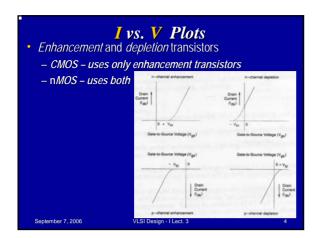
MOS Transistor Theory

- MOSFET Symbols
- Current Characteristics of MOSFET
- Calculation of V_i and Important 2nd-Order Effects
- Small-Signal MOSFET Model
- Summary

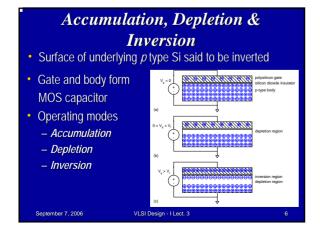
Material from: CMOS VLSI Design By Weste and Harris

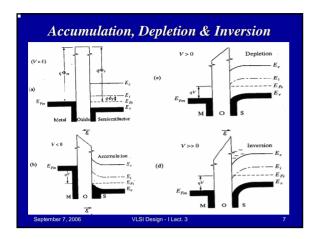
& Principles of CMOS VLSI Design

By Neil E. Weste and Kamran Eshraghian


Durga Misra ECE Dept., NJIT, Newark, NJ

September 7, 200

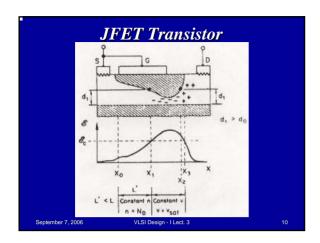

VLSI Design - I Lect. 3


MOS Symbols and Characteristics MOS – majority carrier device Carriers: e⁻ in nMOS, holes in pMOS V₁ – channel threshold voltage (cuts off for voltages < V) Transistor gate, source, drain all have capacitance I = C (ΔV/ΔI) ⇒ ΔI = (C/I) ΔV Capacitance and current determine speed Derive current-voltage (I-V) relationships

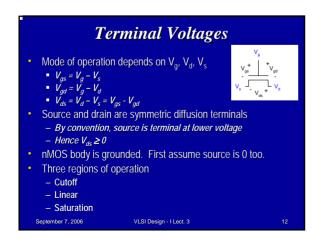
**Noderately doped p type Si substrate **Description: **Desc

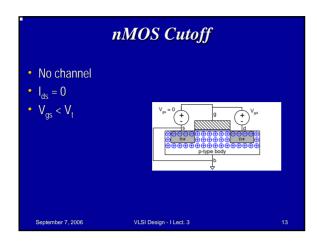
Materials and Dopants SiO₂ – low loss, high dielectric strength High gate fields are possible n type impurities: P, As, Sb p type impurities: B, Al, Ga, In

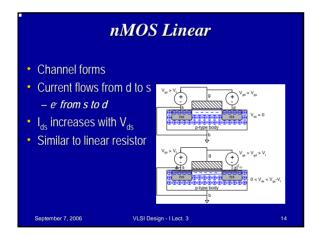
Bipolar vs. MOS Transistors • Bipolar – p-n junction – metallurgical • MOS – Inversion layer / substrate junction field-induced – Voltage-controlled switch, conducts when V_{os} ≥ V₁ – e swept along channel when V_{ds} > 0 by horizontal component of E – Pinch-off – conduction by e drift mechanism caused by positive drain voltage – Pinched-off channel voltage: V_{os} – V_i (saturated) – Reverse-biased p-n junction insulates from the substrate

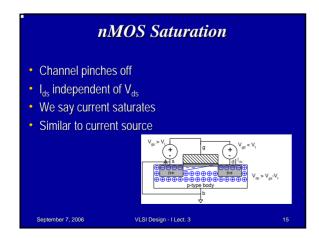

JIFET vs. FET Transistors Junction FET (JFET) – channel is deep in semiconductor MOSFET – For given V_{ds} & V_{gs}, I_{ds} controlled by: Distance between source & drain L Channel width W V_t Gate oxide thickness t_{ox} ε gate oxide Carrier mobility μ

VLSI Design - I Lect. 3


VLSI Design - I Lect. 3


September 7, 2006


September 7, 2006



Punchthrough and pMOSFET • Avalanche breakdown for very high V_{ds} – gate has no control over V_{ds} – gate has no control over V_{ds} – V_{ds}

V, Dependencies

- · Gate material
- Gate insulation material
- · Gate insulator thickness
- Channel doping
- Impurities at Si SiO₂ interface
- V_{sb} voltage from source to substrate
- |V₁| α 1/T
 - -4 mV /°C High substrate doping
 - -2 mV/°C Low substrate doping

September 7, 200

VLSI Design - LL ect

Non Deep-Submicron Threshold Equations

• $V_t = V_{t-mos}$ Ideal V_t of Ideal
MOS Capacitor

Flat-band voltage – point at which energy levels go flat

- $V_{t-mos} = 2 \phi_b + \frac{O_b}{C_{ox}}$
- $\phi_b = \frac{kT}{q} \ln \left(\frac{N_A}{n_L} \right)$, bulk potential difference between Fermi
 - level of doped & intrinsic Si
- C_{ox} = oxide capacitance
- Q_b = bulk charge = $\sqrt{2 \varepsilon_{Si} q N_A 2 \phi_b}$
- $n_i = 1.45 \text{ x } 10^{10} \text{ cm}^{-3} \text{ at } 300 \text{ oK}$

September 7, 2006

VLSI Design - I Lect. 3

Threshold Equations (cont'd) E_i as reference energy level Conditions due to different ϕ_i values $\phi_i = 0$, Flatband Condition $\phi_i = 0$, Accumulation $\phi_i = 0$, No Depletion $\phi_i = 0$, Depletion $\phi_i = 0$, No Depletion $\phi_i = 0$, Semiconductor Semiconductor

Threshold Equations (cont'd)

- $k = \text{Boltzmann's constant} = 1.380 \times 10^{-23} \text{ J/}^{\circ}\text{K}$
- $q = 1.602 \times 10^{-19} \text{ C (1 e- charge)}$
- kT/q = 0.02586 V. at 300 oK (thermal voltage)
- $\varepsilon_{Si} = 1.06 \text{ x } 10^{-12} \text{ F/cm}$
- Intrinsic Fermi level midway between conduction & valence bands
- p Fermi level closer to valence band
- n Fermi level closer to conduction band
- $V_{fb} = \phi_{ms} \frac{Q_{fc}}{C}$
- Q_{ic} = fixed charge due to imperfections in Si SiO₂ interface and due to doping

September 7, 2006

VLSI Design - I Lect. 3

19

Threshold Equations (cont'd)

- $\phi_{ms} = \phi_{gale} \phi_{Si}$ work function difference between gate material & Si substrate
- $\phi_{ms} = -(\frac{E_a}{2} + \phi_b) = -0.9 \text{ V} (N_A = 1 \text{ x } 10^{16} \text{ cm}^{-3})$
- E_g = band gap energy of Si
 - $= (1.16 0.704 \times 10^{-3} \frac{7^2}{T + 1108})^5$
- $\phi_{ms} \approx$ -0.2 V (N_A = 1 x 10¹⁶ cm⁻³)

September 7, 2006

VLSI Design - I Lect. 3

20

Adjustments to V_t

- Change V_tby:
 - Changing substrate doping N_A
 - Changing Cox (use a different insulator) (usual method)
 - Changing surface state charge O_{fc} (usual method)
 - Changing T (temperature)
- Often use a layer of Silicon nitride Si₃N₄ E_{Si3MJ} = 7.5 on top of SiO₂
 - − Dual dielectric process − gives combined ε_{relative} = 6
 - Electrically equivalent to thinner layer of SiO₂, leads to higher C_{ox}
- MOS transistors self-isolating if regions between devices cannot be inverted by normal circuit voltages
- High-K

September 7, 2006

VLSI Design - I Lect. 3

21

Example

1. Calculate the native threshold voltage for an attractistor at 300°K for a process with a Si substrate with
$$N_c = 1.80 \times 10^{5}$$
, a SiO₂ gate exide with thickness 200 Å. (Assume $n_{tot} = -0.9 V. Q_c = 0.0$)

$$q_b = .02586 In \left(\frac{1.8 \times 10^{5}}{1.45 \times 10^{6}} \right)$$

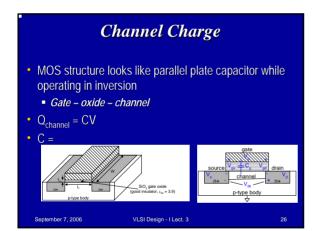
$$= .36 \text{ volts}$$
with $C_{ox} = \frac{e_{ox}}{t_{ox}}$

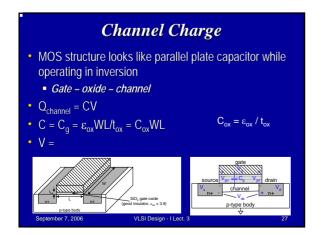
$$= \frac{3.9 \times 8.85 \times 10^{-14}}{0.2 \times 10^{5}}$$

$$= 1.726 \times 10^{-7} Farada/cm^{2}$$

$$V_{i} = \phi_{ox} + \frac{\sqrt{2e_{ox}q}N_{x}^{2}Q_{y}}{C_{ox}} + 2\phi_{b}$$

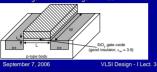
$$= -0.9 + .384 + .72$$

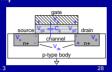

$$= 0.16 \text{ volts}$$
September 7, 2006


VLSI Design + I Lect. 3

Body Effect Series devices – V_{st} increases as we proceed along series chain Result: Channel-substrate depletion layer width increases Result – Increased density of trapped carriers in depletion layer For charge neutrality to hold, channel charge must decrease Result: V_{sb} adds to channel-substrate junction potential, gate-channel voltage drop increases, effectively get a higher V_t

I-V Characteristics In Linear region, I_{ds} depends on - How much charge is in the channel? - How fast is the charge moving? September 7, 2006 VLSI Design - I Lect. 3 24


Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion ■ Gate – oxide – channel Ochannel =



Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- Q_{channel} = CV
- $C = C_0 = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$ Where $C_{ox} = \varepsilon_{ox} / t_{ox} F/cm^2$
- $V = V_{qg} V_t = (V_{qg} V_{dg}/2) V_t$

Carrier velocity

- · Charge is carried by e-
- Carrier velocity ν proportional to lateral E-field between source and drain
- V=

September 7, 2006

VLSI Design - I Lect. 3

Carrier velocity

- · Charge is carried by e-
- Carrier velocity ν proportional to lateral E-field between source and drain
- ν = μE

 $\boldsymbol{\mu}$ called mobility

• E =

September 7, 2006

VLSI Design - I Lect. 3

30

Carrier velocity • Charge is carried by e• Carrier velocity ν proportional to lateral E-field between source and drain • ν = μΕ μ called mobility • E = V_{ds}/L • Time for carrier to cross channel: • t = September 7, 2006 VLSI Design - I Lect. 3 31 Carrier velocity • Charge is carried by e• Carrier velocity ν proportional to lateral E-field between source and drain

 Charge is carried by e- Carrier velocity \(\nu\) proportional to lateral E-field between source and drain 	en
• ν= μE μ called mobility	
• $E = V_{ds}/L$	
Time for carrier to cross channel:	
■ t = L /v	
September 7, 2006 VLS1 Design - I Lect. 3	32

n	MOS Linear I-V	
	arge O _{channel} is in the channe net each carrier takes to cro	
September 7, 2006	VLSI Design - I Lect. 3	33

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

September 7, 2006

VLSI Design - I Lect. 3

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$= \beta \left(V_{os} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

 $\beta = \mu$

September 7, 2006

VLSI Design - I Lect.

nMOS Saturation I-V

- If $V_{gd} < V_{t'}$ channel pinches off near drain – When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- · Now drain voltage no longer increases current

September 7, 2006

VLSI Design - I Lect. 3

nMOS Saturation I-V

- If V_{gd} < V_t, channel pinches off near drain
 When V_{ds} > V_{dsat} = V_{qs} V_t
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

September 7, 2006

LSI Design - I Lect. 3

nMOS Saturation I-V

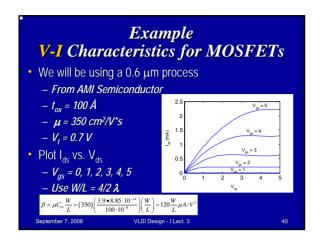
- If $V_{gd} < V_{t'}$ channel pinches off near drain – When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

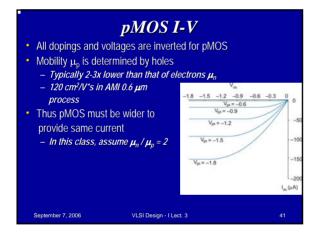
$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

September 7, 2006

VLSI Design - I Lect. 3

nMOS I-V Summary


• Shockley 1st order transistor models


$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

September 7, 2006

VLSI Design - I Lect. 3

1	3

• Ideal Shockley Equations: 1. $I_{ds} = 0$, $V_{gs} - V_{t} \le 0$ (cut-off or sub-threshold) 2. $I_{ds} = \beta [(V_{gs} - V) V_{ds} - \frac{V_{gs}^2}{2}]$, $0 < V_{ds} < V_{gs} - V_{t}$ (non-saturation, linear, or friode) 3. $I_{ds} = \frac{\beta}{2} - (V_{gs} - V)^2$, $0 < V_{gs} - V_{t} < V_{ds}$ (saturation) • β = MOS transistor gain = $\frac{\mu_{ts}}{I_{tot}} \left(\frac{V_{ts}}{L}\right)$ • μ = carrier mobility • W = Channel Width process • L = Channel length

**MOS Equations (continued) ** K_p = process-dependent gain factor = $\frac{\mu \mathcal{E}}{l_{ox}}$ = μC_{ox} ** μ_{nbulk} μ_{pbulk} $\mu_{nsurface}$ Si 1350 450 500 Units of cm² / (V sec) Ge 3600 GaAs 5000 ** $\mathcal{E}_{SlO2} = 4 \mathcal{E}_o = 4 \times 8.854 \times 10^{-14} \text{ F/cm}$ ** $l_{ox} \leq 200 \text{ Å}$ ** For a 1 μ m process: - $Typical \beta_p = 88.5 \text{ W/L } \mu \text{AV}^2$ - $Typical \beta_p = 31.9 \text{ W/L } \mu \text{AV}^2$ September 7, 2006 VLSI Design - I Lect. 3

Spice/Spectre Models for MOSFETs

- LEVEL 1 Shockley equation + some 2nd-order effects
- LEVEL 2 Based on device physics
- LEVEL 3 Semi-empirical match equations to real circuits based on parameters
- BSIM3 v3 3.1 Berkeley empirical deep sub-micron model
 - Use this one all other models give incorrect results
 - Predict too high a V_t
 - Exaggerate the body effect
 - Incorrectly calculate leakage currents (drain induced barrier lowering)
- K_P major Spice/Spectre parameter
 - 10 to 100 µA/V², varies 10-20 % in manufacturing process
 September 7, 2006 VLSI Design I Lect. 3

Second-Order Effects – Cannot Be Ignored September 7, 2006 VLSI Design - I Lect. 3 45

Threshold Voltage Body Effect

- V_{10} Threshold voltage when $V_{sb} = 0$
- $V_l = V_{fb} + 2 \phi_b + \frac{2 \varepsilon_{Si} q N_A (2 \phi_b + |V_{Sb}|)}{2 \varepsilon_{Si} q N_A (2 \phi_b + |V_{Sb}|)}$

$$= V_{i0} + \gamma \left[\sqrt{(2 \phi_b + |V_{sb}|)} - \sqrt{2 \phi_b} \right]$$

$$0.4 \le \gamma \le 1.2$$

$$\gamma = \underline{t_{ox}} \sqrt{2 q \varepsilon_{Si} N_A} = \underline{1} \sqrt{2 q \varepsilon_{Si} N_A}$$

Equivalent SPICE parameters: GAMMA, VT0

NSUB is N_A , PHI is $\phi_s = 2 \phi_b$ (surface potential at onset of strong inversion)

September 7, 2006

SI Design - I Lect. 3

Threshold Voltage Body Effect

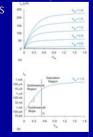
- V_{10} Threshold voltage when $V_{sh} = 0$
- $V_a = V_a + 2 \phi_a + \frac{3b}{2 \epsilon_{ci} a N_a (2 \phi_a)}$

$$= V_{i0} + \gamma \left[\sqrt{(2 \phi_b + |V_{sb}|)} - \sqrt{2 \phi_b} \right]$$

$$0.4 \le \gamma \le 1.2$$

$$\gamma = \underbrace{I_{ox}} \sqrt{2 q \varepsilon_{Si} N_A} = \underbrace{1}_{C} \sqrt{2 q \varepsilon_{Si} N_A}$$

Equivalent SPICE parameters: GAMMA, VTO


NSUB is N_A PHI is $\phi_s = 2 \phi_b$ (surface potential at onset of strong inversion)

Sentember 7 2006

VLSI Design - I Lect. 3

Subthreshold Region Conduction

- $I_{ds} \approx 0$, but increases exponentially with $V_{ds} \& V_{qs}$
- Affects dynamic storage memory cells
- Use BSIM to model

September 7, 2006

VLSI Design - I Lect. 3

Channel Length Modulation

- Channel length changes for short channels as V_{ds} changes
- Must now be modeled
- Effective channel length: $L_{eff} = L L_{short}$

•
$$L_{short} = \sqrt{\frac{2 \varepsilon_{Si}}{a N_{*}}} (V_{ds} - (V_{gs} - V_{i}))$$

Shorter length increases WL ratio, increases β as V_d increases Gives a finite output impedance, not a pure current source More accurate model (which we must use):

$$I_{ds} = \frac{K_P W}{2 I} (V_{gs} - V_0)^2 (1 + \lambda | V_{ds} |)$$

 λ = channel length modulation factor (Spice parameter LAMBDA)

Use SPICE LEVEL I to model
VLSI Design - I Lect. 3

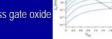
Mobility Variation

• μ = average carrier drift velocity (ν)

Electric Field E

- Decreases with increasing doping and with increasing
- μ is Spice parameter U0
- Use BSIM to model

September 7, 2006


VLSI Design - I Lect. 3

Fowler-Nordheim Tunneling

- · For very thin gate oxides,
- Current flows from gate to source or gate to drain by etunneling through SiO₂
- Exploit in High Electron Mobility Transistor (HEMT)

$$\frac{-E_0}{E_{ox}}$$

, Electric field across gate oxide

- E₀, C₁ are constants
- · Limits oxide thickness as processes are scaled used in making EPROMS September 7, 2006 VLSI Design - I Lect. 3

Drain Punchthrough Drain depletion region extends to source at high voltages Lose gate control of transistor Used in pin I/O (pad) circuits to make Zener diodes Forces voltages to be scaled down as device sizes are scaled down

September 7, 2006

VLSI Design - I Lect. 3

Impact Ionization – Hot e-

- For submicron gate lengths << 1 μm, a major problem
- e⁻ get so much energy that they impact the drain, and dislodge holes, which are swept toward the grounded substrate
- · Creates a substrate current
- e- may penetrate the gate oxide and cause gate current
- Degrades V_h subthreshold current, β
- · Causes circuit failure
 - Poor DRAM refresh times, noise in mixed analog-digital circuits, latchup
- · Hot holes are too slow to cause trouble

September 7, 2006

VLSI Design - I Lect. 3

Solutions to Impact Ionization

- Solve with lightly-doped drains
- Drop V_{DD} to 3 V. or lower
- $I_{substrate} = I_{ds} C1 (V_{ds} V_{dsat})^{C2}$
- $C1 = 2.24 \times 10^{-5} 0.1 \times 10^{-5} V_{ds}$
- *C2* = 6.4
- $V_{dsat} = \frac{V_{tm} L_{eff} E_{sat}}{V_{tm} + L_{eff} E_{sat}}$
- $V_{tm} = V_{as} V_{tn} 0.13 V_{bs} 0.25 V_{as}$
- $E_{cat} = 1.10 \text{ X } 10^7 + 0.25 \text{ X } 10^7 V_{ac}$

September 7, 2006

VLSI Design - I Lect. 3

...

_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

O CONTRACTOR OF THE PARTY OF TH			0	rameters
Parameter	nMOS	pMOS	Units	Description
VTO	0.7	0.7	volt	Threshold voltage
KP	8 × 10 ⁻⁵	2.5×10^{-5}	A/V2	Transconductance coefficient
GAMMA	.4	.5	V0.5	Bulk threshold parameter
РНІ	.37	.36	volt	Surface potential at strong inversion
LAMBDA	.01	.01	volt-i	Channel length modulation purameter
LD	0.1×10^{-6}	0.1×10^{-6}	meter	Lateral diffusion
TOX	2 × 10 ⁻⁸	2×10^{-8}	meter	Oxide thickness
NSUB	2×10^{16}	4×10^{16}	1/cm ³	Substrate doping density

- to calculate VT0, KP, GAMMA, PHI, and LAMBDA
- See Section 2.11 in book.

Small Signal AC MOSFET Model

- · Linear transistor region operation only
- $g_{ds} = \beta [(V_{qs} V_{f}) 2 V_{ds}]$ = $\lim g_{ds} \approx \beta (V_{gs} - V_{p})$

- · Model as a resistor

September 7, 2006 VLSI Design - I Lect. 3

Saturation Small Signal Model

- In saturation, behaves like a current source
- $\frac{\bullet \ d I_{ds}}{d V_{c}} = \frac{d \left[\frac{\beta}{2} \left(V_{gs} V_{gs} \right)^{2} \right]}{d V_{c}} = 0$
- But channel length modulation gives this a slope
- $g_m = \frac{\text{d} I_{ds}}{\text{d} V_{ds}} \bigg|_{V_{ds} = \text{constant}}$
- $g_{m \text{ (linear)}} = \beta V_{ds}$
- $g_{m (sat)} = \beta (V_{qs} V_t)$

September 7, 2006

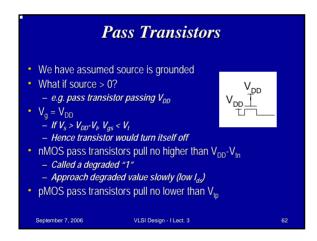
VLSI Design - I Lect. 3

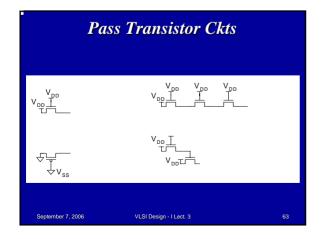
Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes

p-type body

- Called diffusion capacitance because it is associated with source/drain diffusion


September 7, 2006


VLSI Design - I Lect. 3

• Approximate channel as connected to source • $C_{gs} = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$ • $C_{permicron}$ is typically about 2 fF/ μ m

Diffusion Capacitance C_{sb}, C_{db} Undesirable, called parasitic capacitance Capacitance depends on area and perimeter Use small diffusion nodes Comparable to C_g for contacted diff ½ C_g for uncontacted Varies with process

Pass Transistors • We have assumed source is grounded • What if source > 0? – e.g. pass transistor passing V_{DD} September 7, 2006 VLSI Design - I Lect. 3 61

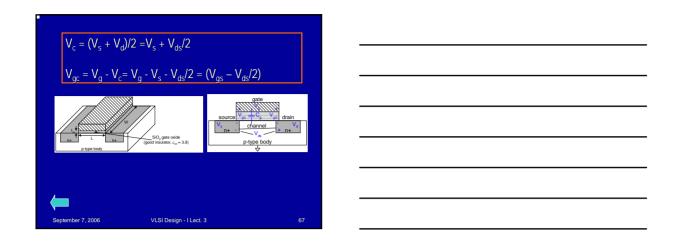
Pass	Transistor Ckts	
$V_{DD} \perp V_{s} = V_{DD} - V_{tn}$	V _{DD}	1
$V_{s} = V_{tp} $	$\begin{array}{c c} V_{DD} & \hline & V_{DD} - V_{tn} \\ \hline V_{DD} & \hline & V_{DD} - 2V_{tn} \end{array}$	
September 7, 2006	VLSI Design - I Lect. 3	64

Effective Resistance

- · Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- · Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R• $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

September 7, 2006

VLSI Design - I Lect. 3


- Summary
- Current Characteristics of MOSFET
- Calculation of V_i and Important 2nd-Order Effects
- Small-Signal MOSFET Model
- · Models in this lecture
 - For pedagogical purposes only
 - Obsolete for deep-submicron technology
 - Real transistor parameter differences:
 - Much higher transistor current leakage
 - · Body effect less significant than predicted
 - V_t is lower than predicted
- · More accurate models covered later

September 7, 2006

VLSI Design - I Lect. 3

66

-	

