy with Guest PPM

5.2 Host Page Placement Mechanism in XPLACE

In XPLACE, the host page placement mechanism monitors and
handles the changes to i so as to maintain the injectivity of t. It
starts with setting up the mapping t. When a VM is created and
the virtual LLC configuration in the VM is set up based on the
real LLC configuration, XPLACE assigns a unique real color to
each virtual color. (The number of cache sets and cache colors in
the virtual LLC is usually set to be the same as the real LLC.) It
maintains the color assignments in a table. We also refer to this
table as t.

After the VM is launched, the host PPM keeps monitoring and
handling the changes in i. We use Figure 3 to illustrate the steps.
To better explain the idea of XPLACE as a whole, the figure also
includes the page management in the guest. As shown with the
page mapping g inside the dotted line rectangle area representing
the guest OS, the PPM in the guest OS selects and allocates GHPs
in different virtual colors to GVPs. Specifically, the guest PPM
determines the virtual color of a GHP using its guest physical
page addresses and the configuration of the virtual LLC ( 1 ). The
virtual color is illustrated using a hollow tag icon. Using virtual
colors, the guest PPM performs page placement/allocation in the
same way that it would on a physical machine ( 2 ).

With the shadow page table mechanism, the host PPM in
XPLACE monitors every change in the mapping i between GPPs
and GHPPs. For example, when the guest hypervisor is allocating
a GHPP (e.g., the allocation of GHPP3 shown with 3 ), it needs
to change the write protected page table in the guest hypervisor.
This incurs a trap to the host ( 4 ). Note that the monitoring incurs

minimal overhead. It leverages the trap caused by the original
shadow page table mechanism in nested virtualization and does
not incur extra traps.

The host PPM in XPLACE detects whether such change of i
may destroy the injectivity of t, i.e., the synergy. This is as shown
with 5 . For the simplicity of the explanation, we assume that an
identity mapping is selected and used as t in Figure 3, i.e., real
colors matching virtual numbers. The trap contains the address of
GPP, from which the host PPM can extract the virtual color, and
the address of the GHPP, with which the host PPM can look up
the host OS page table to locate the HPP backing the GHPP and
then determine the real color. Thus, it can look up the table t using
the virtual color (e.g., the virtual color of GPP3 in the figure),
finds the real color assigned to the virtual color (e.g., red), and
compares it against the real color (e.g., the green color of HPP3,
illustrated using a solid tag icon).

If the two real colors do not match, XPLACE determines that the
injectivity/synergy is destroyed; it replaces the HPP to restore the
synergy. It frees the HPP ( 6 ), finds another HPP in a matching
color (i.e., GPP4 in red), and allocates the new HPP to back
the GHPP ( 7 ). Note that in this page re-allocation process, no
memory copying is required, because both HPPs (i.e., HPP3 and
HPP4) are free pages containing no valid data. The only overhead
for restoring the synergy is looking for a HPP and changing the
corresponding pointers (free list and page tables) to finish the
allocation.

Also note that in the above example we assume that a HPP
has been allocated to back the GHHP when the GHHP is being
allocated in the guest hypervisor. In the case that a HPP has not
been allocated, XPLACE also looks up table t with the virtual color
of the GHP, and allocates a HPP in the corresponding color.

5.3 Improving Buddy Memory Allocator

Host physical memory

Order 0
Order 1
Order 2

HPP 2/3 HPP 4/5

Free lists

Allocated host physical page 0

     UnAllocated host physical page 2

...

Order 3
Order 4

HPP 12~15

HPP 16~31

HPP 0
HPP 1
HPP 2
HPP 3
HPP 4
HPP 5
HPP 6
HPP 7
HPP 8
HPP 9
HPP 10
HPP 11
HPP 12
HPP 13
HPP 14
HPP 15
HPP 16
HPP 17
HPP 18
HPP 19
HPP 20
HPP 21

...

HPP 2

HPP 0

Fig. 4: Linux buddy allocator. There are eight cache colors (i.e., cache colors
of HPP 0∼7) in this example. To realize XPLACE, host memory fragmentations may
be increased based on the current buddy allocator mechanisms. For instance, when
four host physical pages (HPPs) with cache colors of HPP 2∼5 are requested, a
larger memory block (i.e., HPP 16∼31 in order-4) has to be split. This is because
current buddy allocator searches from order-2 and the memory block of HPP 12∼15
does not satisfy the cache color requirement.

For a memory allocator, reducing memory fragmentation is one
of the most important design goals. When free pages are separated
by allocated pages into small memory blocks, allocating large
chunks of physically contiguous memory becomes difficult or may
fail. Binary buddy memory allocator is now widely used in oper-
ating systems and hypervisors, including Linux and KVM, for its
efficiency and capability to deal with memory fragmentation [18],
[19], [20], [21]. The buddy allocator groups free memory pages
into blocks. Each block can contain 2x contiguous free pages and is
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aligned to 2x×4KB, where the non-negative number x is the order
of the block. Order 0 blocks are individual free pages. As shown
in Figure 4, blocks of the same size are organized on the same
list; the order-1 list has two blocks, one containing host physical
pages #2 and #3 (“HPP 2/3”), and the other containing #4 and #5
(“HPP 4/5”). To minimize fragmentation, on a memory allocation
request, the allocator finds a free memory block of the smallest
size that can satisfy the request, e.g., a block on the order-2 list
for a request of 3 pages, and preserves free memory blocks with
larger sizes. When a memory block is freed, the buddy allocator
tries to combine it with other free blocks on the lists to form a
larger free memory block.

As explained in the previous subsection, to reduce LLC con-
flicts, XPLACE needs to check the colors of the guest physical
addresses and allocate the host physical pages in the corresponding
colors determined by the mapping. It is possible that the requested
memory blocks do not have the free pages in the required color.
To satisfy the requirements on page colors, a larger memory block
must be split into pieces with one piece used to satisfy the request
and other pieces moved to low order lists. This increases memory
fragmentations.

For instance, in Figure 4, when the allocator is requested to
allocate four HPPs with the colors matching those of HPP 2∼ HPP
5, it first checks the order-2 list. Though there are 4-page blocks
(e.g., HPP 12∼15) on the list, they cannot satisfy the requirements
on colors. In this case, an order-4 block (i.e., HPP 16∼31) must
be split.

Host 
physical memory

Unallocated memory region Allocated memory region

CoPlace 
contiguity list

start_phy_addr, 
size

start_phy_addr, 
size

...

Free lists of  
buddy allocator HPP 2/3 HPP 4/5 HPP 12~15 HPP 16~31

...

Fig. 5: XPLACE contiguity list. The contiguity list is sorted based on the size
of the free memory region. Upon page fault, XPLACE searches the contiguity list
to find the smallest free memory region with designated cache colors for memory
allocations.

The problem is caused by the requirements of buddy allocator
on block sizes and alignment (i.e., 2x pages). Some pages (e.g.,
HPPs 2∼5) are contiguous; but they cannot be organized into
a block if they cannot meet both requirements. To solve this
problem, XPLACE uses a contiguity list to track the contiguity
of the host free memory regions on top of the buddy allocator
and allocates HPPs with designated cache colors based on the
contiguity list. Figure 5 illustrates the contiguity list. It includes
the host free memory regions. Each free memory region is
described with the starting host physical address and the size.
The list is sorted based on the size of the free memory region.
Upon page fault, XPLACE searches the contiguity list to find
the smallest free memory region that can satisfy the memory
allocation requirement. Then, those requested HPPs are allocated
from the corresponding free list of the buddy allocator. This can
mitigate host memory fragmentations. For instance, in Figure 4,
when XPLACE is requested to allocate four HPPs with cache
colors of HPP 2∼5, it allocates the two memory blocks in order-1
after searching the contiguity list. To yield better performance, we
leverage the red black tree in Linux to realize the contiguity list.

5.4 Improving Memory Deduplication and Ballooning

For memory deduplication (e.g., Linux same page merging in
KVM [22]), and memory ballooning [23], the COPLACE enhance-
ments on their policies can be used directly; but the implementa-
tions must be changed to look up shadow page tables in order to
obtain the virtual LLC colors of GPPs.

We have not seen any discussions on how memory deduplication
or memory ballooning should be performed on nested virtualiza-
tion environments. XPLACE assumes that memory deduplication
is enabled only in the host OS and not in guest hypervisors, since
this is the most efficient choice. Because the host OS can identify
and merge the identical pages in different VMs and different guest
hypervisors, performing memory deduplication inside each guest
hypervisor is unnecessary and causes extra overhead. XPLACE

suggests VMs install ballooning drivers from the host OS (not
the guest hypervisor) for the highest efficiency, because a set of
issues can be avoided or mitigated, such as double swapping, and
memory thrashing that may be possibly caused by uncoordinated
two layers of memory ballooning.

6 Evaluation
To evaluate XPLACE, we implemented a prototype on Linux/KVM
5.3, based on CoPlace [8], with 110 lines of source code added
or modified in the host memory manager. Specifically, we made
changes to the code that handles the shadow page table and the
design of Linux per CPU page (PCP) lists [24]. The PCP lists
maintain a pool of free memory pages for each core, enabling
fast allocation and de-allocation of pages. The pool is sized to
be reasonably large and when the watermark is low, it is refilled
with a large batch of pages from the main memory pool managed
by the buddy allocator. For high efficiency, we reorganized the
data structures of the PCP lists to manage pages based on colors.
This allows XPLACE to quickly obtain the free pages it needs
in certain colors from the PCP lists, rather than going through a
slower execution path and using the buddy allocator.

We conducted a thorough evaluation of XPLACE using the
prototype implementation and a diverse set of workloads. Es-
pecially, to assess its effectiveness and advantage in nested-
virtualized clouds, we compared it with COPLACE in terms of the
capability of reducing cache conflicts and improving application
performance in the nested virtualization environment.

6.1 Experimental Settings

Our experiments used a Hewlett Packard Enterprise ProLiant
DL580 Gen10 server. The server is equipped with four Intel Xeon
Gold 6138 processors, 256GB memory, two 2TB HDDs, and two
2TB SSDs. The processors support VMCS shadowing [25] for bet-
ter nested virtualization performance. Each processor has 20 cores,
which share a 11-way 27.5MiB LLC. Each core has a 32KiB L1d
cache, a 32KiB L1i cache, and a 16-way 1MiB L2 cache. We used
KVM/QEMU to build the nested virtualization environment. The
virtual machine has 16 vCPUs and 8GiB memory. Host OS, guest
hypervisor, and guest OS are all Ubuntu 18.04 with kernel updated
to 5.3. Our evaluation was conducted by running benchmarks in a
single VM or 2 VMs. When a single VM is used for experiments,
the guest OS uses bin-hopping page placement mechanism. When
multiple VMs are used for experiments, the guest OSs use differ-
ent page placement mechanisms: page coloring and bin-hopping2.
For bin hopping, we use the default page placement mechanism
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App. Workload description
Img-dnn Handwriting recognition based on OpenCV [27].
Sphinx Speech recognition like Apple Siri [28].
Moses Real time translation like Google translate [29].
Xapian Search engine used in websites and S/W frameworks [30].

MasstreeIn memory K/V store with 50% GET and 50% PUT [31].
Specjbb Industry-standard JAVA middleware benchmark.
Silo In-memory transactional database with TPCC [32].
Shore On-disk transactional database with TPCC [33].
PARSEC Seven benchmarks from PARSEC benchmark suite.

SPLASH2XFive benchmarks from SPLASH2X benchmark suite.

TABLE 1: Programs and workloads used in experiments.

in Linux; for page coloring, we implement the FreeBSD’s page
coloring mechanisms [26] into Linux.

We evaluated XPLACE using a large set of workloads (listed
in Table 1). They are representative workloads in various ap-
plication domains, including database server, web server, key-
value store, search engine, and AI training. We categorize them
into two groups: throughput-oriented workloads and latency-
sensitive workloads. We tested 12 throughput-oriented workloads
from PARSEC and SPLASH2X benchmark suites and 8 latency-
sensitive workloads from TailBench. We collected throughputs
of throughput-oriented workloads, and mean and tail latencies of
latency-sensitive workloads. To understand the performance of
XPLACE and COPLACE, we collected and compared the increase
in the LLC miss ratio when a workload is moved to the nested-
virtualized environment facilitated with XPLACE and COPLACE,
using the LLC miss ratio of each workload in the bare-metal
environment as the baseline.

To show the impact of LLC partitioning on cache conflicts,
we used two configurations for measurements: (1) 11-way LLC
allocation: each workload is allocated with the whole LLC space
(i.e., 11-way), (2) 1-way LLC allocation: each workload is allo-
cated with 1-way LLC space. We leverage Intel Cache Allocation
Technology (CAT) to allocate LLC partitions.

We executed each workload immediately after booting the
VM. By starting with a clean slate, we were able to achieve
stable performance across multiple runs. For each setting (LLC
space size and page placement policy), we executed the workload
using XPLACE and COPLACE, respectively, and compared their
performance. To facilitate the presentation and comparison of
results, we normalized the throughput, latency, and LLC miss ratio
measurements obtained using XPLACE against the corresponding
values obtained using COPLACE.
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Fig. 6: Throughput of XPLACE and COPLACE when the throughput-oriented
workloads are tested. XPLACE’s throughput is normalized to that of COPLACE.

2. With this setting, we want to test whether XPLACE allows different guests
to use different page placement mechanisms that best fit their workloads.
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Fig. 7: LLC miss ratio increase of XPLACE and COPLACE when throughput oriented
workloads are tested. XPLACE’s LLC miss ratio increase is normalized to that of
COPLACE.

6.2 Experiments with Throughput-Oriented Workloads

Figure 6 shows the measurements of each throughput-oriented
workload when XPLACE and COPLACE are tested under 1-way
LLC allocation and 11-way LLC allocation, respectively. On
average, XPLACE outperforms COPLACE by 22% for 1-way LLC
allocation and 8% for 11-way LLC allocation. It’s worth noting
that 1-way LLC allocation significantly reduces the associativity
of the LLC space available to the workload, which increases
the difficulty to reduce cache conflicts and may cause serious
cache conflicts. However, XPLACE offers 14% more throughput
improvement when LLC is allocated with 1-way, which suggests
that XPLACE is effective in reducing cache conflicts and improving
application performance, even in a nested virtualization environ-
ment where the associativity of LLC allocation is low.

To illustrate the effectiveness of XPLACE in reducing cache
conflicts, the LLC miss ratio is profiled when a workload is
executed in each evaluated system. The results are presented
in Figure 7, which shows that XPLACE causes less increase in
cache conflicts than COPLACE does. Figure 7 (a) shows that
when the LLC allocation is 11-way, XPLACE reduces the LLC
misses ratio increase by 16% on average, compared to COPLACE.
Figure 7 (b) shows XPLACE incurs 28% lower LLC miss ratio
increase on average, compared to COPLACE, when the LLC
is allocated with 1-way partition. Among all the workloads,
compared to COPLACE, XPLACE achieved the highest reduction
in cache conflicts with streamcluster, which is aligned with
streamcluster’s largest throughput improvement as shown in
Figure 6. Streamcluster groups a stream of input points into
different clusters by finding a predetermined number of medians
so that each point is assigned to its closest center. As a memory-
intensive program, it incurs much higher LLC conflicts when the
associativity of LLC partition decreases since the same working
set of streamcluster needs to fit into a much smaller LLC
space (i.e., 1-way LLC space vs. 11-way LLC space).

6.3 Experiments with Latency-Sensitive Workloads

More latency-sensitive (e.g., Spark) applications are being de-
ployed in clouds now. To evaluate how XPLACE can benefit
them, we evaluated typical latency-sensitive workloads and report
their mean and tail latencies in Figure 8. Figure 8 (a) and (b)
show that XPLACE reduces the mean latency by 6% for 11-
way LLC allocation and 25% for 1-way LLC allocation on
average, compared to COPLACE. Figure 8 (c) and (d) show that,
in comparison to COPLACE, XPLACE provides 21% and 41%
lower 99th tail latency on average for 11-way and 1-way LLC
allocation, respectively. Our experiments show that tail latencies
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Fig. 8: Latencies of XPLACE and COPLACE when latency sensitive workloads are
tested. XPLACE’s mean and tail latencies are relative to those of COPLACE.
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Fig. 9: LLC miss ratio increase of XPLACE and COPLACE when latency sensitive
workloads are tested. XPLACE’s LLC miss ratio increase is normalized to that of
COPLACE.

are more vulnerable to LLC misses. For example, with XPLACE,
Img-dnn shows 24% lower mean latency and 30% lower 99th
tail latency relative to those with COPLACE. Img-dnn is a
handwriting application that leverages a deep neural network-
based auto-encoder combined with softmax regression to identify
handwriting characters. The input data are some samples from
the MNIST dataset. This shows XPLACE can greatly benefit AI
workloads if they are cache sensitive.

To pinpoint the performance advantage of XPLACE compared
to COPLACE, we also profile the LLC miss ratio of the latency-
sensitive workloads when they are tested with XPLACE and
COPLACE, respectively. We show the profiling results in Figure 9.
On average, XPLACE reduces the LLC miss ratio increase by 15%
for 11-way LLC allocation and 31% for 1-way LLC allocation
compared to COPLACE.

XPLACE significantly reduces LLC miss ratio increase com-
pared to COPLACE due to two key reasons. Firstly, XPLACE’s
design incorporates page placement mechanisms that are tailored
for nested virtualization environments, while COPLACE’s design
does not. Nested virtualization adds an extra layer of guest hy-
pervisor, making the semantic gap of virtualization more complex
and exacerbating the cache conflict problem. COPLACE’s design
only caters to non-nested virtualization environments and cannot
be easily extended for nested virtualization. XPLACE, on the other
hand, leverages the shadow page table between the guest hyper-
visor and host hypervisor to allocate non-conflicting host physical
pages for non-conflicting guest physical pages that are used to
execute workloads running on the guest OS. Secondly, the existing
buddy memory allocator may increase memory fragmentation
when allocating conflicting/non-conflicting host physical pages
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Fig. 10: Throughput of XPLACE and COPLACE when two VMs use different page
placement mechanisms. Throughput of XPLACE is normalized to that of COPLACE.
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Fig. 11: Latency of XPLACE and COPLACE when two VMs use different page
placement mechanisms. Latency of XPLACE is normalized to that of COPLACE.
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Fig. 12: LLC miss ratio increase of XPLACE and COPLACE when two VMs
use different page placement mechanisms. XPLACE’s LLC miss ratio increase is
normalized to that of COPLACE.

for corresponding guest physical pages, potentially degrading
application performance. XPLACE’s design addresses this chal-
lenge by implementing a buddy memory allocator that minimizes
memory fragmentation, thereby enhancing the performance of
cloud workloads.

6.4 Flexibility

XPLACE provides high flexibility, which allows each VM to
select a page placement mechanism that fits best its workload.
To demonstrate this flexibility, we create two VMs (denoted as
VM1 and VM2) on the same guest hypervisor. VM1 uses a
bin-hopping policy, and VM2 uses a page coloring policy. We
test XPLACE using two throughput-oriented workloads (canneal
in VM1 and ocean_ncp in VM2) and two latency-sensitive
workloads (Specjbb on VM1 and Masstree on VM2).

As shown in Figure 10 and Figure 11, XPLACE can effectively
support different page placement mechanisms used in different
VMs. Compared to COPLACE, XPLACE can increase the through-
put by 16% with a 11-way LLC allocation and 29% with a 1-
way LLC allocation. XPLACE can decrease the mean latency by
27% and the 99th tail latency by 44% when the LLC allocation
is 11-way. The improvement is higher when the VMs use a 1-
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Fig. 13: XPLACE’s overhead. Performance of XPLACE is normalized to that of
Vanilla nested KVM.

way cache partition, as there are more cache conflicts to be
reduced. Figure 12 confirms that the improvements in throughputs
and latencies are from XPLACE reducing LLC misses. COPLACE

cannot effectively reestablish page placement mechanisms for
nested virtualization. The LLC miss ratios are much higher than
those on bare metal. With XPLACE, page placement mechanisms
reduce conflict misses. The LLC miss ratios are substantially lower
than those with COPLACE.

6.5 Overhead

XPLACE incurs minimal overhead. It monitors and responds to
the page allocations to VMs. The monitoring does not incur
any overhead since it only leverages the existing traps to the
host. The only significant overhead is incurred when replacing
the HPPs used to back GHPPs. This overhead mainly includes
looking for a new HPP with a desired color, changing the page
mapping, and putting the replaced HPP back on a free page list.
However, the overhead is low because these operations mainly
update “pointers”. Replacing HPPs in XPlace does not involve
copying or resetting page contents, because HPPs are free pages
and contain no valid data.

To test the overhead incurred by XPLACE, we used benchmarks
that are not cache-sensitive. As there is almost no space for
XPLACE to improve their performance, the overhead of XPLACE

is determined by measuring the slowdown between their perfor-
mance with XPLACE and their performance with vanilla KVM.
Specifically, we selected Shore [33], which is a transactional
database driven by a TPC-C workload, and Volrend, that renders
a three-dimensional scene onto a two-dimensional image plane
using optimized ray tracing. We run each benchmark in a VM
multiple times. To capture the scenario where XPLACE may incur
the highest overhead, we relaunch the VM after each execution
without relaunching the guest hypervisor. In this scenario, the
GHPPs allocated to the VM are backed by the HPPs that are
usually not in desired colors. Thus, the aforementioned cost
of replacing the HPPs used to back GHPPs must be paid. As
Figure 13 shows, the performance of Shore and Volrend is
degraded by about 2% with XPLACE, compared to Vanilla nested
KVM. This confirms that the overhead of XPLACE is very low.

7 Related Work
Reducing cache conflicts in virtualized clouds. Existing tech-
niques [5], [34], [35] for reducing cache conflicts include page
coloring [34], bin-hopping [5] and their variants. Page color-
ing [34] allocates continuous virtual pages mapping to different
cache colors. It mitigates cache conflicts because sequential virtual
pages do not conflict with each other in the cache. However, page
coloring may lead to excessive inter-address-space contention be-
cause it may map commonly used virtual addresses (e.g., stack) of
different processes to the same cache color. PID hashing (a match

of cache color bits exclusive-ored with the process’s identifier) is
used to mitigate the problem.

Bin hopping [5] places successively allocated physical pages in
successive bins (a bin includes all the pages that have the same
cache color), irrespective of their virtual addresses. It reduces
cache conflicts because it sequentially distributes the mapped
physical pages from an address space across different bins. It
exploits temporal locality because the physical pages it maps close
in time tend to be placed in different bins. Best bin selects a
page frame from the bin with the fewest previously allocated and
most available page frames. Hierarchical bin is a tree-based variant
of best bin that executes in logarithmic time and produces cache
size-independent placement improvement. Previous work [35] also
shows that the random placement puts many pages in the same
cache bins; and this competition is undesirable since it can cause
more cache conflicts.

Existing techniques for mitigating cache conflicts may be
ineffective in virtualized clouds. Our previous work [8] (i.e.,
COPLACE) designed for the non-nested virtualization environ-
ment shows existing approaches for reducing cache conflicts
are ineffective in virtualized clouds due to the semantic gap
between guest OS and host OS. The semantic gap becomes
more complex and makes COPLACE inefficient in the nested
virtualization environment. This work proposes XPLACE as an
effective solution to further reduce cache conflicts and improve
application performance in the nested virtualized clouds.
Reducing cache interference with partitioning. Proposals on
cache partitioning mainly include software and hardware ap-
proaches. For software approaches, many works rely on page
coloring to partition the cache space [9], [36]. The basic idea is to
allocate cache regions with specific cache colors to one application
such that its cache space is isolated. [37] propose vLLC (virtual
last level cache) and vColoring techniques to partition cache space
for VMs. vLLC is used for coloring-aware guest OSs. It lets host
OS notify guest OS the information about its allocated cache
partition, e.g., cache capacity, number of cache sets, number of
cache colors; then, host OS controls the mappings between GPAs
(guest physical address) to HPAs (host physical address) based
on its allocated cache capacity and colors. For vLLC, host OS
allocates cache partition for the guest OS, making tasks running
in the guest OS cannot control its cache colors. vColoring extends
the idea of vLLC and is used for coloring-unaware guest OSs.
It proposes two sets of cache colors: default cache colors and
extra cache colors. The default cache colors are used when GPAs
map to HPAs by default. This is done by the hypervisor. The
extra cache colors are used when tasks in VMs explicitly request
new cache colors except the default set of cache colors. This is
done by migrating already allocated and present pages of the
tasks to new host physical pages mapping to the new cache
colors. This may incur high overhead due to VM exits caused
by hypercalls and page migration. More importantly, vLLC and
vColoring may not effectively mitigate cache conflicts for tasks
in VMs because host physical addresses are agnostic to these
tasks and cache partition is essentially allocated and controlled by
hypervisor. Specifically, hypervisor just allocates VMs multiple
cache colors (can be regarded as cache partitions for VMs) and
notify VMs, and then VMs use the cache partitions without
fine-grained controlling of the mappings between host physical
addresses and cache colors. This work is not designed for the
nested virtualization environment.

For hardware approaches, existing hardware extensions for
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cache allocations [4], such as Intel Cache Allocation Technology
(CAT) and AMD cache allocation enforcement (CAE) have been
widely used in commodity processors to reduce cache interference
in clouds. CAT implements way partitioning and provide software
interfaces to control cache allocations. Essentially, CAT exacer-
bates cache conflicts in virtualized systems as the associativity of
the cache space is reduced. Many previous works focus on how
to better use CAT in existing software systems to reduce cache
interference between workloads in clouds [1], [2].

In order to provide transparent and isolated virtual LLCs for
VMs, [15] proposes vCache that targets an alternative solution
(similar to Intel cache allocation technology) to partition LLC for
VMs. vCache presents GPA-based LLC indexing, based on which
it implements VM-based LLC partitioning in way granularity to
achieve its goals. With vCache, existing cache optimizations in
the guest OS take effects but vCache has three main issues. First,
vCache needs to change hardware, such that it could not be used
directly in commodity processors in clouds. Second, previous
studies [5], [34], [38], [39] show that virtual address indexed
cache may have worse performance than real physical address
indexed cache due to virtual address space changes (e.g., context
switches). Third, vCache only targets LLC, and L1 and L2 caches
are still indexed by real physical addresses. In modern processors
with non-inclusive cache hierarchy, L2 becomes primary and its
capacity also becomes larger.
Nested Virtualization. The Turtles Project [11] presents the
design and implementation of nested virtualization based on
KVM. It mainly addresses the following challenges to realized
nested virtualization. First, Intel/AMD only provides one layer
of hardware support for virtualization so it is challenging to
virtualize CPU in nested VMs. Second, Intel/AMD processors
only support two dimensional paging, and it is challenging to
support more dimensional page translation for nested VMs; Third,
IOMMUs only support a single level of address translation, so it
is challenging to translate virtual addresses for devices to phys-
ical addresses for nested VMs. To address these challenges, the
paper proposes shadow VMCS (virtual machine control structure,
VMCB in AMD), EPT on top EPT (Intel extended page table), as
well as compressing two levels of translation tables onto the one
level that is available in hardware. Some other optimizations such
as replacing VMread/VMwrite privileged instructions with binary
translation and memory changing with load and store instructions
instead of privileged instructions are used to mitigate the number
of VMExits in nested VMs.

DVH (direct virtual hardware) [12] mitigates the VMExit mul-
tiplication problem in the nested virtulization environment. The
basic idea is to let the host hypervisor to emulate virtualized
hardware for the nested VM and handle VMExits incurred by
the nested VM directly by the emulated hardware instead of
forwarding them to the guest hypervisor. The paper introduces
four DVH mechanisms: 1) virtual passthrough directly assigns
virtual I/O devices to the nested virtual machines; 2) virtual timers
transparently remaps timers used by the nested virtual machine to
emulated virtual timers provided by the host hypervisor; 3) virtual
inter-processor interrupts can be sent and received directly from
one nested virtual machines to another; 4) virtual idle enables
nested VMs to switch to and from low-power mode without guest
hypervisor interventions.

Existing works [11], [12] on nested virtualization mainly focus
on realizing nested virtualization and improving its efficiency
through reducing the number of VMExits. They do not consider

the efficiency of page placement mechanisms in the nested virtu-
aliation environment.

8 Conclusion and Future Work
Nested virtualization becomes increasingly important in today’s
clouds for the benefits in security, flexibility, and portability
that it may bring to systems and applications. However, cache
conflicts in the last level cache cause poor cache performance
in nested virtualization. This may hamper the wide adoption of
nested virtualization in modern clouds, especially cloud workloads
becoming more and more memory intensive and the emerging
hardware extensions for cache allocation (e.g., Intel CAT and
AMD CAE) are used for LLC partitioning.

This work identifies and analyzes this problem in the nested
virtualization environment, and proposes XPLACE as an effective
system solution. This problem is caused by independent page
allocations in different system layer, and must be solved by
enhancing the synergy between these layers. Under the nested
virtualization setting, the main challenge for achieving synergy is
the interposition of guest hypervisors and the portability require-
ment that limits the solution within the host. XPLACE addresses
these challenges by leveraging the property of the page placement
mechanism in guest OSs and the shadow page table mechanism.

XPLACE is an effective, efficient, and portable solution. Our
evaluations confirm that XPLACE can effectively reduce LLC
conflicts to improve application performance and its overhead
is low. It does not require the changes to guest OSs or guest
hypervisors. Meanwhile, it allows guest OSs to use different page
placement mechanisms that can best fit their workloads for higher
efficiency.

As future work, we plan to extend and test XPLACE for the sys-
tem architectures using high bandwidth memory as direct mapped
L4 cache. Currently page placement mechanisms and XPLACE are
designed for L3 caches. The L3 cache way capacities determine
that all huge pages are in the same one or two colors, and page
placement in the granularity of huge pages can hardly improve
performance. Thus, existing page placement mechanisms, as well
as XPLACE, consider only base pages. On the new architectures,
with a L4 cache capacity much larger than huge pages, page
placement mechanisms must be enhanced to support both base
pages and huge pages. XPLACE must be extended accordingly.
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