Efficiently Mining Homomorphic Patterns from Large
Data Trees

Xiaoying Wu# and Dimitri Theodoratos

State Key Lab. of Software Engineering, Wuhan Universiyn&
Xi aoyi ng. wu@hu. edu. cn

*New Jersey Institute of Technology, USA
dth@s.njit.edu

Abstract. Finding interesting tree patterns hidden in large datdseta central
topic in data mining with many practical applications. Unémately, previous
contributions have focused almost exclusively on minirduced patterns from
a set of small trees. The problem of mining homomorphic pastérom a large
data tree has been neglected. This is mainly due to the ogallg unbounded
redundancy that homomorphic tree patterns can displayedervmining homo-
morphic patterns allows for discovering large patternscivliannot be extracted
when mining induced or embedded patterns. Large patterbsr liharacterize
big trees which are important for many modern applicationzairticular with the
explosion of big data.

In this paper, we address the problem of mining frequent lmamphic tree pat-
terns from a single large tree. We propose a novel approathegttracts non-
redundant maximal homomorphic patterns. Our approach@mgin incremen-
tal frequency computation method that avoids the costlyresration of all pat-
tern matchings required by previous approaches. Matchiogmnation of already
computed patterns is materialized as bitmaps a technigai@dh only minimizes
the memory consumption but also the CPU time. We conducileétaxperi-
ments to test the performance and scalability of our approBlee experimental
evaluation shows that our approach mines larger pattermh®xnacts maximal
homomorphic patterns from real datasets outperforminig-sththe-art embed-
ded tree mining algorithms applied to a large data tree.

1 Introduction

Extracting frequent tree patterns which are hidden in datastis central for analyz-
ing data and is a base step for other data mining procesdeslimg association rule
mining, clustering and classification. Trees have emergeddéent years as the stan-
dard format for representing, exporting, exchanging anejgirating data on the web
(e.g., XML and JSON). Tree data are adopted in various agipdic areas and systems
such as business process management, NoSQL databasesju@gtores, scientific
workflows, computational biology and genome analysis.

Because of its practical importance, tree mining has betmsively studied [2, 10,
4,14,15,7,6,11]. The approaches to tree mining can bedlpséharacterized by two
parameters: (a) the type of morphism used to map the treerpatb the data structure,
and (b) the type of mined tree data.

Mining homomorphic tree patterns. The morphism determines how a pattern is mapped
to the data tree. The morphism definition depends also onyihe af pattern con-

T T, Ts Ty P, Py P, Ps
subject subject subject subject subject subject subject subject
/| N |)
year article article article year article ayg W year year K year ar‘ticlc artic‘le
author title year title author article title/L\yCalr author title author title author title author title
author
/\ induced embedded homomorphic
title author pattern patterns non-redundant patterns
(a) Data trees (b) Mined tree patterns

Fig. 1: Different types of mined tree patterns occurringhrete of the four data trees.

sidered. In the literature two types of tree patterns haentstudied: patterns whose
edges represent parent-child relationshgssld edges) and patterns whose edges rep-
resent ancestor-descendant relationshies¢endaneédges). Over the years, research
has evolved from considering isomorphisms for mining pagevith child edgesig-
duced patterng2, 4] into considering embeddings for mining patterndwdescendant
edges émbedded patterin§10, 15, 14]. Because of the descendant edges, embeddings
are able to extract patterns "hidden” (or embedded) dedpmiirge trees which might
be missed by the induced definition [14]. Nevertheless, eltiings are restricted be-
cause: (a) they are injective (one-to-one), and (b) thepatamap two sibling nodes in

a pattern to two nodes on the same path in the data tree. Onhtbielrand, homomor-
phisms are powerful morphisms that do not have those twdaetshs of embeddings.
We term patterns with descendant edges, mined through honptismshomomor-
phic patterns. Formal definitions are provided in Section 2. Asibimorphisms are
more relaxed than embeddings, the mined homomorphic patége a superset of the
mined embedded patterns.

Fig. 1(a) shows four data trees corresponding to differeimémas to be integrated
through the mining of large tree patterns. The frequen®gthold is set to three. Fig. 1(b)
shows induced mined tree patterns, embedded patterns aackdondant homomor-
phic patterns. Fig. 1(b) includes the largest patternsaate mined in each category.
As one can see, the shown embedded patterns are not indutethpaand the shown
homomorphic patterns are neither embedded nor induceerpsatt-urther, the homo-
morphic patterns are larger than all the other patterns.

Large patterns are more useful in describing data. Miniskggtaisually attach much
greater importance to patterns that are larger in size,lergger sequences are usually
of more significant meaning than shorter ones in bioinfoosdtl 7]. As mentioned in
[16] large patterns have become increasingly importantanyrmodern applications.

Therefore, homomorphisms and homomorphic patterns digpfumber of advan-
tages. First, they allow the extraction of patterns thahcabe extracted by embedded
patterns. Second, extracted homomorphic patterns canrper llhan embedded pat-
terns. Finally, homomorphisms can be computed more effigi¢ghan embeddings.
Indeed, the problem of checking the existence of a homoniempbf an unordered
tree pattern to a data tree is polynomial [9] while the cqroesling problem for an
embedding is NP-complete [8].

Mining patterns from a large data tree. The type of mined data can be a collection of
small trees [2, 10, 4, 14, 15] or a single large tree. Sumylgj the problem of mining
tree patterns from a single large tree has only very recéetin touched even though

a plethora of interesting datasets from different areasratiee form of a single large
tree. Examples include encyclopedia databases like Wikapéibliographic databases
like PubMed, scientific and experimental result databakesJniprotkKB, and biologi-
cal datasets like phylogenetic trees. These datasets grustantly with the addition of
new data. Big data applications seek to extract informdtiom large datasets. How-
ever, mining a single large data tree is more complex tharnngia set of small data
trees. In fact, the former setting is more general than ttier|asince a collection of
small trees can be modelled as a single large tree rootedigualwnlabeled node.
Existing algorithms for mining embedded patterns from dewbion of small trees [14]
cannot scale well when the size of the data tree increasesxXperiments show that
these algorithms cannot scale beyond some hundreds of modetata tree with low
frequency thresholds.

The problem. Unfortunately, previous work has focused almost exclugiga mining
induced and embedded patterns from a set of small trees.s§be of mininghomo-
morphic patterngrom asingle large data treéas been neglected.

The challenges. Mining homomaorphic tree patterns is a challenging task. bioror-
phic tree patterns are difficult to handle as they may comdinndant nodes. If their
structure is not appropriately constrained, the numberagfifent patterns (and there-
fore the number of candidate patterns that need to be ged@En be infinite.

Even if homomorphic patterns are successfully constratodae non-redundant,
their number can be much larger than that of frequent emlzegd#erns from the
same data tree. In order for the mining algorithm to be efiiicieew, much faster tech-
nigues for computing the support of the candidate homoniottpte patterns need to
be devised.

The support of patterns in the single large data tree settingot be anymore the
number of trees that contain the pattern as is the case indhiha small trees setting.
A new way to define pattern support in the new setting is needdch enjoys useful
monotonic characteristics.

Typically, one can deal with a large number of frequent paigby computing only
maximal frequent patterns. In the context of induced tratepas, a pattern is maximal
if there is no frequent superpattern [4]. A non-maximalgatis not returned to the user
as there is a larger, more specific pattern, which is frequi¢owever, in the context of
homomorphic patterns, which involve descendant edges;dheept of superpattern
is not sufficient for capturing the specificity of a patterntrée pattern can be more
specific (and informative) without being a superpatterm.ifstance, the homomorphic
patternP; of Fig. 1(b) is more specific than the homomorphic patiymvithout being
a superpattern aPs. Therefore, a new sophisticated definition for maximalqrat is
required which takes into account both the particularitiethe homomorphic patterns
and the single large tree setting.

Contribution. In this paper, we address the problem of mining maximal hoorpiric
unordered tree patterns from a single large data tree. Oiur coatributions are:

e We define the problem of extracting homomorphic and maxiroeiémorphic un-
ordered tree patterns with descendant relationships fraingle large data tree.
This problem departs from previous ones which focus on mgimaluced or em-
bedded tree patterns from a set of small data trees (Seqtion 2

e We constrain the extracted homomorphic patterns to be edardant in order to
avoid dealing with an infinite number of frequent patternamounded size. In or-
der to define maximal patterns, we introduce a strict paotidér on patterns char-
acterizing specificity. A pattern which is more specific pd@s more information
on the data tree (Section 2).

¢ We design an efficient algorithm to discover all frequent immat homomorphic tree
patterns. Our algorithm wisely prunes the search spacegrgtng and consider-
ing only patterns that are maximal and frequent or can douiito the generation
of maximal frequent patterns (Section 3).

e Our algorithm employs an incremental frequency computati@thod that avoids
the costly enumeration of all pattern matchings requiregbiewious approaches.
An originality of our method is that matching informationalfeady computed pat-
terns is materialized as bitmaps. Exploiting bitmaps ndt oninimizes the memory
consumption but also reduces CPU costs (Section 3).

e We run extensive experiments to evaluate the performangeealability of our
approach on real datasets. The experimental results stedw(@h the mined maxi-
mal homomorphic tree patterns daeger on the average than maximal embedded
tree patterns on the same datasets, (b) our approach mimesrarphic maximal
patterns up teseveral orders of magnitude fast#ran state-of-the-art algorithms
mining embedded tree patterns when applied to a large d=gaand (c) our al-
gorithm consumes only small fraction of the memory spae@dscales smoothly
when the size of the dataset increases (Section 4).

2 Preliminaries and Problem Definition

Trees and inverted lists.We consider rooted labeled trees, where each tree has a dis-
tinguished root node and a labeling functibrmapping nodes to labels. A tree is called
orderedif it has a predefined left-to-right ordering among the dfgld of each node.
Otherwise, it isunordered Thesizeof a tree is defined as the number of its nodes. In
this paper, unless otherwise specified, a tree pattern istadplabeled, unordered tree.
For every labeb in an input data tre@', we construct an inverted ligt, of the data
nodes with labek ordered by their pre-order appearanc&irig. 2(a) and (b) shows
a data tree and inverted lists of its labels.

Tree morphisms. There are two types of tree patterns: patterns whose edgesent
child relationships (child edges) and patterns whose edgmesent descendant rela-
tionships (descendant edges). In the literature of treeamining, different types of
morphisms are employed to determine if a tree pattern isidted in a tree.

Given a patternP and a tre€l’, a homomorphisnirom P to 7' is a functionm
mapping nodes aP to nodes of’, such that: (1) forany nodee P, [b(x) =1b(m(x));
and (2) for any edger(y) € P, if (x,y) is a child edge,i.(z), m(y)) is an edge of’,
while if (z,y) is a descendant edge,(«) is an ancestor af(y) in T'.

Previous contributions have constrained the homomorghisonsidered for tree
mining in different ways. LetP be a pattern with descendant edges. énbedding
from P to T is an injective functionm mapping nodes of to nodes off’, such that:
(1) for any nodex € P, ib(z) = lb(m(x)); and (2)(x,y) is an edge inP iff m(z) is

/’\ pattern occurence sup-

a b, G pattern occurrences lists Rlmars port
- ABC
‘ ‘ /\ L= {a;, a a3, 285,85} |p A Li=fararas | 1.o
. a > @2, 43, A4, . b =lanaas) | La=11010

a as ¢ by Ly = {by, by, bs, by} /\ :i bi zi Ly={bi,bs,bs} | Ly=1011 2
/\ ‘ ‘ ‘ Le= {c1, ¢, c3} B ¢ a, by 3 Le={c1,¢3} Le=101
b, © C b; as L= {r} a4 by c3

(a)Atree T (b) Inverted lists (c) Occurrence information for pattern P on tree 7'

Fig. 2: A treeT, its inverted lists, and occurrence info. of pattéton 7.

an ancestor ofn(y) in T'. Clearly, an embedding is also a homomorphism. Notice that,
in contrast to a homomorphism, an embedding cannot map tliogs of P to two
nodes on the same pathlh Patterns with descendant edges mined using embeddings
are callecembeddegatterns. We call patterns with descendant edges mined hein
momorphism&iomomorphi@atterns. In this paper, we consider mining homomorphic
patterns. The set of frequent embedded patterns on a dafé ise subset of the set of
frequent homomorphic patterns @rsince embeddings are restricted homomorphisms.

Pattern nodes occurrence listsWe identify an occurrence aP onT' by a tuple in-
dexed by the nodes dP whose values are the images of the corresponding nodes in
P under a homomorphism d? to T'. The set of occurrences @t under all possible
homomorphisms o to T is a relationOC whose schema is the set of nodedbfif
X is a node inP labeled by labet:, the occurrence list ofX on T is a sublistL x of
the inverted listL, containing only those nodes that occur in the columnX¥an OC.

As an example, in Figure 2(c), the second and third columwes thie occurrence
relation and the node occurrence lists, respectively, efpittern” on the treel” of
Figure 2(a).
Support. We adopt for the support of tree patterns root frequencystigport of a
patternP on a data tred” is the number of distinct images (nodesTii of the root of
P under all homomorphisms d? to T'. In other words, thesupportof P onT is the
size of the occurrence list of the root BfonT'.

A patternS is frequentif its support is no less than a user defined threshattsup
We denote by, the set of all frequent patterns of sizealso known as &-pattern

Constraining patterns. When homomorphisms are considered, it is possible that an
infinite number of frequent patterns of unrestricted sizelmaextracted from a dataset.
In order to exclude this possibility, we consider and defieet mon-redundant patterns.
We say that two pattern®; and P, are equivalent if there exists a homomorphism
from P, to P, and vice-versa. A nod& in a patternP is redundantf the subpattern
obtained fromP by deletingX and all its descendants is equivalenftoFor example,
the rightmost nod€’ of P; and the rightmost nod® of P; in Figure 3 are redun-
dant. Adding redundant nodes to a pattern can generate aiteénfumber of frequent
equivalent patterns which have the same support. Thessrpstire not useful as they
do not provide additional information on the data tree. Agratisnon-redundanif it
does not have redundant nodes. In Figure 3, patt@srasd P; are redundant while the
rest of the patterns are non-redundant. Non-redundamrpattorrespond to minimal
tree-pattern queries [1] in tree databases. Their numlfieitis. We discuss later how to

a a a a a a a a

/N I 0 N N2 N NN
b b b b b c b c b b b b b d
] N o .
C d Y 4 d C c d [C d 4
‘ d‘ P, P Py Ps Ps Py
d T P,

(a) A data tree T (b) Homomorphic patterns on T

Fig. 3: A data tree and homomorphic patterns.

efficiently check patterns for redundancy by identifyinguadant nodes. We set forth
to extract only frequent patterns which are non-redundaiirbthe process of finding
frequent non-redundant patterns we might generate alse sedundant patterns.

Maximal patterns. In order to define maximal homomorphic frequent patterns, we
introduce a specificity relation on patterns: A pattéinis more specifithan a pattern
P, (and P, is less specifithan P,) iff there is a homomorphism fror, to P, but not
from P, to P. If a patternP; is more specific than a pattery, we write P, < Ps.
For instance, in Figure 3, < P;, i = 2,...,7,andP, < Pg. Similarly, in Fig. 1,
P, < P, Ps < P3, Py < P, andP, < Ps. Note thatP, is more specific thai®; even
though it is smaller in size thaR;. Clearly, < is a strict partial order. 1P, < P, P,
conveys more information on the dataset tifan

A frequent patterrP is maximalif there is no other frequent patteff, such that
P, < P. For instance, in Fig. 1, all the patterns shown are freqhenmiomorphic
patterns and’; is the only maximal pattern.

Problem statement.Given a large tred” and a minimum support threshofminsup
our goal is to mine all maximal homomorphic frequent pagdromT".

3 Proposed Approach

Our approach for mining embedded tree patterns from a laggeiterates between
the candidate generation phase and the support countirsg plmathe first phase, we
use a systematic way to generate candidate patterns thabtmetially frequent. In

the second phase, we develop an efficient method to compatifiport of candidate
patterns.

3.1 Candidate Generation

To generate candidate patterns, we adapt in this sectiaythiealence class-based pat-
tern generation method proposed in [15, 14] so that it camesddpattern redundancy
and maximality. A candidate pattern may have multiple alitive isomorphic repre-
sentations. To minimize the redundant generation of thmdsphic representations of
the same pattern, we employ a canonical form for tree pat{&in

Equivalence Class-based Pattern GeneratiorLet P be a pattern of sizé-1. Each
node ofP is identified by itdepth-first positiorn the tree, determined through a depth-
first traversal ofP, by sequentially assigning numbers to the first visit of tbden The
rightmost leafof P, denotedml, is the node with the highest depth-first position. The
immediate prefixof P is the sub-pattern of obtained by deleting theml from P.
The equivalence clasef P is the set of all the patterns of sizethat haveP as their

immediate prefix. We denote the equivalence clasB afs[P]. Any two members of
[P] differ only in theirrmls. We use the notatioR! to denote thé-pattern formed by
adding a child node labeled hyto the node with positionin P as thermi.

Given an equivalence clag®], we obtain its successor classes by expanding pat-
terns in[P]. Specifically, candidates are generateddiging each pattern?! € [P]
with any other patterm?jj in [P], including itself, to produce the patterns of the equiva-
lence clas$P}]. We denote the above join operationBy® PJ. There are two possible
outcomes for eack! ® Pg: one is obtained by makinga sibling node of: in P, the
other is obtained by makinga child node of: in P}. We call patterns®; and P the
left-parentandright-parentof a join outcome, respectively.

As an example, in Figure 3, patteris, P, Ps;, P5s, and P; are members of class
[a/b/c]; Py is a join outcome of?; @ Pr, obtained by making them! d of P; a child
of therml c of Ps.

Checking Pattern redundancy The pattern generation process may produce candi-
dates which are redundant (defined in Section 2). We disaelesvthow to efficiently
check pattern redundancy by identifying redundant nodeseXploit a result of [1]
which states that: a nod& of a patternP is redundant iff there exists a homomor-
phismh from P to itself such that:(X) # X. A brute-force method for checking
if a pattern is redundant computes all the possible homohismps fromP to itself.
Unfortunately, the number of the homomorphisms can be expiied on the size of.
Therefore, we have designed an algorithm which, given twtepss P and @, com-
pactly represents all the homomorphisms fréhto @ in polynomial time and space
(see Appendix). Our algorithm enhances the one presen{8{hhich checks if there
exists a homomorphism from one tree pattern to another vabhéeving the same time
and space complexity. Its detailed description is omittexhin the interest of space.

During the candidate generation, we cannot however simpbadd candidates that
are redundant, since they may be needed for generatingatumdant patterns. For
instance, the patterR; shown in Figure 3(b), is redundant, but it is needed (as tie le
operand in a join operation witR;) to generate the non-redundant patt€grshown in
the same figure. Clearly, we want to avoid as much as possiolergting patterns that
are redundant. In order to do so, we introduce the noticexpandableattern.

Definition 1 (Expandable Pattern).A patternP is expandablgif it does not have a
redundant nodeX such that: (1)X is not on the rightmost path d?, or (2) X is on the
rightmost path ofP and Ly is equal toLx, U...U Lx,, whereXy, ..., X}, are the
images of nod& under a homomorphism frof to itself.

Based on Definition 1, if a pattern is non-expandable, evepaesion of it is re-
dundant. Therefore, only expandable patterns in a classoasdered for expansion.

Finding Maximal Patterns. One way to compute the maximal patterns is to use a post-
processing pruning method. That is, first compute theSset all frequent homomor-
phic patterns, and then do the maximality check and eliriman-maximal patterns
by checking the specificity relation on every pair of patseim.S. However, the time
complexity of this method is Q|?). It is, therefore, inefficient since the size $fcan

be exponentially larger than the number of maximal patterns

We have developed a better method which can reduce the nwhivequent pat-
terns that need to go through the maximality check. Durirggaburse of mining fre-
quent patterns, the method locates a subset of frequertpattalled locally maximal
patterns. A pattert® is locally maximalif it is frequent and there exists no frequent
pattern in the class]. Clearly, a non-locally maximal pattern is not maximal. hie
order to identify maximal patterns, we check only locallyximaal patterns for maxi-
mality. Our experiments show that this improvement can atarally reduce the num-
ber of frequent patterns checked for maximality.

3.2 Support Computation

Recall that the support of a pattefhin the input data tre@” is defined as the size of
the occurrence list. of the rootR of P onT" (Section 2). To computé i, a straight-
forward method is to first compute the relatiod’ which stores the set of occurrences
of P under all possible homomorphisms Bfto 7' and then “projectOC' on column

R to get L g. Fortunately, we can do much better using a twig-join apginda com-
pute L g without enumerating all homomorphismsBfto T'. Our approach for support
computation is a complete departure from existing appresch

A holistic twig-join approach. In order to computd. x, we exploit a holistic twig-
join approach (e.gTwigStack [3]), the state of the art technique for evaluating tree-
pattern queries on tree data. AlgorithifwigStack works in two phases. In the first
phase, it computes the matches of the individual root-&h{d@ths of the pattern. In
the second phase, it merge joins the path matches to conigutesults for the pattern.
TwigStack ensures that each solution to each individual query rodedbpath is guar-
anteed to be merge-joinable with at least one solution df @athe other root-to-leaf
paths in the pattern. Therefore, the algorithm can guagantast-case performance
linear to the size of the data tree inverted lists (the input) andsthe of the pattern
matches in the data three (the output), i.e., the algorithoptimal.

By exploiting the above property @fwigStack, we can compute the support Bf
at the first phase dt'wigStack when it finds data nodes participating in matches of
root-to-leaf paths of°. There is no need to enumerate the occurrences of pdttem
T (i.e., to compute the occurrence relation’).

The time complexity of the above support computation metisad(|P| x |T'|),
where| P| and|T'| denote the size of pattefmand of the input data treE, respectively.
Its space complexity is thevin(|T|, | P| x heigh(T')). We note that, on the other hand,
the problem of computing an unordered embedding ffota 7" is NP-complete [8]. As
a consequence, a state-of-the-art unordered embeddethpathing algorithnbleuth
[14] computes pattern supportd(|P| x |T|?'F1) time andO(|P| x |T|I*'!) space.

Nevertheless, th&wigStack-based method can still be expensive for computing
the support of a large number of candidates, since it neestatofully the inverted lists
corresponding to every candidate pattern. We present bafowmcremental method,
which computes the support of a pattdPrby leveraging the computation done at its
parent patterns in the search space.
Computing occurrence lists incrementally.Let P be a pattern an& be a node in
P labeled bya. UsingTwigStack, P is computed by iterating over the inverted lists
corresponding to every pattern node. If there is a sublst,/s¢, of L, such thatP
can be computed df using Lx instead ofL,, we say that nod& can becomputed

usingLx onT'. SincelL x is non-strictly smaller thai,, the computation cost can be
reduced. Based on this idea, we propose an incremental thisthtuses the occurrence
lists of the two parent patterns of a given pattérito computeP.

Let pattern@ be a join outcome of! ® Py7 By the definition of the join operation,
we can easily identify a homomorphism from each paiéjnandPg to Q.

Proposition 1. Let X’ be a node in a parer®’ of (Q and X be the image oKX’ under
a homomorphism fro®’ to Q. The occurrence list x of X onT, is a sublist of the
occurrence listL - of X’ onT'.

SublistL x is the inverted list of data tree nodes that participate endbcurrences
of Q to T'. By Proposition 1,X can be computed usinfiy- instead of using the corre-
sponding label inverted list. Further, X is the image of nodeX; and X, defined by
the homomorphisms from the left and right parenthfrespectively, we can compute
X using theintersection Lx, N Lx,, of Lx, andL x, which is the sublist of. x, and
L x, comprising the nodes that appear in bath, andLx, .

Using Proposition 1, we can compufeusing only the occurrence list sets of its
parents. Thus, we only need to store with each frequentrpatteoccurrence list set.
Our method is space efficient since the occurrence lists wende in linear space an
exponential number of occurrences for the pattern [3]. Intrast, the state-of-the-art
methods for mining embedded patterns [15, 14] have to stdoemation about all the
occurrences of each given patterrin

Occurrence lists as bitmaps.The occurrence list x of a pattern nod&X labeled by
a onT can be represented by a bitmap bp. this is a bot array of sizgl,| which
has a ‘1’ bit at position iff Lx comprises the tree node at positioaf L,. Then, the
occurrence list set of a pattern is the set of bitmaps of ticewence lists of its nodes.
Figure 2(c) shows an example of bitmaps for pattern occoeésts.

As verified by our experimental evaluation, storing the aoence lists of multiple
patterns as bitmaps results in important space savingeaPi offer CPU cost saving as
well by allowing the translation of pattern evaluation towdse operations. This bitmap
technique is initially introduced and exploited in [12, I8t materializing tree-pattern
views and for efficiently answering queries using matezédiviews.

3.3 The Tree Pattern Mining Algorithm

We present now our homomorphic tree pattern mining algoritalledHomTreeMiner
(Fig. 4). The first part of the algorithm computes the setstaioing all frequent 1-
patternsF; (i.e., nodes) and 2-patterrds (lines 1-2). F; can be easily obtained by
finding inverted lists ofl" whose size (in terms of number of nodes) is no less than
minsup. The total time for this step i©(|T'|). F» is computed by the following proce-
dure: letX/Y denote a 2-pattern formed by two elemeRtandY” of F. The support
of X/Y is computed via algorithrifwigStack on the inverted listd;, x) and Ly,
that are associated with labélg X') and{b(Y), respectively. The total time for each
2-pattern candidate 9(|7|).

The main part of the computation is performed by proceddi@e Hom Patterns
which is invoked for every frequent 2-pattern (Lines 3-4)isTis a recursive procedure.
It tries to join everyP, € [P] with any other elemenP;] < [P] including P} itself.

Input: inverted listsC of treeT andminsup.
Output:all the frequent maximal patterost in 7.

. F1 :={frequent 1-patterrjs
F, :={classegP]: of frequent 2-patterrs
. for (every[P] € F3) do
MineHomPatterns([P], M = 0);
run the maximality checking procedure &;
. return M,
Procedure MineH omPatterns([P], M)
. for (eachP; ¢ [P]) do
if (P? is in canonical form and is expandabtipn
[Pi]:=0
for (eachP) € [P]) do
for (each join outcome) of P, ® P}) do
addQ to [Pl] if Q is frequent;
addP; to M if none of the members d;] is in canonical form;
MineH om Patterns([PL], M);

JounbswpR

©ONoOGOA~®WNE

Fig. 4: Homomorphic Tree Pattern Mining Algorithm.

Then, it computes the support of each possible join outc@né,adds them taP!]
if they are frequent (Lines 1-6). Once d?g have been processed, it checksif is
a locally maximal pattern. If saP! is added to the maximal pattern skt (Line 7).
Then, the new clasg”!] is recursively explored in a depth-first manner (Line 8). The
recursive process is repeated until no more frequent pattam be generated.

Once all the locally maximal patterns have been found, thammelity check proce-
dure describedin Sec. 3.1 is run to identify maximal pag@among the locally maximal
ones and the results are returned to the user (Lines 5-6).

4 Experimental Evaluation

We implemented our algorithilomTreeMineand we conducted experimentsto: (a) com-
pare the features of the extracted (maximal) homomorphtee with those of (max-
imal) embedded patterns, and (b) study the performantofTreeMineiin terms of
execution time, memory consumption and scalability.

To the best of our knowledge, there is no previous algoritompguting homomor-
phic patterns from data trees. Therefore, we compared tifierpeance of our algorithm
with state-of-the-art algorithms that compute embeddé¢i@pes on the same dataset.

Our implementation was coded in Java. All the experimemtsnted here were per-
formed on a workstation equipped with an Intel Xeon CPU 35528 GHz processor
with 8GB memory running JVM 1.7.0 on Windows 7 Professioffdle Java virtual
machine memory size was set to 4GB.

Datasets.We have ran experiments on four real and benchmark datesstsAp-
pendix). Due to space limitation, we only present result®wuf experimental study
on one real tree dataset call@decbank® derived from computational linguistics. The

1 http://www.cis.upenn.edu/treebank

dataset is deep and comprises highly recursive and irreglulectures. Its statistics are
shown below.

| Dataset|Tot. #nodef#labelsMax/Avg depth #paths|
[Treebank 2437666 250 | 36/8.4 1392231

4.1 Agorithm Performance

We compare the performance BbmTreeMinerwith two unordered embedded tree
mining algorithmsSleuth[14] and EmbTreeMinef{11]. Sleuthwas designed to mine

embedded patterns from a set of small trees. In order to aewcomparison in the

single large tree setting, we adaptsléuthby having it return as support of a pattern
the number of its root occurrences in the data tegebTreeMineis a newer embedded

tree mining algorithm which, aslomTreeMiner exploits the twig-join approach and
bitmaps to compute pattern support.

To the best of our knowledge, direct mining of maximal emhtidatterns has not
been studied in the literature. We therefore use post-gsing pruning which elimi-
nates non-maximal patterns after computing all frequertiesided patterns. For this
task, we implemented the unordered tree inclusion algoriflescribed in [8]. As our
experiments show, the cost of this post-processing steptisignificant compared to
the frequent pattern mining cost.

Execution time. We measure the total elapsed time for producing maximaugat|
patterns at different support thresholds. The total timelires the time to generate
candidate patterns, compute pattern support, and chedkality of frequent patterns.
To allow Sleuth—which is slower—extract some patterns within a reasonafleunt
of time, we used a fraction of the Treebank dataset whichistsnaf 35% of the nodes
of the original tree. We measured execution times over thieeefireebank dataset in
the scalability experiment.

Table 5(d) presents evaluation statistics. As one can keedarch space of a ho-
momorphic pattern mining can be larger than that of embeg@déérn mining for low
support levelsHomTreeMinercomputes 3.7 times more candidates and produces 4.25
times more frequent patterns thEmbTreeMineat minsup = 36.5k. Sincél'reebank
contains many deep, highly recursive paths, the searcle ggdmmomorphic patterns
becomes large at low support levels.

Figure 5(a) presents the total elapsed time of the threeittigts under different
support thresholds. Due to prohibitively long times, wepgked testingsleuthon sup-
port levels below 50k. We can see thiédmTreeMineruns orders of magnitude faster
thanSleuthespecially for low support levels. The rate of increase efrilmning time
for HomTreeMineris slower than that foSleuthas the support level decreases. This
is expected, sincelomTreeMinercomputes the support of a homomorphic pattern in
time linear to the input data size, whereas this computatiernponential for embedded
pattern miners (Sec. 3.2). Furthermd®éguthhas to keep track of all possible embed-
ded occurrences of a candidate to a data tree, and to perkp@mgive join operations
over these occurrencdsomTreeMineishows similar or better performance thiamb-
TreeMinerfor support levels above 40K. The large number of candidatedmorphic
patterns can negatively affect the time performancel@iTreeMinerat low support
levels. For exampleslomTreeMinelis 2.4 times slower thaBmbTreeMinein mining

...... =
o’ 10° | Sl
10* =) “.1
%\ g - o e
<0 ®
o Sleuth £l
E EmbTreeMiner ---4&-- =
=10ty HomTreeMiner --A-- =
£ A 5
S . . g
= [5
______________ A 10°
e 8
Ao
107!
70 65 60 55 50 45 40 70 65 60 55 50 45 40
Minimum Support (k) Minimum Support (k)
(a) Run time vs. support (b) Memory usage
EmbTreeMinerSSSSI
140 7 HomTreeMiner mum—
. . # candidate | # frequent | max. size of
120 minsup |morphism
> patterns patterns |freq. patterns
Q
z o Emb 299 23 4
o 45k
,E 80 Hom 331 27 4
T @ a0k Emb 419 41 5
2 w Hom 658 81 8
Emb 557 65 5
2 36.5k
Hom 2044 276 8
3 4 5 6 7 8
Pattern Size
(c) Run time vs. pattern sizeninsup = 36.5Kk) (d) Evaluation statistics

Fig. 5: Performance comparison on a fraction of Treebank.

frequent patterns atinsup = 36.5k. However, even though the number of (candidate
and frequent) homomorphic patterns is always larger thameelted patterns, this dif-
ference is not so pronounced in shallower dataséisa consequencelomTreeMiner
largely outperform&mbTreeMineiin those cases both at higher and low support lev-
els. This is due to its efficient computation of pattern suppdiich does not require
the enumeration of pattern occurrences as is the caseewitifreeMinef11].

Figure 5(c) presents the runtintlomTreeMinerandEmbTreeMinemneed to com-
pute the frequent patterns of a given size varying the pasiee. As we can seélom-
TreeMineris more efficient thaEmbTreeMineiin computing frequent patterns of the
same size even though the homomorphic patterns are more-ousne

Memory Usage.We measured the memory footprint of the three algorithmis vry-
ing support thresholds. The results are shown in Figure. 3{e) can see thdtlom-
TreeMinerhas the best memory performance. It consumes substan@aiymemory
than bothSleuthandEmbTreeMinein all the test cases, whereSkuthconsumes the
largest amount of memory. This is mainly beca8ssuthneeds to enumerate and store
in memory all the pattern occurrences for candidates unalesideration. In contrast,
HomTreeMineravoids storing pattern occurrences by storing only bitmapsccur-
rence lists which are usually of insignificant size. AlthbugmbTreeMinerdoes not
store pattern occurrences, it still has to generate pattecarrences as intermediate
results the size of which can be substantial at low suppeetde

1000
Sleuth | e
900 1°| EmbTreeMiner-=f== |- et
10* HomTreeMiner e
= 800

—_ 2 e
B X % 700 '_',.
Z 1w 5 00 g
Q Sleuth O f
E EmbTreeMine . 3 500 et
ol HomTreeMiner --A-- - "
= 5 400 i
°© i
B = E 300 + A =

10! =)] L=

- - 00 -4 &
e) -
X o s
10 T T T T T
10 20 30 40 50 6 70 8 9 100 10 2 30 40 50 6 70 8 9 100
% of Data % of Data
(@) Runtime (b) Memory usage

Fig. 6: Scalability comparison on Treebank with increasiizg (ninsup = 5.5%).

‘ dataset

morohis # freq. [# loc.ma) # max.| %max. overlaveraggaveragémaximun| #common
P patterns patterns|patternsfreq. patterns#nodeg height| #nodes [max.pattern

Treebank [Emb [23 [na [6 [261 [28] 13] 4] 3
(minsup=45kK)| Hom | 27 | 10 | 5 [161 [28 [14 [4 |

Treebank [Emb [41 [nfa [9] 22 [32 14 5] 4
(minsup=40k) Hom | 81 [43 | 8 | 9.8 [34] 16] 5 |

Treebank [Emb [65 [nla [13] 20 [40 T 17] 5] 1
(minsup=36.5k) Hom | 276 | 90 | 11 | 39 | 53 [20 | 7 |

Table 1: Statistics for maximal frequent patterns minedfficeebank.

Scalability. In our final experiment, we studied the scalability of theethalgorithms
as we increase the input data size. We generated ten fragofehe Treebank dataset
of increasing size and fixedinsup at 5.5%.

Figure 6(a) shows thdlomTreeMinerhas the best time performance. It exhibits
good linear scalability as we increase the input data sihe. growth of the running
time of sleuthis much sharpetlomTreeMinewoutperformsSleuthby several orders of
magnitude. It also outperfornidmbTreeMineby a factor of more than 2 on average.

Figure 6(b) shows thddomTreeMineralways has the smallest memory footprint.
The growth of its memory consumption is much slower than didioth sleuthand
EmbTreeMiner

4.2 Comparison of mined maximal homomorphic and embedded gterns
We computed different statistics on frequent and maximeddent patterns mined by

HomTreeMinerandEmbTreeMinefrom Treebank varying the support; the results are
summarized in Figure 5(d) and Table 1. We can make the fatigwbservations.

First, HomTreeMineiis able to discover larger patterns tiambTreeMinefor the
same support level. As one can see in Figure 5(d) and TableInaximum size of
frequent homomorphic patterns and the maximum size andgearumber of nodes
and height of maximum frequent homomorphic patterns is msweller than that of
the embedded patterns for the same support level.

Second, the number of maximal homomorphic patterns is esgar than the num-
ber of maximal embedded patterns for the same support (Gotuof Table 1). Further,
the number of homomorphic and embedded frequent pattesnbgtantially reduced if
only maximal patterns are selected (Column 6 of Table 1). él@wthe effect is larger
on homomorphic patterns as the number of frequent homonpgaltterns is usually
larger than that of embedded patterns for the same suppeti{@olumn 3 of Table 1).

L L L L L:listitem

\ N\ | | T:text

T L T T T T T ’
K:keyword

™ AN N || ‘ ‘ B:bold

KB KB KB K E K E :
E:emph

max. hom. pattern max. emb. patterns max. hom. pattern ~ max. emb. patterns

Fig. 7: Examples of maximal patterns mined from XMark at thene support level.

Third, by further looking at the mined maximal patterns welfinat the embedded
maximal patterns at a certain support level can be parttionto sets which correspond
one-to-one to the maximal homomorphic patterns at the saipygost level so that all
the embedded patterns in a set are less specific than theponding homomorphic
pattern. Figure 7 shows two pairs of embedded maximal peteach from the same set
in the partition and the corresponding maximal homomorphitern. The patterns are
extracted from the XMark datagefTherefore, for a number of applications, maximal
homomorphic patterns can offer more information in a moragact way.

5 Related Work

We now discuss, how our work relates to existing literat{ige problem of mining
tree patterns from a set of small trees has been studiedtbia¢zst decade. Among the
many proposed algorithms, only few mine unordered embepdtdrns [10, 14].

TreeFinder [10] is the first unordered embedded tree pattern miningrahgo. It
is a two-step algorithm. In the first step, it clusters thauirtpees by the co-occurrence
of labels pairs. In the second step, it computes maximad ties are common to all the
trees of each cluster. A known limitation @free F'inder is that it tends to miss many
frequent patterns and is computationally expensive.

Sleuth [14] extends the ordered embedded pattern mining algorithee M iner
[15]. Unlike T'reeFinder, Sleuth uses the equivalence class pattern expansion method
to generate candidates. To avoid repeated invocationefrtiotusion checkingSleuth
maintains a list of embedded occurrences with each pattedafines also a quadratic
join operation over pattern occurrence lists to comput@sttgor candidates. The join
operation becomes inefficient when the size of pattern oenae lists is large. Our ap-
proach relies on an incremental stack-based approachqblaits bitmaps to efficiently
compute the support in time linear to the size of input data.

The work on mining tree patterns in a single large tree/geatting has so far been
very limited. The only known papers are [7, 6] which focus oming tree patterns
with only child edges from a single graph, and [11] which lages homomorphisms
to mine embedded tree patterns from a single tree. To theobestr knowledge, our
work is the first one for mining homomorphic tree patterngdwdiéscendant edges from
a single large tree.

6 Conclusion

In this paper we have addressed the problem of mining maXnegient homomorphic
tree patterns from a single large tree. We have provided alm®finition of maximal

2 hitp://monetdb.cwi.ni/xml/

homomorphic patterns which takes into account homomonphipattern specificity
and the single tree setting. We have designed an efficientitilgh that discovers all
frequent non-redundant maximal homomorphic tree patt€uasapproach employs an
incremental stack-based frequency computation methadtioéds the costly enumer-
ation of all pattern occurrences required by previous agges. An originality of our
method is that matching information of already computedepas is materialized as
bitmaps, which greatly reduces both memory consumptiorcantputation costs. We
have conducted extensive experiments to compare our agpwith tree mining algo-
rithms that mine embedded patterns when applied to a lartgeteeg. Our results show
that maximal homomaorphic patterns are fewer and larger thaximal embedded tree
patterns. Further, our algorithm is as fast as the statbefrt algorithm mining em-
bedded trees from a single tree while outperforming it im&of memory consumption
and scalability.

We are currently working on incorporating user-specifiedst@ints to the pro-
posed approach to enable constraint-based homomorpkécrpatining.

References

1. S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastelinimization of tree pattern
queries. INSIGMOD Conference2001.
2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, andrikawa. Efficient substruc-
ture discovery from large semi-structured dataSM, 2002.
3. N.Bruno, N. Koudas, and D. Srivastava. Holistic twig gioptimal XML pattern matching.
In SIGMOD, 2002.
4. Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining closed and xmaal frequent subtrees
from databases of labeled rooted trelsEE Trans. Knowl. Data Eng17(2), 2005.
5. Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for labdltrees and their applications
in frequent subtree minindKnowl. Inf. Syst.8(2), 2005.
. A. Dries and S. Nijssen. Mining patterns in networks ugingrnomorphism. Ir'8DM, 2012.
. B. Goethals, E. Hoekx, and J. V. den Bussche. Mining tregigsiin a graph. IKDD, 2005.
. P. Kilpelainen and H. Mannila. Ordered and unordered inelusion. SIAM J. Comput.
24(2):340-356, 1995.
9. G. Miklau and D. Suciu. Containment and equivalence faiagrhent of xpath.J. ACM
51(1):2-45, 2004.
10. A. Termier, M.-C. Rousset, and M. Sebag. Treefinder: adiep towards xml data mining.
In ICDM, 2002.
11. X. Wu and D. Theodoratos. Leveraging homomorphisms é&ntaps to enable the mining
of embedded patterns from large data tree DASFAA 2015.
12. X.Wu, D. Theodoratos, and W. H. Wang. Answering XML qastising materialized views
revisited. InCIKM, 2009.
13. X. Wu, D. Theodoratos, W. H. Wang, and T. Sellis. OptimizXML queries: Bitmapped
materialized views vs. indexelf. Syst, 38(6):863—884, 2013.
14. M. J. Zaki. Efficiently mining frequent embedded unoetktrees.Fundam. Inform.66(1-
2), 2005.
15. M. J. Zaki. Efficiently mining frequent trees in a foreatgorithms and applicationdEEE
Trans. Knowl. Data Eng17(8), 2005.
16. F. Zhu, Q. Qu, D. Lo, X. Yan, J. Han, and P. S. Yu. Mining tolarge structural patterns in
a massive networkPVLDB, 4(11), 2011.
17. F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining cabf®quent patterns by core
pattern fusion. INCDE, pages 706—-715, 2007.

o0 ~NO®

APPENDIX

6.1 Algorithm compHomos.

The algorithm deploys a standard dynamic programming ntetb@mputing a Boolean matrix
M(p, q), for p € nodesP), g € nodes), such thatM(p, q) is true if: (1) there exists a homo-
morphism from the subpattern rootedzato the subpattern rooted at(Function BottomU p-
Traversal); and (2) there exists a homomorphism from the prefix path tf the prefix path
of ¢, whereprefix pathof a node is the subpattern from the pattern root to that naitteout
branches (Functioff'op DownTraversal). The time and memory complexities of Algorithm
compHomos are bothO(|P| x |Q]).

Proposition 2. There exists a homomorphism from pattétio pattern that maps node € P
to nodeq € Q iff entry M(p,q) is true, whereM is the Boolean matrix computed by Algorithm
compHomos on P and@.

The proof of Proposition 2 is straightforward by the defonitiof pattern homomorphisms
and the construction process of Boolean matvix

Input: two patternsP and Q.
Output: a Boolean matrixM that encodes all the homomorphisms fréhio Q.

1. if (BottomUpTraversal(Matrix)) then
2. M :=TopDownTraversal(MatriX);
3. else
4. there is no homomorphism frofto Q;
Function BottomUpTraversal(MatrixX)
1. Initialize a boolean matriceB(p, ¢) with p € nodesf), ¢ € nodesQ);
. for (¢ of Q’s nodes in the bottom-up ordedp
for (p of P’s nodes in the bottom-up ordedp
C(p, q) = (lb(q) = lb(q))/\/\chhild'r‘en(p)(\/UEchild'r“en(q) D(u, v));
D(p’ q) = C(p’ q)\/ VvEchildren(q) D(pv U)v
return D(root(p), root(g));
nction TopDownTraversal(MatrixX)
. Initialize two boolean matriceB(p, q) and.A(p, ¢) with p € nodesP), ¢ € nodesQ);
. for (¢ of Q’s nodes in the top-down ordedp
for (p of P’s nodes in the top-down ordedp
P(p, q) := (C(p, 9)) N A(parent ofp, parent ofg);

A(p, q) :=P(p, q)VA(p, parent ofg);
. return P,

SNO IS AN

n
c

SRGIERENE

Fig. 8: Algorithm compHomos

6.2 Experimental Evaluation Plots.

Total Time (sec)

| Dataset|Tot. #nodef#labelMax/Avg depth #paths |

Treebank 2437666 | 250 36/8.4 1392231
CSlogs| 772188 | 13355 86/4.4 59691 (#trees)
DBLP | 3332130| 35 6/3 3000839
XMark 83533 74 12/5.6 60853

Table 2: Dataset statistics.

" 1200
10 =
i - 1000 "‘
) i m 0
0] =}
n _.' qc)“ 800 ‘.
B H
10% =] 600 i
)
z
=]
o K PN E 400
» *,‘l- - = Acemd
10° = T T T T T T L Sl T T T T T T
2000 1800 1600 1400 1200 1000 800 600 2000 1800 1600 1400 1200 1000 800 600
Minimum Support (k) Minimum Support (k)
(a) Run time vs. support (b) Memory usage
N EmbTreeMiner &5
HomTreeMiner mm—
—~ 100
E)
g minsup | morphi s tot. freq. | max. size of
= patterns | freq. patterns
= 400 Emb 17992 141 5
§ Hom 18994 258 8
= 10 200 Emb 22836 212 5
Hom 25238 474 9
500 Emb 38626 396 6
n n n . Hom 42019 751 9

Pattern Size

(c) Run time vs. pattern sizedinsup = 700)

(d) Evaluation statistics

Fig. 9: Performance comparison on CSlogs.

Total Time (sec)

10"

10° 4

10*

'Y

10°

Sleuth
[EmbTreeMiner
HomTreeMiner

1100

Total Time (sec)

1050 1000 950 900 850 800 750 700 650
Minimum Support
(@) Run time vs. support
10000 +
1000
100 +
10 4
.
2 3 4 5 6 7

Pattern Size

Memory Usage (MB)

(c) Run time vs. pattern sizedinsup = 900)

Fig. 10: Performance comparison on XMark.

400
Sleuth
350 4 EmbTreeMiner
- HomTreeMiner
300 5
250 o o
!
200 ,"
150 :'!
100 A
Af"’
[S S S ———
1100 1050 1000 950 900 850 800 750 700 650
Minimum Support
(b) Memory usage
. . . tot. freq. | max. size of
minsup |morphismjtot.
patterns | freq. patterns
Emb 9187 877 10
900 Hom 10291 786 10
750 Emb 13359 1259 11
Hom 38986 2803 11
650 Emb 184757 17117 15
- Hom 3408851 190728 19

(d) Evaluation statistics

Total Time (sec)

10!

10°

300 250 200 150 100

Minimum Support (k)
(@) Run time vs. support

450 =
EmbTreeMiner SSSss3 N
400 4-{_HomTreeMiner mum— N
350
P
8 300 Y
N
Q 250
E
= 200
= N
2 150
=
100
50 4
na
2 3 4 5 6 7 8

Pattern Size

(c) Run time vs. pattern sizedinsup = 133Kk)

1600

Sleuth
1400 4| EmbTreeMiner
s HomTreeMiner
=] 1200
=}
& 1000 o
3
B
=) 800
z
=] 600
£
= 400 A
250 200 150 100
Minimum Support (k)
(b) Memory usage
Support Jmorphism| tot. tot. freq. | Max. size
pp b candidates | patterns of freg.
Emb 883 103 7
133k Hom 711 71 i
Emb 4195 428 10
100k Hom 4643 396 9
66k Emb 5631 572 10
. Hom 5407 160 9

(d) Evaluation statistics

Fig. 11: Performance comparison on DBLP.

