
Efficiently Mining Homomorphic Patterns from Large
Data Trees

Xiaoying Wu# and Dimitri Theodoratos∗

#State Key Lab. of Software Engineering, Wuhan University, China
xiaoying.wu@whu.edu.cn

∗New Jersey Institute of Technology, USA
dth@cs.njit.edu

Abstract. Finding interesting tree patterns hidden in large datasetsis an central
topic in data mining with many practical applications. Unfortunately, previous
contributions have focused almost exclusively on mining induced patterns from
a set of small trees. The problem of mining homomorphic patterns from a large
data tree has been neglected. This is mainly due to the challenging unbounded
redundancy that homomorphic tree patterns can display. However, mining homo-
morphic patterns allows for discovering large patterns which cannot be extracted
when mining induced or embedded patterns. Large patterns better characterize
big trees which are important for many modern applications in particular with the
explosion of big data.
In this paper, we address the problem of mining frequent homomorphic tree pat-
terns from a single large tree. We propose a novel approach that extracts non-
redundant maximal homomorphic patterns. Our approach employs an incremen-
tal frequency computation method that avoids the costly enumeration of all pat-
tern matchings required by previous approaches. Matching information of already
computed patterns is materialized as bitmaps a technique that not only minimizes
the memory consumption but also the CPU time. We conduct detailed experi-
ments to test the performance and scalability of our approach. The experimental
evaluation shows that our approach mines larger patterns and extracts maximal
homomorphic patterns from real datasets outperforming state-of-the-art embed-
ded tree mining algorithms applied to a large data tree.

1 Introduction
Extracting frequent tree patterns which are hidden in data trees is central for analyz-
ing data and is a base step for other data mining processes including association rule
mining, clustering and classification. Trees have emerged in recent years as the stan-
dard format for representing, exporting, exchanging and integrating data on the web
(e.g., XML and JSON). Tree data are adopted in various application areas and systems
such as business process management, NoSQL databases, key-value stores, scientific
workflows, computational biology and genome analysis.

Because of its practical importance, tree mining has been extensively studied [2, 10,
4, 14, 15, 7, 6, 11]. The approaches to tree mining can be basically characterized by two
parameters: (a) the type of morphism used to map the tree patterns to the data structure,
and (b) the type of mined tree data.

Mining homomorphic tree patterns.The morphism determines how a pattern is mapped
to the data tree. The morphism definition depends also on the type of pattern con-

Fig. 1: Different types of mined tree patterns occurring in three of the four data trees.

sidered. In the literature two types of tree patterns have been studied: patterns whose
edges represent parent-child relationships (child edges) and patterns whose edges rep-
resent ancestor-descendant relationships (descendantedges). Over the years, research
has evolved from considering isomorphisms for mining patterns with child edges (in-
duced patterns) [2, 4] into considering embeddings for mining patterns with descendant
edges (embedded patterns) [10, 15, 14]. Because of the descendant edges, embeddings
are able to extract patterns ”hidden” (or embedded) deep within large trees which might
be missed by the induced definition [14]. Nevertheless, embeddings are restricted be-
cause: (a) they are injective (one-to-one), and (b) they cannot map two sibling nodes in
a pattern to two nodes on the same path in the data tree. On the other hand, homomor-
phisms are powerful morphisms that do not have those two restrictions of embeddings.
We term patterns with descendant edges, mined through homomorphisms,homomor-
phic patterns. Formal definitions are provided in Section 2. As homomorphisms are
more relaxed than embeddings, the mined homomorphic patterns are a superset of the
mined embedded patterns.

Fig. 1(a) shows four data trees corresponding to different schemas to be integrated
through the mining of large tree patterns. The frequency threshold is set to three. Fig. 1(b)
shows induced mined tree patterns, embedded patterns and non-redundant homomor-
phic patterns. Fig. 1(b) includes the largest patterns thatcan be mined in each category.
As one can see, the shown embedded patterns are not induced patterns, and the shown
homomorphic patterns are neither embedded nor induced patterns. Further, the homo-
morphic patterns are larger than all the other patterns.

Large patterns are more useful in describing data. Mining tasks usually attach much
greater importance to patterns that are larger in size, e.g., longer sequences are usually
of more significant meaning than shorter ones in bioinfomatics [17]. As mentioned in
[16] large patterns have become increasingly important in many modern applications.

Therefore, homomorphisms and homomorphic patterns display a number of advan-
tages. First, they allow the extraction of patterns that cannot be extracted by embedded
patterns. Second, extracted homomorphic patterns can be larger than embedded pat-
terns. Finally, homomorphisms can be computed more efficiently than embeddings.
Indeed, the problem of checking the existence of a homomorphism of an unordered
tree pattern to a data tree is polynomial [9] while the corresponding problem for an
embedding is NP-complete [8].

Mining patterns from a large data tree. The type of mined data can be a collection of
small trees [2, 10, 4, 14, 15] or a single large tree. Surprisingly, the problem of mining
tree patterns from a single large tree has only very recentlybeen touched even though

a plethora of interesting datasets from different areas arein the form of a single large
tree. Examples include encyclopedia databases like Wikipedia, bibliographic databases
like PubMed, scientific and experimental result databases like UniprotKB, and biologi-
cal datasets like phylogenetic trees. These datasets grow constantly with the addition of
new data. Big data applications seek to extract informationfrom large datasets. How-
ever, mining a single large data tree is more complex than mining a set of small data
trees. In fact, the former setting is more general than the latter, since a collection of
small trees can be modelled as a single large tree rooted at a virtual unlabeled node.
Existing algorithms for mining embedded patterns from a collection of small trees [14]
cannot scale well when the size of the data tree increases. Our experiments show that
these algorithms cannot scale beyond some hundreds of nodesin a data tree with low
frequency thresholds.

The problem. Unfortunately, previous work has focused almost exclusively on mining
induced and embedded patterns from a set of small trees. The issue of mininghomo-
morphic patternsfrom asingle large data treehas been neglected.

The challenges.Mining homomorphic tree patterns is a challenging task. Homomor-
phic tree patterns are difficult to handle as they may containredundant nodes. If their
structure is not appropriately constrained, the number of frequent patterns (and there-
fore the number of candidate patterns that need to be generated) can be infinite.

Even if homomorphic patterns are successfully constrainedto be non-redundant,
their number can be much larger than that of frequent embedded patterns from the
same data tree. In order for the mining algorithm to be efficient, new, much faster tech-
niques for computing the support of the candidate homomorphic tree patterns need to
be devised.

The support of patterns in the single large data tree settingcannot be anymore the
number of trees that contain the pattern as is the case in the multiple small trees setting.
A new way to define pattern support in the new setting is neededwhich enjoys useful
monotonic characteristics.

Typically, one can deal with a large number of frequent patterns, by computing only
maximal frequent patterns. In the context of induced tree patterns, a pattern is maximal
if there is no frequent superpattern [4]. A non-maximal pattern is not returned to the user
as there is a larger, more specific pattern, which is frequent. However, in the context of
homomorphic patterns, which involve descendant edges, theconcept of superpattern
is not sufficient for capturing the specificity of a pattern. Atree pattern can be more
specific (and informative) without being a superpattern. For instance, the homomorphic
patternP4 of Fig. 1(b) is more specific than the homomorphic patternP5 without being
a superpattern ofP5. Therefore, a new sophisticated definition for maximal patterns is
required which takes into account both the particularitiesof the homomorphic patterns
and the single large tree setting.

Contribution. In this paper, we address the problem of mining maximal homomorphic
unordered tree patterns from a single large data tree. Our main contributions are:
• We define the problem of extracting homomorphic and maximal homomorphic un-

ordered tree patterns with descendant relationships from asingle large data tree.
This problem departs from previous ones which focus on mining induced or em-
bedded tree patterns from a set of small data trees (Section 2).

• We constrain the extracted homomorphic patterns to be non-redundant in order to
avoid dealing with an infinite number of frequent patterns ofunbounded size. In or-
der to define maximal patterns, we introduce a strict partialorder on patterns char-
acterizing specificity. A pattern which is more specific provides more information
on the data tree (Section 2).

• We design an efficient algorithm to discover all frequent maximal homomorphic tree
patterns. Our algorithm wisely prunes the search space by generating and consider-
ing only patterns that are maximal and frequent or can contribute to the generation
of maximal frequent patterns (Section 3).

• Our algorithm employs an incremental frequency computation method that avoids
the costly enumeration of all pattern matchings required byprevious approaches.
An originality of our method is that matching information ofalready computed pat-
terns is materialized as bitmaps. Exploiting bitmaps not only minimizes the memory
consumption but also reduces CPU costs (Section 3).

• We run extensive experiments to evaluate the performance and scalability of our
approach on real datasets. The experimental results show that: (a) the mined maxi-
mal homomorphic tree patterns arelarger on the average than maximal embedded
tree patterns on the same datasets, (b) our approach mines homomorphic maximal
patterns up toseveral orders of magnitude fasterthan state-of-the-art algorithms
mining embedded tree patterns when applied to a large data tree, and (c) our al-
gorithm consumes only asmall fraction of the memory spaceandscales smoothly
when the size of the dataset increases (Section 4).

2 Preliminaries and Problem Definition

Trees and inverted lists.We consider rooted labeled trees, where each tree has a dis-
tinguished root node and a labeling functionlb mapping nodes to labels. A tree is called
orderedif it has a predefined left-to-right ordering among the children of each node.
Otherwise, it isunordered. Thesizeof a tree is defined as the number of its nodes. In
this paper, unless otherwise specified, a tree pattern is a rooted, labeled, unordered tree.

For every labela in an input data treeT , we construct an inverted listLa of the data
nodes with labela ordered by their pre-order appearance inT . Fig. 2(a) and (b) shows
a data tree and inverted lists of its labels.

Tree morphisms.There are two types of tree patterns: patterns whose edges represent
child relationships (child edges) and patterns whose edgesrepresent descendant rela-
tionships (descendant edges). In the literature of tree pattern mining, different types of
morphisms are employed to determine if a tree pattern is included in a tree.

Given a patternP and a treeT , a homomorphismfrom P to T is a functionm
mapping nodes ofP to nodes ofT , such that: (1) for any nodex ∈ P , lb(x) = lb(m(x));
and (2) for any edge (x, y) ∈ P , if (x, y) is a child edge, (m(x),m(y)) is an edge ofT ,
while if (x, y) is a descendant edge,m(x) is an ancestor ofm(y) in T .

Previous contributions have constrained the homomorphisms considered for tree
mining in different ways. LetP be a pattern with descendant edges. Anembedding
from P to T is an injective functionm mapping nodes ofP to nodes ofT , such that:
(1) for any nodex ∈ P , lb(x) = lb(m(x)); and (2)(x, y) is an edge inP iff m(x) is

Fig. 2: A treeT , its inverted lists, and occurrence info. of patternP onT .

an ancestor ofm(y) in T . Clearly, an embedding is also a homomorphism. Notice that,
in contrast to a homomorphism, an embedding cannot map two siblings ofP to two
nodes on the same path inT . Patterns with descendant edges mined using embeddings
are calledembeddedpatterns. We call patterns with descendant edges mined using ho-
momorphismshomomorphicpatterns. In this paper, we consider mining homomorphic
patterns. The set of frequent embedded patterns on a data treeT is a subset of the set of
frequent homomorphic patterns onT since embeddings are restricted homomorphisms.

Pattern nodes occurrence lists.We identify an occurrence ofP on T by a tuple in-
dexed by the nodes ofP whose values are the images of the corresponding nodes in
P under a homomorphism ofP to T . The set of occurrences ofP under all possible
homomorphisms ofP to T is a relationOC whose schema is the set of nodes ofP . If
X is a node inP labeled by labela, theoccurrence list ofX on T is a sublistLX of
the inverted listLa containing only those nodes that occur in the column forX in OC.

As an example, in Figure 2(c), the second and third columns give the occurrence
relation and the node occurrence lists, respectively, of the patternP on the treeT of
Figure 2(a).

Support. We adopt for the support of tree patterns root frequency: thesupport of a
patternP on a data treeT is the number of distinct images (nodes inT) of the root of
P under all homomorphisms ofP to T . In other words, thesupportof P on T is the
size of the occurrence list of the root ofP onT .

A patternS is frequentif its support is no less than a user defined thresholdminsup.
We denote byFk the set of all frequent patterns of sizek, also known as ak-pattern.

Constraining patterns. When homomorphisms are considered, it is possible that an
infinite number of frequent patterns of unrestricted size can be extracted from a dataset.
In order to exclude this possibility, we consider and define next non-redundant patterns.
We say that two patternsP1 andP2 areequivalent, if there exists a homomorphism
from P1 to P2 and vice-versa. A nodeX in a patternP is redundantif the subpattern
obtained fromP by deletingX and all its descendants is equivalent toP . For example,
the rightmost nodeC of P3 and the rightmost nodeB of P5 in Figure 3 are redun-
dant. Adding redundant nodes to a pattern can generate an infinite number of frequent
equivalent patterns which have the same support. These patterns are not useful as they
do not provide additional information on the data tree. A pattern isnon-redundantif it
does not have redundant nodes. In Figure 3, patternsP3 andP5 are redundant while the
rest of the patterns are non-redundant. Non-redundant patterns correspond to minimal
tree-pattern queries [1] in tree databases. Their number isfinite. We discuss later how to

Fig. 3: A data tree and homomorphic patterns.

efficiently check patterns for redundancy by identifying redundant nodes. We set forth
to extract only frequent patterns which are non-redundant but in the process of finding
frequent non-redundant patterns we might generate also some redundant patterns.

Maximal patterns. In order to define maximal homomorphic frequent patterns, we
introduce a specificity relation on patterns: A patternP1 is more specificthan a pattern
P2 (andP2 is less specificthanP1) iff there is a homomorphism fromP2 to P1 but not
from P1 to P2. If a patternP1 is more specific than a patternP2, we writeP1 ≺ P2.
For instance, in Figure 3,P1 ≺ Pi, i = 2, . . . , 7, andP2 ≺ P6. Similarly, in Fig. 1,
P2 ≺ P1, P5 ≺ P3, P4 ≺ P2 andP4 ≺ P5. Note thatP4 is more specific thanP5 even
though it is smaller in size thanP5. Clearly,≺ is a strict partial order. IfP1 ≺ P2, P1

conveys more information on the dataset thanP2.
A frequent patternP is maximalif there is no other frequent patternP1, such that

P1 ≺ P . For instance, in Fig. 1, all the patterns shown are frequenthomomorphic
patterns andP4 is the only maximal pattern.

Problem statement.Given a large treeT and a minimum support thresholdminsup,
our goal is to mine all maximal homomorphic frequent patterns fromT .

3 Proposed Approach
Our approach for mining embedded tree patterns from a large tree iterates between
the candidate generation phase and the support counting phase. In the first phase, we
use a systematic way to generate candidate patterns that arepotentially frequent. In
the second phase, we develop an efficient method to compute the support of candidate
patterns.

3.1 Candidate Generation

To generate candidate patterns, we adapt in this section theequivalence class-based pat-
tern generation method proposed in [15, 14] so that it can address pattern redundancy
and maximality. A candidate pattern may have multiple alternative isomorphic repre-
sentations. To minimize the redundant generation of the isomorphic representations of
the same pattern, we employ a canonical form for tree patterns [5].

Equivalence Class-based Pattern Generation.Let P be a pattern of sizek-1. Each
node ofP is identified by itsdepth-first positionin the tree, determined through a depth-
first traversal ofP , by sequentially assigning numbers to the first visit of the node. The
rightmost leafof P , denotedrml, is the node with the highest depth-first position. The
immediate prefixof P is the sub-pattern ofP obtained by deleting therml from P .
Theequivalence classof P is the set of all the patterns of sizek that haveP as their

immediate prefix. We denote the equivalence class ofP as [P]. Any two members of
[P] differ only in theirrmls. We use the notationP i

x to denote thek-pattern formed by
adding a child node labeled byx to the node with positioni in P as therml.

Given an equivalence class[P], we obtain its successor classes by expanding pat-
terns in[P]. Specifically, candidates are generated byjoining each patternP i

x ∈ [P]
with any other patternP j

y in [P], including itself, to produce the patterns of the equiva-
lence class[P i

x]. We denote the above join operation byP i
x⊗P j

y . There are two possible
outcomes for eachP i

x ⊗ P j
y : one is obtained by makingy a sibling node ofx in P i

x, the
other is obtained by makingy a child node ofx in P i

x. We call patternsP i
x andP j

y the
left-parentandright-parentof a join outcome, respectively.

As an example, in Figure 3, patternsP1, P2, P3, P5, andP7 are members of class
[a/b/c]; P4 is a join outcome ofP3 ⊗ P7, obtained by making therml d of P7 a child
of therml c of P3.

Checking Pattern redundancyThe pattern generation process may produce candi-
dates which are redundant (defined in Section 2). We discuss below how to efficiently
check pattern redundancy by identifying redundant nodes. We exploit a result of [1]
which states that: a nodeX of a patternP is redundant iff there exists a homomor-
phismh from P to itself such thath(X) 6= X . A brute-force method for checking
if a pattern is redundant computes all the possible homomorphisms fromP to itself.
Unfortunately, the number of the homomorphisms can be exponential on the size ofP .
Therefore, we have designed an algorithm which, given two patternsP andQ, com-
pactly represents all the homomorphisms fromP to Q in polynomial time and space
(see Appendix). Our algorithm enhances the one presented in[9] which checks if there
exists a homomorphism from one tree pattern to another whileachieving the same time
and space complexity. Its detailed description is omitted here in the interest of space.

During the candidate generation, we cannot however simply discard candidates that
are redundant, since they may be needed for generating non-redundant patterns. For
instance, the patternP5 shown in Figure 3(b), is redundant, but it is needed (as the left
operand in a join operation withP7) to generate the non-redundant patternP6 shown in
the same figure. Clearly, we want to avoid as much as possible generating patterns that
are redundant. In order to do so, we introduce the notion ofexpandablepattern.

Definition 1 (Expandable Pattern).A patternP is expandable, if it does not have a
redundant nodeX such that: (1)X is not on the rightmost path ofP , or (2)X is on the
rightmost path ofP andLX is equal toLX1

∪ . . . ∪ LXk
, whereX1, . . . , Xk are the

images of nodeX under a homomorphism fromP to itself.

Based on Definition 1, if a pattern is non-expandable, every expansion of it is re-
dundant. Therefore, only expandable patterns in a class areconsidered for expansion.

Finding Maximal Patterns. One way to compute the maximal patterns is to use a post-
processing pruning method. That is, first compute the setS of all frequent homomor-
phic patterns, and then do the maximality check and eliminate non-maximal patterns
by checking the specificity relation on every pair of patterns in S. However, the time
complexity of this method is O(|S|2). It is, therefore, inefficient since the size ofS can
be exponentially larger than the number of maximal patterns.

We have developed a better method which can reduce the numberof frequent pat-
terns that need to go through the maximality check. During the course of mining fre-
quent patterns, the method locates a subset of frequent patterns called locally maximal
patterns. A patternP is locally maximalif it is frequent and there exists no frequent
pattern in the class[P]. Clearly, a non-locally maximal pattern is not maximal. Then, in
order to identify maximal patterns, we check only locally maximal patterns for maxi-
mality. Our experiments show that this improvement can dramatically reduce the num-
ber of frequent patterns checked for maximality.

3.2 Support Computation
Recall that the support of a patternP in the input data treeT is defined as the size of
the occurrence listLR of the rootR of P onT (Section 2). To computeLR, a straight-
forward method is to first compute the relationOC which stores the set of occurrences
of P under all possible homomorphisms ofP to T and then “project”OC on column
R to getLR. Fortunately, we can do much better using a twig-join approach to com-
puteLR without enumerating all homomorphisms ofP to T . Our approach for support
computation is a complete departure from existing approaches.

A holistic twig-join approach. In order to computeLX , we exploit a holistic twig-
join approach (e.g.,TwigStack [3]), the state of the art technique for evaluating tree-
pattern queries on tree data. AlgorithmTwigStack works in two phases. In the first
phase, it computes the matches of the individual root-to-leaf paths of the pattern. In
the second phase, it merge joins the path matches to compute the results for the pattern.
TwigStack ensures that each solution to each individual query root-to-leaf path is guar-
anteed to be merge-joinable with at least one solution of each of the other root-to-leaf
paths in the pattern. Therefore, the algorithm can guarantee worst-case performance
linear to the size of the data tree inverted lists (the input) and thesize of the pattern
matches in the data three (the output), i.e., the algorithm is optimal.

By exploiting the above property ofTwigStack, we can compute the support ofP
at the first phase ofTwigStack when it finds data nodes participating in matches of
root-to-leaf paths ofP. There is no need to enumerate the occurrences of patternP on
T (i.e., to compute the occurrence relationOC).

The time complexity of the above support computation methodis O(|P | × |T |),
where|P | and|T | denote the size of patternP and of the input data treeT , respectively.
Its space complexity is themin(|T |, |P |× heigh(T)). We note that, on the other hand,
the problem of computing an unordered embedding fromP toT is NP-complete [8]. As
a consequence, a state-of-the-art unordered embedded pattern mining algorithmSleuth
[14] computes pattern support inO(|P | × |T |2|P |) time andO(|P | × |T ||P |) space.

Nevertheless, theTwigStack-based method can still be expensive for computing
the support of a large number of candidates, since it needs toscan fully the inverted lists
corresponding to every candidate pattern. We present belowan incremental method,
which computes the support of a patternP by leveraging the computation done at its
parent patterns in the search space.
Computing occurrence lists incrementally.Let P be a pattern andX be a node in
P labeled bya. UsingTwigStack, P is computed by iterating over the inverted lists
corresponding to every pattern node. If there is a sublist, say LX , of La such thatP
can be computed onT usingLX instead ofLa, we say that nodeX can becomputed

usingLX onT . SinceLX is non-strictly smaller thanLa, the computation cost can be
reduced. Based on this idea, we propose an incremental method that uses the occurrence
lists of the two parent patterns of a given patternP to computeP .

Let patternQ be a join outcome ofP i
x ⊗P j

y . By the definition of the join operation,
we can easily identify a homomorphism from each parentP i

x andP j
y toQ.

Proposition 1. LetX ′ be a node in a parentQ′ of Q andX be the image ofX ′ under
a homomorphism fromQ′ to Q. The occurrence listLX of X onT , is a sublist of the
occurrence listLX′ of X ′ onT .

SublistLX is the inverted list of data tree nodes that participate in the occurrences
of Q to T . By Proposition 1,X can be computed usingLX′ instead of using the corre-
sponding label inverted list. Further, ifX is the image of nodesX1 andX2 defined by
the homomorphisms from the left and right parent ofQ, respectively, we can compute
X using theintersection, LX1

∩ LX2
, of LX1

andLX2
which is the sublist ofLX1

and
LX2

comprising the nodes that appear in bothLX1
andLX2

.
Using Proposition 1, we can computeQ using only the occurrence list sets of its

parents. Thus, we only need to store with each frequent pattern its occurrence list set.
Our method is space efficient since the occurrence lists can encode in linear space an
exponential number of occurrences for the pattern [3]. In contrast, the state-of-the-art
methods for mining embedded patterns [15, 14] have to store information about all the
occurrences of each given pattern inT .

Occurrence lists as bitmaps.The occurrence listLX of a pattern nodeX labeled by
a on T can be represented by a bitmap onLa. this is a bot array of size|La| which
has a ‘1’ bit at positioni iff LX comprises the tree node at positioni of La. Then, the
occurrence list set of a pattern is the set of bitmaps of the occurrence lists of its nodes.
Figure 2(c) shows an example of bitmaps for pattern occurrence lists.

As verified by our experimental evaluation, storing the occurrence lists of multiple
patterns as bitmaps results in important space savings. Bitmaps offer CPU cost saving as
well by allowing the translation of pattern evaluation to bitwise operations. This bitmap
technique is initially introduced and exploited in [12, 13]for materializing tree-pattern
views and for efficiently answering queries using materialized views.

3.3 The Tree Pattern Mining Algorithm

We present now our homomorphic tree pattern mining algorithm calledHomTreeMiner
(Fig. 4). The first part of the algorithm computes the sets containing all frequent 1-
patternsF1 (i.e., nodes) and 2-patternsF2 (lines 1-2).F1 can be easily obtained by
finding inverted lists ofT whose size (in terms of number of nodes) is no less than
minsup. The total time for this step isO(|T |). F2 is computed by the following proce-
dure: letX/Y denote a 2-pattern formed by two elementsX andY of F1. The support
of X/Y is computed via algorithmTwigStack on the inverted listsLlb(X) andLlb(Y)

that are associated with labelslb(X) and lb(Y), respectively. The total time for each
2-pattern candidate isO(|T |).

The main part of the computation is performed by procedureMineHomPatterns
which is invoked for every frequent 2-pattern (Lines 3-4). This is a recursive procedure.
It tries to join everyP i

x ∈ [P] with any other elementP j
y ∈ [P] includingP i

x itself.

Input: inverted listsL of treeT andminsup.
Output:all the frequent maximal patternsM in T .

1. F1 := {frequent 1-patterns};
2. F2 := {classes[P]1 of frequent 2-patterns};
3. for (every[P] ∈ F2) do
4. MineHomPatterns([P], M = ∅);
5. run the maximality checking procedure onM;
6. return M;

ProcedureMineHomPatterns([P], M)
1. for (eachP i

x ∈ [P]) do
2. if (P i

x is in canonical form and is expandable)then
3. [P i

x] := ∅
4. for (eachP j

y ∈ [P]) do
5. for (each join outcomeQ of P i

x ⊗ P j
y) do

6. addQ to [P i
x] if Q is frequent;

7. addP i
x toM if none of the members of[P i

x] is in canonical form;
8. MineHomPatterns([P i

x], M);

Fig. 4: Homomorphic Tree Pattern Mining Algorithm.

Then, it computes the support of each possible join outcome,and adds them to[P i
x]

if they are frequent (Lines 1-6). Once allP j
y have been processed, it checks ifP i

x is
a locally maximal pattern. If so,P i

x is added to the maximal pattern setM (Line 7).
Then, the new class[P i

x] is recursively explored in a depth-first manner (Line 8). The
recursive process is repeated until no more frequent patterns can be generated.

Once all the locally maximal patterns have been found, the maximality check proce-
dure described in Sec. 3.1 is run to identify maximal patterns among the locally maximal
ones and the results are returned to the user (Lines 5-6).

4 Experimental Evaluation
We implemented our algorithmHomTreeMinerand we conducted experiments to: (a) com-
pare the features of the extracted (maximal) homomorphic patterns with those of (max-
imal) embedded patterns, and (b) study the performance ofHomTreeMinerin terms of
execution time, memory consumption and scalability.

To the best of our knowledge, there is no previous algorithm computing homomor-
phic patterns from data trees. Therefore, we compared the performance of our algorithm
with state-of-the-art algorithms that compute embedded patterns on the same dataset.

Our implementation was coded in Java. All the experiments reported here were per-
formed on a workstation equipped with an Intel Xeon CPU 3565 @3.20 GHz processor
with 8GB memory running JVM 1.7.0 on Windows 7 Professional.The Java virtual
machine memory size was set to 4GB.
Datasets.We have ran experiments on four real and benchmark datasets (see Ap-
pendix). Due to space limitation, we only present results ofour experimental study
on one real tree dataset calledTreebank1 derived from computational linguistics. The

1 http://www.cis.upenn.edu/∼treebank

dataset is deep and comprises highly recursive and irregular structures. Its statistics are
shown below.

Dataset Tot. #nodes#labelsMax/Avg depth #paths

Treebank 2437666 250 36/8.4 1392231

4.1 Agorithm Performance
We compare the performance ofHomTreeMinerwith two unordered embedded tree
mining algorithmsSleuth[14] andEmbTreeMiner[11]. Sleuthwas designed to mine
embedded patterns from a set of small trees. In order to allowthe comparison in the
single large tree setting, we adaptedSleuthby having it return as support of a pattern
the number of its root occurrences in the data tree.EmbTreeMineris a newer embedded
tree mining algorithm which, asHomTreeMiner, exploits the twig-join approach and
bitmaps to compute pattern support.

To the best of our knowledge, direct mining of maximal embedded patterns has not
been studied in the literature. We therefore use post-processing pruning which elimi-
nates non-maximal patterns after computing all frequent embedded patterns. For this
task, we implemented the unordered tree inclusion algorithm described in [8]. As our
experiments show, the cost of this post-processing step is not significant compared to
the frequent pattern mining cost.

Execution time. We measure the total elapsed time for producing maximal frequent
patterns at different support thresholds. The total time involves the time to generate
candidate patterns, compute pattern support, and check maximality of frequent patterns.
To allow Sleuth—which is slower—extract some patterns within a reasonableamount
of time, we used a fraction of the Treebank dataset which consists of 35% of the nodes
of the original tree. We measured execution times over the entire Treebank dataset in
the scalability experiment.

Table 5(d) presents evaluation statistics. As one can see, the search space of a ho-
momorphic pattern mining can be larger than that of embeddedpattern mining for low
support levels.HomTreeMinercomputes 3.7 times more candidates and produces 4.25
times more frequent patterns thanEmbTreeMineratminsup = 36.5k. SinceTreebank
contains many deep, highly recursive paths, the search space of homomorphic patterns
becomes large at low support levels.

Figure 5(a) presents the total elapsed time of the three algorithms under different
support thresholds. Due to prohibitively long times, we stopped testingSleuthon sup-
port levels below 50k. We can see thatHomTreeMinerruns orders of magnitude faster
thanSleuthespecially for low support levels. The rate of increase of the running time
for HomTreeMineris slower than that forSleuthas the support level decreases. This
is expected, sinceHomTreeMinercomputes the support of a homomorphic pattern in
time linear to the input data size, whereas this computationis exponential for embedded
pattern miners (Sec. 3.2). Furthermore,Sleuthhas to keep track of all possible embed-
ded occurrences of a candidate to a data tree, and to perform expensive join operations
over these occurrences.HomTreeMinershows similar or better performance thanEmb-
TreeMinerfor support levels above 40K. The large number of candidate homomorphic
patterns can negatively affect the time performance ofHomTreeMinerat low support
levels. For example,HomTreeMineris 2.4 times slower thanEmbTreeMinerin mining

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 40 45 50 55 60 65 70

T
o
ta

l
T

im
e

(s
ec

)

Minimum Support (k)

Sleuth
EmbTreeMiner
HomTreeMiner

(a) Run time vs. support

10
2

10
3

 40 45 50 55 60 65 70

M
em

o
ry

 U
sa

g
e

(M
B

)

Minimum Support (k)

Sleuth
EmbTreeMiner
HomTreeMiner

(b) Memory usage

 20

 40

 60

 80

 100

 120

 140

3 4 5 6 7 8

T
o
ta

l
T

im
e

(s
ec

)

Pattern Size

na na na

EmbTreeMiner
HomTreeMiner

(c) Run time vs. pattern size (minsup = 36.5k) (d) Evaluation statistics

Fig. 5: Performance comparison on a fraction of Treebank.

frequent patterns atminsup = 36.5k. However, even though the number of (candidate
and frequent) homomorphic patterns is always larger than embedded patterns, this dif-
ference is not so pronounced in shallower datasets1. As a consequence,HomTreeMiner
largely outperformsEmbTreeMinerin those cases both at higher and low support lev-
els. This is due to its efficient computation of pattern support which does not require
the enumeration of pattern occurrences as is the case withEmbTreeMiner[11].

Figure 5(c) presents the runtimeHomTreeMinerandEmbTreeMinerneed to com-
pute the frequent patterns of a given size varying the pattern size. As we can see,Hom-
TreeMineris more efficient thanEmbTreeMinerin computing frequent patterns of the
same size even though the homomorphic patterns are more numerous.

Memory Usage.We measured the memory footprint of the three algorithms with vary-
ing support thresholds. The results are shown in Figure 5(b). We can see thatHom-
TreeMinerhas the best memory performance. It consumes substantiallyless memory
than bothSleuthandEmbTreeMinerin all the test cases, whereasSleuthconsumes the
largest amount of memory. This is mainly becauseSleuthneeds to enumerate and store
in memory all the pattern occurrences for candidates under consideration. In contrast,
HomTreeMineravoids storing pattern occurrences by storing only bitmapsof occur-
rence lists which are usually of insignificant size. Although EmbTreeMinerdoes not
store pattern occurrences, it still has to generate patternoccurrences as intermediate
results the size of which can be substantial at low support levels.

10
0

10
1

10
2

10
3

10
4

 10 20 30 40 50 60 70 80 90 100

T
o
ta

l
T

im
e

(s
ec

)

% of Data

Sleuth
EmbTreeMiner
HomTreeMiner

(a) Run time

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

M
em

o
ry

 U
sa

g
e

(M
B

)

% of Data

Sleuth
EmbTreeMiner
HomTreeMiner

(b) Memory usage

Fig. 6: Scalability comparison on Treebank with increasingsize (minsup = 5.5%).

freq. # loc.max # max. %max. over averageaveragemaximum #common
dataset morphism

patterns patterns patternsfreq. patterns#nodes height #nodes max.patterns

Treebank Emb 23 n/a 6 26.1 2.8 1.3 4
3

(minsup=45k) Hom 27 10 5 16.1 2.8 1.4 4

Treebank Emb 41 n/a 9 22 3.2 1.4 5
4

(minsup=40k) Hom 81 43 8 9.8 3.4 1.6 5

Treebank Emb 65 n/a 13 20 4.0 1.7 5
1

(minsup=36.5k) Hom 276 90 11 3.9 5.3 2.0 7

Table 1: Statistics for maximal frequent patterns mined from Treebank.

Scalability. In our final experiment, we studied the scalability of the three algorithms
as we increase the input data size. We generated ten fragments of the Treebank dataset
of increasing size and fixedminsup at 5.5%.

Figure 6(a) shows thatHomTreeMinerhas the best time performance. It exhibits
good linear scalability as we increase the input data size. The growth of the running
time ofsleuthis much sharper.HomTreeMineroutperformsSleuthby several orders of
magnitude. It also outperformsEmbTreeMinerby a factor of more than 2 on average.

Figure 6(b) shows thatHomTreeMineralways has the smallest memory footprint.
The growth of its memory consumption is much slower than thatof both sleuthand
EmbTreeMiner.

4.2 Comparison of mined maximal homomorphic and embedded patterns
We computed different statistics on frequent and maximal frequent patterns mined by
HomTreeMinerandEmbTreeMinerfrom Treebank varying the support; the results are
summarized in Figure 5(d) and Table 1. We can make the following observations.

First,HomTreeMineris able to discover larger patterns thanEmbTreeMinerfor the
same support level. As one can see in Figure 5(d) and Table 1, the maximum size of
frequent homomorphic patterns and the maximum size and average number of nodes
and height of maximum frequent homomorphic patterns is never smaller than that of
the embedded patterns for the same support level.

Second, the number of maximal homomorphic patterns is neverlarger than the num-
ber of maximal embedded patterns for the same support (Column 5 of Table 1). Further,
the number of homomorphic and embedded frequent patterns issubstantially reduced if
only maximal patterns are selected (Column 6 of Table 1). However the effect is larger
on homomorphic patterns as the number of frequent homomorphic patterns is usually
larger than that of embedded patterns for the same support level (Column 3 of Table 1).

Fig. 7: Examples of maximal patterns mined from XMark at the same support level.

Third, by further looking at the mined maximal patterns we find that the embedded
maximal patterns at a certain support level can be partitioned into sets which correspond
one-to-one to the maximal homomorphic patterns at the same support level so that all
the embedded patterns in a set are less specific than the corresponding homomorphic
pattern. Figure 7 shows two pairs of embedded maximal patterns each from the same set
in the partition and the corresponding maximal homomorphicpattern. The patterns are
extracted from the XMark dataset2. Therefore, for a number of applications, maximal
homomorphic patterns can offer more information in a more compact way.

5 Related Work

We now discuss, how our work relates to existing literature.The problem of mining
tree patterns from a set of small trees has been studied sincethe last decade. Among the
many proposed algorithms, only few mine unordered embeddedpatterns [10, 14].

TreeF inder [10] is the first unordered embedded tree pattern mining algorithm. It
is a two-step algorithm. In the first step, it clusters the input trees by the co-occurrence
of labels pairs. In the second step, it computes maximal trees that are common to all the
trees of each cluster. A known limitation ofTreeF inder is that it tends to miss many
frequent patterns and is computationally expensive.

Sleuth [14] extends the ordered embedded pattern mining algorithmTreeMiner
[15]. UnlikeTreeF inder,Sleuth uses the equivalence class pattern expansion method
to generate candidates. To avoid repeated invocation of tree inclusion checking,Sleuth
maintains a list of embedded occurrences with each pattern.It defines also a quadratic
join operation over pattern occurrence lists to compute support for candidates. The join
operation becomes inefficient when the size of pattern occurrence lists is large. Our ap-
proach relies on an incremental stack-based approach that exploits bitmaps to efficiently
compute the support in time linear to the size of input data.

The work on mining tree patterns in a single large tree/graphsetting has so far been
very limited. The only known papers are [7, 6] which focus on mining tree patterns
with only child edges from a single graph, and [11] which leverages homomorphisms
to mine embedded tree patterns from a single tree. To the bestof our knowledge, our
work is the first one for mining homomorphic tree patterns with descendant edges from
a single large tree.

6 Conclusion

In this paper we have addressed the problem of mining maximalfrequent homomorphic
tree patterns from a single large tree. We have provided a novel definition of maximal

2 http://monetdb.cwi.nl/xml/

homomorphic patterns which takes into account homomorphisms, pattern specificity
and the single tree setting. We have designed an efficient algorithm that discovers all
frequent non-redundant maximal homomorphic tree patterns. Our approach employs an
incremental stack-based frequency computation method that avoids the costly enumer-
ation of all pattern occurrences required by previous approaches. An originality of our
method is that matching information of already computed patterns is materialized as
bitmaps, which greatly reduces both memory consumption andcomputation costs. We
have conducted extensive experiments to compare our approach with tree mining algo-
rithms that mine embedded patterns when applied to a large data tree. Our results show
that maximal homomorphic patterns are fewer and larger thanmaximal embedded tree
patterns. Further, our algorithm is as fast as the state-of-the art algorithm mining em-
bedded trees from a single tree while outperforming it in terms of memory consumption
and scalability.

We are currently working on incorporating user-specified constraints to the pro-
posed approach to enable constraint-based homomorphic pattern mining.

References

1. S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Minimization of tree pattern
queries. InSIGMOD Conference, 2001.

2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S.Arikawa. Efficient substruc-
ture discovery from large semi-structured data. InSDM, 2002.

3. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching.
In SIGMOD, 2002.

4. Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining closed and maximal frequent subtrees
from databases of labeled rooted trees.IEEE Trans. Knowl. Data Eng., 17(2), 2005.

5. Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for labelled trees and their applications
in frequent subtree mining.Knowl. Inf. Syst., 8(2), 2005.

6. A. Dries and S. Nijssen. Mining patterns in networks usinghomomorphism. InSDM, 2012.
7. B. Goethals, E. Hoekx, and J. V. den Bussche. Mining tree queries in a graph. InKDD, 2005.
8. P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J. Comput.,

24(2):340–356, 1995.
9. G. Miklau and D. Suciu. Containment and equivalence for a fragment of xpath.J. ACM,

51(1):2–45, 2004.
10. A. Termier, M.-C. Rousset, and M. Sebag. Treefinder: a first step towards xml data mining.

In ICDM, 2002.
11. X. Wu and D. Theodoratos. Leveraging homomorphisms and bitmaps to enable the mining

of embedded patterns from large data trees. InDASFAA, 2015.
12. X. Wu, D. Theodoratos, and W. H. Wang. Answering XML queries using materialized views

revisited. InCIKM, 2009.
13. X. Wu, D. Theodoratos, W. H. Wang, and T. Sellis. Optimizing XML queries: Bitmapped

materialized views vs. indexes.Inf. Syst., 38(6):863–884, 2013.
14. M. J. Zaki. Efficiently mining frequent embedded unordered trees.Fundam. Inform., 66(1-

2), 2005.
15. M. J. Zaki. Efficiently mining frequent trees in a forest:Algorithms and applications.IEEE

Trans. Knowl. Data Eng., 17(8), 2005.
16. F. Zhu, Q. Qu, D. Lo, X. Yan, J. Han, and P. S. Yu. Mining top-k large structural patterns in

a massive network.PVLDB, 4(11), 2011.
17. F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent patterns by core

pattern fusion. InICDE, pages 706–715, 2007.

APPENDIX

6.1 Algorithm compHomos.

The algorithm deploys a standard dynamic programming method, computing a Boolean matrix
M(p, q), for p ∈ nodes(P), q ∈ nodes(Q), such thatM(p, q) is true if: (1) there exists a homo-
morphism from the subpattern rooted atp to the subpattern rooted atq (FunctionBottomUp-
Traversal); and (2) there exists a homomorphism from the prefix path ofp to the prefix path
of q, whereprefix pathof a node is the subpattern from the pattern root to that node without
branches (FunctionTopDownTraversal). The time and memory complexities of Algorithm
compHomos are bothO(|P | × |Q|).

Proposition 2. There exists a homomorphism from patternP to patternQ that maps nodep ∈ P

to nodeq ∈ Q iff entryM(p,q) is true, whereM is the Boolean matrix computed by Algorithm
compHomos onP andQ.

The proof of Proposition 2 is straightforward by the definition of pattern homomorphisms
and the construction process of Boolean matrixM.

Input: two patternsP andQ.
Output:a Boolean matrixM that encodes all the homomorphisms fromP toQ.

1. if (BottomUpTraversal(MatrixC)) then
2. M := TopDownTraversal(MatrixC);
3. else
4. there is no homomorphism fromP toQ;

Function BottomUpTraversal(MatrixC)
1. Initialize a boolean matricesD(p, q) with p ∈ nodes(P), q ∈ nodes(Q);
2. for (q of Q’s nodes in the bottom-up order)do
3. for (p of P ’s nodes in the bottom-up order)do
4. C(p, q) := (lb(q) = lb(q))∧

∧
u∈children(p)(

∨
v∈children(q) D(u, v));

5. D(p, q) := C(p, q)∨
∨

v∈children(q) D(p, v);
6. return D(root(p), root(q));

Function TopDownTraversal(MatrixC)
1. Initialize two boolean matricesP(p, q) andA(p, q) with p ∈ nodes(P), q ∈ nodes(Q);
2. for (q of Q’s nodes in the top-down order)do
3. for (p of P ’s nodes in the top-down order)do
4. P(p, q) := (C(p, q)) ∧ A(parent ofp, parent ofq);
5. A(p, q) := P(p, q)∨A(p, parent ofq);
6. return P ;

Fig. 8: Algorithm compHomos

6.2 Experimental Evaluation Plots.

Dataset Tot. #nodes#labelsMax/Avg depth #paths

Treebank 2437666 250 36/8.4 1392231
CSlogs 772188 13355 86/4.4 59691 (#trees)
DBLP 3332130 35 6/3 3000839
XMark 83533 74 12/5.6 60853

Table 2: Dataset statistics.

10
0

10
1

10
2

10
3

10
4

 600 800 1000 1200 1400 1600 1800 2000

T
o

ta
l

T
im

e
(s

ec
)

Minimum Support (k)

Sleuth
EmbTreeMiner
HomTreeMiner

(a) Run time vs. support

 200

 400

 600

 800

 1000

 1200

 600 800 1000 1200 1400 1600 1800 2000

M
em

o
ry

 U
sa

g
e

(M
B

)

Minimum Support (k)

Sleuth
EmbTreeMiner
HomTreeMiner

(b) Memory usage

 10

 100

2 3 4 5 6 7 8 9

T
o

ta
l

T
im

e
(s

ec
)

Pattern Size

na na na na

EmbTreeMiner
HomTreeMiner

(c) Run time vs. pattern size (minsup = 700) (d) Evaluation statistics

Fig. 9: Performance comparison on CSlogs.

10
0

10
1

10
2

10
3

10
4

 650 700 750 800 850 900 950 1000 1050 1100

T
o
ta

l
T

im
e

(s
ec

)

Minimum Support

Sleuth
EmbTreeMiner
HomTreeMiner

(a) Run time vs. support

 50

 100

 150

 200

 250

 300

 350

 400

 650 700 750 800 850 900 950 1000 1050 1100

M
em

o
ry

 U
sa

g
e

(M
B

)

Minimum Support

Sleuth
EmbTreeMiner
HomTreeMiner

(b) Memory usage

 1

 10

 100

 1000

 10000

2 3 4 5 6 7

T
o

ta
l

T
im

e
(s

ec
)

Pattern Size

Sleuth
EmbTreeMiner
HomTreeMiner

(c) Run time vs. pattern size (minsup = 900) (d) Evaluation statistics

Fig. 10: Performance comparison on XMark.

10
0

10
1

10
2

10
3

10
4

 100 150 200 250 300

T
o
ta

l
T

im
e

(s
ec

)

Minimum Support (k)

Sleuth
EmbTreeMiner
HomTreeMiner

(a) Run time vs. support

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 150 200 250 300

M
em

o
ry

 U
sa

g
e

(M
B

)

Minimum Support (k)

Sleuth
EmbTreeMiner
HomTreeMiner

(b) Memory usage

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 3 4 5 6 7 8

T
o

ta
l

T
im

e
(s

ec
)

Pattern Size

na

EmbTreeMiner
HomTreeMiner

(c) Run time vs. pattern size (minsup = 133k) (d) Evaluation statistics

Fig. 11: Performance comparison on DBLP.

