New Jersey Institute of Technology - College of Computing Sciences
CIS365: File Structures and Management - Professors Bieber and Egan
Relative File Organization Algorithms

Division Remainder Hashing Function

Divide KEY-VALUE by FACTOR
giving DUMMY-QUOTIENT
remainder BUCKET-ADDRESS
Determining the FACTOR (and the number of buckets to allocate)

The “load factor” determines the “skew” or how evenly the records are distributed.
load-factor = (# of records in the file / # buckets allocated in the file)

One way to calculate a fairly evenly skewed FACTOR that spreads out the collisions is to use a load-factor of approximately 80%. Also, mathematically, the factor should not be divisible by any number less than 20.

FACTOR = load factor, and should not be divisible by any number less than 20

Example

1. Assume you plan to have about 4000 records in your file.

2. Your load factor should be 80%.

3. Thus the number of buckets to allocate should 5000.
.8 = (4000 / # buckets allocated)

4. Because the factor should not be divisible by any number less than 20, FACTOR = 5003, which is the first number greater than 5000 satisfying this criteria.

General Algorithm for Hashing

(1) If the key field is not an integer, convert it to an integer
The easiest approach is to take the binary value of the string and use that as an integer
(2) Apply your hash function to the (integer) key, returning an integer address A
(3) If A could be too large for your address space (# buckets allocated), compress it using a compression factor.

(4) If the smallest address you are using in the address space is greater than the 0th bucket, then add a displacement

BUCKET-ADDRESS = (A * compression-factor) + displacement

where A is the original bucket-address calculated by your hashing function

