Memory Subsystem Design

- DRAM Design
- Static RAM Design
- Row Decoders
- Sense Amplifiers
- Summary
Material from: *CMOS VLSI Design* By Weste and Harris &

Principles of CMOS VLSI Design

By Neil E. Weste and Kamran Eshraghian
Memory Arrays

- Random Access Memory
 - Read/Write Memory (RAM) (Volatile)
 - Static RAM (SRAM)
 - Mask ROM
 - Read Only Memory (ROM) (Nonvolatile)
 - Dynamic RAM (DRAM)
 - Programmable ROM (PROM)
 - Erasable Programmable ROM (EPROM)
 - Electrically Erasable Programmable ROM (EEPROM)
- Serial Access Memory
 - Shift Registers
 - Serial In Parallel Out (SIPO)
 - Queues
 - Parallel In Serial Out (PISO)
- Content Addressable Memory (CAM)
 - First In First Out (FIFO)
 - Last In First Out (LIFO)
- Mask ROM
- Programmable ROM (PROM)
- Flash ROM

Read/Write Memory
- (RAM)
- (Volatile)

Read Only Memory
- (ROM)
- (Nonvolatile)
Array Architecture

- 2^n words of 2^m bits each
- If $n >> m$, fold by 2^k into fewer rows of more columns

Good regularity – easy to design
Very high density if good cells are used
6T SRAM Cell

- Cell size accounts for most of array size
 - *Reduce cell size at expense of complexity*
- 6T SRAM Cell
 - *Used in most commercial chips*
 - *Data stored in cross-coupled inverters*
- Read:
 - *Precharge bit, bit_b*
 - *Raise wordline*
- Write:
 - *Drive data onto bit, bit_b*
 - *Raise wordline*
SRAM Read

- Precharge both bitlines high
- Then turn on wordline
- One of the two bitlines will be pulled down by the cell
- Ex: $A = 0$, $A_b = 1$
 - *bit discharges, bit_b stays high*
 - *But A bumps up slightly*
- **Read stability**
 - *A must not flip*
 - $N1 >> N2$
SRAM Write

- Drive one bitline high, the other low
- Then turn on wordline
- Bitlines overpower cell with new value
- Ex: $A = 0$, $A_b = 1$, bit = 1, bit_b = 0
 - *Force A_b low, then A rises high*
- **Writability**
 - *Must overpower feedback inverter*
 - $N2 >> P1$
SRAM Sizing

- High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell
SRAM Layout

- Cell size is critical: $26 \times 45 \lambda$ (even smaller in industry)
- Tile cells sharing V_{DD}, GND, bitline contacts
Decoders

- $n:2^n$ decoder consists of 2^n n-input AND gates
 - One needed for each row of memory
 - Build AND from NAND or NOR gates

Static CMOS

Pseudo-nMOS
Read-Only Memories

- Read-Only Memories are nonvolatile
 - *Retain their contents when power is removed*
- Mask-programmed ROMs use one transistor per bit
 - *Presence or absence determines 1 or 0*
ROM Example

- **4-word x 6-bit ROM**
 - *Represented with dot diagram*
 - *Dots indicate 1’s in ROM*

Word 0: 010101
Word 1: 011001
Word 2: 100101
Word 3: 101010

Looks like 6 4-input pseudo-nMOS NORs
ROM Array Layout

- Unit cell is 12 x 8 \(\lambda \) (about 1/10 size of SRAM)
PROMs and EPROMs

- Programmable ROMs
 - **Build array with transistors at every site**
 - **Burn out fuses to disable unwanted transistors**
- Electrically Programmable ROMs
 - **Use floating gate to turn off unwanted transistors**
 - **EPROM, EEPROM, Flash**
Building Logic with ROMs

- Use ROM as lookup table containing truth table
 - \(n \) inputs, \(k \) outputs requires \(2^n \) words \(\times k \) bits
 - Changing function is easy – reprogram ROM

- Finite State Machine
 - \(n \) inputs, \(k \) outputs, \(s \) bits of state
 - Build with \(2^{n+s} \) \(\times (k+s) \) bit ROM and \((k+s) \) bit reg
PLAs

- A *Programmable Logic Array* performs any function in sum-of-products form.
- *Literals*: inputs & complements
- *Products / Minterms*: AND of literals
- *Outputs*: OR of Minterms

Example: Full Adder

\[
\begin{align*}
 s &= a\overline{b}\overline{c} + \overline{a}bc + \overline{a}\overline{b}c + abc \\
 c_{\text{out}} &= ab + bc + ac
\end{align*}
\]
NOR-NOR PLAs

- ANDs and ORs are not very efficient in CMOS
- Dynamic or Pseudo-nMOS NORs are very efficient
- Use DeMorgan’s Law to convert to all NORs
PLA Schematic & Layout

The image shows a schematic and layout diagram of a PLA (Programmable Logic Array). The diagram includes two planes: the AND plane and the OR plane. The inputs are labeled as a, b, and c, and the outputs are s and c_{out}. The diagram also includes several lines of the form bc, ac, ab, abc, \overline{abc}, $\overline{ab}c$, and \overline{abc}.
PLAs vs. ROMs

- The OR plane of the PLA is like the ROM array
- The AND plane of the PLA is like the ROM decoder
- PLAs are more flexible than ROMs
 - *No need to have* 2^n *rows for* n *inputs*
 - *Only generate the minterms that are needed*
 - *Take advantage of logic simplification*
Memory System Summary

- **DRAM Design**
- Static RAM Design
- Row Decoders
- Sense Amplifiers
Scaling

- **Constant Field Scaling by** \(\alpha \)
 - *All horizontal & vertical dimensions*
 - *Device voltages*
 - *Concentration densities*
- **Constant Voltage Scaling**
 - *Keep* \(V_{DD} \) *constant, scale the process*
- **Lateral Scaling**
 - *Scale gate length, all else is kept unchanged*
Scaling Problems

- **Constant Voltage Scaling** increases field across gate oxide – sometimes need *Lightly-Doped Drains*

- Depletion regions determine how small the channel can get
 - *Source-drain length > 2 depletion layer widths*
 - *Can reduce depletion layer width by increasing substrate doping*

- **Constant Field Scaling** – get:
 - \(\frac{I_{ds}}{\alpha} \)
 - *But \(\alpha^2 \) devices / per area*
 - *Therefore, current density goes up by \(\alpha \)*
Packages

• Package functions
 – *Electrical connection of signals and power from chip to board*
 – *Little delay or distortion*
 – *Mechanical connection of chip to board*
 – *Removes heat produced on chip*
 – *Protects chip from mechanical damage*
 – *Compatible with thermal expansion*
 – *Inexpensive to manufacture and test*
Package Types

- Through-hole vs. surface mount
Multichip Modules

- Pentium Pro MCM
 - Fast connection of CPU to cache
 - Expensive, requires known good dice
Chip-to-Package Bonding

- Traditionally, chip is surrounded by *pad frame*
 - *Metal pads on 100 – 200 μm pitch*
 - *Gold bond wires attach pads to package*
 - *Lead frame distributes signals in package*
 - *Metal heat spreader helps with cooling*
Interdigitated (a), Core-limited (b) or Pad-limited (c) Pads
Bump Pad

- Can be put anywhere on chip
 - Plate pads with solder bumps
 - Invert chip & reflow bond to substrate
- Invented by IBM:
 - No pad connection failure EVER in IBM equipment
Advanced Packages

- Bond wires contribute parasitic inductance
- Fancy packages have many signal, power layers
 - Like tiny printed circuit boards
- Flip-chip places connections across surface of die rather than around periphery
 - Top level metal pads covered with solder balls
 - Chip flips upside down
 - Carefully aligned to package (done blind!)
 - Heated to melt balls
 - Also called C4 (Controlled Collapse Chip Connection)
Package Parasitics

- Use many V_{DD}, GND in parallel
 - Inductance, I_{DD}
Heat Dissipation

- 60 W light bulb has surface area of 120 cm2
- Itanium 2 die dissipates 130 W over 4 cm2
 - Chips have enormous power densities
 - Cooling is a serious challenge
- Package spreads heat to larger surface area
 - Heat sinks may increase surface area further
 - Fans increase airflow rate over surface area
 - Liquid cooling used in extreme cases ($$$)
Input / Output

• Input/Output System functions
 – Communicate between chip and external world
 – Drive large capacitance off chip
 – Operate at compatible voltage levels
 – Provide adequate bandwidth
 – Limit slew rates to control di/dt noise
 – Protect chip against electrostatic discharge
 – Use small number of pins (low cost)
I/O Pad Design

- Pad types
 - V_{DD} / GND
 - Output
 - Input
 - Bidirectional
 - Analog
Output Pads

- Drive large off-chip loads (2 – 50 pF)
 - *With suitable rise/fall times*
 - *Requires chain of successively larger buffers*

- Guard rings to protect against latchup
 - *Noise below GND injects charge into substrate*
 - *Large nMOS output transistor*
 - *p+ inner guard ring*
 - *n+ outer guard ring*
 - In n-well
Input Pads

- **Level conversion**
 - *Higher or lower off-chip V*
 - *May need thick oxide gates*

- **Noise filtering**
 - *Schmitt trigger*
 - *Hysteresis changes V_{IH}, V_{IL}*

- **Protection against electrostatic discharge**
ESD Protection

- Static electricity builds up on your body
 - *Shock delivered to a chip can fry thin gates*
 - *Must dissipate this energy in protection circuits before it reaches the gates*

- ESD protection circuits
 - *Current limiting resistor*
 - *Diode clamps*

- ESD testing
 - *Human body model*
 - *Views human as charged capacitor*
Bidirectional Pads

- Combine input and output pad
- Need tristate driver on output
 - *Use enable signal to set direction*
 - *Optimized tristate avoids huge series transistors*
Analog Pads

• Pass analog voltages directly in or out of chip
 – No buffering
 – Protection circuits must not distort voltages
MOSIS I/O Pad

- 1.6 \(\mu \text{m} \) two-metal process
 - Protection resistors
 - Protection diodes
 - Guard rings
 - Field oxide clamps