Topics

- PLAs.
- Memories:
 - ROM;
 - SRAM;
 - DRAM.
- Datapaths.
- Floor Planning

Programmable logic array (PLA)

- Used to implement specialized logic functions.
- A PLA decodes only some addresses (input values); a ROM decodes all addresses.
- PLA not as common in CMOS as in nMOS, but is used for some logic functions.

PLA organization

PLA structure

- AND plane, OR plane, inverters together form complete two-level logic functions.
- Both AND and OR planes are implemented as NOR circuits.
- Pulldown transistors form programming/personality of PLA. Transistors may be referred to as programming tabs.

PLA AND/OR cell

High-density memory architecture

Memory operation

- Address is divided into row, column.
 - Row may contain full word or more than one word.
- Selected row drives/senses bit lines in columns.
- Amplifiers/drivers read/write bit lines.

Read-only memory (ROM)

- ROM core is organized as NOR gates pulldown transistors of NOR determine programming.
- Erasable ROMs require special processing that is not typically available.
- ROMs on digital ICs are generally maskprogrammed—placement of pulldowns determines ROM contents.

ROM core circuit

Static RAM (SRAM)

- Core cell uses six-transistor circuit to store value.
- Value is stored symmetrically—both true and complement are stored on crosscoupled transistors.
- SRAM retains value as long as power is applied to circuit.

SRAM core cell

SRAM core operation

• Read:

- precharge bit and bit' high;
- set select line high from row decoder;
- one bit line will be pulled down.

Write:

- set bit/bit' to desired (complementary) values;
- set select line high;
- drive on bit lines will flip state if necessary.

SRAM sense amp

Sense amp operation

- Differential pair—takes advantage of complementarity of bit lines.
- When one bit line goes low, that arm of diff pair reduces its current, causing compensating increase in current in other arm.
- Sense amp can be cross-coupled to increase speed.

SRAM precharge circuit

3-transistor dynamic RAM (DRAM)

- First form of DRAM—modern commercial DRAMs use one-transistor cell.
- 3-transistor cell can easily be made with a digital process.
- Dynamic RAM loses value due to charge leakage—must be refreshed.

3-T DRAM core cell

3-T DRAM operation

Value is stored on gate capacitance of t_1 .

- Read:
 - read = 1, write = 0, read_data' is precharged;
 - t₁ will pull down read_data' if 1 is stored.
- Write:
 - read = 0, write = 1, write_data = value;
 - guard transistor writes value onto gate capacitance.

Data paths

- A data path is a logical and a physical structure:
 - bitwise logical organization;
 - bitwise physical design.
- Datapath often has ALU, registers, some other function units.
- Data is generally passed via busses.

Typical data path structure

Slice includes one bit of function units, connected by busses:

Power distribution

- Must size wires to be able to handle current—requires designing topology of V_{DD}/V_{SS} networks.
- Want to keep power network in metal requires designing planar wiring.

Interdigitated power and ground lines

Power tree design

• Each branch must be able to supply required current to all of its subsidiary branches:

$$I_{x} = \sum_{b \in x} I_{b}$$

 Trees are interdigitated to supply both sides of power supply.

Clock distribution

Goals:

- deliver clock to all memory elements with acceptable skew;
- deliver clock edges with acceptable sharpness.
- Clocking network design is one of the greatest challenges in the design of a large chip.

H-tree

Clock distribution tree

- Clocks are generally distributed via wiring trees.
- Want to use low-resistance interconnect to minimize delay.
- Use multiple drivers to distribute driver requirements—use optimal sizing principles to design buffers.
- Clock lines can create significant crosstalk.

Clock distribution tree example

Floorplanning tips

- Develop a wiring plan. Think about how layers will be used to distribute important wires.
- Sweep small components into larger blocks.
 A floorplan with a single NAND gate in the middle will be hard to work with.
- Design wiring that looks simple. If it looks complicated, it is complicated.

Floorplanning tips, cont'd.

- Design planar wiring. Planarity is the essence of simplicity. It isn't always possible, but do it where feasible (and where it doesn't introduce unacceptable delay).
- Draw separate wiring plans for power and clocking. These are important design tasks which should be tackled early.

Floorplanning strategies

- Floorplanning must take into account blocks of varying function, size, shape.
- Must design:
 - space allocation;
 - signal routing;
 - power supply routing;
 - clock distribution.

Bricks-and-mortar floorplan

Purposes of floorplanning

Early in design:

 Prepare a floorplan to budget area, wire area/delay. Tradeoffs between blocks can be negotiated.

Late in design:

- Make sure the pieces fit together as planned.
- Implement the global layout.

Types of routing

- Channel routing:
 - channel may grow in one dimension to accommodate wires;
 - pins generally on only two sides.
- Switchbox routing:
 - cannot grow in any dimension;
 - pins are on all four sides, fixing dimensions of the box.

Channels and switchboxes

Block placement

- Blocks have:
 - area;
 - aspect ratio.
- Blocks may be placed at different rotations and reflections.
- Uniform size blocks are easier to interchange.

Blocks and wiring

- Cannot ignore wiring during block placement—large wiring areas may force rearrangement of blocks.
- Wiring plan must consider area and delay of critical signals.
- Blocks divide wiring area into routing channels.

Channel definition

- Channels end at block boundaries.
- Several alternate channel definitions are possible:

Channel definition changes with block spacing

Changing spacing changes relationship between block edges:

Channel graph

Channels must be routed in order

Wire out of end of one channel creates pin on side of next channel:

Windmills

Can create an unroutable combination of channels with circular constraints:

Slicable floorplan

Slicability property

- A slicable floorplan can be recursively cut in two without cutting any blocks.
- A slicable floorplan is guaranteed to have no windmills, therefore guaranteed to have a feasible order of routing for the channels.
- Slicability is a desirable property for floorplans.

Global routing

- Goal: assign wires to paths through channels.
- Don't worry about exact routing of wires within channel.
- Can estimate channel height from global routing using congestion.

Line probe routing

- Heuristic method for finding a short route.
- Works with arbitrary combination of obstacles.
- Does not explore all possible paths—not optimal.

Line probe example

Channel utilization

- n Want to keep all channels about equally full to minimize wasted area.
- n Important to route time-critical signals first.
- Shortest path may not be best for global wiring.
- n In general, may need to rip-up wires and reroute to improve the global routing.