COMPUTING CENTER HANDBOCK

Third Edition

Edited by Charlotte Rubashkin

Computing Center
Newark College of Engineering

Newark, New Jersey

June 1966

INTRODUCTION

I

NCE COMPUTING CENTER HANDBOOK

CONTENTS

NCE COMPUTING CENTER ¢ o o o « ¢ » o o & @

I,1 Equipment available « &« ¢ 2 ¢ o ¢ o »

I.2 Applying for use of the 1620 computer

T.3 Charges for computer time « « o o o »

I.L Scheduling computer time

e

b,

I,5 In-Out boxes

Class use of computer time .

Student operation of the 1620 Mod

-

s ® 4 o @ @

scheduled Load and Go periods « »

I.6 Punched cards . " ¢ 9 8 9 @

I,7 References and manuals o »

IBBStafoQOOUOOOOCGO

I.9 Courses in programming . + «

L 2

BASIC ELEMENTS OF THE FORTRAN LANGUAGE

IT.1 Source program and object program

IT1.2 Arithmetic statements . « » « ¢

a,
b
Ce
d.

€e

Censtants e & 5 0 0 8 & o

Variables » ¢ v 3 % & e &

e @

Arithmetic operation gymbols

Arithmetic expressions .,

Replacement statements .

* @

¢ & 4 & B & 6 & 0 ¥ 3

[2

L

computer

* & 5 & B

AWt}

-~ =N~ Vi WV w

10
10

13
13

11,3

IT.h

II.5

Control statements ® 0 8 8 o ¢ 8 & 9 3 3 % B S & ¢ 0 0 8 ¢

-7
be
Co

d.

Unconditional GO TO statement « « o s s » 0 o s o 5 = »
Computed GO TO statement o o s o o ¢« 5 s o s« s o o o »
Arithmetic IF statement o o o o ¢ ¢ ¢ o o o ¢ 0 ¢ o & @
IF (SENSE SWITCH) statement o« o « o o s o s ¢ s o 5 o @
DO statement o o ¢ 5 o o 2 5 o o ¢ « o 6 ¢ ¢ o ¢ 5 2 &
CONTINUE statement o o o » e ¢ ¢« » o 6 o s s 0 s o 00
PAUSE statement « o o o o o » o« a s ¢ 0 ¢ ¢ 2 0 o 0 o »

STOP, END, and CALL EXIT statements « o« » ¢ ¢ o 2 s & &

Input/Output statements o e o 6 o @« o ¢ 6 o 8 &6 3 6 & o ¢ @

2

ba

Ce

de

General form for input statements for Fortran without

Format e 5 0 ® 4 B 8 # & 0 & 8 6 & 8 8 & & 8 8 O & ¥ 9

General form for input statements for Fortran with

Format ® ® ® @ @ © 5 & 8 8 ® & & & ¢ & 8 O 0 8 6 0 & @

General form for output statements for Fortran without

Format s+ o o« s o 5 % ¢ & # ¢ ¢ » 6 8 & & &6 9 3o » @&

General form for output statements for Fortran with

Format o « o & @ & o » 6 & & 9 B B 4 S % s e & & 0 o 0

SPECification statements s o o o o » 5 2 4 & s 8 0 & o s @

8o

‘ba

DIMENSION statement ¢ o o = o ¢ @ 2 ¢ s 6 o ¢ s » o & @

Other specification statements o+ ¢ o ¢« ¢ s ¢ ¢ o« 0 o »

III NGELOADANDGO0.'0....0.0.'!.!..0..'00’

TII.1
11,2

Punching input source programs

[]
L
2
=
L]
-
L d
>
L
®
-
*®
-
L]

Arithmetic statements « ¢ o » ¢ 0 ¢ o » a o ¢ 5 s ¢ s a ¢ @

a.

be

ConstantsS ¢« » ¢ »« ¢ o o 0 o # # 6 2 o & « o ¢ » a ¢ s o

Variables » 8 @ » % @ & &4 & ® @ ® C ® B S 0 @& * & & & 0

15
15
15
16
16
16
RE
19
19
19

19

20

20

20
20
21
21

22

23
23
23
23

ETT:3

ITI.L

I1I.5

I11,6

ILL.T

II1.8

III.9

I Arithme“bia--axp!efssions............v._..--....-...u.un

Control statements sesssmeccecsossssressssssvecscccccasaes
a. Statement NUMDErS sececvsesrrcnrsersessvensscnssrcsscene
b. Computed GO TO statement ...vevesonscccsvsssssncessones
c. IF (SENSE SWITCH) statement ecsveeccssscsscosascsssscae
d, DO statement .esesseseescoconcerssasscssesccsascsnnres
e. STOP and END Statements .eeeecooeasssssssnassossssssons
Input-Output statements ececcccossssovrsessrsossstoossannsnse

a. General rules for input-ocutput statements without

£Ormat coveccccescvocssocssssssressossentenescncssscane
b, Rules for input data ccoeocesnsscsvsnccaseseoersrescnae
c. Rules for outpubt dabta sececescscscsossescssssssasarsnse
SUDPrograms sesecccssssecsvssessassssestvetcsarnrocscssos
a, Library subroutines .esseccececsesesssrsccsorsvssscee
b, Subprograms written by the programmer..e.scesscsscesces
Batch processing instructions - Version Thre€esssesssscores
a, Preparing the source deck for batch processing s.ccases
b. Operator instructions batch processing .csecessscessces
c. Punched card output-batch processing sessecesosesscncee
User processing = Version TWO .eccsccssssssnscscesscssornes
a. Preparing the source deck for user processing.scscessee
b. Operator instructions - uger processing .ececeevscescas
ce Trace feature - user processing sesecseasscscesscessssss

Error messages during compilation eeseeseccssocssccnsaccas

TABI.E 1 A2 EE RN AR R EREESNEEEERE R R RE RSN E R R E NN AN ERE RN NENERES RE R

Error messages during execution cecesescorcesecsccasnacsons

Table 2 .‘..‘.C...‘..."............‘...l..l".....O.""DOOQ.

III.]-O Sample prOblemS € PP P e 0000000000 RA0EPIRENL0OBIRIRRSRIEREBS

2k
25
25
25
25
26
27
27

27
28
29
29
29
30
31
31
31
32
Ll
33
3L
36

37
37

38
38

39

IV KINGSTON FORTRAN LANGUAGE SPECIFICATIONS

Sampleproblemé e 2 0 9 & 4 & o &

IV,1 Punching input source program . .

Iv,2

IV.h

The arithmetic statement »

8

be

Ce Arithmetic expresaion.

Congtants « » « ¢ &+

Varizbles « » ¢ o o .o

Control statements o o o

8¢
bs
Ce
d,

=1

f.'

Be
hs

-

b,

‘Ce

de

€

‘The Format statement

e

Statement numbers « o

Address variables + -

*

L]

]

Computed GO TO statement

IF -(SENSE -SWITCH) statement

DO statement

&

e 0 ' @ 8 ¢

PAUSE statement « ¢ o o » e

.

*

L]

’

L]

STOP statement, CALL EXIT, CALL SKIP

END statement ¢ ¢ o o

INPUT/OUTFUT gtatements «

-Input statements «
Array ‘Input ¢« ¢ o o o
+ Output statements » «

Array output

L

[4

.

&

[

L]

® & @ o ¢ o

[

[4

e o & @ s ¢ * @

Maximum size of output records

Numeric conversion codes

e # & & & 5 o

[]

‘be -Alphameric conversion codeg e » -

-

®

L5
L6
ué
46
L8
L9
L9
L9
49
50
b
51
52
52
53
53
53
54
55
56
56
56
57
61

ce Specifying blank fields.
d, Repeating specifications

ee The use of the slash (/)
TABLE 30 e o 8 & o @ & &

IVe6 KFIT without FORMAT « o o o o
IV,7 Specification statements . «
as COMMON statement e o » »
be EQUIVALENCE gstatement « »
cs Type statements e ¢ » » o
d, DATA statements s ¢ o o «

IV8 Subprograms. , « « o s« o o o

a, Arithmetic statement function

]

- - L4

.
»

be FUNCTION subprograme » » s o s ¢

c. OSUBROUTINE subprogram e »

1V.9 Subprograms provided by FORTRAN

8, Mathematical subroutines
TABLE,.I.-Q.QQOOOO

IV,.10 Operating instructions, control

as Required control cards

L4

a » o0

»
L 2
-

b, Optional control cards e « » o «

L]

IV,11 Operating instructions, automatic console
output during program compilation » ¢ o » o s o ¢ 0o o o

. ¢ % o ¢ o @& o

typewriter

IV,12 Operating instructions, error messages during compilation
TABLESO.!DO.‘Q...C.‘.OlolQOIQQQ

IV,13 Operating instructions, error messages during object
program execution ¢ » o o » 4 o ¢ o 5 s o @ o & o s s o

TABLEé » L] » » L [) * L] * ® ® »® - . - - * * L * * o o * »
TABIE 7 e L] ° [] - L] L]] - L] [] L] L) o . L] - - L] a . £ L] e e

63
63

6l
65

65
65
66
66
67
67
69
70
Tl
L
76

76
76

80
8o
81

83

8l
85

8L
93
9k

IV.1h Sample
Sample
Sample
Sample
Sample
Sample

Sample

problems « o
problem 7 »
problem 8 .
problem 9
problem 10 .
problem 11 .

problem 12 .

v IBM FORTRAN IT o « o & «

V.1 Varying the word length (number of significant digits

s o & 23

L] . L] »

L 4

stored in the machine). e o 0 ® @ & 8 & & & 9 & ° ® 0 @

Ve2 Library functions added to the IBM FII compiler « « « »

]

Ve3 Instructions which use the 1311 disk for storage of data

Se DEFINE DISK statement o+ « o s » o ¢ ¢ ¢ 2 2 0 @ ¢ @

b, Assigning numbers to disk sectors .

Ce¢ RECORD statement

® % & o ® e 0 0 &

d. FETCH statement ® & 8 » & 8 & 8 8 o

e, FIND statement

e & & & o » » o & a

Vol Operating instructions,

Ve5 Sample problems » o » o

Sample problem 13 + « &

Sample problem 1L « « »

Monitor

¢ o » 2

VI OTHER 1620 PROGRAMS AVAILABIE. o o« «

VI.,1 AFIT Fortran

VI,2 SPS (Symbolic Programming

e & 5 & & 0 5 ¢ o

Control

s« ¢ o @

a

L]

L]

L]

]

95
95
95
98
100
101

102

103

103
1oL
10h
104
105
106
106
107
107
108
108
109

11l
i i A

VI,3 Programs written by the NCE Computing Center staff and
StOredOntheljlldiSkmoaoovcnooaooaninu

VII PUNCHED

a.Butler.....................'.n

b, Equivalence table description s o« o+ o« o 4 o s o o 5 » »

C. Programs written by the NCE Computing Center staff and
stored on punched cardS s+ o « o« ¢ o o« & o ¢ s s « ¢ & @

Library of 1620 Programs e o « « « s« ¢ + o s o o o

& Programs stored on the 1311 disk 4 « » o o o »

be How to clear memory (Model I) o o o s o o o & o

Ce Programs stored on punched cards or tape . o «

CARDEQUIPI\ENT..'.‘QQ.QaDOQO'"’

VIIgl Card punch (MOdel 026) e & & & 2 5 & » 6 5 e & s @

VII,2
VII,3
VII.L
VIL.5

APPENDIX

A,
B.

C.

INDEX TO ACCEPTABLE FORTRAN STATEMENTS

Printer (IBM Accounting Machine) . v o o o s o o o

Reproducer (Model 519) 4 o o o o » o 2 2 o s ¢ & o

Sorter (Model 082)

Q@ & £ § & & & @& ¢ @ § 06 & 2 3 @

Character coding on cards o o« o « # o « « o o ¢ o o

Notes on the storage of integer and real numbers,...
Notes on the use of mark sense Cards sueeseeeessnses

Notes on Model IT~batch ProcesSing...seeeeeeoessesss

LR R EE RN EE RN IS I R IR I I

*

&

]

¢ 08wy

emeanoa

s s e s

112
112

112

112
113
113
115
115

121
121
123
123
125
125

126
127
128

130

INTRODUCTION

The NCE Computing Center Handbook is intended to provide users of
the Computing Center with general information about the various 1620
programming procedures, The Handbook discusses in detail the two versions
of Fortran in common use at the Center: Load and Go, (called L and G) for
the Model I 1620, and Kingston Fortran, (called KFII) for the Model IT 1620.
Some information is also included on other available programming systems.

Section II lists definitions for those elements of the Fortran
language which are common to the Fortran systems discussed in the Handbook.

Section III lists those Fortran language specifications which apply
specifically to the Load and Go system. Section IIT also describes in
detail operating instruction for using the NCE Load and Go compiler. The
compiler, punched on cards, is available in the Computer room. The card
deck containing the compiler will usually be found in a box on top of the
1620 Model I card reader,

Section IV lists those Fortran language specifications which apply
specifically to the Kingston Fortran II system, A Kingston Fortran II
compiler and an IBM Fortran II Compiler are available on the 131l disk of
the 1620 Model II, Section IV notes operating instructions for using the
KFII compiler, Section V notes operating instructions for using the IBi
Fortran II compiler, Section V also lists those IBM Fortran Il (called
IBM FII) language instructions which provide for operations not permitted
by the KFII compiler, Additional IBM Fortran II language specifications
are discussed fully in the IBM 1620 Fortran Manual (#C26-5619).

Section VI briefly describes other systems which may be used on
either the 1620 Model I or II. Section VI also lists the library programs
available at the Center for use with either the 1620 ifodel I or II. The
programs are stored either on the 1311 disk, on punch cards, or on paper
tape,

Section VII consists of instructions for using the other equipment
in the Center. Included are instructions for using the card punches, the
reproducer, the printer and the sorter.

The first section of the Handbook describes the equipment available
at the Center and the rules for using the equipment. Users please note
the procedures for applying for problem numbers (Section I,2), for using
the IN-OUT boxes (Section I.lic) and for signing the Time Sheet when operat-
ing the computer (Section I.L).

The Handbook can be used in a loose-leaf binder and is designhed so
that pages may be removed for use at the machines, The Handbook will also
be kept up to date with the printing of revised pages. The revised pages
will be numbered by section and page and should be inserted at the appropriate
location.

I NCE COMPUTING CENTER i

I Equipment available

The Computing Cehter at NCE has available for use two analog
computers and two digital computers. The analog computers are PACE TR-10
and PACE TR-15 computers manufactured by Electronic Associates, Inc., They
may be connected together for use as one larger computer. An associated
plotter and oscilloscope are available., They are best adapted to solving
small systems of ordinary differential equations. The IBM 1620 computer
is a general-purpose computer capable of solving a variety of numerical
and logical problems, The 1620 Model I has a 20,000 digit core storage .
capacity, The 1620 Model II has a 40,000 digit core storage. #Hodol I; users
mayiuse tworl3ll dieks which prowide’ humiliary storngé-for-4 million digits.

Input to either 1620 is via punched cards or console typewriter.
Output from the 1620 Model I is punched into cards (which can be printed
on an off-line device) or typed by the console typewriter. Output from
the 1620 Model II may be printed by a 1L43 on-line printer at the rate
of 240 lines a minute, or punched into cards (which can be printed on an
off-line device) or typed on the console typewriter, Card punches are
available at the Center, Card punches and other card-handling off-line
machines are discussed in Section VI. Paper tape is also available on
the 1620 Model II for input-output in special applications.

This Handbook deals primarily with the 1620, Information about the
analog computers may be obtained at the Center. The Center library has
several copies of the Handbook of Analog Computation published by Electronic
Associates, Inc., Long Branch, New Jersey. (Publ, No. L 800 0001 OA.)

T2 Applying for use of the 1620 computer I.2

The computers and their adjunct equipment at the Center are available
at NCE for use by classes, student projects, student theses, and student
and staff research,

The equipment is available for unsponsored and sponsored research at
the charges discussed below. A staff member wishing to use the computer
for research should consult with the Data Processing Manager, lMr. Alexander
Altieri. If the research is not funded, then the staff member should
first see Dean Bedrosian to find out if college funds are available, If
they are not, it still may be possible to obtain some free time. Instructors
planning to use the computer in their classes should let the Computing
Center know at the beginning of the semester how many computer hours they
plan to use and what specific times they would like to reserve. Forms for
this are obtainable at the Center.

A eertain amount of time is also available for use by other educational 1.2
instltutions and for commercial applications., Those wishing to use the
services of the Center should call the Computing Center MA L-242L, Ext. 217,
and consult with the Data Processing Manager or the Secretary.

All individuals wishing to use a computer must first fill out an
application form, available at the Center, and receive a problem number.
Problem numbers must also be assigned to each class section wishing to use
the Computing Center, Problem numbers are assigned by the Secretary at

the Center, Mrs. de la Vega, upon receipt of the application form. A sample
application form is shown on page 4.

Lad Charges for computer time (all figures quoted are subject to change) I.3

Computer time is provided free of charge for class use and for unspon-
sored research on both the undergraduate and graduate levels, Unsponsored
research, either by students or faculty, must be approved by Dean Bedrosian
unless the work is in connection with a student project or thesis. The
general laboratory fee paid by all students includes the use of the computer

for approved projects. The fee paid by special students for courses using
the computer also covers the computer charge.

N.C.E. CO'[PUTING CENTER
SCHEDULE OF CHARGES

(Effective June 1966)

1620 Model I with 20 K iemory - Per Hour
Bommercial or Industrial USErs ...eeeceesesessses $30.00
Sponsored ReSearch ...eccececescesceasconcassosss 15,00
Other Educational Institutions .eeeeeeevecesecess 15,00/Negotiated

1620 Model IT with 4O K Memory, two Disk Drives (2 millien digits each) and 1LL3 On-
' o Line Printer

Commercial or Industrial USers ..eeeceevscssnscns 65,00
dpongored RESearell cessssbsvssvsssiosnsasunansvine 35.00

Other Educational Institutions .e..eeecessececscs 35.00/Negotiated

Per Hour

BT TORGEEE 050 v wwonmn o o w9 5 W0 0.0 i o om0 9 b 7.00 1.3
519 Reproducing Machine with Mark Sensing se.eeccssescncses 3.00
082 SOPLAY wruves sossssrnes s eausanbuesssessransyerssyonesas 2.00
Services

Keypunching (excluding cards which are $1/thousand). 4.00

Computer Dperation ..sssiesisnsssorsdsirasseseenesss 5.00

Programming ceesseccesscarsscecscssosscsscrsanccanssns 10,00

PRoblonm AnaLyalio mw e s sins oo s o s e ss e s b eese s nsseess 15.00
Minimum Monthly Charges = $10.00
I.L Scheduling computer time I.k

The Computing Center is normally open 8 A.M. - 10 P.M, weekdays.
Special arrangements can be made with the Computing Center Secretary for
computing time during the evening (if the time is not pre-empted by class
use) or on Saturdays,

Staff members who have obtained problem numbers and wish to operate
the computer themselves may schedule time with the Computing Center Secretary.
A schedule of computer time for the week will be postid on the bulletin
board in the Center; it should be consulted by all users.,

It is required that all individuals operating a computer sign in
and out on a time sheet, available at the computer.

I.ha Class use of computer time I,kha

Instructors wishing to schedule time on the computer for their classes
should consult the Computing Center Staff at the beginning of the semester.
Each class must be assigned a problem number, See Section I.2 Applying for
the use of the computer.

I.4Jb Student operation of the 1620 Model I I.4b

Students may operate the 1620 Model I during periods scheduled for
student use, Runs of up to five minutes duration only can be run if others
are waiting, Otherwise up to 15 minute runs will be permitted., A student

Name

COMPUTING CENTER

NEWARK COLLEGE OF ENGINEERING

Application for Problem Number

Address

Telephone Number

Date
NC:5 USERS
Staff Member Department Telephone Ext.
Type of Use: ’ Class Use Number of Students
Time Blocks
|____| Unsponsored Research
i ! Sponsored Research Account Number
l“""‘" Other
Student Year Department
Type of Use: Thesis Subject

OUTSIDE U3ERS

Affiliation

Problem or program title

Problem Number Assigned

Computer Education

Other

Approved by

may sign up for this time by writing his name on the bottom of the list I.L
provided daily on the computing center bulletin board. After running he
should cross his name off, but he can sign up again immediately (on the
bottom!) of the list. No problem number is required for this computer

time.

Another bloeck of student time will be scheduled at 6 - 7 P.M, every
day for the benefit of evening students who will have priority at this time,

I.5 IN-OUT boxes Ts5

Students may not operate the 1620 Model II unless an instructor or
Center Staff member is present at the machine. Center staff members will
process source decks prepared by students and staff members for the 1620
Model II. NCE staff members who would- like their progdams batch processed
by-Computing Center staff members should. see Mr, Altieri’ at the Center
office., Students who hawve prepared gource decks for Model 11 batch
procgssing should leave their decks in-a ‘file box marked *IH-lodel II'’
located in the preparation room. The face of the first card should be
clearly marked with the name of the user and the initiais "F,C.Y The-
back of the last card should be marked "L.C."' The programs will be’
processed on a first come first served.basis and the.source decks:.andrall .
printed output will be placed.in.the WOUT-Model II" file. The decks should
include all necessary control cards, (See Appendix "Model II~batch processing")

Tsb Punched cards 1.6

Programmers using the Center must do their own card punching. Blank
cards for punching are available at the bookstore at a cost of $2.00 a box.

Programmers may also consider using mark sensing which is a method
for marking the face of the cards with a special pencil. Fortran cards
printed for mark sensing are also available at the bookstore, The marked
cards are made into punched cards by processing them through the 519 Repro-
ducing Punch. A Computing Center staff member will process mark sensed
decks which are placed in the box marked IN on the 519. See Appendix
"Use of Mark Sense Cards" for details on staff processing of mark sense cardsa.
Card punching and mark sensing are also discussed in Section VII,

Room for card storage at the Center is limited, but cardboard boxes
for storing programs will be provided for active research projects, and
for storing programs for any class section using the computer.

Individuals prone to carry small program decks about with them should
be very careful not to dent the card edges; cards with very minor dents
often will not be read by the equipment, The Center provides stiff protect-~
ing covers which should always be used to protect. program decks that are
not stored in boxes or card. storage .drawers,

m!
|

e
Py

-'-au.-\- ey

[

gi"t e Ly ey mmr“ i
e EA 1
L ;‘-;{; = ‘l
113X LRCQEF
{300 SAMUONES

PSSR

LU, 1
A T ~ e i !:f,’)f..l
Pl o \ N OIS
SOURCE SEL fe i — ——7&—-
- : ‘ I

ﬂh:FORX ‘ -_.;;,%
TI08 Taonn smte (I

Ll aaw) e\ I FORTEAN

e hsone jnn
./)/"? 7_ .4 i ‘/QL,__‘) m:—.—.:-—;:‘:———x- **..——-—.._E___T?-,
L e ity e !

"R
_':.—'-."'mw —"m::. o — A "1 (,
i |WR¢—Q _euN ‘“ .
¥ E0J id i { , /
A o L : i o — i'f“

SOURLEUBC Kk pemm = R !\ ‘L K IING S ,7"(N

i
i-‘ (A? , /T/ ' \\/

/_ I ‘L;m"—*—-"—-""-:'_::f"i_‘..": "“.T‘..:.‘..".T.“.".T.‘.”.’..'»............" eeoma——
I JUE UAME LOE ‘

L PROGRAM

2 /

{ [T L

HXEQ KFa2

J:ng

Fig. 1.

Source decks prepared for batch processing on the 1620 Model II,

I,7 References, and manuals LaT

The following IBM manuals, which are available at the NCE bookstore,
are particularly helpful in programming the 1620 Model I and II:

IBM 1620 Data Processing SyStem ..e.eeceeeceseesessss Noo A26-4500
IBM 1620 1710 Symbolic Programming Systems ...seees.. No. C26-6500
IBM 1620 FORTRA.N I A R R R E R R R R EE RN AN KA I S A O BN B O I A A) NO. C26"‘5619
IBM 1620 Monitor IT SYStem eseesescssresscsssssssssss No. C26=57TL=0
IB 1620 Central Processing Unit, odel 2 «.esseessos No, A26-5781-0

A small collection of books on programming, periodicals on data
processing, and a set of 1620 library programs are available at the Center
for use as reference materials, The library programs may be borrowed for
short periods such as overnight or weekends. The main library has many
books on programming, computers, and numerical analysis.

I.8 Staff 1.8
Director ,,....eeeseeseeeesscsoessss Dre Frederick G. Lehman
Associate Director,..ccoveseeesseses Dr, Phyllis Fox
Data Processing iManager ,....ceoceeee Mr, Alexander Altieri

Graduate Assistants ,....veceevesces Mr. Young D. Kim

Mr., Hubbard Seward

Undergraduate Assistants.,...eeessses (Listed on the Center
bulletin board)

Computing Center Secretary.,....o... Mrs, Hortensia de la Vega

Programmer/Systems Analyst,........ Mr, Larry Arakaki
I.9 Courses in programming L.9

In addition to the courses related to computing and data processing
in the regular curriculum, the Computing Center provides 2 non-credit six-
week course in programning which is held each semester starting about three
weeks after the start of the semester. There is a $15 charge to help cover
the cost of the manuals which are provided and the time used on the computer.
The course involves about an hour of lesture a week supplemented by individual
practice in programming and operating the computer.

There is also a short course in Fortran Programming given under the
direction of the Special Courses and Continuing Education Division which
is held on the evenings during the fall, spring, and summer sessions, For
further information, please contact Mr, Paul Burns, Ext. 330.

IT BASIC ELEMENTS OF THE FORTRAN LANGUAGE I

II.1 Source program and object program II.1

A source program is a series of statements written in the Fortran
language. The source statements are analyzed by the Fortran compiler, or processor,
which then generates machine language instructions., The machine language
instructions, produced by the Fortran compiler, comprise the object pro-
gram, During execution of the object program, the computer uses data
supplied by the programmer to execute the arithmetic and logical operat-
ions required by the problem.

Fortran source statements can be grouped into 5 categories:

1 Arithmetie statements which define the calculations to be performed.
Arithmetic statements include operatorss variables, constants, paranthesis and
functions.

Examples:

A =, =B + 6,%C%(D+E)
ROOT = (=B + (B#B - L #A%C)#%,5)/(2,%L0G(A))

2. Replacement statements which cause the item to the left of the equal
sign to be given the same value as the item to the right. All
arithmetic statements are also replacement statements.

Examples:
A =38
A=}.2
3. Control statements which determine the sequence of execution of the

object program instructions.

k. Input/output statements which transmit information between the computer
and the input/output devices such as the console typewriters, the card
read~-punch, the paper tape deyice.

< Specification statements which supply information required by the processor
to allocate locations in storage for certain variables and/or arrays.
They may also enable the user to control the allocation of storage.

Fortran compilers may also provide for various types of subprograms.

(See L and G: III.Sa)*
(See KFII: v .8)

#Reference to relevant material in other sections will be indicated
in parentheses of this sort, This one indicates for example that Section III.5a
contains more on subprograms in Load and Go,

10
Example of a source program: dels 0t

Problem to be solved: Sum the integers from 1 to 1000;

Statement Number Source Statement Comment: Type of
Statement
sUM = 0,0 Replacement statement
A=1,0 Replacement statement
3 SUM = A + SUM Arithmetic statement
A=A+1, Arithmetic statement
IF (A-1000.) 3,3,6 Control statement
6 PUNCH 10, SUM Input/output statement
10 FCRMAT (F8.2) Input/output statement
STOP Control statement
END Control statement

Instruction for punching a source deck are given in the following sections:

(L and G: III.1)
(KFII: v .1)

e

II.2 gotehdetic etatemonts Aee

IT.2a Constants 1I.2a

Integer and real constants may be used in a source program written for
either the Load and Go Compiler or the Kingston Fortran II Compiler, Hollerith
constants may only be used in a source program written for the KFII compiler.

(See KFII: IV,2a)

Integer constants - An integer constant is a number written without a
decimal point.

Example:
I =678 (678 is a valid integer constant)
K=1I~23 (23 is a valid integer constant)

The magnitude of integer constants depends on the compiler,

(See L and G: III,2a)
(See KFII: IV ,2a)

Real constants - A real constant is number written with a decimal point and
consisting of 1-8 significant decimal digits,

Examples: _
Valid real constant Invalid real constant
1.0099999 23L
234,

The real constant 123456789.1 is accepted by the Load and Go and KFII
Fortran processor but it is stored as 123145678, (See Appendix "Storage cf
integer and real numbers®)

5 s

II.2a
A real constant may be followed by a decimal exponent written as the 1et§er
E followed by a one-or two~-digit integer constant indicating the appropriate
power of 10,
Example:
A = }4,2 + B#(5,E2-D) (5,E2 is a valid peal constant)
500,40 may be written: .5 may be written:
500,0 .
5.E2 S.OE-l
5.0E2 S‘E-l
5,0E02 +05EL
5+0E+02
50,0E0L
The magnitude of a nonzero real constant must be such that:
-51
1.0%10 ~ = constant = 9.9999999*10+h8
IBM Fortran II allows for variation in the number of significant
digits permitted for real and integer constants.
(See IBM FII: V.1l)
IT.2b Variables IT.2b

A Fortran variable is a symbol which represents a quantity that may
assume different values, The value of a variable may change either for
different executions of a program or at different stages within the program.

Example:

C=5,0+D C and D are variables., The value of D must
be determined by some previous statement
and may change from time to time. The value
of C varies whenever this computation is
performed with a new value for D,

Variable names:

The number of alphameric (numeric and alphabetic) characters allowed
in a variable name depends on which Fortran Compiler is used.

(See L and G: III.2b)
(See KFII: IV,2b)

The first character in a name must be alphabetic. Special characters
are not permitted.

Variable types:

12

IT.2b

A variable may represent either an integer or a real number (isee a
number containing a deeimal point). See the definition above in Section II.2a

The type of a variable, that is, whether it is integer or real, can
be specified implicitly as follows:

1. If the first character of the variable name is I, J, K, L, M, or N
then the variable is an integer variable,

2. If the first character of the name is not I, J, K, L, M, or N, then
the variable is a real variable,

Example s
INT = LEMMA + NUM (These variables represent integers)

X =Y - ALPHA (These variables represent real numbers)

Explicit specification of variable types is only allowed in KFII.
(See KFII: 1IV,.2b)

Subscripted variables:

A subscripted variable consists of a variable name followed by a pair
of parentheses enclosing subscripts separated by commas. The number of sub-
scripts ailowed depends on the Fortran Compiler.

(See L and G: IIT,.2b)
(See KFII: IV.2b)

The subscripts specify the position of the variable in an array.
An array is a group of quantities arranged in order.

Exampies
Let A be an array consisting of the quantities, 700.L,
«34, 532,99, then

A(1) = 700.4
A(2) = oBh
A(3) = 532,99

An array may be multi-dimensional. The number of dimensions allowed
in the array depends on the number of subscripts permitted by the compiler.

Example:
A two-dimensional array M may be a 2 by 3 table of
integers with the following:

M(1,1) = 31 M(2,1) = =4
M(1,2) = 6 M(2,2) = 89
M(1,3) =17 M(2,3) = -11

13

IT.2¢c Arithmetic operation symbols II.2e

The arithmetic operation symbols: +, =, #, /, % denote add?tion,
subtraction, multiplication, division, and exponentiation, respectively,

I1,2d Arithmetic expressions II.2d

An arithmetic expression is usually a combination of constants,
subscripted or nonsubscripted variables, function names, (see subprograms)
and arithmetic operation symbols.

General Rules for Forming Expressions:

(See L and G: III.2c)
(See KFII: IV,2¢c)
(for specific rules)

1s The variables and constants in an arithmetic expression must be of
the same type with the exception that in exponentiation a real va-
riable or constant may have an integer exponent.

2 Any expression may be enclosed in parentheses,
3. A1)} operation symbols must be explicitly present,
L, No two operators may appear in sequence, (Note exception: Load and Go

use of the minus sign, See L and G: III,.2¢)

Se Hierarchy of operations = Parentheses may be used in expressions, as
in algebra, to specify the order in which operations are to be computed.
Where parentheses are omitted, the order is understood to be as follows:

a) Subscript evaluation

b) Subscripting

¢) Argument evaluation, Function evdluation
d) Exponentiation (s#)

e) Multiplication and Division (% and /)

f) Addition and Subtraction (+ and -)

Example: o
A + B/C = D#E¥F ~ G is evaluated as A + (B/C) - (D°%F) -G

B An expression is scanned from left to right, and no operation is
completed if there is a possibility of one of higher hierarchy first.

1

Te If operations fall within the same hierarchy rank, and parentheses II.2d
are not used to indicate which operations are performed first, the
following rules apply:

a) A/B/C is always compiled (a/B)/C
b) A#B/D¥C is always compiled as (A%(B/D)xC)
c) AB#xC is not acceptable, parentheses must be provided.
d) A%-B is always compiled as (A)"B
E-B:#C is always compiled as E-(8C)

E = -A%B, the order of compilation depends upon the compiler,

(See L and G: III.2¢)
(See KFII: IV,2c)

Note that the order of compilation discussed above can be important from the
point of view of round-off error. (A/B)/C may give a different answer then
A/(B/C), especially, if either B or C are small,

IT,2e Replacement statements II.2e

In evaluating an arithmetic statement the value of the expression to
the‘right of the equal sign is determined and that value is assigned to the
variable to the left of the equal sign. If the result of the expression
evaluation is not of the same type as the variable name to the left, the
result is converted before assigned.

Example:
I=B+). ~ (C-D)+=E Evaluate B + L.~(C-D)E,
Truncate the result to
convert it to an integer,
Assign it to I,

X=NIM+L -1 Evaluate NUM+L-~1,
Convert the result to a
real (decimal) number.,
Assign it to X.

A=A+1], A valid replacement statement.
The value assigned to A is
increased by 1.

1w A simple replacement statement.
Value of J assigned to I,

15

Computations involving real variables are truncated (not rounded) to I1.2e
8 significant digits. However, a subroutine which will round arithmetie
computations is available to users of the IBM FII compiler,

(See IBM FII: V,2)

IT.3 Control statements I1.3

Normally Fortran statements are executed sequentially, However, it
is often undesirable to proceed with each statement in this manner, Control
statements alter the sequence of execution of the object program instructions.

A statement number must be assigned to each statement referenced ?n.
a program, Statement numbers must be entirely numeric., The number of digits
allowed in a statement number depends upon the compiler,

(See L and G: III.3a)
(See KFIT: IV.3a)

KFII also provides for address variables which can be used to reference
statements,
(See KFII: IV.3b)

IT,3a Unconditional GO TO statement I1.3a

General form:

GO TO xoxxx

Where: xxxx is a statement number

Examples: ‘
GO TO 25 Control is transferred to the statement with
number 25,
ITI.3b Computed GO TO statement II.3b

General form:

GO TO (xl) XZ’ XB, eae Xn), i

Where: X1s Xps X3y ees are statement numbers, i is an integer constant or
integer eXpression depending on the compiler used.

(See L and G: III,3b)
(See KFII: IV.3c)

This statement causes control to be transferred to statement X5 X9, OF
X, depending on whether the current value of i is 1, 2, or n.

Example:
GO TO (10, LO, S0), I

When I = 2 control is transferred to statement number 4O.

IT1.3c Arithmetic IF statement

General form:

IF (a) n)» Ny, Dy

Where: a is an arithmetic expression and Ny, Doy Ny, are statement numbers,
This statement causes control to be transferred to statement n 10 B

or n3, if the value of the expression (a) is less than, equal to, or grea%er

than zero, respectively,

I1.3d IF (SENSE SWITCH i) n,, n,

Where: i is an integer constant or integer expression depending on which
compiler is used and N, Ny, are statement numbers,

(See L and G: III.3c)
(See KFII: IV,34)

This statement causes control to be transferred to the statement n
if the sense switch is on, or to n, if the sense switch is off, i determifes
which machine indicator is to be interrogated, Any of the machine indicat-
ors can be interrogated by the IF (SENSE SWITCH) statement, However not all
machine indicators are relevant to the computations performed by the object
program,

IT.3e DO statement

General form: End of Range index initial test increment
value value

The form (integer, integer expression) that the index (i), initial
value (mg), test value (me), and increment (m3), may take depends on which
compller is used,

ESee L and G: III.Bdg
See KFII: IV,3e

II.3b

II.3c

II.3e

17

The DO statement is a command to execute repeatedly the statements II.3e
that follow, up to and including the statement n. The first time the
statements are executed, i has the value my, and each succeeding time
i1 is incremented by the value of m,, After the statements have been
executed with i equal to the highest value that does not exceed m, in
the direction of incrementation, control passes to the statement fellowing
statement number n. This is called a normal exit from the DO statement,

The range is the series of statements to be executed repeatedly.
It consists of all statements following the DO, up to and including
statement n. The range can consist of any number of statements.

The index is an integer variable that is incremented by the value
m, for each execution of the range of statements. Throughout the range
of the DO, the index is available for use either as a subscript or as an
ordinary integer variable, However, the index should not be changed by a
statement within the range of the DO. (See KFII IV for exception). Upon
completion of the DO, the index must be redefined before being used again.
When transferring out of the range of a DO, the index is available for
use and is equal to the last value it attained.

The initial value is the value of the index for the first execution
of the range.

The test value is the value that the index must not exceed in the
direction of incrementation, After the range has been executed with the
highest value of the index that does not exceed the test value, the DO is

completed and the program continues with the first executable statement
following the range.

The increment is the amount by which the value of the index will
be changed after each execution of the range. The increment may be omitted,
in which case, it is assumed to be 1,

Example:
The statement DO 10 I-=1,52

will cause the range of the DO to be executed with I taking on the success-
ive values 1, 3, and 5.

Restrictions on statements in the range of a DO

The restrictions on statements in the range of a DO are as follows:

(1) Within the range of a DO may be other DOs., When this is so, all
statements in the range of the inner DO must be in the range of the
outer DO,

18

A set of DOs satisfying this rule is called a nest of DOs. For example, IT.3e

the following configuration is permitted (brackets are used to indicate
the range of the DOsg:

e —— T i i iae

Rt ¢

The following configuration is not permitted:

b o s e e
T

(2) Transfer of control from inside the range of a DO to outside its range
is permitted at any time, However, a transfer is not permitted into
the range of a DO statement from outside its range,

(3)

The range of a DO camnot end with a GO TO, IF, FORMAT, STOP, RETURN,
or another DO statement.

19

IT,3f Continue statement IT.3f

General form:

CONTINUE

CONTINUE is a dummy statement that does not produce any executable
instructions. It is used to furnish a reference point which must be assigned
a statement number, It is required if the last statement of a DO would
otherwise be a transfer statement.

II1.3g Pause statement II.3¢g

General form:

PAUSE

The PAUSE statement causes the program to halt, Pushing START causes
the program to resume execution starting at the next statement following the
PAUSE statement.

II,3h STOP, END, and CALL EXIT statements IT,3h

The use of the STOP, END and CALL EXIT statement depends on which
compiler is used,

(See L and G: III,3e)

(Ssee KFII: IV.3g)
II.h Input/output statements 11k
II.ha General form for input statements for Fortran without Format IT.4a
READ, list (punched card input)
ACCEPT, list (console typewriter)

ACCEPT TAPE, list (paper tape)

The 1list specifies the number of items to be read and the locations
into which the items are to be placed,

Examples:

READ, A, CAT, DOG read from a punched card three
numerical values to be assigned
to the variables A, CAT and DOG
respectively

ACCEPT, X Expect a numerical value to be
typed in and become the value for X,

20

II.Lb General form for input statements for Fortran with Format I, bb
READ n, list (punched card input)

ACCEPT n, list (console typewriter)

ACCEPT TAPE n, list (paper tape)

n references the Format statement number

(see KFII: 1IV,ha)
(Fortran with Format)

II.hc General form for output statements for Fortran without Format Il.he

PUNCH, list (punched card output)

The list specifies what items are to be outputted on cards. When
the item in a list is a variable name, the last value assigned to the
variable name will be punched on the card, A1l dtems in the list must be

variable names, not numeric values,
Example:
PUNCH, X, ¥, N If the machine assigned X = 3.k,
Y = 100.7, and N=2,
the numbers 3.4, 100,7 and 2 will be outputted on a card.

TYPE, list or PRINT, list may be used to put output on the console
typewriter, depending on the compiler used,

(See L and G: III.L)

(See KFII: 1Vv.6)
IT.4d General form for output statement for Foriran with Format IT.hd
PUNCH n, list (card output)
TYPE n, list (output on console typewriter)
FRINT n, list (output on 143 printer) (See KFII: IV,kLc)

(Fortran with Format)

I1.5 Specification statements I1.5

II,5a DIMENSION statement

General form:
DIMENSION VA(i;), VB(i,)

Where: VA, VB, are variable names and i,, iy, may be one or more unsigned
integer constants separated by commas.

The DIMENSION statement provides the information necessary to
allocate storage for arrays in the object program.

Example:
DIMENSION A (10), B(5,15)

Space will be set aside for 10 values of A,
and 75 values of B.

Dimension statements must be written for each subscripted variable
(unless using other specification statements permitted by KFII) and must
appear before the subscripted variable is mentioned.

IT.5b Other specification statements

Additional Specification statements permitted in XFII are discussed
in Section IV.7.

21

II.5a

II.5b

22

1L NCE LOAD AND GO 11T

Introduction

The NCE Load and Go compiler, written by George Rumrill, Bruce Fowler,
and Hubbard Seward and revised by them in January 1965, allows 100 to 200 card
FORTRAN source programs to be both compiled and executed on the 1620 Model I
in a single continuous run. Furthermore, since the compiler stays in the memory,
a sequence of different programs can be run, one after the other. This method
of processing is well suited to processing student programs. The system cannot
be damaged by errors in programs. Many error checks are made, both during
compilation and execution., No format specifications are used., Output format
is determined by the type and range of the variable; input format is free form,
Features include; arithmetic and flow trace, double subscripting, computed GO TO
statements, limited Hollerith listing, and undefined variable detection.

Two versions of the Load and Go processor are available for student and
staff use, Version Three is designed for rapid batch processing and eliminates
the need for operator intervention during the processing of source programs.
All input and output is punched on cards, Statements which require operator
intervention, IF(SENSE SWITCH n) and PAUSE, are not recognized by the processor.
Version Three, batch processing, should prove adequate for most student programs
and its use should save considerable machine time during class laboratory hours.
The Computing Center will also schedule hours when a staff member will batech
process Load and Go programs placed in the IN box on top of the Model I, The
source decks and a 407 listing of all card output will be placed in the OUT box
at the end of the scheduled hour.

Version Two, which is designed for individual user console operation,
will also be available during hours scheduled for "hands-on'" individual user
console operation. Input and output may be punched on cards or typed on the
console typewriter, the source program may include STOP, PAUSE, and IF(SENSE
SWITCH n) statements, and the user may exercise options which increase the
amount of core storage available for the user's program. (See operator
instructions, section III.7b.)

The Load and Go system is a variation of Fortran. Only those specificat-
ions, which differ from the basic Fortran definitions discussed in Section II,
are listed in Section IIT,

23
III, NCE LOAD AND GO FORTRAN LANGUAGE SPECIFICATIONS ETT

III.1 Punching input source programs T

1. The statements of the source program can be punched anywhere on the
first 72 columns of the card, Punching is free form; all blanks are
ignored (except in input data as described below). If a statement number
precedes the statement it can be punched starting at any column; spaces
between the statement number and the statement are not necessary.
Columns 73-80 are reserved for sequence numbers or other identification,

2. Comment cards are allowed and require a C in Column 1 followed by two
blanks.

3. Continuation of a statement to another card is not permitted,

ITT1,2 Arithmetic statements JLIETE 72

ITI.2a Constants I1I,2a

Inthger Constants - The magnitude of an integer constant must not be greater
than 9999.

Example :
Valid constants Invalid constants
9909 10991
0 0.0
-356 -356.0
2
II1,2b Variables ITT.2b

Variable names

The name of a variable may have no more than five characters.

Example:
NUMB, DAT15, INT, X, Y, FARAD

Subscripted variables

1. A variable may have one or two subscripts. Thus one and two dimensional
arrays are permigsible,

Example :
A(1), B(1,2)

2, Subscripts may consist of an integer constant, an integer variable,
or an integer variable plus or minus an integer constant,

2L
131,20

Forms of subscripts:

i
i+ et
i-ct
c

Where: 1 1is an integer variable and ¢ is an integer constant.
3. The additive integer constant, ¢! must not be larger than L9.
L. Subscripts whose value during execution becomes negative or zero, or whose

value exceeds the size of the DIMENSION statement, will result in ERROR
70. (See error messages, III1.9)

Examples:
Valid Subscripting Invalid Subscripting
A(IMAX-37) A(IMAX~50)
I(J,MATH+17) B(X,IMAX)
Q(12L, 1M-3) C(MATH+51,d)
ITT.2c Arithmetic expressions LI P

Rules for forming arithmetic expressions

1., Minus sign: The operation symbols, (,%*,/,%%, may be followed by a minus
sign and will be correctly compiled.

Examples
A-B¥#¥-C, A+B/~C, A=-Bs##~C are valid arithmetic expressions.

2. Exponentiation: A=-Bs#I will be compiled as A=(-B)I and calculated as
the prOduCt ("B) ("B) (“B) LSRN AN I R)

Example: When B= 2, I=3
a= (=27 or (2)(-2)(-2), A= -8
A = ~B#C will be compiled as A=EXP(C+L0G (-B))

When (-B) is negative ERROR 62 will result, (See error messages, III.9)

When (-B) is negative the value of A is calculated as A= EXP(C¥LOG(ABS(=B)))
during user processing.

Example: When B=2, C=3
T A=EXP(3%L0G(ABS(-2))), A=8
ERROR 62 will be indicated

When B= -2, C=3

A= BXP(3%L0G(~(~2))), A = 8
During batch processing all execution errors result in the termination of
the program in error. Thus Error 62 will result in termination of program
execution during batch processing.

25

I11.2¢

A= X-B#¥C will be compiled as A= X-(B#%C) and calculated as A= X-EXP
(c¥LoG(B)).

3. Plus sign: A plus sign may not immediately follow an equal sign, left
parenthesis, or any arithmetic operator,

Example:
A=+B, IF(+2.1~A) 12,20,10 are invalid arithmetic expressions.

L., An integer variable or constant may never be given an exponent.

I1I.3 Control statements IIT1.3

ITI,.3a Statement numbers

Statement numbers may be any one, two, three, or four digit integer.

ITI.3b Computed GO TO statement IIL.30

GO TO (I35 Jps weeedp); 4

Where: Jq, Joy cesed are statement numbers and i 1is a nonsubscripted
L2 n .
integer variable,

The comma before the 1 is required punctuation.

The statement may contain any number of statement numbers.

During execution, the index of a computed GO TO statement will be
checked to see if it is defined and if it is less than or equal to the

number of statement numbers listed in the source statement.

. Sample problem 5 at the end of Section III demonstrates how a computed
GO TO statement may be used as the return statement in a subprogram.

III,3¢c IF (SENSE SWITCH n) statement III.3¢c

IF (SENSE SWITCH n) jl’ j2
Wheret n is any one or two digit integer constant

31’432 are statement numbers., Control is transferred to J, if sense
switch h is on; control is trangferred to Js if sense switch n is off,

26
III.3¢c

The statement may be used to test the condition of any of the machine
indicators. Care should be exercised in using the IF(SENSE SWITCH) statement
to test the status of the arithmetic indicators since the operating subroutines
may leave the ihdicators in a position which does not correspond to the result
of the arithmetic caleculation,

The IF(SENSE SWITCH) statement may be used to test the status of the
program switches 1, 2 and 3, and the last card indicator, switch 9, The program
switches are manually operated and should be set by the programmer prior to
the execution of the IF(SENSE SWITCH) statement., Insertion of a PAUSE state~
ment before the IF(SENSE SWITCH) statement will give the operator time to set
the program switch., Switeh 9, will automatically be set to the ON position when
the last data card has been read, The processor will tmrn switch 9 off at the
beginning of the execution of each program.

Example:
The last card indicator may be interrogated as follows:

IF(SENSE SWITCH 9) ny, n,

Control will be transferred to statement nj,if the last card
has been read.

The IF(SENSE SWITCH n) statement should not be included in a source'deck
prepared for Version Three, batch processing. (See Section III.6a, Preparing
the source deck for batch processing)

IIT,3d DO statement I11.34

DO ni=m, m, mg

Where: n is a statement number and i 1is a nonsubscripted integer (fixed-point)
variable.

my, mp, M3, are either integer constants or nomsubscripted integer
variables. If m, is not stated, it is taken to be 1, m, myy M., MY
be negative, zerd, or positive but care should be taken when negétive
or zero values are assigned to my, my, or my. (Note that if during
execution the value of a subscript becomes hegative or zero ERROR 70
will result, and execution will be terminated.)

No more than seven levels of nested DO-loops are permitted.

Sample problem 2 uses nested DO-loops for data input and output. (See
Section III,10)

27

IT11,.3e

III.3e STOP and END statements

The END statement signals the processor to terminate compilation. Thus
it must always appear as the last statement in a source program, The STOP
statement need not appear in a program.

The.ENﬁ statement is an executable statement and may have a statement
number,

The control exercised by the execution of the STOP and END statements
depends on whether the source program is compiled by Version two, individual
operator processing or Version three, batch processing. The execution of the
STOP or END statements results in transfer of control to the processor. During
batch processing, execution of the STOP or END statements results in auto-
matic compilation of the next source program in the batch. During user proces-
sing, execution of the END statement results in a machine halt. A new source
program may then be compiled by pressing START. (See operator instructions,
user processing, Section III,.7b) During user processing execution of the STOP
statement also results in a machime halt, The user's program may then be re-
executed by pressing START.

IIT.4 Input-output statements III.L

ITI.La General rules for input-output statements without format III.ha

Al Card input and card output must be used for Version three, batch
processing, ACCEPT and PRINT statements will not be accepted by
Version three, batch processing; use READ and PUNCH.

20 A format statement number in an input-output statement is ignored.
A comma must be present if a 1ist follows the input/output command.

Thus:
PRINT 3, A, B
PRINT, A, B
PRINT

are valid, Format statements may be included in the source program but
will be ignored.

3, "TYPE" is not a valid statement (Use PRINT).

28

I1I.Lka
L, Input~output statements without lists (with or without format
statement numbers) have the following effect:
a) PUNCH produces a blank card during execution
b) PRINT causes a rarriage return during execution
¢) READ and ACCEPT are compiled, but ignored during
execution
Note: Omit comma after PUNCH and PRINT if there is no list.
IIT.4b Rules for input data Ti.Le

1. To obtain a line or a card of alphameric output, a card or a typed
input record containing a T or P as a first character may be inserted
in the appropriate place or places in the input data. A READ state-
ment, calling for data, will type or punch, respectively the contents
of the rest of the T or P card (or record) before reading in the data
from the next card., All other data records must be entirely numeric.
See sample problem 1, Section IIT,10.

2. Input data can follow a free format on a card with spaces separating
each piece of data, All columns (1-80) will be read as data.

3. Commas can not be used to separate numbers.

4. Regardless of the mode specified in the input list, data may be in
any of the following forms:

2.0 2. +0,2E1 g 02E+02 +20000E-4

If no decimal is punched it is assumed to lie at the right-hand end of
the number., If a real number is entered when an integer number has been
called for, the four digits immediately before the decimal point will

be converted to an integer, and there will be no error indication. Thus

3L Converts to 1
~325,E2 Converts to =2500

5. Regardless of the number of input and output statements that are
executed, input data will be taken from one record (e.g. one card)
untils

a) That record is exhausted

b) A record mark is encountered

¢) A change in the input device is required
d) The program is reinitialized

6. Blank records intermixed with the data or source statements are ignored.
This if the programmer wishes to read three numbers punched on three
cards the read statement can be written as:

29

ITI.Lb

Read, 4,B,C
and the cards punched as:
Card 1, 23L.5
Card 2, 0045.678
Card 3. L567.9

7. To input (or output) a one or two dimensional array a DO statement must
be used, I/0 statements with impiled DO statement are not allowed.
See sample problems 2 and 3 at the end of Section III,
8. Input data outside the allowed range (e.g. larger than 10“9) will be
read incorrectly. No error indication is given,
IIT.he Rules for output data III.4e
1., Output is put out five (or fewer, as required) items per typed line
or punched card, See output for sample problem 2.

2. Integer numbers will be in the format 15,11X, (where X indicates space)
3. Real numbers whose magnitude falls in the range (.1) to (99,999,999) will
be output in the format F16,d. (where d indicates a variable number

of decimals). Numbers whose magnitude falls outside this range will be

in the format E16,7.
L4, Sequence numbers will not be punched on ocutput cards.
S. For alphameric output see 1. under Section III.Lb.
III.5 Subprograms 11I.5
III,5a Library subroutines III,5a
l, The following library subroutines are allowed with real arguments.

Note that the subroutines are to be considered as real functions

regardless of their letter,

Example:
Y =A+ L0G (B) is a valid arithmetic statement.

2. The absolute value function is the only library subroutine which may

also use an integer argument,

30

III.5a
The arithmetic expression containing an absolute value function
with an integer argument must be in the integer mode.

Example:

e M = J + ABS(K+L)
Subroutine Operation *Symbolic Name
Natural Logarithm log A LOG
Exponential e EXP
Square root 37;, SGRT
Sine sin A SIN
Cosine cos A CoS
Arc tangent tan~la ATAN
Absolute wvalue /A/ ABS

The argument of the trigonometric functions (SIN,COS,ATAN) must be
expressed in radian measure.

*A terminal F may be added to function symbolic names. (LOG, EXPF, SQRTF etc.)

3. When a subroutine is given an impossible argument (e.g. SQRT of a
negative number) an error message is printed out but the computation
procedes. (See Section III.8 errors 61, 62, 65), The values used
for the functions in these cases are the following:

O, =X or 0,0 =X .
0. 0. 0.0 0,0 =3 9,9999999 E+48

0,0%X ~—=0,0

Log (0,0) ——-% 0,0

LOG (X where X<. 0) —————10G (/X/)
SQRT (X where X <. 0) ———~-—2 SQRT (/X/)
SIN (X where X = 1,E9 radians) ——-=»1,0
€0s (X where X_-1,E9 radians) ----—> 1,0

III,5b Subprograms written by the programmer III.5b

The Load and Go processor does not provide special statements to
call subprograms. The programmer who wishes to use a subprogram must

31

III.5b
provide for the entry to the subprogram, the transfer of the argument to
the subprogram, and the return to the gain program. Sample problem 5
indicates how the programmer can use the computed GO TO statement to return
to the main program,

III.6 Batch processing instructions - Version Three 111.6

IIT.6a Preparing the source deck for batch processing III,6a

1. The following Load and Go control card must be used to identify the
ugers source deck and to signal the processor that a new source deck
is submitted for batch processing. The Load and Go control card must
precede the first source statement.

Card 001' 1 2 3 ‘0"100-00u0 Q0o ceroane SO o»oto--uo.na.o.ot.coooon.a?z
$ Name of user Problem number Optional user identification

Where: The $ is punched in column 1, the users name in columns 3-35, users
problem number in columns L40-48, and optional user identification in
columns 50-72,

2, The following statements will not be accepted by Version Three, batch

processing:
PAUSE "
ACCEPT, list
PRINT, 1list

IF (SENSE SWITCH n) Jjy, Jo
3., Either the END or the STOP statement should be the last executable state-

ments in a program, Execution of either the END or STOP statements will
cause the processor to compile the next program in the read hopper.

III.6b Operator instructions-batch processing III.6b

1. Load the processor, Version Three: (IF in memory go to 2,)

a. Put Load and Go processor - Version Three in read hopper followed
by the source decks to be run.

Press INSTANT STOP (on 1620)
RESET (on 1620)
LOAD (Yellow button on card reader)
b. Put blank cards in punch hopper

Press PUNCH START (on 1622)

32

I1II.6b
c. When the processor has been loaded the typewriter should type
the following message:

READY FOR BATCH PROCESSING
diy Remove the processor deck from reader stacker and put away.

e. The "READER NO FEED" light remains on when two cards are left
in the read hopper.

Press READER START

2, If the processor is in memory:

Bl Put source decks in the read hopper and blank cards in the punch
hopper.

Press READER START (red bottom on card reader)
PUNCH START (green button on card reader)

b, The "READER NO FEED" light remains on when two cards are left
in the card reader,

Press READER START

During bateh processing there should be no program halts, no need to
press START, no need to reinitialize or reload the processor.

NOTE: If the control card is incorrectly punched, the source deck following

the incorrect control card will not be compiled. Also note that any
execution error will cause termination of the program in error.

IT1.6e¢ Punched card output ~ batch processing

A1l output including error messages is punched on cards. The first
card output contains the information punched on the users control card and
will identify all subsequant card output resulting from the compilation and
execution of the users program, Error messages will be punched as follows:

Card co;l‘s‘ l 2 3 h S 6 7 II!.C.C..OQI"CDIO!OD!!0.0‘!..'0.‘.0l.tll.l.ll...72
X X X X + X X ERROR XX

Where: The L digit integer in columns 1~} indicates the last statement number
encountered before the error., If the error is a compilation error the
2 digit integer in columns 6-~7 indicates a count of the number of

33

additional cards from the indicated statement number up to the source
statements containing the error., The card count includes comment cards
but not blank source records,

If the error is an execution error the 2 digit integer in columns 6-7
indicates a count of the number of additional statements executed from
the indicated statement number up to the statement containing the
error. Note that the sequence im which statements are executed may

be very different from the sequence in which they are written in the
source program. Thus if the numbered statement is part of a loop the
executed statements may not be those listed in the source program as
directly below the numbered statement. Also note that during execution
the count includes only executable statements, -;Thus blank records,
dimension, continue and comment statements are not counted,

ERROR XX is the error code, Tables indicating the error code and the
appropriate error message will be found at the end of the chapter,
(See Sections III,8 and III.9)

The trace feature is not available during batch processing. The

user should insert PUNCH statements in the source program so that he
will have the information necessary to de-pug his program when program
execution does not result in satisfactory output.

Note that if the PUNCH statement is placed within a DO loop, output
will bnelude each value calculated during the loop. If the PUNCH
statement is placed outside the DO loop, output will include only the
last value calculated. (See sample problem L, III,10)

The last card output signals the IBM L4O7 Printer to start a new page

(for the next program output) and is blank except for aZ punched in
card column 80,%*

ITI.7a Preparing the source deck for user processing III.7a

l. A Load and Go control card must not be used.
2. The following statements will be accepted by Version Two.

ACCEPT, list

PRINT, list

IF (SENSE SWITCH n) Jl, j2
PAUSE

3. Execution of the END statement results in a machine halt., A new source
program may be compiled by pressing START. Execution of the STOP state-
ment also results in a machine halt, The user's program may be re-
executed by pressing START.

............... JHEHEREHE m— e — e ———
#NOTE SWITCH 3 on the IBM LO7 must be set to the ON position when printing
output produced during bateh processing on the Model I,

3k

III,7v Operator instructions - user processing IIT.7b

Step 1. Loading the processor

If the Load and Go processor is in memory, go to 2,
If Load and Go processor is not in memory proceed as follows:

a) Put Load and Go processor in card reader

Press INSTANT STOP {on 1620)
RESET (on 1620)
LOAD (Yellow button on card reader)

b) After the deck has been read press START (1620). Follow
instructions typed on console typewriter as follows:

set program switches--normally all off, Special options:
Switch 1 ON to omit Trig Functions
Switch 2 ON to eliminate Flow Trace Feature

If the TRIG functions are omitted the area available for
storage of program and data will be enlarged by 1,040 digits.

If the FLOW TRACE is omitted, the stored program will be
shortened by L digits for each statement number. However,
when the FLOW TRACE is omitted there is no statement identi-
fication of execution error messages.

Step 2. Compiling the source statements

a) Set switches for compilation--normally all off, Special options:

Switch 1 ON for typed input
Switeh 2 ON will type out source program
Switch L to correct typed-in statements as indicated below

b) Entering the source statements punched on cards:

Press START
START

The console typewriter will type the message COMPILATION

e)

d)

e)

£)

35

Press READER START
Press READER START again to read last two cards

If the console typewriter does not type the message COMPILATION
the processor must be reinitialized before a new source
program will be compiled, (See f below, reinitialization.)

Entering the source statements from the typewriter:

Enter source statements on the typewriter, each statement must
be terminated by pressing R/S Key. No record mark is required.

To correct typed input: (steps may be also followed to correct
typed data input during program execution.)

If R/S has already been pressed, it is too late, Otherwise:

Turn Switch 4 to alternate position
Depress R/S

Return Switch 4 to original position
Retype entire item

Depress R/S

The position of Switch 1 may be changed so that part of the
source program may be entered on cards and part on the type-
writer,

Error messages are typed on the console typewriter and follow
the form indicated in Section III,bc.

Reinitialization - only needed when the typewriter did not
type COMPILATION after START was pressed twice,

Set Switch 3 OFF for compilation of a new program, ON for
reexecution of previous program.

Press: INSERRST P
RESET
INSERT
RELEASE
START
START

Sense Switches 1 or 2 should be set to control input devices
and listing (See 2&, "Compiling the source statements")

36

Step 3. Program execution

a) When the END statement is compiled, if no Error Messages have
been typed, program execution will begin,

b) Switches 1, 2 and 3 are available for use during program execution.
If the program requires that Switch I, 2 or 3 be reset, it is
advisable to use a PAUSE statement before the first executable
statement in the program, The PAUSE will give the user time to
reset the switches,

e¢) Switeh 4 is set ON to trace. Switch L is set ON to correct
errors in typed input as described in step 2b above.

d) The program execution may be stopped at any time by pressing
INSTANT STOP,

ITI,7c Trace feature - User processing III.7c

The object program may be traced at any time by turning Switch L ON
and running the program., The result of each arithmetie statement will then
be typed preceded by the work "TRACE". Normal output will not be inhibited.

Note that traecing is time~-consuming and should be used sparingly in
pursuit of an elusive bug, The user should consider inserting PUNCH state-
ments in the source program so that he will have the information necessary
to de-bug his program. (See sample problem L4, III.10)

Switch L may be turned ON or OFF at any time during the running of the
program, to cause only selected parts of the program to be traced. However,

unless care is exercised, it will be difficult to tell what part of the program
is being traced,

: 37
1¢8 ERROR MESSAGES DURING COMPILATION

TABLE 1
COMPILATION ERROR CODES FOR NeCeEs LOAD GO (REVISED)

ERROR 11 UNRECOGNIZABLE STATEMENTs INCORRECT SPELLINGs ETCe
ERROR 12 MIXED MODEs OR MISSING RIGHT PARENTHESIS IN IF STATEMENT
ERROR 12 MISPLACED OR MISSING COMMA OR EQUAL SIGN
ERROR 14 MISPLACED OR MISSING PARENTHESIS
ERROR 15 MISPLACED OR MISSING VARIABLE OR OPEXRAND: NR
ILLEGAL SPEC/AL CHARACTER SEQUENCE

ERROR 20 STATEMENT NUMBER USED MORE THAN ONCE
ERROR 21 UNDEFINED STATEMENT NUMBER CALLED sseee
ERROR 22 WRONG NUMBER OF PARAMETERS ON A TRANSFER STATEMENT. OR
INVALID INDEX ON COMPUTED GO TO STATEMENTe
ERROR 23 CONSTANT IN UNACCEPTABLE POSITIONs OR STATEMENT NOe 1S ZERO
ERROR 24 MISSING OR UNACCERTABLE STATEMENT NUMBER OR ARRAY SIZE,
OR CONSTANT IS IN UNACCEPTABLE FORM,

ERROR 30 DIMENSIONED VARIABLE USED WITHOUT SURSCRIPT.OR
SUBSCRIPTED VARIABLE HAS NOT BEEN DIMENSIONED, OR
INCORRECT FUNCTION NAMEs OR
TRIG FUNCTIONS WERE ELIMINATEDe

ERROR 31 SUBSCRIPT IN INCORRECT FORM OR MISSING OPERATOR

ERROR 32 FUNCTION NAME USED IN NON«ARITHMETIC STATEMENT

ERROR 40 DO STATEMENT 1S INCORRECTLY FORMED .
ERROR 41 DO LOOPS INCORRECTLY NESTEDs OR ERROR IN LAST STATEMENT OF LOC
ERROR 42 DO LOOP ENDS WITH AN IF4GO TO. COMPUTED GO TO. DOy
STOP+ OR END STATEMENT _
ERROR 43 MORE THAN SEVEN LEVELS OF DO LOOP NESTING ENCOUNTERED

ERROR SO VARIABLE NAME CONSISTS OF MORE THAN FIVE CHARACTERS
ERROR S1 RAISING FIXED POINT QUANTITY TO A POWER

ERROR 52 A*%B%*C, PARENTHESES MUST RE ADDED TO INDICATE ORDER
ERROR 53 SOURCE PROGRAM IS TOO LARGE TO COMPILE

NOTE: el
ERRORS 21 and L1 can only be detected at the end of the compilation process.

Thus when ERROR L1 occurs no statement number will be typed out.

When ERROR 21 occurs the undefined statement number is typed out. No
indication is given of the statement in which the undefined statement

nurber ig referenced.

3* ¥
¥ 3

* ¥

38

TABLE 2

EXECUTION ERROR CODES FOR NuCoEo LOAD AND GO (REVISED)

ERROR 60 DIVISION BY ZERO

RESULT ==— 9,9999999E+48¢ OR 999Y%

ERROR 61 GG AR e s i e o WITH A = O
RESULT ~== 0,0000000

ERROR 62 A¥*¥Bs LOG(A)s OR SQRT(A) ~——= WITH A NEGATIVE
RESULT =—- FUNCTION OF ABS(A)

ERROR 63 CALCULATED £XPONENT GREATER THAN +49
RESULT ==~ 9,9999999E+48

ERROR 64 CALCULATED EXPONENT LESS THAN =50
RESULT =—-= 0,0000000

ERROR 65 SIN(A)s COS(A) S WITH A GREATER THAN 1.E9 RADIANS
RESULT —-~= 1.0000C0C

ERROR 70 SUBSCRIPT ON VARIABLE EXCEEDS SIZE OF DIMENSIONED ARRAY.
OR IS NOT POSITIVE NUMBERe OR THE INDEX OF A
COMPUTED GO TO IS OUT OF RANGE

ERROR 71 UNDEFINED VARIABLE

ERROR 72 UNACCERTABLE NUMEER IN INPUT DATA

ERROR 73 EXECUTION HAS TAKEN TOO LONG,PROGRAM MAY BE IN A LOOP

ERROR 74 PROGRAM CALLS FOR MORE DATA THAN INCLUDED WITH CARD DECKsOR
END STATEMENT IS MISSINGs OR MORE THAN ONE CONTROL CARC

IF ERRORS 70s 714 OR 72 OCCUR DURING USER PROCES3INGs THE COMPUTER
WILL HALTo SET SWITCH 3 OFF AND PUSH START TO COMPILE A NEW SOURCE
PROGRAMo PUSHING START WITH SWITCH 3 ON WILL CAUSE THE REEXECUTION

OF THE PROGRAM WHICH CAUSED THE ERROR.
ERRORS 73 AND 74 ARE INDICATED ONLY DURING BATCH PROCESSING.

A CHECK STOP MAY OCCUR IF THE SOURCE CARDS ARE PUNCHED WITH INVALID
CHARACTERS o REINITIALIZATION WILL BE NECESSARY.

37

I11el10 SAMPLE PROBLEMS

THE FOLLOWING SOURCE DECKS ARE PREPARED FOR BATCH PROCESSING
AND WERE PROCESSED USING VERSION THREE OF THE PROCESSOR

5 SAMPLE PROBLEM |

C PROGRAM ILLUSTRATES HOW ALPHAMERIC DATA MAY BE USED AS OUTPUT
READs A 4B e

PUNCH A 48B,C

END

P THIS IS A TEST PROGRAM

P A B (&
20

4 4C

650999

$ SAMPLE PROBLEM Z

© TO READ IN AND PUNCH CUT A ONE DIMENSIONAL ARRAY THE FOLLOWING
@ SOQURCE STATEMENTS MAY BE USFD

@ MNe S[ZE OF ARRAY.s 1S FUNCHED ON FIRST DATA CARD
DIMENSION A(1C)H

S0 READWN

G THE LAST DATA CARL 1o PUNCHED 9999
1F (N=9Q93) 20430420

20 DO 1C I=1sN

READ«A(])

10 PUNCH«A(T])

GO TO 50

30 END

P ouUTPUT

(=}

i

465

-3e2

2156

&6

15 o009 9456 -3665 99999 +1D

9989

$ SAMPLE PROBLEM 3
EXECUT | ON

QUTRUT
ROW COL. e NUMSBER
001 0001 Sel00CO0ON
GO0 Q02 S62000000
0CC1 n0e3 5e 2000000
[slole-] aQ01 610C00ND
slelop- 000z 762000000
0oL 2 COo3 506400000
9803 200} 30000000
Cn03 cLng 22600000
QQG 3 I3 -34 4400000
CooY GO0] 514000000
CLi4a sitior 6436000600
0CU4 CCO3s « 22000000
OCCy eloleh! £43600000
JIGCa Qone Qelll0O0OL
0001 Q003 10202000
QGO 0004 71 «300300
OOl SlaRs)s) 115392CGC00
DOL2 aialal) He 2000000
nooz con2 8eZ0000Q0C
QU2 Go03 Se30000G00
QCuz 0QCa 55600000
e A0S 700482000
D BHeNE ~-B34 422678
GoO GO0 e 111 «2000C
ouoe 0003 ~6eB000000E-03
oCcn2 OCCe 244000000
& SAMPLE PRCBLEM 4
EXECUTION

oOUTPUT SAMPLE PROBLEM 4

GROUP NUMBER GROUR 5UM

0001 404000000
Q001 wiorgelsisieloly)
CCO1 94 4000000
Coo1 1190000C
oz 26000000
coQ2 S2,000000
GLoz S34C0OCO0A
o0c2z 13050000
0003 254500000
oG 48500000
cooz 70.00C0O0C
003 120400000

Q0Gz 180400006

TH
WE

SO0 000

(a5
RE
(9

1F
10
0%
LE
i

11
20
GO
15
L=
=0
16
L=
GO
17
CR
7
GC

-~
~

30
a0
Y=
50

50

A=
=38

P

£
19
=0

L3

E FOLLOWING SOURCE DECKS ARE PREPARED FOR USER PROCESSING AND
RE PROCESSED USING VERSION TWO OF THE FROCESSORe

SAMPLE PROBLEM S

PROGRAM CALCULATES THE FORMULA C(NsR)=N /R (N-R)
FOR GIVEN VALUES OF NeR

N 1S ANY INTEGER GREATER THAN | AND LESS THAN 50
R 1S ANY [NTEGER LESS THAN N

VALUES OF NeoR PUNCHED ON SAME CARD

LAST DATA CARD PUNCHED 50 IN COLels2

i=0
AD s XN R

~HECKS TO SEE THAT THE DATA IS WITHIN THE ALLOWASLE RANGE
(XN=~504310,90,499

IF(XN~]e190,499+05

XNR =X N=R

(XNR)I99 99,1 1

SIMPLE TRANSFER STATEMENTS CARRY THE ARGUMENT TO THE SUB-ROUTINE
L=XN

1=1+1

TO 30

ANF=FAC
R

TO 20
RF=FAC
KNR

TO 20
XNRF=FAC
N=XNF / (RF #XNRF)

PUNCH+ XNoeR s CRN

TO 01

SUB-PROGRAM COMPUTES THE FACTORIALS
FAC=1,

S0 Jmlsbl
)

FAC=FACHY

TO (15016417341

STOR

END

5]

10
a2

% 60000000 30000000 10000000
3,0000000 1 «C000000 30000000
194000000 10000000 92377987

L

THE FOLLOWING SOURCE DECKS ARE PREPARED FOR USSR PRCCESSING AND
WERE PROCESSED USING VERSION TWO OF THE PROCESSORe

= OO0 0OO00D
o

(0

= 0

)
13

14

15

16

17
18

SAMPLE PROBLEM 6

SOLUTION OF SIMULTANEOUS EQUATIONS
BY GAUSS~-JORDAN ELIMINATION ‘

MODIFICATION OF USER & GROUP LINRARY PROGRAM Se0e007
THE PAUSE AT THE BEGINNING OF THE PROGRAM ALLOWS THE OPERATOR
TO SET SENSE SWITCH 1

SWITCH 1 ON s FUNCH OFFs PRINT

SWITCH 2 ON+STOP ON TOLERANCE CHECK OFFa CONTINUE

ENTER TOLERANCE AND S1ZE OF MATRIY AS FIRST PIECE OF DATA
17 EQUATIONS AND TRIG FUNCTIONS NEED NOT BE ELIMINATED.
WITH THIS SI1Z2E DIMENSION:THE PROGRAM wiLL MHANDLE

DIMENSION A(17418)

PAUSE

READ +TOLRWN2

Ni=N2+1

DO 2 i=1.N2

DO 2 J=14Ni

READ oA(TeJ}

DO 14 I=teNZ2

DIAG=A(T¢1)

I (DIAGY 44 204 4

IF(ABS(DIAGI-TOLR) 19,1945

DO 6 J=1aNt

ACleJ)= AlLsUY/DIAG

K=1

1IF (K—=1) 11413411

FCTRzA(Ks 1)

DO 12 J=I N}

AlKsSIZA(KJY ~FCTR®A(T +J)

K=K+

1F (K=N2) 949414

CONTINUE

= AL

IF(SENSE SWITCH 1) 15417

DO 16 I=14N2

PUNCH «A(1+sJ)

GO TO 10

DO 18 I=1N2

PRINT +A(TeJ)

GO TO 10

STATEMENT 19 IS TOLERANCE STOP
PAUSE
IF (SENSE SWITCH 2y 1045

STATEMENT 20 1S ERROR STOP
sToP
END

000

000
anoe
000¢€
nong

0010
0011
0012
0013

0016

002¢
0021
0622

gEas
0026

0029

0033
G034
0035

el

0039

0041
0042
00643
0044
0045
0046
0047
0048
0057

U5

Iv KINGSTON FORTRAN LANGUAGE SPECIFICATIONS Iv

The Kingston Fortran II system, composed of a language and compiler
for the IBM 1620, was written in July 196l and revised in November 196k, by
JeA.A, Field,, D.A, Jardiney, E.S., Leey, J.A.N, Lee and D.G. Robinson,. The
KFII compiler allows the following operations and specifications, which are
not discussed in Section 2 and not permitted by other Fortran compilers:

Use of stored Hodlerith constants.

Explicit specification of variable types.

Use of up to 13 subscripts.

Use of integer expressions in indexing Computed GO TO statements, and
DO statements.

Use of DATA specifications,

Optional free format.

A complete listing of library subroutines may be found in Section.IV.9a.
The KFII compiler includes the followin; library subroutines, which are in
addition to the standard library subroutines provided by other Fortran
systems:

MAX which chooses the largest value in a group of values.

MIN which chooses the smallest value in a group of values.

PLOT and PLOTP which plot the values of real variables on punch
cards or the console typewriter.

SORT which sorts elements in an array using the Shell Method.

The KFII compiler, stored on the 1311 disk of the 1620 Model II and
used with appropriate IBM Monitor System control cards, permits convenient
and quick one pass compilation and execution of a source deck written in
KFIT language., The discussion of the KFII language which follows includes
only those language specifications which apply specifically to KFII, and
assumes that the reader is familiar with the language discussed in Section II.

1. Dept. of Electrical Engineering, University of Toronto, Toronto, Ontario.
2. Du Pont of Canada Ltd., Research Centre, Kingston, Ontario.

3. Computing Centre, Queen's University, Kingston, Ontario.

L6

IV.1l Punching input source programs V.l

The statements of a Kingston Fortran II source program may be punched
in columns 7-72 of a source program card., If the statement is too long for
one card, it may be continued on the following cards. These continuation
cards must have a non=-zero number in column 6, The first card of a statement
must have column 6 either blank or zero, Blanks in columns 7=72 are ignored
except for Hollerith specifications, discussed below,

Columns 1~5 on the first card of a statement are used for the statement
number, if any.

Columns 73-80 are not used by the compiler and may be used for program
identification, sequencing, or any other purpose.

Comments to explain the program may be punched in columns 2-80 of a
card, if the letter C is placed in column 1,

IV,2 The arithmetic statement : Iv,2

IV.2a Constants Iv,2a

Integer constants - The magnitude of an integer constant must not be greater
than 99999.

Hollerith constants - A Hollerith constant consists of any characters,
l= n <« 5, including blanks and special characters. It is written with
the ihteger n, followed by the letter H, followed by exactly n characters.

Example:
Valid Invalid
1HA G6HABCDEF
LH(3/= OH
3HbbC LHbbbbD

Note: The b indicates blanks,
Hollerith constants or variables whose values are Hollerith constants, carry

symbolic rather than numeric information, They may be used in the following
statements:

l. Simple replacement statements may define a Hollerith constant

Examgle:
I = 3HYXA
A = JH123)4

2, Data statements may define a Hollerith constant,

(5ee section IV. 7d)

3.

L.

Te

‘Input, output statements, using A-format may define a Hollerith constant.

Exampie:
G READ 2, (TABLE (J),J = 1,5)
2 FORMAT (5AS5)

The above statements will read the 5 table values, SMIT1, JONES, TERRY,
ALPHA, DATUM, into machine core storage labeled TABLE (1), TABLE (2),
TABLE (3), TABLE (L), and TABLE (5).

(See Section IV,.5b)

Arithmetic statements may inelude Hollerith constants providing the only
arithmetic operations are integer subtraction or addition., Due to the
machine representation of the blank as zero, the following

equations are correct and may be used in a source program to form
Hollerith constants.

Example:
SHABCDE = SHbbbbb + SHABCDE
2HIA = 2H1b + 2HbA
2HbA = 2H1A - 2H1b

IF statements may compare two Hollerith constants, or variables whose
values are Hollerith constants, for identity.

Example:
If (LIST (1)-ITEM(2)) 10,20,10
Where LIST and ITEM contain symbolic information,

CALL statements may include Hollerith constants as function arguments.

(See Section IV,8c)

DO statements may use Hollerith constants as the initial and increment
values of the index, Due to the machine representation of an alpha=-
betic character, the following DO statement causes the Index I to assume
all the possible letters of the alphabet in order.

Example:
Do n I =1HA, 1HZ, 1HB ~ 1HA

Thus the user can sort cards alphabetically,

k7

IV.2a

L8

IV.2b Variables Iv,2b

Variable names- A variable name consists of 1-6 alphameric (numeric or
alphabetic) characters,

Variable types~ The type of a variable, integer or real, can be specified
in two ways: implicitly or explicitly. Implicit specification is discussed
in Section II, Explicit specification of a variable type requires using

an INTEGER or REAL statement.

Example:
INTEGER DEV, ITA
REAL ITEM, FAN, LIST

The INTEGER and REAL statements are used to overide the implicit type
assignment associated with a variable name, The INTEGER statement declares
all variables in its list to be of type integer regardless of their initial
letters, Similarly, the REAL statement declares all variables in its list
to be of type REAL, regardless of their initial letters. Variables listed
in an INTEGER or REAL statement remain that type throughout the program; the
type can not be changed, The INTEGER or REAL statement is a type specific-
ation statement and must precede the first executable statement of the
program, but must follow COMMON, DIMENSION and EQUIVALENCE statement.

(See "Order of appearance of specification statements," Section IV,7e)

Subgcripted variables- KFII allows up to thirteen subscripts. Subscripts

may take the form of any arithmetic expression whatsoever provided that

the result of evaluation of the subscript be an integer number. In particular,
the subscript may itself contain subscripted variables, whose subscripts,

in turn, may be expressions involving subscripted variables,

Example:
Valid subscripts Valid subscripted variables
I) A(I)
§3) KEB) 3
2+MU ALPHA(I,J, 2+MU)
EMU+2 RUN(MU#5+M, L3« (K (2)-L+M) ,K(N(M))
(gr*5+M)
(2%T) '
63J =K +2-10/L+M
o (2oLt kL (+2)) /3y
*(FIXF (A%B2,0%4C) $L/2)

Invalid subscripted variables

X(A,I)
A(T,J%2,5)

%(See library function FIXF,IV,9a)

L7

IV,2¢ Arithmetic expression IV.2c

Rules for forming expressions: (See Section II, for general Fortran rules
for forming arithmetic expressions.)

1. E = -A%%B is compiled, E = -(AB)

2, Within the same priority, the addition, subtraction, and multiplication
operations are performed from right to left, For example, A+B+C+D will be
performed as (D+C+B+A); whereas % A+B)+(C+D) will be performed as the sum

of (D+C) and (B+A). However A¥B/CD will be calculated as.

A%(B/C)D.
IV.3 Control statements Iv.3
IV,3a Statement numbers IV,.3a
Statement numbers may be any integer n, 0< n == 99999,
IV,3b Address variables Iv.3b

An address variable is a variable which has been made equivalent to
a statement number, The ASSIGN statement, assigns the statement number to
the address variable,

General form of ASSIGN statement:

ASSIGN 1 to n

wheres 1 1is a statement number or address variable.
n 1is an address variable,

An address variable must be defined ultimately in terms of a statement
number, Thus if I is an address variable, it must at the time of execution
of an ASSIGN statement, have previously been defined in terms of a statement
number or another address variable which was defined in terms of a statement
number. The contents of storage assigned to the address variable is not the
statement itself, but rather the object time representation of the statement
number, Address variables may be subscripted, if desired. If an address
variable is assigned to another variable it must be enclosed in parenthesis.,

Example:
Valid ASSIGN statements

ASSIGN 12 to K
ASSIGN (K) to J(L)
ASSIGN 13 to A(M(N))
ASSIGN (A(M(N))) to K

Rules for using address variables iiVis3b

1. Address variables may appear in the following control statements in place
of a statement number:

Statement | Example

UNCONDITIONAL GO TO GO TO K

COMPUTED GO TO Go T0 (10,K, 30, L(M), 15,35), ITEM(J)
ARITHMETIC IF IF(a(J,K)-B)10,4,L

IF SENSE SWITCH IF(SENSE SWITCH 1) N,A

2. Address variables may not appear in a DO statement.

'3, Address variables may be used as the FORMAT designator in an input/
output statement. Address variables may be reassigned within a program.

(See Section IV.L)

L., Address variables may be transmitted to a subprogram in a CALL statement,
Thus address variables may be used to provide multiple returns from a
subroutine, each to a different point,

(See Section IV.8c¢)

5. Address variables may be defined in a DATA specification statement.
They may not be used in any other type of specification statement.

6. Arithmetic may not be performed on Address variables, They may not
be used in an arithmetic statement.

IV.3¢ Computed GO TO statement IV,3c

GO TO (Xl, X0, XB, ";‘xn)’ i
where: Xy, X, X39 eeeeXp are statement numbers or address variables.

i is an integer expression of any complexity whose value is greater
than or equal to 1 and less than or equal to the number of state=~
ment numbers or address variables within the parentheses., The

comma preceding i is optional,

Example: GO TO (10,K, 30, L(M), 15, 35), ITEM(J)

If the value of ITEM(J) is 3 at the time of execution, a transfer occurs
to the statement whose number is the third in the series. If the value

of ITEM(J) is L4, a transfer occurs to the statement whose number is fourth
in the series, address variable L(M).

IV,3d IF SENSE SWITCH statement Iv.3d

IF (SENSE SWITCH i) ny, 0,

where: 1 is an integer constant or arithmetic expression
n], ng are statement numbers or address variables.

The last two digits of the integer constant or expression i are
used to determine which machine indicator is to be interrogated., Control
is transferred to statement ny if the machine indicator is on. An of
the machine indicators can be interrogated by the IF (SENSE SWITCH) statement.
However, not all machine indicators are relevant to the computations performed
by the object program, Care should be exercised in using the IF (SENSE
SWITCH) statement since the operating system subroutines may leave the
indicators in a position which does not correspond to the result of the
arithmetic calculation.

IV,3e DO statement IV.3e
End of Index Initial Test Increment
Range Value Value
DO n i = m, my, m3

where: n is any statement number, but NOT an address variable.
i is a subscripted or nonsubscripted integer variable.
My My, m3 are signed or unsigned integer constants, subscripted or
non=-subseripted or integer expressions of any desired complexity.
mg is optional; if it is omitted, its value is assumed to be 1, In
this case, the preceding comma must also be omitted,

Rules for using the DO statement

1. The range is the series of statement to be executed repeatedly. The
range can consist of any number of statements,

2, The values of the index, test value, or increment, (i, my 5 Mp , M3y s)
may be changed within the DO loop if and only if they are simple variables.
The DO will then be continued with the new values, and normal in-
crementing will occur until an exit from the range of the DO takes place,

3« The initial value, m,, and test value, m,, may be positive, negative,
or zero. The normal algebraie sign convéntion is applied for increment~-
ing and testing,

4. The increment, M3, may be positive or negative, but not zero,

52

Example: IV, 3e
The statement DO 20 I = 5, =4, =3

will cause the range of the DO to be executed with I taking on the
successive values 5, 2, =1, =L.

Example:
The statement DO 100 I(J) = Lal+2, 63K, N(K)

will cause the range to be executed with I(J) taking on values starting
at the value of L#M+2, and continuing with increments of the value of
N(K) until the wvalue of 63K is exceeded in the direction of incre~
mentation,

5. Transfer into the range of a DO statement is permitted if a previous
transfer has left the range of the DO and it is desired to return to
the range of the DO.

IV.,3f PAUSE statement IV, 3f

PAUSE n

where: n is an unsigned integer constant, or an integer variable or
expression, n is optional.

The PAUSE statement causes the program to halt, PAUSE n is typed
on the console typewriter. If n is omitted, the program is halted and
there is no typewriter output, Pushing START causes the program to resume
execution, starting at the next statement after the PAUSE statement.

IV.3g STOP statement, CALL EXIT, CALL SKIP IV,3g

STOP n

Where: n is an unsigned integer constant, or an integer variable or
expression, n is optional,

The STOP statement causes the program to print STOP 0000 on the
typewriter if n is not specified, If n is specified, STOP n is printed,
In either case, the execution of the program is terminated, and may not
be resumed.,

CALL EXIT

The CALL EXIT statement halts the object program and returns control
to the supervisor so that another source program may be compiled., The

53

CALL EXIT statement must be the last executable statement in a program IV.3g
written for the IN-OUT box unless a CALL SKIP is used as specified below,

CALL SKIP

The CALL SKIP statement causes interruption of the normal program,
The CALL SKIP will usually be employed to stop calculation on a block of
data because of an abnormal situation (e.g. failure to converge on an
iteration, bad data) which has occurred in the block of data. In such a
case, CALL SKIP will cause that particular calculation to be abandoned,
and a new set of data to be presented to the program. The data must be
sectioned by end of file cards,

General form: FEnd of file card

$5

where: $ signs are punched in card cols, 1-3,

The end of file card indicates the beginning of a new block of data,
If the data abandoned is the last block of data, a normal exit to a new
program will result, This is the only instance where a CALL EXIT is not
the last executable statement in a program,

IV.,3h END statement IV.3h

END

The END statement defines the end of a program or subprogram for the
compiler, Physically it must be the last statement of each program or sube
program. When it is encountered in the flow of the source program, com-
pilation halts and any source program cards following the END card are not
compiled,

The END statement is not executable, The last executable statement
before the END statement must be & transfer. gtatement (IF, GO TO, STOP, CALL,
or RETURN), An END statement may not have a statement number,

IV.L INPUT/OUTPUT statements IV.h
IV.hba Input statements IV.ha
READ n, list Cards

ACCEPT TAPE n, list Paper tape

ACCEPT n, list Console typewriter

REREAD n, list Causes the last record read (regardless

of input device) to be read again.

5l

IV.ha
vhere: n- is a statement number, address variable, or the name of an array
containing the format in the form of Hollerith constants, represent-
ing the FORMAT statement describing the type of data conversion,
n is optional, If omitted, the system will supply a standard format.

(See section IV.6
KFII without Format)

List is a list of variable names, separated by commas, representing
the input data. ‘

IV,4b Array input IV.Lb

1, When an array name appears in an I/0 list in non-subscripted form, all
of the quantities in the array are transmitted, If the list item is a
multi~dimension array, it is transmitted columnwise, with the first
subseript varying most rapidly, and the last subscript least rapidly.

Example:
Dimension C(10)
Read 40,C

The above statements will cause all of the quantities C(1)....C(10) to
be read into storage,

Given D is a 3 x 5 x 5 array

Example:
Dimension D(3,5,5)
Read L4O,D

The above statements will cause all of the quantities, Dlll""’DZ saeee
Dglg.....D311.....D351.....D355 to be read into storage in the foiiowing
order:

P1112 P2112 P3135 Pigys Dopys Dypys Bygys cte.

2. Indexing I/0 lists - Variables within an I/0 list may be indexed and
incremented in the same manner as with a DO statement., For example,
suppose it is desired to read data into the first five positions of
the array A. This may be accomplished by using an indexed list, as
follows:

READ 50, (A(I),I = 1,5)
This is equivalent to the following:

READ 50,A(1),A(2),A(3),A(4),A(5)

55
As with DO statements, a third indexing parameter may be used to specify
the amount by which the index is to be incremented at each iteration. IV.Lb
Thus:
READ 50,(A(I),I = 1,10,2)
causes transmission of values for A(1),A(3),A(5),A(7), and A(9).
Furthermore, this notation may be nested, For example, the list:
((C(I,J),D(I:J),J = 1:5)31 - 1:)4)

would transmit data in the following order:

¢(1,1),D(1,1),6(1,2),D(1,2),...,0(1,5),D(1,5)
c(2,1),D(2,1),c(2,2),D(2 2),...,0(2,5),D(2,5)
6(3,1),0(3,1), 0(3 2),D(3 12)502420(3,5),D(3,5)
c(l4,1),D(h,1) C(h,z),D(h 2) 5000500005 ,0U;5)

The notation for the implied DO statement in an I/0 list may be of the
same complexity as that described earlier for the DO statement proper.
In particular, the indexing variable may itself be subscripted, and
the limits may be integer expressions. For example, the following are
permitteds

mwlo((l,) =x,) J = M,N)
READ 10,((A(I(K1),J(ML)),K1 = K~JOB#2,L+5,-J6), ML = Mx8~MM9,N,3:N18)
Restriction

In an input list, the items may be only subscripted or nonsubscripted
variables or . array names. All variables in an implied. DO state-
ment must be in the DO loop, - Thus the followinglexample is invalid:

READ 50, DOG,(A(I),I = 1, 10, 2).

3. Sample problem 7 (Section IV.1l)}) illustrates array input and output.

IV.he Output statements IV.he
PUNCH n, list Cards

PUNCH TAPE n, list Paper tape

TYPE n, list Console typewriter

PRINT n, list 1443 On~line printer

where: n is a statement number, address variable, or the name of an array
containing the FORMAT statement in the form of Hollerith constants,
If n is omitted, the system will supply a standard format.

(See section IV.6:
KFII without format)

=k
Yiloeme of Py of G aadisprng sobrobmd el s godnesddsis OF dide gt
‘m* wrrider] asew be tofasmemans oo oo sb soaba? nfnabhwmlﬁ

LL

[%0rs w T 0704002 uas

AT hae T E (T (UMGTTIA 26w adiew o modewipniest aemimn

wiee . sds (uloemen wafl L ednog ws pss muiszon SO teemiiut
L TARE = By B, e TIE))

= .n!:!vﬂu‘i MR kWA 3 e Tl

:1 % 'ﬂi-ht Momgi - -g'?ttst{;“ﬂ H:‘

v .--n."-l- =y =
i ,“'-';; E@E!a‘ e Q;E QJF‘LI'Q; Il l

T Jﬂ. N i g‘lql ll’q‘!"h'r

Wit i o e tal. "'"uent‘lnart = "'uj.h[dhiw'bmmumll"
sy S poaie O fd e amideed doibesmad gacd se Flselgure e
aEREUrTedE 5 CRIWRS L yEm plasdemae tleingl mell gaalEsldesg of

= ksl Y g tommen =t e Ipseetd peqaand wd gen 2abal wly
w5 : . 2 g Py

%? 3; 3 -
IR = 1 a‘n-z APRAE) N PTU = &
fEemn (i sm-r » D0, [, Pul, 385l = h (DO ol i8] Y gl aas -

B cp L Etmail

th 'E‘-w”iﬂ-h'r._- -l"ﬂz!‘w_"ﬂ-ﬂl it ’l’lL ==t ‘
= Fotn G Boilned o ol pmldi b LR owomsent grmie = gp el
thafpend ol wommayc neswelieor g apff aeal ©F mie g wd tspe o

L S
=

JE o L - o [Gel, oM M Qach

N “ T

FIPRET SRS BT QATSE (= "I’I“‘"l .ua.u'—'.ﬁ'.'r:iﬂ-k-m-bml-—' oL

nile¥l) = i tasy Jugdst ke
3 wlmat Full o HNUM
et asqul et o BT WSS

T [pomd ndoersd il gn 5T

madambey us =g L Fell g0 THIS

yavs o 2n o= w8 GiiTeluev —pedtla cesde Jowessd by F oo T
ARG (ISR YR A wIY ! Sreeretades TIREUR o ptiniatnos
wd A= rmramm v CLDy madeys st ! bt 2hay ok 2t B3

.3 btaae = ‘5 L
(Aot Lesid e m E

o v
"

Wheret: Iw, Fw,d, Ew,d, wX, Iw, Aw, represent data conversion codes
separated by commas.
/ represents the beginning of a new record.

IV.5a2 Numeric conversion codes

I-conversion=- is used to input or output an integer quantity as follows:

Iw

Where: w represents thh number of spaces that are scanned on input or
reserved for the number on output.

1l, If the number to be output is greater thanw spaces, the excess is
lost and an error indication results,

2. If the number to be output has less than w digits, the left-most spaces
are filled with blanks, Blanks in input data are regarded as zeros,

3. A positive sign need not be punched on input., Space need not be left
for a positive sign on output. However, the space preceding the left-
most digit must be reserved for sign, if the quantity to be output is
negative,

4, If a real number is output gnder I-conversion, the integer part is
punched without rounding. Sufficient width must be allowed for the
resulting integer number.

Example:

ST

Iv.5

IV.S&

specification I3 will punch the internal values as follows:

Internal value Punched
721 T2
=721 error message
-12 -12
68114 error message
4336,15 error message
<43.72 -3

F=-conversion- is used to input or output a number with decimal,

General form of F-conversion code:

Fw.d

where: w is the total field reserved on output or scanned on input.
d is the number of places to the right of the decimal,

peee wbgrvrenen o 2ele Jrmpenget gnd pul (T GRS GG il sl
pmimmnn ol Batrvesen

shrcois smn o T pnlimoye o, Sl gy

BRI kst s o by CTa

ped=tled e ud L LS e Mt Yo BNt oF Red g wpolagersise |

119“(“»‘1}#
o

wl

== ey Demnane weor 3ES spmipr 1o asemg @0 sstemenpen wonurpads
«Srnlan e i =4 450 Bevymess

Vo omeesal e gefmEmE v ST 2efeetp o dendar w0l reemen ik IF W4
g oowTraad e o e doold

L LT L e T T S . e { I
e ot Bmiitocieies my CAFs demtd i) s e OF dabe lmlIRY wre

Fiml wt tu berwn oecR sdemind o beriesy st Snp Sems amde ewallacg £ (G

=i bt mvibeemys wmem w0 eweeed eyt W 7 L oeedipeeg 4N

al doad @ off oF w il it] ¢ pdp il Eamamsy w0 tabe 3N Jecs
el

W M asgmand aets pmmipreigae | osBug ugies s vedkun e m X ol
iy T Mealle el Juoe SIUM S t=ige R i tooslfux basburg
Jamlsre o=l gelnluses

e
pos 50 ¢ s o Leg=y=1 L5 ey L li= 03 palasxiibems ’
e 1 bl Sy endii!
= 1Bty
L L T i60=
5= ct-
SRS T shEsE
s e o 2 Ly
e ek

wanan nibe sstmee o Sadee = fonad eo oy SF -aoiuzersont

1edan rougrrevpas~" Tu mand Caeanidl

Jegw®,

wlvcil e hemiiay g fephon o bewrmaey hisdl A= wlt pf o cwresie
olmdnale wikt W Friptr BEE = gl Lo ovedmnt o2 gf 3

59

IV.Sa.
1, Numbers for E-conversion input need not be punched with four spaces
devoted to the exponent field, The start of the exponent field may be
marked by an E, or by a plus or minus (not a blank--all blanks in
fields are read as zeros),

Example:
«3E2, o3E+2, ,3+2, ,3+02 are all valid input data.

2, The total field width, reserved for output must include a space for
sign if the number is negative, a space for the decimal point, and
four spaces for the exponent,

3+ The decimal portion is rounded if insufficient spaces are reserved on
output,

he If an integer number is handled with E-conversion, the integer number
is changed to the corresponding real number before E-conversion takes

place.
Example :
Specification E10,3 punches the internal values as follows:
Internal Value Punched
238, bb,238E+03
-.002 b-,200E-02
»000000000L bb L400E~9
=21,0057 b=,210E+02

N-conversion- is used for input which is punched "free form" and will supply

a scandard format on output, N~conversion neither permits nor allows
width or decimal point location specification,

General form of N~conversion codes

(V)

where: x is the number of variables in the input or output list

1. Input data may be any type; integer, real, or E, punched with one blank
separating each number, The internal form of the number is entirely
determined by the Type of the variables in the input list,

Examples
READ 10, x, I, N, Y
10 FORMAT (I N)

én

IV.5a
The eard is punched: The numbers are read as follows:

Card Qols. Contents

1-3 L62 X = }62

L b I =2

5-6 b2 N = =398

7 b Y = 539,3218
i .- 539.3
12 b

13-20 539.3218
2. On output, N-conversion is equivalent to 1PE1L.7, 1X for real numbers.

(See "Scale factors" below)
and I6,1X for integer numbers.

Examples
PUNCH 10, Y, I Internal Value
10 FORMAT (2N) will produce
the following output: Y = 563
5+,6300000E+02bbbb~21 I==221

Scale factors

To permit more general use of E-, and F-conversion, a scale factor
followed by the letter P may precede the specification., The magnitude of the
gcale factor must be between =49 and +49 inclusive. The scale factor is
defined for input as follows:

acale factor

10 x external quantity = internal quantity

The scale factor is defined for output as follows:

external quantity = internal quantity x 10 scale factor

For input, scale factors have effect only on F-conversion. For example,
if input data are in the form xx.xxxx and it is desired to use it internally
in the form .xxoox, then the FORMAT specification to effect this change is
2PF7.4 For output, scale factors may be used with E~, and F-conversion.

For example, the statement FORMAT (I2,3FLl,3) might give the follow-
ing printed line:

27bbbb=93,209bbbbb -0 ,008bbbbb0, 554

but the statement FORMAT (I2,1P3F11,3), used with the same data, would give
the following line:

b1

27bbb~932,094bbbbb~0,076bbbbbb5, 536 IV.5a
Whereas, the statement FORMAT (I2,~1P3F11,3) would give the following line:
27bbbbb=9, 321bbbb-0,001bbbbbb@, 055

A positive scale factor used for output with E-conversion increases
the number and decreases the exponent, Thus, with the same data, FORMAT
(12,1P3E12,.4) would produce the following line:

27b=9,3209Eb01b~7 , 5804E~03bb5,5536E~01

The scale factor is assumed to be zero if no other value has been
given, However, once a value has been given, it will hold for all E=-, and
F-conversions following thé scale factor within the same FORMAT statement.
This applies to both single-record formats and multiple-record formats. Once
the scale factor has been given, a subsequent secale factor of zero in the
same FORMAT statement must be specified by OP., Scale factors have no
effect on I-conversion or N-conversion,

IV,5b Alphameric conversion codes Iv,5b

There are two specifications available for input/output of alpha-
meric informations H-Specification and A~Conversion, H=-Specification is
used for alphamerie data which are not going to be changed by the object
program (e.g. page headings); A-Conversion may be used for alphameric data
in storage which are to be operated on by the program (e,g, modifying a
line to be printed).

H=-type FORMAT specification

H-type specification is written within the FORMAT statement and is

preceded by nH where n is the number of characters in the specification.
For example:

25 FORMAT (15HbTHISLISLH-~TYPE)

The effect of this statement depends on whether it is used with an input
or output statement, A comma separating the H-type specification from a
succeeding specification, is optional,

Output: All characters (including blanks) within the specification are
written as part of the output record, Thus, the statements:

5 FORMAT (27HbTHISbISbISbALPHAMERICLDATA)

PRINT 5

62

would cause the following record to be written on the printer: IV,5b

THIS IS ALPHAMERIC DATA

Input: A number of characters, equal to the number, n, of characters
specified, are read from the designated input record and replace, in storage,
the characters within the H-Specification. For example, the statements:

5 FORMAT (8HHEADINGS)
READ 5
would cause the first eight characters to be read from the next input card

and these characters would replace the characters HEADINGS in the FORMAT
statement.,

Restriction: The number of characters in a single H-Specification must
not be greater than 99,

Note: If a Hollerith specification extends beyond the end of the source
statement card on which it was started, it may be completed on a continu-
ation card. In this case, the first card is considered to end at column 72.

A~Conversion

The specification Aw is used to read or write alphameric data, w
must be 1,2,3,4, or 5. It causes the w characters to be read into, or
written from, the area of storage specified in the I/0 list, For example,
if a data card having the characters ABCD in columns 1l-4 were read under
control of the following statements

10 FORMAT (aL)

°

L

READ 10, SAM

the four alphameric characters ABCD would be read from the card and placed
into the field in storage named SAM,

The following statements:

15 FORMAT (3HXY=,F9.3,Al/)

PUNCH 15,A,SAM,B ,SAM

would produce the following lines:

XY
XY

5976 ,214ABCD
6173,928ABCD

i

Characters transmitted under A-conversion are stored in memory as Hollerith
constants, Conversely, a Hollerith constant, or a variable whose value
is a Hollerith constant, may be output using A-conversion.

IV,5¢c Specifying blank fields

X-conversion provides for blank characters in an output record, and skipp=-
ing of characters in an input record,

General Form of X~conversion code:

wX

Where: w characters are skipped on an input record, or w blanks provided
in an output record.

1, X~conversion must be carefully distinguished from H-specification
with blank characters, Reading an input record under X~conversion
causes the appropriate part of the record under X-conversion to e
ignored completely.

Example:
Card is punched: Read 5, A, I
Cols 1-5 - 543.2 5 FORMAT (F5.1, 3XIL)
6-8 L23 will result in:
9-12 3233 A=543,2
I=3233

IV,5d Repeating specifications

A specification may be repeated as many times as desired (within the
limits of the output device) by preceding the specification with an
unsigned integer constant,

Thus:

2F10.4
is equivalent to:

F10.,L4, F10.4

Parenthetical expressions are permitted to enable repetition of data
fields according to certain format specifications within a longer FORMAT
statemant.,

63

1v.5b

IV,.5¢

IV.5d

6L

Thus: IV,.5d
10 FORMAT (2(F10,6, E10,2),IL)

is equivalent to:
10 FORMAT (F10,6, E10,2, F10,6, E10,2, IL)

Five levels of nested parentheses, in addition to the parentheses,
required by the FORMAT statement, are permitted.

If there are more items in the list than there are specifications in
the FORMAT statement, control transfers to the immediately preceding left
parenthesis of the FORMAT statemnt., A new card (or line) is punched with
the specifications used again for the next item in the list,

Example:
The following statements:
10 FORMAT (Fl0.3, E12,L4, F12,2)
*
.
PUNCH 10, A, B, C, D, E, F, G
cause the data to be transmitted in the following ordert
Data Transmitted Specification
A) FlO.Bg
B) E12.4) First ecard
c) F12,2)
D) F10,3)
E) E12,.4) Second card
F) F12,2)
G F10,3 .Third card
IV.S5e The use of the slash (/) IV,5e

1, The / may be used to denote the end of a record, On input the / calls
for the reading of the next card.

Example:
5 FORMAT (F5,2, /F10,2)
READ 5, A, B,
A 1is read from the first card, B from the second card,.

On output the / calls for the punching (or typing) of a new card,

65

IV.5e
2. The / may also be used to provide blank lines between output records
or records skipped for input records.

For example, if the statement FORMAT (I2,E12,L////F12.3) is used for
printed output, three blank &ines will be inserted between the data specified
by I2,E12.4 and the data specified by F12,3. However if the dashes are placed
at the beginning or end of the FORMAT specification an additional blank line
(or second skipped) is provided. For example FORMAT (////16) provides for the
insertion of) blank lines.

IV,5f Printer carriage control

A Printer carriage control Hollerith character must be included in each
Format statement used with a PRINT statement to designate the desired space
or skip operation for each printed line, The printer~oriented Format state-
ment must begin with 1H followed by a control character which specifies the
desired operation., The control characters and their effects are:

blank single space before printing
0 double space before printing
1 skip to a new page

The control charachér itself does not become part of the printed output.

Example:
PRINT 2, 4,B,J
2 FORMAT (1HO, F8.2, F8,2, 18)
This specification will provide a double space between the line being
printed and the previous printed line,

The control carriage specification is applicable to the first line of print
only. If more than one line is called for, the user must be sure that the
carriage control specifications precede the normal specifications for each line
of print.

Example:
PRINT 2, A, B
2 FORMAT (28H1SMITH, OUTPUT FOR PRORLEM 3/1H ,2F8.2)
The line SMITH, OUTPUT FOR PROBLEM 3 will be printed on a new page. The
value for A, and the value for B will be printed on the next line,

IV,6 KFII without FORMAT Iv.6

The FORMAT statement and the corresponding statement number or address
variable in an I/0 statement are optional in KFII and may therefore be omitted
entirely. If no FORMAT statement is specified, the system will supply FORMAT (5N).

IV.7 Specification statements IV.7

The specification statements are nonexecutable, because they do not
cause the generation of instructions in the object program. Instead they
provide the processor with information about the nature of the variables

used in the program. In addition, they supply the information required to
allocate locations in storage for certain variables and/or arrays. Specific-
ation statements must appear at the beginning of the source program. The
order in which they must appear is specified at the end of this section,
(Section IV,.7e)

‘IV.7a COMMON statement

General form:
COWON a, b, C, [(EENNNN]

Where: a, b, ,.s.. are variables that may contain dimension information as
in the DIMENSION statement,

Variables, including array names, appearing in a COMMON statement,
are assigned locations at the upper end of the memory. This COVMON area
permits variables to be shared by a program and its subprograms without
transmitting arguments,

1, If the variables appearing in a COMMON statement require dimension
information, they must appear in the COM/ON statement in the same form

as they would in a DIMENSION statement; they must not then appear in a
DIMENSION statement.

Example:
COM/ON A, B, C(10, 20, 2)

where C is a three-dimensional array 10 x 20 x 2,
2, The locations in the COMION area ‘are assigned in the sequence in which
the variables appear in the COMMON statement, beginning with the first
COMMON statement of the program,

3+ Two variables in COMMON may not be made equivalent to each other,

IV,7b EQUIVALENCE statement

General form:

EQUIVALENCE (a,DyCyseecse)s (dy €5 fyeoses)

Where: a, b, ¢, d, e, fy....4 are variables that may be multiple subscripted;
the subsgcripts must be integer constants,

Iv.7

IV,7a

67

Each pair of parentheses in the statement list encloses the names Iv.7b
of two or more variables that are to be stored in the same location during
execution of the object program; any number of equivalences (i.e., sets
of parentheses) may be given.

Example:
' DIMENSION B(5), ¢(10,10), D(5, 10, 15)

EQUIVALENCE (A, B(1), ¢(5,5)), (D(1, 2, 5), E)
The EQUIVALENCE statement indicates that A, and the B and C arrays are to
be agsigned storage locations so that the elements A, B(1), and C(5,5) are

to occupy the same location. In addition, it also specifies that D(1,2,5)
and E are to share the same location,

IV.7c Type statements IV.7ec

The type statements INTEGER and REAL, are discussed in Section IV.2b,
Variables types.

IV,7d DATA statements Iv,7d

General form:

DATA V1/C1/, V2/C2¢, +ue..Vn/Cnf

Where: Vi is a variable name, an element of an array, or an array name.
Ci is a list of constants (separated by commas).

The address of the variable v, which for an array is the first element
of the array, is initialized with the first constant of the list c. If the
list ¢ has more than one element, these subsequent constants are stored in
order in the memory locations which follow the position of the variable v,

If the variable v is an array the constants will be stored in the array in
the same sequence that data would be stored in the array by the appearance
of the array name in an input list.

If there are more constants in the list ¢ than there are aelements
in the variable v, difficulties may be encountered at object time, No check
is made for this error, Moreover, no check is made to see that the variable
and its constant(s) are the same type,

Integer and real constants may be preceded by a minus sign. A plus

sign preceding a constant is not permitted, but is implied by the absence
of a minus sign,

An address constant is used for pre-assigning a statement number to
an address variable, Address constants may not appear anywhere in the

program but in the DATA statement.

The DATA statement may appear at any position after the specific-

ation statements,

Examgles:

IV,7e Order of appearance of specification statements

DIMENSTON

DATA
DATA
DATA
DATA

variab}g

R
HOLL
JOB
NUM

F
PIE
TRANS(1)

TRANS(2) ,TRANS(3)
TRANS (L), (5),(6)
TRANS(7),(8),(9),(10)

X(10,5),B(2,2),13,TRANS(10)

R/3.0/,HOLL/SHABCDE/,JOB/~1/

NUM/23S/

TRANS/3S ,LS,4S,3%#7S, 435/

is initialized withs

3.0
ABCDE

-1

the object time representation
of statement No, 23

"'3 06
3.1415927

68

IV,7d

statement no, 3(obj, time representation)

n
1t
n

The specification statements must be the first statements of the
The order of these must be (excluding comments cards) as follows:

progran,

IV.7e

69

COMMION if any IV.Te
DIMENSION if any
EQUIVALENCE if any
REAL if any
INTEGER if any

REAL and INTEGER are considered equivalent, and may be inter-
changed in the above list.

The DATA statement may appear anywhere after the above list.

Iv,8 Subprograms Iv.8

The programmer preparing a KFII source program may find that he uses
an algebraic function, or a series of source statements, many times in the
same program. For example, the program may call for calculating the log of
several variables, or the standard deviation of several sets of variables,
or the inverse matrix of several sets of matrices, If the source state-
ments that are to be repeated are defined in a subprogram, the programmer
need write the source statements only once., These source statements
comprise the subprogram definition,

The KFII language provides for four (l) types of subprogram defin-
itions; Arithmetic Statement Functions, Function Subprograms, Subroutine
Subprograms, and Library Functions, The Library Function Subprograms are
written into the KFII compiler. A list of Library Functions is included
in Section IV,9, All other subprograms must be written by the programmer,
The Arithmetic Statement Function is expressed in a statement, all other
subprograms may include any number of statements.

For each subprogram definition, the KFII language also provides
source statements which perform the following operations:

1, Transfer control to the subprogram (Call the subprogram) at each point
in the program where the calculations are needed,

2, Transfer the variables to be used in the subprogram calculations
(function or subroutine arguments) to the subprogram,

3. Return the values of the calculated variables to the main program.
L, Return control to the main program,
Function subprograms differ from the subroutine subprograms in that

functions always return a single value to the main program, whereas a
Subroutine Subprogram can return more than one value to the calling program,

70

IV.Ba Arithmetic statement function Iv,.8a

The Arithmetic Statement Function is analegous to an algebraic
function, It is defined by a single arithmetic statement within the
program in which it appears.

General definition:

name (a, b,,,,n) expression

Where: name is the name of the Arithmetic Statement Funciion and a, by...n
are the function arguments represented by distinct non-subscripted
variables,

Expression is any arithmetic expression defining the type of computat-
ion to be performed when the function is used in an arithmetic
statement,

1, The user, naming an Arithmetic Statement Function, must follow the
rules for naming a variable, The name must consist of 1l=6 alphameric
character, the first of which must be alphabetic (special characters
may not be used), The name must correspond to the type of arithmetic
expression (integer or real); it may be explicitly defined in a Type
statement, or implicitly defined by the first letter of the name,

2. Any number of variables appearing in the expression may be used as
arguments of the function. Those variables in the expression that are
not stated as arguments, are treated as parameters and take the current
value of these variables when the Arithmetic Function Statement is
called, Parameters may not appear in an equivalence statement,

3, An Arithmetic Statement Function may appear within the expression of
another Arithmetic Statement Function provided it has been defined
previously,

4, All the Arithmetic Statement Function definitions to be used in a
program must precede the first executable statement of the program, and
follow the:last specification statement,

S. Control is transferred to an Arithmetic Statement Function definition
when its name appear in the arithmetic expression, The arguments in
the Arithmetic Statement Function definition are set equal to the value
of the variables in the calling arithmetic expression, The computat-
ions indicated by the function definition are then performed, The
resulting quantity replaces the function reference in the expression.

Example:
Definition AVG (A,B,C,D) = (A+B+C+D)/L

Calling AAGE = X + AVG(E,F,G,H)

7

The calling statement is evaluated by first substituting the argument IV.8a
values in the Arithmetic Statement Function definition:

oo
it U nau
oo

The Arithmetic Statement Function, AVG, is then evaluated with the substituted
variables, The resulting value is added to X, and then assigned to AAGE.

Examgle: ,
Valid Arithmetic Statement Function Definitions

SUM (A,B,C,D) = A+B+C+D
FUNC (A) = A+X3Y3Z(J)

Invalid Arithmetic Statement Function Definitions

SUBPRG (3,J,K) = 3I+J#x2
SOMEF (A(I$,B) = A(I)/B+3
SUBPRFN(A,B) = Awe2+B2
3 FUNC (D) = 3,1lD

IDEN (X,Y,Z) X/Y + Y/Z (valid if a real specification
statement is included in the

program: REAL IDEN)
6, It is not permissible to give the same name to an Arithmetic Statement
Function and to a Library Function, subprogram or subroutine subprogram
when they are used in the same program,

IV,8b FUNCTION subprogram IV.8b

The FUNCTION subprogram is a FORTRAN subprogram considting of any
number of statements, It is an independently written program that is
executed wherever its name appears in another program,

General Definition:

FUI\ICTION name (al, 32, 33, aqoan)

L]

RETURN
END

72

where: name is the name of the FORTRAN function. IV.8b

815 8py 83y eesed) are nonsubscripted real or integer variable

names, array names, dummy names of Library Subprograms or address
variables.

1. The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or an input/output

statement.

2, Ths user, naming a FUNCTION subprogram must follow the rules for nam=
ing a variable as follows: The name must be alphabetiec (special charac-
ters may not be used). The first letter must be alphabetic. The
name must correspond to the type of the result of the FUNCTION sub=-
program, It may be implicitly defined by the first letter of the
name or explicitly defined by using the designator REAL FUNCTION or
INTEGER FUNCTION.

Examples
REAL FUNCTION MATRIX (A,I,B)

»
MATRIX = A(I,J) + B(I,J)
RETURN
END

FUNCTION COUNT (I,J,a) /
DIMENSION I(10), J(10)

COUNT = I(J+1) + L(J+2)
RETURN
END

3. At execution time the arguments of the Function subprogram are re-
placed by the variables in the calling statement, The current value
of the variables is used to perform the calculations. Thus the ar-
guments of the FUNCTION subprogram may be considered to be dummy
variable names,

Example:
Program statements Comments
REAL NUT Calling statement, transfers
X = NUT(4) control to function sub-
program NUT.,

Subprogram

L.

5.

Te

REAL FUNCTION NUT(C) Before evaluating NUT, C
is set equal to current
value of A,

D = }48.2

NUT = C/D

RETURN

END

The variable appearing as the function argument in the calling statement
should not be re~defined in the subprogram. Thus, in the above example,
A should not be re-defined in NUT.

When a dummy argument is an arrgy name, an appropriate array spe=~
cification in a COMION or DIMENSION statement must appear in the FUNCTION
subprogram., The DIMENSION specification of an argument of a subprogram
need not be the same as the DIMENSION specification in the calling
program, Any subscripts will refer to the dimensions of the array as
declared in the subprogram,

The value calculated by the Function subprogram is returned to the
calling program by placing the name of the function at least once as
the variable name on the left side of the arithmetic statement in the
subprogranm,

Example:
Program statements Comments

N = MAX (I,J,K,L) Calling statement arguments
are I,J,K,L, Control trans-
ferred to MAX,

Subprogram

FUNCTION MAX (11,L,MM,NN) M=I, L=J, MM=K, NN=L

P . MAX is returned to calling
MAX = MM program,

RETURN

END

The FUNCTION subprogram must return control to the calling program with
a RETURN statement, There may be more than one RETURN statement in a
gubprogram, The FUNCTION subprogram must also contain an END state-
ment which specifies, for the processor, the last instruction of the
subprogram,

Example :
Program statements Comments

A = ROOTS1 + CALC(Y,X,I) Calling statement transfers
control to CALC
Sub~program

73

IV.8b

75

Iv.Bb
FUNCTION CALC (A,B,d) A=Y, B=X, J=I
y CALC is caleulated and if
. positive or negative the
. value is returned to the
CALC = A/B+Bs=tJ calling program,
If (CALC) 10,20,10
10 RETURN
. If CALC is zero it is
o calculated again,
20 CALC = AeJ
RETURN
END
IV.8¢c SUBROUTINE subprogram IV.8¢

The SUBROUTINE subprogram is a set of commonly used operations, it
does not restrict itself to a single value for the result, as does the
FUNCTION subprogram, A SUBROUTINE subprogram can be used for almost any
operation with as many results as desired. Since the SUBROUTINE is a
geparate subprogram, the variables and statement labels do not relate to
any other program, except arguments (including address varisbles) which
are uged to ecarry ealculations back to the calling program.

General Definition:

SUBROUTINE name (ay, ap, a3,an)

RETURN
END

where: name is the subroutine name

ays 8,55 8qy ...an, are arguments. There need not be any. Each

argument used must be a nonsubseripted variable name, array name,
or address variable,

1. The user, naming a Subroutine, must note the following rules: The name
must consist of 1-6 alphameric characters, the first of which must be
alphabetic (special characters may not bé used). The name does not
have to correspond to any Real or Integer type variable.

2+ SUBROUTINE subprograms may contain any Fortran statement except
FUNCTION or SUBROUTINE definitions, The DIMENSION specification of
an argument of a subroutine need not be the same as the DIMENSION
specification in the ealling program,

15

Iv,8¢
3. The arguments may be considered dummy variable names that are replaced
at the time of execution by the actual arguments supplied in the CALL
statement., (See below) The actual arguments must correspond in number,
order, and type to the dummy arguments, None of the dummy arguments
may appear in an EQUIVALENCE statement in a SUBROUTINE subprogram,

li. The SUBROUTINE subprogram is called by a special FORTRAN statement:

the CALL statement, which consists of the word CALL followed by the
name of the subprogram and its parenthesized arguments, if any.

General form of CALL statement:

CALL name (a.l, 8.2,am)
where: name 1s the symbolic name of a SUBROUTINE subprogram.

a1y @gy seeedy are the actual arguments (if any) that are
being supplied to the SUBROUTINE subprogram,

Example s A
Program statements Comments

CALL MATRIX (X,Y,L,M) Transfers control to
subroutine matrix,

SUBROUTINE MATRIX (A,B,I,J) A=X, B=Y, I=L, J=M

PIMENSION A(20,20), B(20,20)

: MATRIX A is calculated and

= returned to the main programn,
=4 %é%ﬁg& A(K’M)+B(K’M) Control is returned to
END the main program,

5. The RETURN statement returns control to the calling program, Multiple re~
turns from a subroutine, each to a different point, can be effected
by using address variables as arguments.

If an address variable is carried into a subprogram as an argument, and
a transfer to the dummy address variable of the subprogram is executed,
control will transfer back to the main subroutine, each to a different

point.

Examples:
ASSIGN 173 to J) main
CALL BOMB(J)) program

SUBROUTINE BOMB (ZIP)

Subroutine, The GO TO
will transfer control to
statement 173 of the
Main Program

N st o N

L]
GO TO ZIP

76

6, The SUBROUTINE Subprogram must follow the main program, IV.8¢c

IV,9 Subprograms provided by FORTRAN Iv.9

KINGSTON FORTRAN II includes several commonly used poutines that are
available to the programmer., The mathematical routines that are provided
are defined as FUNCTION subprograms.

IV,9a Mathematical subroutines IV,%a

The names and types (integer or real) of all of these subprograms
are automatically assigned by the compiler; therefore, they must not appear
in Type statements, Variables used as arguments of mathematical routines
must be typed, either explicitly or implicitly, to agree with the type
of the arguments of the function reference in which they appear., The
mathematical routines are listed in Table L, In several cases the same
routine may be called by more than one name,

TABLE L4

Table of Library Functions

FUNCTION DEFINITION NO.OF NAME OR TYPE OF
ARGS. NAMES ARGUMENT ~ FUNCTION
Exponential "8 1 EXP Real Real
EXPF
Natural logg(Arg) 1 LOG Real Real
logarithm LOGF
ALOG
Arctangent arctan(Arg) 1 ATAN Real Real
in range-7 to 11
= =
Arctangent arctan(Arg,/Argp) 2 ATAN Real Real
in range-np to |1
Trig.Sine sin(Arg) 1 SIN Real Real
SINF
Trig.Cosine cos(Arg) il cos Real Real
COSF
Square Root (Arg);5 1 SQRT Real Real
SQRTF
Absolute iArg] 1 ABS Real Real
value ABSF

TABS Integer Integer

17

IV{9a
Choosing Max(Argq,Arg,,--=) = 2<9 MAX Integer Integer
largest AMAX Real Real
value
Choosing Min(Argl,Argz,---) o MIN Integer Integer
smallest AMIN Real Real
value
Float Conversion from 8 FLOAT Integer Real
integer to real FLOATF
FIX Conversion from 1 INT Real Integer
real to integer IFIX
Transfer of Magnitude of Argy 2 SIGN Real Real
sign with sign of Arg2
Ideal Relay Arg/ABS(Arg) for 1 SIGN Real Real
Function Arg X0 and O
otherwlse
Plot See below (1) 10 PLOT Real Real
PLOT P 0 arg 80
Rand See below (2) 3 RAND Real Real
Sort See below (3) 2 SORT Real Real

The Library Subroutines are CALLED when they are named in an arithmetic
statement,

.Example: ;
Y = SQRT (4)

The square root of A is computed and assigned to Y,

1, The PLOT subroutine may be called with a CALL statement.

General form:

CALL PLGI‘ (Zl, Za, ;D.Zm)

where: 27, 2o, sesZp are real variables whose range is O to 80,

The integer value of any argument to be pEotte! must be scaled to lie within
the range 0 arg B80; values outside this range are considered erroneous. FEach
CALL PLOT statement causes a single card to be punched. The plot is obtained
by listing those output cards on the 407 tabulator.

Up to ten quantities can be plotted, The plotted value is truncated, not rounded,
The plot of the first argument listed (Zl) is printed with a "1", the second with
a "2" ete, If there is a tenth quantityy it is given a "O", F v example, if

Zg = 32,59 then a 5 is punched in Col, 32 of the Card, If two arguments have the

1)
AT

mpadnl qgecol g] ash)esh
e ‘ R K A Jilsc ol
nedn?
gt wmaind Wi 0= ey, reAdes BTt
Lo el . W -3 AnmLax
unlay
Lant srgmapt AP x syt seletwessd Azad™

TIa A9 imdn o7 msgezal
s Lunty i - e Y e Erend o %

il el of 3eey
L} Lwal =T < ReR T mhesl=gdl] W 1 lessyT
£ &!5‘ & ﬂh i == (s
LaaTy foeat =tn £ ol nAiTHANgYA yelstl $edF
oy Qe B FYd e l3am®

: miwsaite
R S wl |41 el e Foi
o oW 0 5 =M

Apu T [=29T5 1 L5) wiind pe? Bl
[z Ly 2 - (L) wolsd st i

AvdeEtede

-'IJ.FS.
L4) TR = 1 -

3 0d bangleny ime Ssioguon oF 8 0 Jena sqomge et
cansaszels 400 s wibe tmilon od pEn apedvngios TaS maf

el Dvrwirsll

.ch:1.. ‘E .LIE? ﬁla Jm

J ot O pl ey perme andvisfver Leen vl Soes anl o8 FEreie

RLS Tk BEL =f tmfrop o Jwes ST S e m Tewmerw yee 10 naley ceges paT
(1 et R SR s T e —ed e IS W b peplev G0A g 5 e iy
=il ol a0y oi® Lwlaroey ef nd e algede € openoas Smesetecs TN 2L0
=& s Bt T ety g eiien degiue sund® upbiebl o

- feraee o ptmagec-t AL cufive Suztaly af¥ _Sedalq e g selilarsoy pag s g

Atrw Dwemd s (0% At Lenndmg et [0 PeSell Juesispys geel? sir %z osnfy wt
T pnlomame = 5 0 g ogeealy 22 ogr 0 ey Mo B el s NI 20w Mg

i wvnd s hmescems 21 LG ,lz-uﬂau!o}:' koD L powsusis 43 7 @ asb G0 W

#

-
= » e

e

7.

79

General form:

CALL SOLVE (A,N,M,DET)

where: A is a matrix with N rows and N+l columns.
The N coefficients of the N unknowns of the first equation are in
A(1,N) The N unknowns of the first equation are in
A(2,N,) and so on,
The constant vector must be in column N+1 of A.
N is the number of equations to be solved and
M is the first number in the DIMENSION statement.

DET is the value of the determinent of the N Rows by N columns
of Matrix A, and is defined after the execution of SOLVE. The
parimeter DET may be left out of the call statement if the value
of the determinent is not wanted,

The answers are left in column N+1 of A,

(See sample problem 10
Section IV.1l)

Resolv will re-solve the original coefficient matrix when a new constant
vector has been put in column N+1 of matrix A, This resolution routine
is called by the following statemnt:

CALL RESOLV (A,N,M)

where: A is the A matrix as defined in the solutioh matrix SOLVE.
N is the number of equations to be solved,
M is the first subscript in the DIMENSION statement

The determinant subroutine may be used to evaluate the determinent of
a square matrix, It is called by the following statement:

Dummy = DETER (B,N,M)

where: B is the sguare array containing N rows.
N is the first subscript in the DIMENSION statement

(See sample problem 10
Section IV.1k)

80

IV.10 Operating instructicns, contrul cards Iv,10

The use of the control cards described in the section Required ceontrol
cards results in one=-pass compilation and executisn »f a siurce program g =
written for the KFII compiler., The cards listed under Required c-ntrol cards
should be included in all source decks submitted t: the IN-OUT box. Operators
of the Model II should note that a COLD START card must be loaded before the
Monitor contrdl cards if the compiler is not in memory.

COLD START card: 3h0003200701360Q03200702h902&02511963611300102

The numbers are punched consecutively starting in
card ‘edl, -1,

Processing the control cards mentioned in the sector Optional control
cards may ‘involve considerable machinme time. Users should exercise discretion
when including them in a program. ¥

IV.10a Required control cards IV.10a

The compiler is loaded from disk memory into machine core storage
when the following two Monitor control cards are read, The cards must be
punched in the card columns noted belows:

Card Col. 123456789
##J0B
##XEQ KF2

NOTE: The # is a:multipié punch 028. ‘ : '

The above cards must precede the first source statement. A KFII
system control card must follow the Monitor cards.

Card Col‘123h56789loni.'llllOI.‘".l.l..!.t.l‘hsﬂtltll.lll.ll..ll..-.'...
JOB NAME w.oevevvavenenraass. OPTIONAL USER IDENTIFICATION

NOTE: NAME is the programmers name, OPTIONAL USER IDENTIFICATION may
include users problem number or class section. The # JOB card
will be printed on the on-line printer and will identify all
printed program output including source program listing, error
messages and problem solutions. '

An EOJ card must follow the last source statement. The EOJ card informs
the compiler that the last source statement of the program has been reached.

Card Col. 123456789 .
E 0 J (a $ may be substituted for the # when punching the

JOBNAME card or the # EOJ card)

A program preceded by a JOB card will result in the output of machine
language instructions, stored in the disk work area, ready to be loaded into
machine core memory. The following control card must be used to load the
object program from the disk work area to machine core storage:

81

Card Col, 123456789 IV,10a
##XEQ RUN

This card must follow the EOJ card and immediately precede the data.

A #### card (record marks punched in Co. 1-L4) must follow the last
data card, Even if no data cards are used, the i/## card should be used
to signal the end of the program executions A scurce program submitted for batch
processing will not be run if the #### is omitted from the source deck.
Sample: Card Deck prépared for program execution, consisting of
source deck, data for execution of the program, and mon-
itor control cards.

Monitor Control Cards ##J0B

tfd ##3EQ KF2 " o _
Internal Control.Card #aje 0 « JOBJOE SMITH - ~ +.. : MATH 90
Source statements 5 5 8 OV o¥ & :
Internal Control Card # EOJ

##¥XEQ RUN

Data #80 a0 ane
Monitor Control Card #44
IV.10b Optional control cards Iv.10b

A PRESCAN card may be used in place of the JOB card, A program
preceded by a PRESCAI' card will produce no machine instructions. However,
source langua~e errors will be detected in the normal way. The purpose
of this is to allow rapid detection of source languase errors. The
PRESCAN card must be followed by the ##XEZQ XF2 card.

Sample: Card Deck prepared for rapid detection of source language

errors

Monitor Control.Cards #MXEY) KF2 ¢ %Card Col. 2-6 must be b%g%i%
et # PRESCAN Card Col. 2-6 must, be b

Source statements seevesane

20600000

@0 00000900

Monitor Control Card i# ToJ

82

OBDECK Card IV.10b

An object deck may be obtgined during compilation by punching the
letter D in col, 32 and/or 33 of the ##XEQ KF2 card, If an bject deck
was not obtained during compilation, it is possible to punch an object
deck from the program currently in the work areas of the disk. This is
done using the following Monitor Control cards:

##JOB (Col. 6 must be left blank)
##XEQ OBDECK

If the object program is in the form of a card deck, the object
degk may be loaded by preceding it by the Monitor Control Cards:

##JOB (Col. 6 must be left blank)
##XEQ RUNDK

The BEGIN TRACE card causes arithmetic trace instructions to be compiled
for each arithmetic and IF statement, beginning with the statement following
the control card, No additional instructions are generated for arithmetic
statements; one additional instruction is generated for each IF statement, An
arithmetic trace halts when an END statement is compiled or an END TRACE card
is read,

BEGIN TRACE card: # BEGIN TRACE (Card Col, 2-6 arc blank
Lard Col, 11-80 may contain any valid
END TRACE card: # END TRACE characters.)

To execute arithmetic and FLOW TRACE instructions, console switch 4 must
be on during program execution, The result of arithmetical FLOW TRACING will
be punched 5 per card. TRACE output for arithmetic statements is in modified
E15.8 notation preceded by the object time address of the variable on the left-
hand side of the arithmetic statement.

The FLOW TRACE card causes instructions to trace the flow of the object
program to be generated, beginning with the next executable statement labeled
with a statement number, FLOW TRACE generates one additional instruction
(18 digits) per statement number traced, The Output of FLOW TRACING is the
statement number in order of execution, preceded by the letter NO. (See sample
problem 11, Section IV,1h).

FLOW TRACE cards # FLOW TRACE (see above)
END FLOW TRACE card: # END FLOW TRACE

A symbol table will be punched for the portion of the program following
an INDEX card, unless a STOP INDEX card is read. The symbol table will contain
five different types of items, with their names and appropriate addresses.

If the variable or subprogram name is undefined, an asterik will appear before
the name,

83

1) Simple variables IV.10b
2) Dimensioned variables
3) Statement Numbers
L) Subprogram Names
S) Constants
INDEX card: # INDEX (Baril polamms punched as
deseribed: ehove)
STOP INDEX card: # STOP INDEX
IV.11 Operating instructions, automatic printer output Iv,1l

During compilation all control cards will be primted on the 1443 on-line
printer, The # JOBNAME card will identify all printed output. The source
statements and any cogipilation error messages will also be listed on the printer.
The compilation error codes are identified in table 5 "Kingston Fortran II
ERROR MESSAGTS",

Any variables, statement numbers, or function, which are undefined in
a subprogram, will be typed or printed duripg compilation. The name of the
undefined quantity will be preceded by an asterisk., If the undefined quantity
is a statement number, the letter S will appear to the right of the number,

The compiler will accept a program containing undefined variables as
0.K.; however, the program may rot run, depending on the nature of the particular
situation, If no source program errors have been detected, the message QK.
will be printed and the program will be executed, If a source statement error
or an undefined statement number has been found, the message NO GO will be
printed when the EOJ card is read and the object deck will not load.

IV.12 Operating instructions, error messages during compilation Iv.1e

If a source statement contains an error, an error message will be
printed.Output of machine language instructions is then suppressed for the
duration of the job, but the remainder of the compilation will condinue until
an EOJ card is read, so that any additional errors will be detected,

Source statement errors are primedin the following form:
cC NNNNN MMMM

Where: CC is two digit error code
NNNNN is the last encountered statement number in the subprogram or
main program.
MMMM is the number of statements after statement numbered NNNNN in
which error occured (comment cards, monitor control cards, and contin-
uation cards are not counted). (See Table 5, KINGSTON FORTRAN II ERROR
MESSAGES) .

84

IV.13 Operating instructions, error messages during object program
execution IV.13

During the object program execution, errors are noted by inserting
digits in a table stored in memory. The error table is printed when a
CALL EXIT statement is encountered, The error codes will be printed between
the words EXIT XXXXXXXXXXXXXXXXXX CHECK. A O 4i.dicates no error., A digit
indicates am error; errors are identified by numbers ..d position in the
EXIT line (See Table 6)., Sample problem (Section IV.1ll) describes the form
of prinkdexecution errors, If there are no execution errors the message-
EXIT CHECK will be printed at the conclusion of program execution.

In addition, certain input-output errors are detected at object time.
Table 7 outlines these errors and the action taken in each case., (See
Table 6 OBJECT TIME ERRORS, and Table 7, I/0 ERRORS AT OBJECT TIME),

Al

A2

A3
Al

AS
A6

A7

AS

cl

C2
€3
ch

TABLE 5

KINGSTON FORTRAN |1 ERRON MZSSAG-S

STATEMENTS CONTAINING
EXPRESSIONS

L

COMMON
DIMENS | ON

COMMON OR DIMENSION
COMMON OR DIMENS | ON
C OMMON

REAL, INTEGER, EXTERWA
FUNCTION, SUBROUTINE,
ARITHMET!C STATEMENT.

- FUNCT I OMS

——— — ——— ——— " — v o o o

FLLEGAL SYNTAX {N AN EXPRESSION

(1) ILLEGAL SYNTAX IN AN ARITHMETIC
STATEMENT

(2) AN EXPRESSION OR INTEGER CONSTAMNT ON
THE LHS OF AN ARITHMETIC STATEMENT

(3) A SUBSCRIPTED VARIABLE MOT MENTION =
ED IN A DIMENSION STATEMENT

i1 XED MODE IN AN EXPRESSION
WROMG NUMBER OF SUBSCRIPTS I A DIMENe

'SIONED VARIABLE

SUBSCRIPT IS A REAL QUANTITY

NAME OF A NON<-EXTERNAL FUNCTION USED AS
A VARIABLE

THE CHARACTERS ~ OR $ APPEAR AS OPERATOR
IN AN-EXPRESSION

OME. OF THE TABLES USED BY THE COMPILER
HAS OVERFLOWN (STATEMENT IS TOO LONG OR
COMPLEX)

(1) SYMBOL IS ALREADY [N THE SYMBOL TABLE
(1) SyMBoL IS ALREADY IN THE SYMBOL TABLE
AND IS NOT A FORMAL PARAMETER

(2) NO DIMEMSIONS GIVEN FOR VARIABLE

ARRAY SIZE IS GREATER THAN 9959 ELEMENTS

MORE THAN 13 DIMEMSIONS SPECIFIED

(1) INVALID CHARACTER, MOST LIKELY CAUSED
BY A MISSING COMMA OR CLOSING PARENTHESIS
(2) CONSTANTS WHERE VARIABLE NAMES

SHOULD BE

CONSTANTS WHERE VARIABLE NAMES

SHOULD BE

€5

cé

D1

D2

D3

DLt

El

£2
E3

i

F2

COMMON, DIMENSION, EQU
ALENCE, INTEGER, REAL,
EXTERNAL

COMMON, EQUIVALENCE

DO, 1/0 DO

DO, 1/0 DO

DO

TERMINATION OF A DO OR
1/0 DO

EQUIVALENCE

EQUIVALENCE
EQUIVALEMNCE

DATA
FORMAT

FORMAT

DATA
CALL
OTHERS

8s

STATEMENTS ARE MOT IN THE SPECIFIED
SEQUENCE

| LLEGAL EXPANSION OF COMMON IN A SUB.
PROGRAM

(1)VARIABIE OP EXPRESSIOM IS REAL
(FLOATING POINT) MODE RATHER THAN INTEGER

(2) THE INDEX OF THE DO IS AN EXPRESS!OW

SYNTAX ERROR, TOO MANY OR TOO FEW TERMS,
OR COMMA OR RIGHT PARENWTHESIS MISPLACED

THE STATEMEMT NUMBER SPECIFYING THE RANG]
OF THE DO HAS ALREADY BEEN DEFINED

PREVIOUS ERRORS HAVE MESSED UP THE DO
TERMINATIONS . WHEN ALL DO STATEMENTS AND
THEIR RANGES ARE CORRECT THIS ERROR
CANNOT OCCUR

TRYING TO EQUIVALENCE A DEFINED VARIABLE
TO SOMETHING ELSE

TRYING TO EQUIVALENCE TWO ARRAYS IN SUCH
A WAY THAT THEY HAVE NO COMMON ELEMENTS
(1) STATEMENT SAID EQUIVALEMCE (V1) ,mmus’
AND DID NOT SPECIFY THE SECOND ITEM
(2) IMVALID EXPRESSION (ARITHMETIC) IN
QUIVALENCE
3) STATEMENT 1S INCOMPLETE
TATEMENT 1S INCOMPLETE

E
(
S
(1) A LEFT PARENTHESIS HAS BEEN FOUND
BEFORE THE REPEATING SECTION MMN(eeaose)
AS BEEN COMPLETED

(2) A MINUS SIGN THAT IS NOT PART OF A
LLERITH FIELD OR A ~MNP TERM

(3) MORE THAN 5 LEVELS OF NN(,.oes)IN A
NEST

(L) INVALID LETTER IN WHAT LOOKS LIKE A
MUMERIC SPECIFICATION

FINAL CLOSING PARENTHESIS IS MISSING, MAY
BE DUE TO A HOLLERITH STATEMENT WITH TOO
BIG A CHARACTER COUNT

INCOMPLETE STATEMEWMT, MAY BE MISSING A /
NO SUBROUTINE NAME

INCOMPLETE OR GARBLED STATEMENT

H
H

CcCrfEFfmwo

F3

Fi

F5

L1

N1

M3

Lt

M5

NG

N7

FORMAT

FORMAT

FORMAT

STATEMENTS WITH, OR
COMTAINING STATEMENT
MUMBERS

FORMAT
OTHER THAN FORMAT

87

(1) THE W SPECIFICATION IS MISSING IN A

AW OR IW TERM
(2) THE W OR D OR DECIMAL POINT 1S

MISSING IN A EW,D OR FW,D SPECIFICATION
(3) AN AW SPECIFICATION HAS A W GREATER
THAN 50

(L) UNINTELLIGIBLE

(1) SPECIFICATION EV,D OR FW,D HAS W-D
GREATER THAN 45

(2) SPECIFICATION EW,D OR FW,D HAS D
GREATER THAN W :

(3) SPECIFICATION W, FW.D, OR EW,D HAS
W GREATER THAN &C a

(4) SPECIFICATION AW HAS W 0

(1) SPECIFICATION =NNP OR NNP HAS NN
GREATER THAM L9

(2) SPECIFICATION NNH, NNX, NN(, NNE,
NNF, MNE, NNA HAS Ni= O -
WHAT SHOULD BE A STA“FM"“T NUV”ER OR AD
DRESS IS EITHER AN ARITHMETIC EXPRESSIOM
REAL (FLOATING POENT) MUDE, NEGATIVE,

OR ZERO - »

(1) WHATSHOULD BE A VAMt OR NUMBER BEGIRe

WITH OME QF(, $ % /)
vz DIMENS | ON i NG INFORMAT’ON IS NOT AN

INTEGER CONSTANT

" A SYMBOL HAS MORE THAN SiX CHARACTERS I[N

7

REAL (FLOATING POINT) CONSTANT .IS GREATER
THAN 0,0 BUT LESS TiHAN 1,E-51

REAL (FLOATING POINT) CONSTANT IS EQUAL
TO OR GREATER THAMN 1.E+k9

SOME COWSTANT {N THE STATEMENT CONTA!NS
MORE THAN 2 DIGITS

Al INTEGER (F!<ED POINT) CONSTANT GP
STATEMENT NUMBER (J%’D IN THE STATLMENT)
HAS MORE THAW 5 DiG!TS

THE SIZE CONTAiNS MORE THAN 5 DIGITS

THE ORIG!MN CONMTAINS MORE THAN 5 DIGITS

A REAL (FLOATING POINT) CONSTANT COMTAINE
DECIMAL POINTS

MG

P2

P3

PL

P7

Q5

NON=F ORMAT

ASSIGN

IF(SENSE SWITCH 1)

GO TO

CALL
DATA

IF

STOP N, PAUSE N

i1/0
DO

COMPUTED GO TO

88

A HOLLERITH CONSTANT CONTAINS MORE THAN
FIVE LETTERS

IN THE EXPRESSION ASSIGN | TO J
(1) V¥ IS A VARIABLE BUT DOES NOT HAVE
BRACKETS AROUND IT

(2) THE TO J IS MISSIH

(3) J IS NOT AN INTEGER VARIABLE

(%) THE J IS NOT THE EWD OF THE STATEMEM
(5) | IS NOT AN INTEGER VARIABLE

(1)
A

1) THE ARGUMEMT OF THE IF STATEMENT IS
N INTEGER CONSTANT
(2) THE ARGUMENT IS NOT PROPERLY ENCLOSE
WITHIN PAREMTHESIS
THE SENSE SWITCH | IS MNOT PROPERLY
ENCLOSED WITHIN PARENTHESIS

(1) THERE IS AN UNDESIRABLE) IN GO TJ
(2) THERE IS AN = SIGN IN A COMPUTED GO

T0
(3) THE INDEX IN THE COMPUTED GO TO IS
NOT THE LAST THING IM THE STATEMENT

(k) THE INDEX OF THE COMPUTED GO TO IS A
REAL VARIABLE

INCOMPLETE STATEMENT
INVALID DELIMITER

(1) THERE ARE TOO MANY OR TOO FEW STATE-
MENT MUMBERS OR LABELS AFTER AN IF

(2) THE LIST OF STATEMENT NUMBERS AND
LABLES HAS A MISPLACED RIGHT PARENTHESIS

UMRECOGN I ZABLE STATEMENT]
THE N IS NOT AN INTEGER EXPRESSION
DOUBLY DEFINED STATEMENT NUMBER

INCORRECT 1/0 STATEMEMT, PARENTHESIS,
COMMAS, AND EQUAL SIGNS (DO S) ARE
MISSING OR MISPLACED,

INCORRECT DO STATEMENT, PARENTHESIS,
COMMAS, AND EQUAL SIGNS (DO S) ARE -
MlSSlNG OR MISPLACED

I MCORRECT COMPUTED GO TO, PARENTHESIS,
OR COMMAS ARE MISPLACED OR MISSING,

R2

R3

RL

Si

S2

S3
Sk

Tl

1/0

1/0

i/0

FUNCTIOHN

SUBROUT | NE

ARITHMETIC STATEMENT F

ARITHMETIC STATEMENT

FUNCTION, SUBROUTINE,
ARITHMETEC STATEMENT.F
RETURN

CALL

INTEGER, REAL

89

) EXPRESSION IN AN INPUT STATEMENT,

) INVALID SYMTAX, MAY BE A MISPLACED
OSINCG PAREZNTHESIS
)

1) THE FORMAT MUMBER IS FOLLOWED BY A
IGHT PARENTHESIS,

(2) SYNTAX ERROR. PROBABLY SOME OTHER
DELIMITER WHERE A COMMA SHOULD BE

(1
{2
CL
(
R

FUNCTION SUBPROGRAM HAS AN INPUT
STATEMENT

(1) NOT FIRST STATEMENT IM A FUNCTION
SUBPROGRAM

(2) DOES NOT HAVE ARGUMENTS

(3) SUBPROGRAM NAME OR OTHER INVALID
ARGUMENT

(4) INVALID SYNTAX, PROBABLY MISSING
COMMA OR RIGHT PAREMTHESIS

(1) NOT FIRST STATEMENT IMN A SUBROUTINE
SUBPROGRAM

(2) SUBPROGRAM NAME OR OTHER INVALID
ARGUMENT

(3) INVALID SYNTAX, PROBABLY MISSING
COMMA OR RIGHT PAREMTHESIS

51) STATEMENTS NOT IN PROPER SEQUENCE
2) DOES MOT HAVE ARGUMENTS

(3) SUBPROGRAM NAME OR OTHER INVALID

ARGUMENT

(4) INVALID SYNTAX, PROBABLY MISSING
COMMA OR RIGHT PARENTHESIS

SUBSCRIPTED VARIABLE ON LEFT HAND SIDE
FOR WHICH NO DIMENSION STATEMENT EXISTED

NAME OF FUNCTION OR SUBROUTINE IS DEFINE
TWICE OR IS THE SAME AS A LIBRARY PROGRA

PROGRAM IS NOT A SUBPRGORAM

STATEMENT HAS INVALID SYNTAX., PROBABLY
A COMMA OR RIGHT PARENTHESIS IS OUT

OF PLACE

ATTEMPTED TO CHANGE THE MODE OF ALREADY
DEFINED FUNCTION

T2
T3

X1

Z5

26

Zi

EXTERNAL

INTEGER, REAL, EXTERNA
EQUIVALENCE

DIMEMSION, COMMON

SIZE

ORIGIN

£EOJ

90

TRYING TO MAKE A VARIABLE INTO A FUNCTION

I HVALID CHARACTER M STATEMENT WHERE A
COMMA SHOULD BE

HAVE DESTROYED DIMENSION TABLES AND MAYBE
PART OF SYMBOL TABLE, JOB ABANDONED

PUNCH CHECK P RSISTS FOR TWO TRIES
SYMBOL TABLE FULL., JOB ABAMDOMED

PROGRAM TOO BIG FOR MEMORY AVAILABLE,
JOB ABANDONED

' WORK AREA FULL, STATEMENT TOO LONG TO
‘PROCESS

FUNCTION CARD(S) ARE UNINTELLIGIBLE
"DY'SK ERROR PERSISTED FOR TEN ATTEMPTS

INVALID CONTROL CARD, JOB ABANDONED

STATEMENT IS A MEANINGLESS COLLECTIOi
OF ZERO TO THREE CHARACTERS

THERE 1S AN UNPAIRED CLOSING PARENTHESIS

'HOLLERITH FIELD WAS INCOMPLETE AT END OF

STATEMENT

THE EXPRESSION NNNNNH (WHERE N IS A
DIGIT) HAS OCCURRED, THIS 1S TOO MANY
DIGITS FOR A VALID HOLLERITH, AND ALSO
TOO MAMNY. TO BE PART OF A SYMBOL

A STATEMEMT WHICH 1S NOT AN ARITHMETIC
STATEMENT 1S NOT COMPLETE

STATEMENT MUMBER |S GARBLED SOMEHOW
THE SIZE SPECIFICATION IS MISSING
OR GARBLED

THE ORIGIN SPECIFICATION 1S MISSING
OR GARBLED

(1) EOJ CARD NOT PRECEDED BY AN END CARD
(2) NO MAIN PROGRAM IN A NON@RELOCATADLC
JOB

yAY

Z9

END

FOTMAT

COMMON

DIMENS I ON
tQUIVALENCE

EXTZRNAL

FUNCTION

INTEGER

REAL

DATA

SUBROUT I NE

ARITH ,STATE ,FUNCTI ON

GO TO
IF

IF(SENSE SWITCH)
ARITH ,STATEMENT
ASS 1 GHl

ACCEPT

PUNCH TAPE

ACCEPT TAPE

PAUSE

PRINT

PURCH

READ

REREAD

TYPE

CALL

STOP

CONT I HUE

RE TURH

DO

GO TO (N1, N2,---),I

b

(l; E{!D STATEMEMT HAD A STATEMEMT NUMBER
(2) LAST EXECUTAGLE STATEMENT WAS MNOT A
TRANSFER OR CALL STATEMENT

(3) THE PROGRAM CONTAINS NO EXECUTABLE
STATEMENTS

(k) NO RETURM STATEMENT IN A FUMCTION
SUCPROGRAM

(5) TWO MAIN PROGRAMS IN A JOB,

(6) MAIN PROGRAM I¥ A RELOCATABLE
COMPILATION

(7) IN A FUNCTION SUBPROGRAM, THE
FUNCTION HAS NOT BEEN EVALUATED BEFORE
THE END STATEMENT IS ENCOUNTERED,

DOES NOT HAVE STATEMEWNT MUMBER,
HAS A STATEMENT WUMBER,

FOLLOWS A TRANSFER STATEMENT AND DOES
NOT HAVE A STATEMENT MUMBER

92

RETURN LAST STATEMENT IN THE RANGE OF A DO,

STOP

GO TO

GO FO LMY, NE,~==}g I

IF AR

IF(SENSE SWITCH)

DO

BAD CARD THERE HAS BEEN A READ CHECK,
RELOAD THE CARD AND PUSH START,

PCH CHK THERE HAS BEEM A PUNCH CHECK WHEN
PUNCHING THE LOADER ROUTINE., CLEAR
THE PUNCH AND PUSH START TO TRY AGAIN,

JOB ABANDONED (1) OCCURS AFTER ERRORS X1 AND X3,
(2) INVALID CONTROL CARD,

Table 6
OBJECT TILE ERIOR

Position
in Error .)
Field Digit Meaning fAction Taken (FA€C = Accumulater = Result Field)
1st digit : Floating Point Underflow FAC = 00000CC0CO
2nd 2 Floating Point Overflow FaC = +9999999399
3rd 3 Floating Point Divided by
Zero FAC = 19999999999
4th 4 Fixed roint Divided by
Lero FAC is unchanged, i.e. J/C = J
5th 5 Square Root of Meg.Mumber Square root of absolute valuve of arg.
6th 6 Log of zero or Neg,Mumber Log(0) = =9999999299; otherwise log of abs.
value of arg,
7th 7 Sin or cos, arg. > 10% CALL £XIT
8th 8 Ixp(x) out of range FAC = +9999999999 or zero
9th 9 Inout number too small The number entered memory as 0)00000000
10th El Inpvt nvmber too big The nuvmber entered memory as +3979999999
J arg <0 or >80
11th 2 Plot, -1 > arg >80 Point not plotted
12 3 I/0 error 2. (Table
_ 1.3.6.2) Number icnored. E:2 inserted in outgput
13 4 I/g errgr 1. (Table Number icrnored. .R1 inserted “n output
133.6.2
14 3":
15 E ! Unused. Available for
16 %} user-defined relocatable
1% Qi subnra-~rams

Table 7

1/0 BRPORS AT UBIECT TLLE

1/0
Error Reason Result
0 Input record from T/'/ or paper tape over 150 characters long CALL «XIT
1 llon-alphabetic data on A-type output Number ionored *
2 Field width too small on I, E, F output; may be an undefined variable Number 2 *
3 Invalid character on :“nput data on I, E, F, or N Format CeLi =iIP
4 An input word has more than 88 sisnificant digits ChLLL CiIe
5 Input-output list with no nvmeric syecifications between last opening-
closing pare .thesis pair in Format statement CALL LXIT
6 Format requires more than 150 characteris in a record CALL +XIT
7 write-check occirred 3 times when attemn»tin~ to vunch output or trace CALL iXIT
card
20 Disc error persisted 10 taimes Cabe XIT
Errors in
Variable
Format
1F ~ Format too lon~ or complex for available work area CALL 3KIr
- Comma or ricsht parenthesis before co »nletion of repeatin~- format
2F - Minue sisn which is not part of a H- or P-srecification hES B2
- Incorrect length of H-specification
- No closin¢ parenthesis
- 5tatement inconplete
- Non-~permissible character
3F - More than 5 levels of repeated, parerthesized Format CALL st1

~ Nepeated Format with nmore than 49 rereats

- +ield width m-ssing in I, A, i, or F, s ecification
-~ Field witdth jrecter than 50 in A-specification

- d or decimal point mics ng in Iw.d or Fw.d

- non-permissible character

- d>w in Ew.d or Fw.d

~ (w=d)>45

- Field width, w, >50 in :w.d, Iw, or Fw.d

- Specification Aw has w = 0

Table 7 Continued:

2ELD 1 Kead check on T/ii Co puter halts.
HEAD 2 L Al " paper tape .hben start .is
READ 5 g - " cards pressed, the
machine will
atte. pte to read
the record again.

* Alphabetic fi1¢ld is replaced by rR1l. Last item in record ray be lost.
** Numeric field is replaced by 2., Last item in record may be lost.

95

*{v.1h SAMPLE PROBLEMS

SAMPLE PROBLEM 7
##J0B 5
##YEQ KF2

S JOB JOE SMITH
C PROGRAM READS DATA 1IN BY COLS,PUNCHES DATA OUT BY ROWS
DIMENSIOM C(5,5)
READ 10, ((C(1,d),b=1,l),J= 1,5)
10 FORMAT {5FC,2}
PUNCH 10, ((C(1,d),d=1,5),1=1,4)
CALL EXIT S
EMD
$ E0J
##XEQ RUN
00001 ,1000002 ,1000003 ,1000004% ,1000001 ,20
00002 .2000003 .200000k .2000001 , 3000002 , 30
00003 . 3000004 . 3000001 4000002 ,000003 .40
0000% 2000001 .5000002 .50600003 .500000k ,50

HHH
1.10 1,20 1.30 1,40 1,50
210 2.20 2.3 2.0 2.50
3.10 3.20 3.30 3..0 3.50
Livg. G20l 0.5 30¢ cuikko 710k 50
SAMPLE PROBLEM 8
##J0B %
#H#XEQ KF2
) JOB JOE SMITH
C PROBLEM OUTPUTS A MATRIX WITH A
C VARIABLE NUMBER OF COLUMNS AHD ROWS
C PROBLEM,TO GENERATE A MATRIX A(1,J)=1/(1+J+1)
C | AND J'ARE INTEGERS BETWEEN 1 AUD 30
DIMENSION A(30,30)
10 READ 11,1,
11 FORMAT(212)
IF(1-99)112,99,112
112 1F(i-30%111.111,10
111 IF (J=30)12,12, 10
12 PUNCH 13,1,J .
13 FORMAT(32HTHE MATRIX 1S AS FOLLOWS WITH I=,12,3H J=,12)

NOTE Sample problems 7-12 call for punch card output. An on=line 1443 printer will
become available to users of the Model II during the Fall'é6 semester, A
Computing Center memorandum which will include sample prohlems illustrating
print output will be issued in the Fall.

C=L

1L A(K,L)=1,/(B+C+1,)
C OUTPUT.ROUTINE

DO 21

K=

1,1

21 PUNCH 22,K, (A(K L),L=1,d)

22 FORMAT(LHROW=, 16
GO TO 10

99 CALL EXIT

END
$ E0J
##XEQ RUN
6123
1214
C510
HiH#

/1L6F11,5,

1X))

THE MATRIX 1S AS FOLLOWS WITH 1=12 J=1k

ROW= 1

33333333
NERERRAY
06666667

0
ROW= 2

25000000

.10000C00

.06250000
ROW= 3

.20000000

09090909

05682353
ROW= 4

16666547

.080333333

+05555556
ROVI= 5

JAL205714

07692300

05263150
RoV= 6

12500540

07152257

05003400
ROW= 7

25000000
«100CCOG0
06256000

20000900
09080209
.05662353

1666667
,00333333
05555556

14205714
107692308
05263156

. 12500000
L7142557
05004600

* ¢ @
Q-:-—‘
o N —
- TN -
LLION—
UT‘J—-‘

1
€6
90

\lr‘ —

1
J
4

.20000000
.0509G209

16664667
.00333333

14205714
. +07692300

125000200
07142657

1111111
06666667

10000020
.06250000

. 166656667
.00333333

2142065714
.07692300

.12500000
07142557

(RRRRRRR
.06666667
.10020000

06250000

.09090909
05862353

12500000
07142857

. 10000000
.06250000

,09020909
.05882353

.08333333
.05555556

. 10000000
.06250000

,09090909
,05682353

.00333333
05555556

07692308
.05253158

JJ1111111 ,10000000 ,09090909
06666667 ,06250000 ,05802353
LOL761905 04545455
ROW= O
,10000000 ,09090909 ,08333333
.06250000 ,056882353 ,05555556
LOL5LELES 0L3L7826
ROW= ¢©
.09090909 ,06333333 ,07692308
.056682353 ,05555556 ,05263158
0L3L7826 04166667
ROW= 10
.08333333 ,07692308 ,07142857
,05555566 ,05263158 ,05000000
LOL166667 ,04000000
ROW= 11
07692308 ,07142857 ,06666667
.05263158 ,05000000 ,0L761905
04000000 ,038L615L
ROW= 12
07142557 ,06666667 06250000
.05000000 ,0L761905 ,045L5L455
030646154 ,03703704
THE MATRIX IS AS FOLLOWS WITH I= &
ROW= 1
.33333333 ,25000000 ,20000000
1111111 ,10000000 ,09090%09
ROW= 2
,25000000 ,20000000 ,16666667
.10000000 ,09090909 ,08333333
ROW= 3
.20000000 ,16666667 ,14205714
09090909 ,06333333 ,07692300
ROW= 4
16666667 14285714 12500000
.00333333 ,07692308 ,07142057
ROW= 5
4205714 12500000 L,11111111
,07692300 ,071L42857 ,06666667

.00333333
05555556

07692300
.05263158

07142857
,05000000

.06666667
04761905

.06250000
.0L5454L55

.05682353
OL3L7626

J=10

16666667
06333333

JAL205714
.07692308

.12500000
,07142857

.10000000
.06250000

,0768230C
.05263150

07142557
,05000000

.06666667
04761905

,06250000
04545455

k285714

.12500000

J11111101

. 10000000

.09090909

07142057
.05000000

.06666667
04761205

06250000
LoL545L55

.0588232

3
0L 347826

.05263158
.04000000

.12500000
o 8 o I 0 R Y
.10000000
08090909

06333333

97

98
SAMPLE PROBLEM 9

##J0B 5
#H#YEQ KF2

OO0 OV

JOBJOE SMITH

JLLUSTRATION OF PLOT SUBROUTINE

ESTIMATION OF SQUARE ROOTS WITH PLOT OF SUCCESSIVE ESTIMATES
FORMULA FOR ESTIMATION OF SQUARE ROOTS,
EX(N+1)=,5(EX{N)+Y/EX(N))

WHERE EX |S THE ESTIMATED SQUARE ROOT OF Y

PUNCH 60 .
60 FOPMAT(//20X37HAPPROXIMATION OF THE SQUARE ROOT OF Y//)
12 READ 1L
14 FORMAT ZFu 2)
AF (Y) 16,1¢€,20
%g IF(Y- 990999 99) 22,24 24
N=0
IF(Y-1.0)26,28,28
28 PUNCH £0,Y
80 FORTAT(27HPLOT OF APPROX, SQ,RO0TS OF,F8,2)
CERE
30 EXE.S*(EX+Y/EX)
=EX
SUB-ROUTIHE PLOT DOES NOT PLOT ARGUMENTS
LESS THAN ONE OR GREATER THAN 79
IF(z-50,)65,82,82

85 1F(Z-1.362 él 81

82 PUHCHu3 Z .
83 FORMAT(ZHHEST .SQ.RO0T MNOT PLOTTED 2X2HZ=, F9 3)
GO TO 31
81 CALL PLOT(Z)
31 AE=ABSF((EX*¥*2)-Y)
RE=AE/Y
Nz 1
IF(RE—~ 0001)50 50,30
50 PUNCH 34
3L FORMAT (LXTHY,7X10HABS, ERROR,4X10HREL , ERROR,7X,
IIHN IZXIBHEST SQ. ROOT) - . -
e \PUHCH 36,Y AE RE,N
36 FORMAT(FS.2,3%F12 é 3xr1o g 315, 15%F9.3//)
GO TO 12
26 EX=,1
60 T0 30
16 PUNCH 35,
38 FORMAT (IIHY NEGATIVE=, FE .2 e o
13ZHEST, SQ, ROOT OF ABS VALUE OF Y)
Y= ABSF(Y)
GO TO 70
70 PUNCH 71
71 FORMAT (//)
GO TO 22
18 PUNCH LO
4O FORMAT (3HY=0)

99
GO TO 12

2L CALL EXIT
END
S EOJ
AR T
+ s
+1602 ,01
99999599

il

APPROXIMATIOM OF THE SQUARE ROOT OF Y

PLOT OF APPROX, SQ,RO0TS OF 160G ,01

EST.SQ.ROOT NOT PLOTTED, Z= 604,505
EST,.SQ.ROOT WOT PLOTTED, Z= 403,252
EST.SQ.ROOT WOT PLOTTED, Z= 203,620
EST,SQ.ROOT NOT PLOTTED, Z= 105,758 | : :
(
: .
Y ABS. ERROR REL, ERROR N EST., SQ. ROOT
1608,01 01630000 .00001138 & 40,100
1
EST.SQ.ROOT MOT PLOTTED, I= 46
EST.SQ.ROOT MOT PLOTTED, 1I= W51
EST.SQ.ROOT MOT PLOTTED, I= .502
EST.SQ.ROOT NOT PLOTTED, Z= .500
Y ABS, ERROR - REL, ERROR N- EST. SQ, ROOT
.25 .00000230 00000920 5 .+ ..500

PLOT OF APPROX, SQ,R00TS OF 100,10
1

Y ABS., ERROR REL, ERROR M EST. 50, RDOT
100.10 .00107000 .00001069 6 10,005

100

SAMPLE PROBLEM 10

##J0B 5
##XEQ KF2

JOBIOE SMITH
SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS USING THE
SOLV AilD RESOLV SUB-ROUTINES STORED ON THE DISK
DIMENSION STATEMEMNT PERMITS USE OF 10 EQUATIONS

DIMENSION A(10,11)

READL , N
4 FORMAT(12)

READ. 10, ((ACT,d),),)

YEAD 10, ((A(1,J J= 1,L),1=1,H
10 FORMAT (4F6.2) : -
C HEADER CARD

OO

PUICH 5, Y

5 §0$2AT(10HTHE ANSWERS FOR ,12,32H LINEAR EQUATIONS ARE AS FOLLOWS)
CALL SOLVE (A,N,M "
PUIICH 20, (A(1,L5, 1-1 M)

20 FORMAT (3F6.2}
READ 20, (A(T,L),I=1,N)

CALL RESOLV (A,,M).
PUNCH 20, (A(T,N+1), 1=1,N)

C SINCE THERE.IS NO INSTRUCTION TO SIGNAL THAT THE
C LAST DATA CARD HAS BEEN READ
C THE END OF DATA CARD IS READ AS THE LAST DATA CARD
C ADDITIONAL DATA CARDS COULD BE ADDED WITH AN INSTRUCT{ON
C SIGNALLING THE COMPUTER TO RETURM TO THE FIRST READ
C INSTRUCTION
CALL EXIT
END
$ EO0J
03

+08 ,00-05 ,00+-07 ,00+29,00

-01,00+09,00-06,00+01,00

+00,00+02 ,00-02 ,00-02,00

+27 00+12 ,124-03,02

THE ANSWERS FOR 3 LINEAR EQUATIONS ARE AS FOLLOWS
2,00 3,00 4,00
4,10 2.39 .08

NOTEs ##XEQ RUN should precede the $ EOJ eard,
should follow data cards.

101

SAMPLE PROBLEM 11

##J0OB
##XEQ KF2
$ JOEJOE SMITH
C ILLUSTRATION OF FLOW TRACE
C TO SUM THE ODD NUMBERS FROM 1TO 99
¥ BEGIN TRACE
* FLOW TRACE
SUM=0 ,0
ool3o i=1,100,2
X= .
30 SUM=SUM+X
PUNCH 40, SUM
Lo FORMAT(MHSUM=,F12.2/)
CALL EXIT
END

$ EOJ
##XEQ RUN 5§>

A) o & 2
‘®399h§$600000001 Q%o 00030 C%99991000000001‘99&93000000001 NO 0003
399994000000001 3994 95000000001 NO 00030 3£9999000000001399497000000
NO 00030 399991 6000000023994 99000000001 MO 00030 399992500000
399491 100000002 NO 00030 399993600000002399491300000002 MO 0003
399994900000002399491500000002 MO 00030 39999640000000239%4 21700000
NO 00030 399998100000002399491900000002 MO 00030 3$9%91000000
399492 100000002 NO 00030 399991210000003399492300000002 NO 0003
39999144L0000003399492500000002 NO 00030 399991690000003399492700000
NO 00030 399991960000003399492900000002 NO 00030 399992250000
399493100000002 NO 00030 399992560000003399493300000002 NO 0003
39999286900000033994 93500000002 NO 00030 3999932400000033%9493700000
NO 00030 399993610000003399L93900000002 NO 00030 399994000000
399494 100000002 NO 00030 399994410000003395494300000002 MO 0003
3999948L400000033994 94500000002 NO 00030 3$9995290000003395L 94700000
NO 00030 399995760000003399% 94900000002 MO 00030 399996250000
3994 95100000002 MO 00030 3999967600000033994 95300000002 MO 0003
3999972900000033994 95500000002 NO 00030 3999978L00000033994 95700000
NO 00030 3999984 100000033994 95900000002 NO 00030 399999000000
399496100000002 NO 00030 3999996100000033954 96300000002 NO 0003
39999102L000004 3994 96500000002 MO 00030 399991089000004 399496700000
NO 00030 3599991156000004 3994 96900000002 NO 00030 399991225000
399497100000002 NO 00030 399991296000004399497 300000002 NO 0003
399991365000004 3994 97500000002 MO 00030 39999144L000004399L 97700000
HO 00030 39999152100000L4 399497 900000002 NO 00030 399991600000
39998 100000002 MO 00030 39999168 10000043994 95300000002 NO 0003
39999176400000% 3994 95500000002 MO 00030 399991549000004399% 98700000
MO 00030 39999193600000L 3954 93900000002 MO 00030 399992025000
3994:99100000002 MO 00030 399992116000004399499300000002 NO 0003
329992209000004 399499500000002 NO 00030 39999230400000L 399499700000
. NO ogggg 0399992u01000004399499900000002 NO 00030 399992500000
= .00
1, ADDRESS OF X 2, IMITIAL VALUE OF X 3, STATEMENT NUMBER
L, ADDRESS OF SUM 5, INITIAL VALUE OF SUM 6, ADDRESS OF X
7. SECOND VALUE OF X §, STATEMENT NUMBER :

102

SAMPLE PROBLEM 12

##J0B S
##XEQ KF2
S JOBJOE SMITH
C ILLUSTRATION OF EXECUTION ERROR
C TO SUM THE ODD NUMBERS FROM 1 TO 99
SUM=0,0
Y=0.0
00'30 I=1,100,2
X=
30 SUM=SUM--X
SUM=SUM/Y
PUNCH 40, SUM
Lo FORMAT(F12,2)
CALL EXIT
END
$ E0J

ER2
THE CONSOLE TYPEWRITER TYPED THE FOLLOWING LINE WHEN THE CALL
EXIT STATEMENT WAS EXECUTED,

EXIT 003000000003000000 CHECK

THE FIRST 3 INDICATED ERROR 3,FLOATING POINT DIVIDE BY ZERO
THE SECOND FLAGGED. 3 INDICATES /0 ERROR 2

103

v, IBM FORTRAN II V.

This section describes those IBM FII instructions which are not yet
available to users of the KFII system, Included in the section are ins-
tructions for using the disk to store data and program segments, instructions
for varying the number of significant digits stored in the machine, and
instructions for using the subroutine, ROUND,

The IBM Monitor II System Reference Manual (C26m5774~0) includes
detailed operating instructions for using the Monitor II system, and
detailed instructions for programming using the IBM FII compiler, The
user should note that there are many differences in the language required
by the KFII system and the IBM FII system, The IBM manual should be
consulted when writing for the IBM FII compiler,

V.l Varying the word length (number of significant digits stored in Vil
the machine)

The IBM FII compiler will automatically convert numbers either to
floating point form in which the number is specified as a decimal fraction
times a power of 10, or to fixed-point form in which the number represents an
integer, The number of decimal digits, x, and the number of integer digits,
y - may be ‘varied by using a FANDK control card,

General form:

#FANDK xxyy

where: #* dis punched in col, 1.
FANDK is punched in col., 2-6.
xx is the number of decimal digits (that is, the length of the
mantissa) punched in col, 7-8.
Yy 1is the digits used to represent an integer, punched in col, 9-10,

The range of x is 2 through 28; the range of y is L4 through 10,

Example
#FANDK1505

Fifteen decimal digits plus 2 exponent digits will be stored for each
real (floating point) number, and five digits will be stored for each
integer (fixed point) number,

The FANDK card must follow the ##FORX control card, and must precede
the source deck. (See section V.L). If a FANDK card is not used the
compiler will automatically convert floating point numbers to 8 decimal
digits plus 2 exponent digits, and fixed point numbers to L digits,

10k

V.2 Library functions added to the IBM FII compiler v,2

The function ROUND will round an arithmetic expression to a spscified
number of significant digits,

General form

CALL ROUND (A,B)
The arithmetic expression A will be rounded to B significant digits,

V.3 Instructions which use the 1311 disk for storaze of data V3

The following instructions, DEFINE DISK, FIND, RECORD are uged to
store data on the 1311 disk, The data must be in machine core storage. The
FETCH statement is used to read data from the disk into machine core storage.

V.3a DEFINE DISK statement V.32

The DEFINE DISK statement specifies to the FORTRAN processor the size
and quantity of data records that will be used with a particular program
and its associated subprograms, The statement must appear in the main
program when Disk I/0 statements appear in any part of the program or sub-
programs, and may appear only once in that program. Thus, all subprograms
used by that main program must use the same size record defined in the
statement,

_ The DEFINE DISK statement must not be used in subprogramgd,

General form

DEFINE DISK (Np, Np)

where: Ny is a fixed point (integer) constant which specifies the number
of variables contained in a record of data,

No is a fixed-point constant which specifies the number of data
records that will be used by the main program and its associated
subprograms,

The program may use either one-sector records or two sector records
for data storage,

A record of data may contain up to 100 digits if the programmer
chooses to use a one-sector record or up to 200 digits if the programmer
chooses to use a two-sector record. The user should estimate the number

105

of digits he wishes to store on the disk for each record and then choose V.3a
either one. or two sector records, whichever makes the most efficient use
of disk storage.

Examgle:
DEFINE DISK (lO, 3)

Stores a vector containing 13 variables on the disk, Given that the
word length is 10, 8 for the mantissa and 2 for the exponent the total number
of digits to be stored is 13 x 10, These 130 digits are stored on 3 one-
sector records. Space for 7 additional variables is reserved on every third
record, This space is not used by the program.

Example s
DEFINE DISK (16, 50)

Stores a 20 x 4O matrix on the disk given that the word length is 12
digits, 10 for the mantissa and 2 for the exponent, the total number of
digits to be stored is 800 x 12. These 9,600 digits can be stored on 50
data records if 192 digits are stored on each two sector record, Thus 16
variables may be stored on each data record, Space for 8 digits is reserved
on each record. This space is not used by the program.

Notes If two sector records are specified the two sectors are tbeated as
a unit. Thus the digits of a variable may be split between the sectors of
a two sector record, (See sample problem 13)

V.3b Assigning numbers to disk sectors V.3b

A1l disk records are referenced by an integer (fixed-point) variable
name, The current value assigned to the variable name references the first
sector in a record when the variable name is used in a RECORD or FETCH
statement, The programmer must assign, in a simple initialization state-
ment, a value to the first disk sector before the first RECORD state-
ment is executed,

Example:
IREC = 1

During execution of a RECORD or FETCH statement the Monitor Control
system will assign numbers to every sector if one sector records are specified,
to every second sector if two sector records are specified, The numbers
assigned to the sectors will start with the value assigned to the first
sector (one (1) if it is the first RECORD statement in a program, or one
greater than the number assigned to the last sector during execution of the
preceding RECORD or FETCH statement) and will be incremented by one for esch -
sector if one sector records are specified. If two sector records are
specified the number will be incremented by one for every second sector.

106

V.3b
If more than one RECORD statement is included in a program, the program-
mer must determine the numbers assigned to the first sector of each record.
Before execution of a FETCH statement the programmer must set the wvariable
name assigned to the RECORD equal to the number assigned to the first sector
of the RECORD when the RECORD statement was executed. (See sample problem).

V.3c RECORD statement V.3c

The Record statement is used to write data from core storage into the
1311 Disk storage drive,

General form

RECORD (IREC) List

where: IREC is a non-subscripted or subscripted fixed-point variable, assigned
by the programmer to represent the record, The same variable name
is used when referring to the record in either a FIND, or FEICH
statement. IREC must be set equal to 1, in the program before the
first RECORD statement in the program is read. This assigns the
number one to the first sector of the record., All records are
referenced by the number assigned to the first sector of the record,

LIST is as described in input/output statements.

The data designated by the list are written as the total record re-
presented by (IREC)., If the list specifies more items than can be contained
in one or two disk sectors, the value of (IREC) is inecremented by one, by
the Monitor Control system, and writing proceeds to the next sequential
seztor, This procedure continues until either gll items in the list have
been written or until the end of the area specified by No in the DEFINE
DISK statement has been reached,

Ve3d FETCH statement V,3d

The FETCH statement is used to read date from the 1311 disk into
machine core storage.

General form

FETCH (IREC) List

where: IREC is the variable name that was assigned by the programmer to the
Record in the RECORD statement. Before the FETCH statement is
executed IREC must be set equal to the number assigned to the first
sector of the record, (See sample problem 1L).

107

LIST is as deseribed in input/output statements. V,3d

The data designated by the list is read from the record specified by
IREC. If the list specifies more items than can be obtained from one recordj
than the value of IREC is incremented by one and reading proceeds from the
next sequential record, This procedure continues until either the list has
been "satisfied" or until the end of the area specified by N» in the DEFINE
DISK statement has been reached, At the conclusion of a read operationm,
the value of IREC is one greater than the number of the last record read.

V.3e FIND statement Ve3e

This statement may be used before a RECORD statement or a FETCE sta?e—
ment to cause the disk access arm to be positioned over a cylinder which will
subsequently be read from or written on.

General form

FIND (IREC)

where: IREC is a nonsubscripted or subscripted fixed-point variable name
which references the disk to be read from or written on,

V.i Operating instructions, Monitor Control cards Vb

The following monitor control cards must precede a source deck written
for the IBM FII compiler

Card COl' 123h56789pnt-532...¢-o--o-v.62¢..--o-.an--pouno-na-v.o-ccBO
##J0B USER'S NAME OPTIONAL USER IDENTIFICATION
##FORX

108

""¥.,5 SAMPLE PROBLEMS

SAMPLE PROBLEM 13
WWJOB 5. '
WWF:ORX
*FANDKO506 -
C PROGRAM STORES 25 VARIABLES, EACH VARIABLE CONSISTING OF
C & DIGITS ON THE DISK .
DIMENSION A(25)
C DEFINE A TWO SECTOR RECORD COMTAINING 200 DIGITS
DIMENSION A(25)
DEF INE DISK(ZS 1)
DO 10 K=1,25
10 A(K)=K .
PUNCH 20, (A(K) K=1,25)
20 FORMAT(5E1L,2
€ THE NAME OF THE FIRST RECORD MUST BE ASSIGNED
C THE INTEGER VALUE 1

1A=1
RECORD(IA)(A(K) K=1,25)
DO 30 K=1,25 . .
B=K*K .

30 A(K)=B

PUNCH 20, (A(K),K=1,25)
C THE NAME OF.THE FIRST.RECORD MUST BE ASSIGNED THE INTEGER

C VALUE 1
IA=1
FIRD (1A)(A(K),K=1,25)
FETCH (1A)(A(K},k=1,25)
DO 40 K=1,25 . .

Lo A(K)=A(K)+1,
PUNCH 20, (A(K),K=1,25)

CALL EXIT
END
1.00 2,00 3,00 4,00 5.00
6,00 7 .00 8,00 9,00 10,00
11,00 12,00 13,00 14,00 15,00
16,00 17 .00 18,00 19,00 20,00
21,00 22,00 23,00 2L .00 25,00
1.00 4 .00 9,00 16,00 25,00
36,00 L oo 64,00 £1,00 100,00
121.00 14 169.00 196,00 225,00
256,00 28 oo 32k ,00 361,00 400,00
LL1,00 18k |00 529,00 576,00 625 ,00
2,00 3.00 L 00 5,00 6.00
7 .00 .00 9,00 10,00 11,00
12,00 13,00 14,00 15.00 16,00
17,00 15 .00 19,00 20,00 21,00
22,00 23,00 2k ,00 25,00 26,00

NOTE: The W's punched in the Monitor control cards are record marks,
multi-punch 028,

109

SAMPLE PROBLEM 14

##J0B 5

##FORX

C PROGRAM STORES 25 VARIABLES,EACH VARIABLE CONSISTING OF 10 DIGITS ON
DIMENSION A(25) THE DISK

C DEFINE 6 ONE SECTOR RECORDS

DEFINE DISK (10,6)

DO 10 K=1,25 .
10 A(K)=K

PUNCH 20, (A(K) K=1,25)
20 FORMAT(5F1L .2

C THElﬁATt OF THE RECORD MUST BE INITIALIZED TO EQUAL 1
RECORD(IA)(A(K) K=1 25)

DO 30 K=1,25
B=K*K
30 A(K)=B

C THE NAME OF THE RECORD MUST BE REINITIALIZED TO EQUAL 1

TUN?H 20, (A(K),K=1,25)
A=
FIND (1A)(A(K), K-l .25)
FETCH(IA) (A(K) ,K=1 25)
DO LO K= 25 :

Lo A(K)= A(K)J
PUNCH 20 (A(),K=1,25)
RECORD(I1A) (A(KS,K=1,25)
DO 50 K=1,25 .

50 A(K)= A(K)+2
PUNCH 20 (A(k) K=1,25)

C THEIXAEE OF ' THE RECORD MUST BE REINITIALIZED TO EQUAL L
FIND (1A)(A(K),K=1,25)
FETCH(TA)(A(K),K=1,25)
DO 60 K=1,25 .

60 A(K)=A(K)+1,
PUNCH 20, (A(K),K=1 25)

CALL EXIT
END

1,00 2,00 3.00 L ,00 5.00
6,00 7 .00 6,00 .00 10,00
11,00 12,00 13,00 14,00 15,00
16,00 17 .00 18.00 19.00 20,00
21.00 22,00 23,00 2L ,00 25,00
1.00 4,00 9,00 16,00 25,00
36,00 49,00 64,00 £1.,00 100,00
121,00 144 .00 169,00 196.00 225,00
256,00 289.00 32L ,00 361 .00 400,00

LL1.,00 L84 ,00 529,00 576.00 625,00

2,00
7 .00
12,00
17,00
22,00
L ,00
9.00
14,00
19.00
25 .00
3.00
6.00
13.00
18,00
23.00

3.00
8.00
13,00
15,00
23,00

10 00
15 .00
20.00
25,00
4,00
9.00
14.00
15,00
24.00

L,00

9,00
14,00
19.00
24,00

6.00
11,00
16,00
21,00
26,00

5.00
10,00
15,00
20.00
25,00

5.00
10,00
15,00
20,00
25..00

7 .00
12,00
17 .00
22,00
27 ,00

6,00
11,00
16.00
21.00
26,00

110

6,00
11,00
16,00
21,00
26,00

$,00
13,00
18 .00
23,00
20,00

7 .00
12,00
17 .00
22.00
27 .00

VI OTHER 1620 PROGRAMS AVAILABLE
VI.I AFIT Fortran

The AFIT system is a Fortran system designed for use on the 1620
Model I, Programs which do not fit into core storage when the Load and
Go system is used may fit when the AFIT system is used, The Load and Go
compiler allows approximately L4,2Q0 digits for the compiled program, The
AFIT compiler allows approximately 14,000 digits for the compiled program,

The AFIT system consists of an AFIT compiler, punched on cards, and
language specifications, The language specifications are modifications of
the basic Fortran language discussed in Section II. Fortran language
specifications which apply specifically to the AFIT system can be found in
a manual, AFIT Fortran, available in the genter office,

Unlike a Load and Go system, the AFIT compilation proceeds in two

~ stages., There is also a precompilation stage that checks the program for
clerical errors, punctuation, and spelling, During the first stage of
agtual compilation, the AFIT processor reads the source deck and produces
another deck known as the object deck, The second stage is the execution
stage during which the new object deck is read in and run, The manual,
AFIT Fortran, also lists operating instructions for using the AFIT compiler,
A subroutine which finds the arcsine of a number has been added to the
library subroutines. The card deck containing the AFIT compiler may be
found on top of the 1620 Model I card reader,

VI.2 SPS (Symbolic Programming System)

For those who wish to write in a language more intimately associated
with computer operation, we provide the programming language described in
IBM!'s Reference Manual for the IBM 1620/1710 Symbolic Programming System
#C26-6500, A copy of the SPS assembler, punched on cards for use on the
1620 Model I, is available at the Center office.

The 1620 Model II Monitor System includes a SPS II-D assembler stored
on the disk, Instructions for using the assembler may be found in IBM 1620
Monitor II System Reference Manual C26-577L4-0,

The following subroutines have been added to the SPS II-D subroutine
set 02 by NCE Computing Center staff members:

1, OUTC, output conversion, see write-up for LIB, 1.6.053
2, INC, input conversion, see write-up for LIB., 1.6.053

3. FC, Floating compare, see write-up for LIB, 7.0.050

L4l

VI.1l

VI,2

112

VI.3 Programs written by the NCE Computing Center staff and stored on Vie3
the 1311 disk

The following programs were written by the Center staff for general
use and stored on the 1311 disk. They are ready to be used with the appro-
priate Monitor Control cards.

VI,3a Butler VIi.3a

The program Butler will accept as data a Fortran or SPS source
deck, and will repunch the deck as follows:

1, The Fortran deck will have the statement numbers in columns 2-5,
colum 6 will be blank, the statement itself will-gtart in colum 7, A
sequence number will be punched at the end of the card.

2. Continuation cards are not produced from a long Fortran statement,

3. The SPS deck will have new page/line numbers punched in column 1-5
starting with the number entered from the typewriter.

Before entering Fortran or SPS source deck, set the console switches
as follows:

1 ON for SPS
1 OFF for Fortran
2 and 3 are not used

The following Monitor Control cards are placed in front of the Fortran
or SPS source deck:

Card col: 12 3 4L 5 6 17 8 9 10 11 12,.....32
Monitor Control card # # J 0 B USER 'S NAME
Monitor Control card # # X E Q U T,L E R

Note: # is a multiple punch 028
The card must be punched as indicated with the USER'S NAME punched in card

columns 32-60
Vi.3b Equivalence table description VI.3b

A description of the brogram is available at the Center. The Monitor
Control card is punched as follows:

Card col: 1 2 3 4 5 6 78 91
Control card # # X E Q E QT
A ## JOB 5 card precedes the ##XEQ card as shown above.

VI,3c Programs written by the NCE Computing Center staff and stored on VI.3c
punched cards

The following programs, written for general use are stored on punched
cards, A descriptive write~up is availsble at the Center,

Number Program name
EEPD 1 Muller's method for finding the

roots (real or complex) of an
algebraic equation with real
coefficients

EEFD 2 Transient response evaluation:
Time function obtained from
Laplace transform

EEFD 3 Frequency response analysis

VI.4 Library of 1620 programs

A set of 1620 library programs containing descriptive write-ups of
programs avallable for general use may be found in the Computing Center
library, Listed below are the programs which are stored either on the
1311 disk, ready for use on the 1620 Model II, or on cards or tape ready
for use on the 1620 Model I or II, A descriptive write~up of each program
will be found under the appropriate library program reference number, The

descriptive write-up will specify input format and indicate the output
format,

VI.,ha Programs stored on the 1311 disk

A program stored on the 1311 disk is executed when the appropriate
Monitor Control card is read by the 1620 Model II. The Monitor Control
card signals the system to read the program off the disk into machine core
storage, The Monitor Control card also informs the Monitor system that
the program is to be executed with the data following the control card,
The data should be in the form specified by the program write-up which
will be found under the appropriate Library program number, The data
should be followed by a card punched with record marks in col. 1l-l (####).

The following list includes a brief description of each program and
indicates the Monitor Control card and the Library program number for each
program. Monitor control cards are punched with ## in col, 1-2, XEQ.in
col., 3-5 and the name of the program in col, 7-12, The # is a multiple
punch 028,

General form of cards used when executing a program stored on the 1311 disk

Card col 12 3 465 6 78 9 10 11 12, ,,....32

Monitor Control card # # J 0 B User's Name
Monitor Control card # # X E Q S A ME O F

Data cards R e [e L e 2 s =

(specified by T "

Library program) T

End of data card # # # #

1. Computation of Bessel functions, first kind, integral order, for
arguments in the range greater than 0,001 to less than 200,0.

113

VI.L

VI.ha

3.

L.

5.

LIB, No. 3.0,005
Monitor Control card ##XEQSBESSEL

Solution for initial value problems involving n first order differential
equations by Runge-Kutta=-Gill and Hamming's method

LIB, No, L4,0,001L
Monitor Control card ##XEQSDIFEQS

Solution of simultaneous linear equations, The maximum number of
equations is 25,

LIB, No, 5,0,007
Monitor Control Card ##XEQSSIMEQS

Calculation of eigenvalues and eigenvectors of real symmetric matries,

LIB. No. b5.5.016
Monitor Control card ##XEQSEIGENV

Computation of the sum, mean, standard deviation, error of estimate,
sum of square deviations, and coefficient of variation, for each
varisble, and t-ratio and degree of freedom, between all pairs of
variables, for up to 50 variables,

LIB, No. 6,0.039
Monitor Control card #HXEQSSTATIS

Linear regression analysis for all combination of variables, The
program selects variables to be included in a complete multiple
linear regression asnalyses,

LIB, No., 6.0.057
Monitor Control card ##XEQSLRAVAR

Linear regression 6f two variables by least squares fit,

LIB. No, 6.0,067
Monitor Control card ##XEQSLR2VAR

Electric circuit analysis program

1IB, No. ECAP 1620-~EE~02X
Monitor Control card ##XEQSECA

Note: The JOB card for the above program must be punched with an Ol
i col. 8-9 as follows:

Card cols 8 9
o 1

Vi

e

Finite Fourier analysis including coefficients determination and plot-
back program.

LIB., No. 6,0,056
Monitor Control card ##XEQSFORIER

VI.Lb How to clear memory (MODEL 1)

before they are run,

Various programs may reouire that the memory be cleared (set to zeros)
Yo clear memorys

1, Set all check switches to PROGRAM
2, Depress INSTANT STOP and RESET
3. Depress INSERT
L. Type 160001000000 (12 digits , no spaces)
5. Depress RELEASE and START (or the R/S key)
6. After the MAR lights have cycled through memory at least once,
depress INSTANT STOP.
7+ Depress RESET
V1,5 PROGRAMS STORED ON PUNCH CARDS OR TAPE

1.1,002 ADDITIONAL IHSTRUCTION MACRO SUBROUTINE(CARD)

1,171,005 MULTIPROCESSING FORTRAN (TAPE)

1.1.,006 MULTI@PURPOSE SPS CARD OUTPUT COMPRESSO(
1165%01,1,009 LOAD + GO FORTRAN FOR CARD OPERATION (CARD)5 D
1165-01,1,010 AFIT IMPROVED FORTRAN (CARD)6 D

1,1,011 AN INTERPRETIVE LANG ASSEMBLER IBM 1620 .

01,1,012 OSAP ASSEMBLY SYSTEM (CONDENSED DECKS) (CARD)S D
1165 01,1,012 OSAP ASSEMBLY SYSTEM (SYMBOLIC DECKS) (CARD)S D
1165-01,1.,014 (CRD)12 D
1105~ 01.1.019 PROGRAM WRITEUP (CRD) 14 D 1620
1165-01,1,019 PROGRAM DECK (CRD)14 D 1620
1185-01,1,020 PROGRAM WRITEUP (CrRD)14 D 1620
1165-01,1.,020 PROGRAM DECK (CRD)14 D 1620
1165-01,1,020 PROGRAM DECK (CRD)1L4 D 1620
1185 01,1,023 DOCUMENTATION (CRD)21 D 1620
1105-01,1,024 PROGRAM DECK (CRD)23 D 1620
1185 01,1.,024 DOCUMENTATION (CRD)23 D 1620
1185 01 1.026 DOCUMEMTAT I ON (CRD)24 D 1620
1185-01,1.026 PROGRAM DECK (CRD)2L D 1620
1165-01,2,003 PROGRAM CONDENSER AND LOADER (CARD)3 D

VI, ha

03.0,001

01,2,005 RELOCATOR PROGRAMM (CARD) 3
01.2,006 DUMP TO RELOAD (CARD)S
01.2,007 FORTRAN COMPRESSOR-LOADER (CARD)5
01,2,000 A FLEXIBLE CARD READ ROUTINE (CARD) 6
1.2,009 FORMAT FORTRAN OBJECT DECK COMPRESSOR
01.3,003 1620 GENERAL PURPOSE CARD COMPRESSOR (CARD)2
01 .3.005 SQUEEZ (CARD) 3
.3.006 S%UISHER (CARD)6
.3, ooc 20 FORTRAM COMPRESSOR AND 75 COL,DUMP{CARD)6
.h 001 SELECTIVE TRACE
.+ ,002 TRACE PROGRAM FOR CARD 1/0 (CARD)1
4.003 1620 MULT!-TRACE (CARD)1
-4 .00k STROBIC (CARD)1
4 .005 TRACE AND 1A SIMULATOR (TAPE)1
"4.006 1620 MULTITRACE (TAPE)1
4 .007 1620-402 MULTI-TRACE (CARD)2
01 4 .008 DYNAMIC TRACE PROG FOR IBM 1620 COMP (CARD)2
01.4.010 GENERAL TRACE ROUTINE (CARD) 3
01.,5,001 FORTRAN SOURCE TAPE CORR (TAPE;I
01.5.004 POST MORTEM DUMP (CARD)1
01,5.005 UNIVERSAL TAPE DUPLICATOR (TAPE
01,5,008 ALPHANUMERIC TAPE DUP. AND CORRECTOR (TAPE
01.6,001 REGRESSLON ANALYSIS DATA PREPARATION (TAPE)I
01,6.003 1620 AUTOPLOTTER (TAPE)1
01.6,004 1620 AUTOPLOTTER (CARD)1
01,6,008 FORTRAN |/0 ROUTINE FORMAT CONTROL (CARD) 1
01.6.015 DYNAMIC DUMP CARD) 1
01,6.017 FORMAT CONTRL SUBROUT FOR CARD FORTRAM (CARD)1
1165-01,6,019 FORTRAN |11 DIAGNOSTICIAN CARD) 1
01.6.020 402 CORES DUMP (CARD)2
01,6,021 SYMBOL TABLE ANALYZER (CARD)2
01,6,022 ANL MNEMONICS DUMP (CARD)2
01,6,024 IMPROVED HASH TOTAL PROGRAM (TAPE)
01,6,026 /0 SUBROUT FOR USE IN SYM PROG (CARD)2
01,6.029 PROGRAM INTERPRUPT (CARD)2
01.6.030 CARD DUMP AND LOAD - (CARD)2
01.6,031 CARD HASH TOTAL (CARD)2
01,6.032 HASH TOTAL FOR CARDS (CARD) 3
01,6,033 FLOATIPG POINT OUTPUT SUBROUTINE . (TAPE)
01.6.,042 SBRS. FOR PRESET PREC, F.P. ARITHMETIC (CARD)L
01.6.043 LOGGING PROGRAM (CARD)4
o1, ‘6 044 GENERAL COMPRESSOR CARD)5
01.6.045 FORTRAN COMPRESSOR + MULTI-PROGRAMMER (CARD)5
01,.6,047 DBD (DAYS BETWEEN DATES) SUBROUTINE (CARD) 6
01,6,049 L106 FLT PT TO FIXED PT €D,.O/P ROUT,SPS(CARD)6
1185%01.6.055 PLOT SUBROUTINE FOR FORTRAN (CRD)10
1185 01.6.056 PLOT SUBROUTINE FOR FORTRAN W FORMAT (CRD)10
01.6.058 TRANSLATOR OF ALPHANUMER.TO EXCESS 50 (TPE)10
01,6,060 SPS OBJECT DECK ANALYZER ()
&5 01,6,061 1620 RECORD DUMP (TPE)10
02,0,003 INTERPRTIVE SYS PERFRM OPER COMPLEX NO, (TAPE)I
02,0,006 INTERPRETIVE ROUTINE (TAPE)
1165-02 .0.005 FORGO (LOAD AND GO FORTRAN) (CARD)2
1165-02 ,0 .009 FOR-TO-GO (2 PASS FORGO) (CARngz
02,0.011 INT, SYS, FOR PERFORM OPS COMPLEX NOS, 2CARD 3
02.0,.012 WOVATRDN | TAPE)

VARIABLE FIELD SQUARE ROOT SUBR, (CARD)1

116

1155

»1185

03.0.002
03.0,003
03.0.005
OL,' 10 QOO]
0L ,0.002
o4k ,0,003
05.0,002
05.0.003
05 .0 .00L
05.,0,005

-05,0,007

05.0,006

1185X05.0,009

05 0

1185%06.0 .0%1

#NOTE ¢

06,0,0k2
06,0,043
Programs
programs

1620 FIXED POINT SQR (CLOSED) SUBRTM (CARD)
ORTHOGOAL POLYHOMIAL COEFFICIENTS (CARD)2
COMP OF BESSEL FUNCT, OF INTGRAL ORDER (CARD)3
SOL.FOR NI ,VAL,PROB.M FIRST ORD.D.EQ, (CARD)3
SOL.FOR IM} ,VAL.PROB,! FIRST ORD.D.EQ, (CARD)3
SOL,FOR INI,VAL.PROB.1 FIRST ORD,D.EQ. (CARD)3
SIMULTANEQUS EQUATIOM SOLUTION (CARD)
EVGEMVALUES OF REAL SYMMETRIC MATRICES (CARD)IT
EIGENVALUES OF REAL SYMMETRIC MATRICES (TAPE)
EVALUATION OF DETERMUNANTS (CARD)

SOLUTION OF SIMULTS LINEAR EQUATIONS (CARD)!
SIMULTANEOUS EQUALTIONS A LA KING (CARD)2
CAL, EIGENVALS+EIGENVECTOR OF HY =LDY (CARD)3
MATRIX |NVERSION SUBROUTIME (CARD) 3
SIMULTAMEOUS EQUATIONS (CARD) 3
- MADAME (CARD)h
5 CAL.OF EIGENVALUES + VECTORS OF ZV=LAV (CARD;S
FLT,PT,MACRO INST FOR SOL OF LIN,SYS.EQ(CARD)6
EVALUATION OF A DETERMINANT (CRD) 11
MULTIPLE LIMEAR NONGREGRESS ANALYSIS

SCRAP (CARD) 1
STRAP (TAPE) 1
STEPWISE MULT, LIN, REGRESSION ANALYSIS(CARD)1
CORRELATING PROGRAM- UP TO 30 VARI (CARD
ANALYSUS OF VARIANCE (CARD)
HON LINEAR PATCH FOR MLR PROG OF WILDER(CARD;Z
DISTRIBUTION. STATISTICS (CARD)2
SIMPLE LINEAR CORRELATI!ON (CARD)2
GENERAL ANOY (CARD;Z
, LO-4O CORRELAT!ON (CARD)2
FREQUENCY DISTRIBUTIONS—-SINGLEPDBLE COL(CARD)2
MULTIPLE LINEAR REGRESSION (CARD)2
MULTIPOE LINEAR REGRESSION (TAPE)
MANN-WHITNEY TEST (CARD)2
SCATTERGRAM GENERATOR (CARD)2
(ORRELATION COEFFICIENTS (UCRBL 002k) (CARD)2
PRODUCT MOMENT CORRELATIONS(UCRBL 000L)(CARD)2
ANALYS!S OF COVARIAMCE (UCRBL 0007) (CARD)?2
ANALYSIS OF COVARIAWCE (UCRBL 0009) (CARD)2
ANALYSIS OF VARIANCE (UCRBL 0013) (CARD)?2
ANALYSIS OF VARIANCE (UCRBL 0014) (CARD)2
ANALYS1S OF VARIANCE (UCRBL 0015) (CARD)2
ANALYSIS OF VARIANCE (UCRBL 0016) (CARD)2
ANALYSIS OF VARIANCE (UCRBL 0019) (CARD)?2
STEPWISE REGRESSIOM (UCRBL 0018) (CARD)?2
AMALYSIS OF COVARIAMCE (UCRBL 00Z5) (CARD)2
AHALYSIS OF VARIANCE (UCRBL 0026) (CARD)2
HORMALITY (UCRBL 0027) (CARD)2
HOMOGEMEITY OF VARIANCE (UCRBL 0032) (CARD)2

MULT RANGE TEST OF MEAN DIF (UCRBLOO34)(CARD)2
MAT IMVERSIOM-SIMULT EQ (UCRBL0052) (CARD)2
LINEAR CORRELATION COEFFICIENT (CARD)2
STATISTICS 1 (CARD)2
FACTORIAL ANALYSIS OF VARIANCE (CARD;3
(ONT, FOREST INV,STATISTICAL CHECK PROG(CARD)3
MULTIPLE REGRESSION PACK FOR CARD 1620 (CARD)3

have been modified for Load and Go.

(o} Lo [s I vos v

OO QOO oTO00O

COOC00D0DUUU0DDUD000D0OUUUUDUDDUOUT QOO OU

and card source decks are available in the Center office.

117

A print~out of the modified

06,0,044

06 0.0QS
06,0,046

06.0 0’-}9
]185—06.0.050
06,0,056
06,0,057
0600005U
06,0,059
1185-06.0.,063
06,0,066

06 0.067
06,0,075
1185-06.,0,077
6.0 078

1185 06.0.’11
07.0,001
07.0,002

07 .0,003
07,0.005

M1 07 .0.006
07.0,007
07,0.006
07.0,009
07.0,010
07.0,012
07.,0.,014
07.0.015
07.,0,016
07.0.017
07.0.020

07 ,0.,021

01 0,022
07.0,023
OZ.0.0ZA
07.0.,025

07 a0.026
1185X07 ,0,027
1165%07 ,0,029
1185-07 ,0,030
1185X07 ,0,031
1185X%07 ,0,.032
07.0,033
65X%07.0,036
65 07.0.037
¢5 07.0,039
85 07,0.041
08 ,2,001
06,2,002
08 .2 ,004

- 06 .2 ,005
09.1.001
09,2,001

11
11
1
(R

ANAL ,OF 2~LEVEL FACTOR EX,FOR CARD 1620§CARD;3
CORRELATION FOR THE I3M 1620 - CARD)3
CORRELATION FOR THE 18M 1620 (TAPE)3
PROGRAM TO PLOT CONTOURS OF CONST,RESP.(CARD)4
FISHERS EXACT PROBABILITY FOR 2X2 TABLE(CARD)A4
FINITE FOURIER AMALYSIS . (CARD)5
LIN,REG ,ANAL ,OF ALL COMB, OF VARIABLES (CARD)S
MANN WHITNEY U TEST TAPEgS
PROBIT ANALYSIS (CARD)5
FISHERS EXACT METHOD (CARD)6
STRAP@A STEPWISE REGRESSION ANALYSIS P (CARD)

LINEAR REGSS (2 - VARIABLES) LEAST SQ FIT(CARD)

ROUNDING SUBROUTINE CARD

RIDGE ANAL, HIGHLY CORRELATED DATA (TAPE)7
WEIBULL ANALYSIS PACKAGE TAPE

RANDOM EXPONENTIAL NO, GEN, SUBPROGRAM (CRD)11
POLYNOMIAL CURVE FITTING TAPE) 1
POLYNOMIAL CURVE FITTING (CARD) 1
1620 FIX POINT SQUARE ROOT (CARD)1
SQUARE ROOT SUBROUTINE (CARD)2
ARCTANGENT SUBROUTINE (CARD)2
PLYNOMAL CURVE FIT LEGNDR PLYNOMAL (CARD)Z
SINE-COSINE SUBROUTINE (CARD)2
1620 I'NDOM NUM SUB FOR FORTRAN W/FORMAT(TAPE)2
DBLE PRECISION FLOATPT ARITH SUBROUT (TAPE)2
POLY ,REGRESSION PROGRAM FOR IBM 1620 (CARD)3
REAL AND COMPLEX RTS OF POLYNOMIALS (TAPE;A
FORTRAM SYS REL,SUB,FOR GEW,RAND,NOS, (TAPE)S
INTERPOL ,BY NEWTONS METHOD OF 3RD DIFF.(TAPE;6
CAL, OF REAL ROOTS OF REAL POLY, EQUA, (CARD)6
EMPIRICAL EQUAT BY METH LEAST SQUARES (CARD)

RANDOM MUMBER SUBROUTINE FOR FORTRAM F (CARD)

RANDOM NO, SUBR,-FORTRAN W/ FORMAT (TAPE)7
POLYNOMIAL CURVE FIT,GNEWTONS DIV DIF F(CARD

FOURTER CURVE FITTING @.1 PASS (CARD

GAMMA SUBROUTINE FOR FORMAT FORTRAM (CARD

ERROR FUNCTION@1620 FORTRAN SUBROUTINE (CARD
POLY, CURVE FITTING AMD EVALUATION (CARD)S
CAL, OF THE ROOTS OF A COMPLEX POLY,EQ, (CARD)8

LAGRANGE | MTERPOLAT{OM (CARD)S

FOURIER CURVE FITTING - 2 PASS (CARD)S
CAL, OF THE ROOTS OF A REAL POLY, EQUA .(CARD)S
CAL ,REAL ROOTS-REAL NON-LIN,EQ, IN VAR(CARD &
ROOTS OF POLYNOMIAL EQUATION (CARD)9
BESSEL FUNCTION SUB, FORTRAN W FORMAT (TPE)10
BIVARIATE CURVE FIT (CRD)11

CAL, OF THE REAL ROOTS OF A SYS, OF K (CRD)11

A ONE DIMENSIOMAL FEW GRP DIFF, CODE (CARD)5
CAPTURE GAMMA SHIELDING PROGRAM §CARD)5
SPEK (SPEEDY KATE) : CARD)
RSNT (CARD)
ARDC MODEL ATMOSPHERE SUBROUTINE iCARD;2
1620 SUBDIVISION PROGRAM TAPE)1

elolvlvlelvloleiolelolvialel w BN o

CODOUDOUDOO

Dobdbooooocn

i i)

118

1185

1165~

1185

1165~

1135

09.2.002
09.2,003
09,2,00k
09.2 006
09.2,007
09.2.008
09.2,009
05.2.012
09,.2,.013
09.2,01L
09,2,016
09.2,019
09.2.020

CUT AND FILL (TAPE)1
CUT+FILL (CARD)1
WATERWAY COMPULATIONS (TAPE)1
TRAVERSE ANALYSIS (CARD)1
TRAVERSE AMALYSIS , (TAPE)1
WATERWAY COMPUTATIONS PROG (TAPE)2
SKEWED BRIDGE ELEVATIONS (TAPE)2
RELOCATION OFFSETS’ (CARD)2
RECANGULAR CONCRETE COLUMN ANALYSIS (TAPE)2
GEN.VIRTUAL WORK ANALYSIS OF STRUCTURES(TAPE)3
DTM DESIGM SYSTEM PROGRAM (CARD)L
DTM DESIGN SYSTEM LOK (CARD)5

SLOPE STABILITY ANALYSIS

09.2.022 COL.ANAL,UNDER AXIAL LD.+2 WAY BENDING (CARD)5
09.2,024 BEAM CAMBER CALCULATIONS (CARD) 6
09.2.028 BACKWATER CURVE PROGRAM (CARD)S
09,2 ,032 VEHICLE SIM, AND OPER, COST SYSTEM (CrRD) 11
09.3.001 GAS NETWORK ANALYSIS TAPE)1
0S.3.002 SHORTCUT DISTILLATION (TAPE)1
09.3.,003 GAS METWORKS ANALYS1S-PUBLIC UT, DEPT, (CARD)I
09,3.,006 ASTM-TO-TBP+TBP-TO-ASTM.DISTILL,CONVER (TAPE)3
-09,3 oo7 FLASH VAPORIZATION CALCULATIONS CARD)6
09.3.008 MULTI,DISTIL,TOWER DESIGN SHT/CUT METH, 2CARD)6
05.3.009 UNIT OPERTS, SIMULATOR VAPORGLIQD, SYST(CARD)
~09,3,010 PLATEGTOGPLATE DISTILLATION PROGRAM (CARD)
09. "5 .001 ELECTRIC LOAD FLOW PROGRAM (TAPE) 1
S.4,002 LOCA OF SHUNT CAPACITOR ON RADIAL LINES(TAPE)I
o9.h.003 ELECTRIC LOAD FLOW PROGRAM (CARD) 1
09.4,00L SELECTION OF ECOMOMIC CONDUCTOR SIZE (CARD)l
09,4.,005 ECOM COMDCTR SIZE SELEC BY KELVIN LAW (TAPE)I
09,4 ,006 SHORTCIRCUIT ANALYSIS (CARD)1
09,4 ,007 SHORT CIRCUIT CALCULATION (CARD)1
09.k,008 TRANSMISSION LOSSESPPENALTY FACTORS (CARD)1
09.4,009 CURVE FIT-SIMUL PLANT RECORD(MEES-36) (CARD)I
09.4.,010 ECONOMIC DISPATCH DETERMINATION (TAPE)2
09,4.012 TRANFORMR RATING FOR NORMAL+EMERG OPER (CARD)2
09.4.013 TRANSIENT STABILITY FOR TEN MACHINES (CARD)2
09.4.014 TRANSFORMER SHORT TIME LOADING CURVES (CARD)2
09.4.015 SIMULT WQ SOLPMAT INVERSIOM/COMPLEX VAL(CARD)2
09,k,016 NETWORK REDUCTION PROGRAM (TAPE) 3
09.4,020 RAD,3 PHASE LINE DROP CAL,IN 2 PASSES (CARD)5
09,4,021 BATCH LOAD FLOW (TAPE)S
09.4,022 ECON GENERATION DISPATCH PROGRAM (CARD)5
09,4 ,023 SHORT CIRCUIT ANALYSHS BY MATRIX METHOD(CARD)6
09.4,025 LOAD ANALYSIS OF A COMMUNICATIONS NETWK(CARD)
09.6,001 STRAIN GAGE DATA REDUCT!ON (CARD)1
09.6,002 STRAIN GAGE DATA REDUCTION (TAPE)1
09,7.001 DIST OF WATER FLOW IN A PIPE NETWORK (TAPE)1
09,7.002 GENERALIZED PLOTTER I (CARD) 1
09,7.003 GENERALIZED PLOTTER (CARD) 1
09,7.004 S-100 STRESS ANAL FLNGE WITH TAPED HB - (CARD)I
9.7.006 HYDRAULIC ANAL,OF FLOW IN PIPE NETWORK (CARD)A
09.7.007 STEAM + WATER PROP, OF EFFICIENCY PROG.(CARD)5
~09.7.008 WATER FLOW IN A PIPE NET. BY H,C.SOL. (CARD)5

1185-

OODTNOODUODNUDDUUODOOOO0OOO

OO0 OMNMODD U000 LUOODOoOoUOoODo DO

119

1165

et
coCo
AS2 R %,

1185

09.7.,009 MULTICURVE PLOTTING PROGRAM (CRD)10
09.7.010 BLIVIT (CRD)10
10,1,001 LINEAR PROGRAMMING FOR' THE 1620 (TAPE)1
10.1,002 LI, PROGRAMMIIG CODE. FORTHE IBM 1620 (CARD)1
10,1.004 MXV PROGRAM FOR L.P, MATRIX PREPARATION(CARD)1
10.1,005 TRANSPORTATION PROGRAM FOR THE 1BM 1620(CARD)1
10,1,006 LINEAR PROG CODE.CRD PUNCH C OPTION FIN OUTP
10,1.,008 LINEAR PROGRAMMING 11 (CARD)6
10,2,001 INVENTORY MANAGEMENT SIMULATOR (CARD) 1
10,2.,003 AN {NVENTORY MANAGEMENT SIMULATOR (CARD)
10,2,004 SALES FORECASTING SIMULATOR : éCARD
10,2,005 BOSTON COLLEGE DECIS|ION-MAKING EXERCISE(CARD)3
10,2,006 MANAGEMENT DECISION MAKING (CARD)4
10,2 ,007 EXPONENTIAL SMOOTHING PROGRAM ° (CARD;#
10,3,001 LEAST-COST ESTIMATING AND SCHEDULING (TAPE
10,3,002 LEAST COST ESTIMATING AND SCHEDULING" gTAPE
10,3,003 LESS CARD)1
10,3,004 LESS 11t (TAPE)1
10,3,005 CRITICAL PATH SCHEDULING (CARD)1
10.3,007 A PROG FOR ANALYZING THE INVSTMT OF CAPéCARD)Z
10,3,008 1620 MODE NUMBERING CZRD)
10,3,009 1620 PERT (TAPE;B
10,3,010 ECON,ANALYSIS OF PLANS OUTOUT 1 + 2 (CARD)S
10,3,011 MISS LESS (CARD) 6
10,3,012 MISS LESS ' (TAPE) 6
10,3.013 MANGSCHEDULING PROGRAM FOR 1620 IBM (CARD)
10,3,016 KWIC (CRD;II
10,3,017 STUDENT SCHEDULING (CRD) 12
11,0,001 THE CHINESE BARPRING PUZZLE (CARD)1
11,0,002 1620 SIMULATION OF A ONE-ARMED BANDIT (TAPE)1
11.0,003 CHINESE BAR AND RING PUZZLE (TAPE) 1
11,0,004 THE EXECUTIVE GAME (TAPE)1
11,0,006 BLACKJACK DEMONSTRATION (CARD)1
11,0,007 BBC-VIC BASEBALL DEMONSTRATOR (CARD)1
11,0.,008 BBC-VIC BASEBALL DEMONSTRATOR (TAPE)1
11,0,009 RANDOM WALK V (TAPE) 1
11,0,010 SELF DEMONSTRATOR (TAPE)1
11,0,012 TIC~-TAC~-TOE- DEMONSTRATION (CARD)2
11,0,013 TIC-TAC-TOE~A LEARNING PROGRAM (CARD) 3
11,0,014 TIC TAC TOE-3 DIMENSIONAL (CARD) &4
11,0,015 TIC TAC TOE-3 DIMENS|ONAL (TAPE)4
11,0,016 RONDOM WALK DEMO (TAPE)S
11,0.017 RANDOM WALK DEMO (CARD)5
11,3,030 PERFECT NUMB DEMONS PROG CRD)
12,3,001 UNIVERSAL OUTPUT SUBROUTINE CRD)10
12 4,001 1710 APP,TO STEAM GEN UNIT-SYSTEM DEMO,(CARD)6
13,0,001 PLOT SUBROUTINE . (CARD)L
13,0,002 LINK SUBROUTINE .

13.0,003 NORTHEASTERN UNIV, TEST SCORING PROGRAM(CARD)8

OO OCOO0oO0O

(o R oo wo

120

121
VIl PUNCHED~CARD EQUIPMENT

VII.1 Card punch (Model 026) VII.I

Three card (or key) punches are available at the Center., During
operation of the 1620 Model II, the card punch next to the computer is
reserved for short corrections, A fourth card punch is available at
Tiernan Hall, 240 High Street.

Single=card punching

‘The ON - OFF switch is a toggle switch on the card stacker on
the upper left-hand corner of the punch,

Slide the blank card in the punching station (the right-hand station)
and press the key on the keyboard marked REG (register), The card should
engage; if it does not, mske sure the right edge of card is under hook.

With the card engzged you can punch any combination of numbers,
letters, or special characters present on the keyboard, The keyboard works
much as does a typewriter keyboard: the punch is normally in alphabetic
shifts to punch numbers, or characters on the upper level of the keys, press
the numeric shift, a key marked "NUM", This must be held down while you
are punching the numbers or characters, To punch more than one number or
sign, in the same column hold down MULP PCH while punching. When you have
finished the card, press REL to release the card. Then push REG, REL, RRG
to get the card through the reading station (the left=hand station) and up
into the card stacker.

Single-Card duplicating and correction

Slide the card to be duplicated and/or corrected into the left-hand
(reading station), and a blank card into the right-hand (purnching station),
and push REG, For duplication push DUP, and note that a pointer in the
window at the center of the punch indicates which column of the card is
passing by the stations. To insert corrections, stop duplicating at the
appropriate column and type in the corrections, Duplication of the rest of
the card can then be done,

Multiple=card punching

Put your blank deck of cards in the feed hopper on top of the
punch at the right between the spring~loaded follower and ths front
of the punch, With the AUTO FEED tcggle above the keyvoard off, you
must push FEED and REG to get a card to the punching station, With
the AUTO FEED toggle on, pushing REL will accomplish the same thing.
(You must start the process by pushing REL twice)

Note (=) The minus signs on the card punch is the one on the right
(on the key which says SKIP), It gives an "eleven" punch in
either mode, The dash on the = key gives and "8" and "L" punch,

Note (0) Be careful not to use the letter O (alphabetic mode) for the
number (zero), O, (numeric mode).

Control cards

When you are punching a deck of cards it often saves time to set
up a control card to control the punching in the various columns of the
card., The conirol can set the punch in the alphabelic mode or the numeric
mode, determine which fields are to be duplicated, skipped, etc,

The control unit visible through a small window in the cover, con=
sists of a cylinder around wirich a card is wrapped, The cover swinags back
to permit access, Onice the swall Veswitch loczied bslow the cover window
is turned off (down to the right). The cvlinder can ke removed from the
spindle and the card changed, To put a centrol card on the ¢ylinder, hold
the cylinder with the wvertical chrome strip towsrds you and the lever at
the top, Turn the lever to the exireme left, Slip the righi~hand end of
the controel card under the left-hand side of the chrcme strip and push the
bottom of the card down against the ledge at the botiom of the cyiinder.
Check that the card is straight by ¢ooki“g at the two small holes in the
chrome strip, The cyiinder chould not show al the edge of the card through
these holes, To clamp this end of the card, move the locking lever at the
top around to its center position, Then wrap the contirol cuzrd around the
cylinder and slip the free end under the other side of the chrome strip,
making sure the card is wrapped srugly around the cylinder, Lock the card
in place oy moving the top lever to the right. Gently rep;que the cyliuder,
being sure the bottom pin is seated, and close the cever, Turn ths Veswitch
to the left, turn on the AUTC FEED, AUTO SKIP, Turn the Veswitch to the
left, turn on the AUTO FEED, AUTO SKIP, AUTO DUP, and PRINT switches, and
the punch is ready to operate,

A control card may be removed from the control cylinder by reversing QeyTria
the sequence-given above, - "

The format for a cyllnder control card ‘consists of variations of
L, punchess

+ continues whatever operation was done in the previous column
- causes the punch to skip that column

0 casues automatic duplication (numeric) of the same

1 activates the alphabetic shift

blank activates the numeric shift

An example of a control card is the following:

column

1230'0¢oonq 80
—++++1AAAAATAAATAAAAAAAAARAAAAAAAARAAARAAAARAAAAAAAANAAARAANARAAARARAAAARAO+DH++

123

which causes an automatic skip to column 6, then a shift to alphabetic
mode (an "A" is a combination of a "+" and a "1'" punch) and continues
the shift, The reason for the 1 in colums 12 and 16 is to break the
field definition so that pushing the "SKIP" key will advance the card
to the next field from wherever it was positioned in the previous field.
Columns 75 and 76 will cause automatically duplication from the card at
the reading station into the card at the punching station., The last
four columns (column 77 is b for a blank, i.e., no punch) permit numeric
card numbering to be punched.

VII.2 Printer (IBM LOT7 Accounting Machine) VII.2

Control Panels

The format of the printing or "listing" from cards is controlled by the
control panel and switches on the right~hand end of the machine., The control
panel is held in a drawer that tilts outward from the printer so that the panel
can be slid in or out, WNever try to run the machine unless a control panel
is securely in the holder and the drawer is closed,

Ordinarily the "Reproduce 80 ~ 80" control panel is used to print
cards exactly as they are punched, Other control panels can be wired to
distribute the information on the cards across a printed line in various
formats., Wiring diagrams are included in the LO7 manual,

Ogeration

Turn on the ON-OFF switch on the left~-hand side of the machine,
Put the cards 9-edge leading, face down, into the card hopper to the left,
Hold down the START button for three cycles to start the cards feeding
through the machinej hold it down again to get the last cards through and
out,

If the CARD FEED STOP light comes on, the bottom card of the feed
deck is probably bent. Duplicate this card and replace it, press the
STOP then START to continue the listing, If one of your cards is missing,
youhwill have to get help from a staff member in extricating it from the
machine,

VII.3 Reproducer (Model 519) VIL.3

The reproducer®s major use is in duplicating decks and in punching
regular punched cards from mark sensed cards (See Below VII.3). It can
also compare two decks, rearrange the colums of a card, and punch sequence
identification numbers,

There are two card feeds on the top of the reproducer. The left-

hand one is for the deck to be read and the right-hand one is for the
deck to be punched, The control panel holder is below the card feeds,

Reproducing
Use the panel marked "80 - 80 REPRODUCING". Put the deck to be

124

reproduced in the read feed (left-hand hopper) face down, 12 or top

edge to the right, and put blark cards in the punch feed in the same
relative position. Turn on the switch on the right side of the machine.
Hold the START button down for three cycles, and then the machine should
go by itself, Hold the START button down again to get the last card to
go through, The old deck will come out in the left stacker; the new
duplicate deck will come out in the right stacker,

Error stops on reproducer

If the machine stops with the red light labeled "COMP" an error
in the duplicating process has been detected, In the window low down
on the front of the machine metal pointers indicate the columns containing
errors,

Remove the cards not yet processed from the hoppers, and run the
cards in the machine out by holding down the "START" button., Take the
top three cards off both piles. Put the three from the old deck back
in the left hopper, Throw out the three from the new deck., Put the
remaining unprocessed cards back in their respective hoppers.

Pull up on the lever beside the compare light until the light goes
off. Press START as in the beginning.

Save the portion of the new deck already punched ~- it is valid,
When the machine has finished processing, combine the parts of the new
deck,

Seguence numbering of cards

To punch sequence numbers into colums 76~80 of a deck of cards
use the control panel labeled "SEQUENCE NUMBERING"., Put a card containing
zeros in columns 76-80 on top of the deck to be numbered and place the
deck face down, top edge to the right, in the right-hand hopper. Certain
adjustments can be made inside the machine to permit the sequence numbers
to be printed on the cards, See a member of the staff for more details,

Partial reproducing and gang punching

It is possible to wire a control panel to reproduce only certain
columns on the card (possibly rearranging them), or to insert the same
information in the same colurms of several cards. (The latter is called
"gang-punching".,) Consult a member of the Computing Center Staff if you
want help,

Merk Sensing

Mark sensing is based on the principle that a special pencil mark
with a high graphite .content can conduct electricity. The mark-sensing
device on the reproducer reads the pencil marks on the cards and punches
corresponding holes, Fach mark-sensing column covers three punching
columns so that up to 27 colums of data can be marked on a card, For
our purposes the first markesensing column will be converted to the first
punched column, etc,, so that the 27 columns spanning the marked card
become holes in the first 27 columns of the punched card,

125

We plan to try to lighten the load on the card punches and also
make card preparation more convenient for our users by providing the
special cards for mark sensing and the device on the reproducer to convert
them to punched ¢ards, The special pencils required can be purchased at
the bookstore, The allowance of 27 columns should be adequate for almost
any Fortran statement, (Also see Appendix "Use of Mark Sense Cards")

Marked to punched-card conversion

Place the deck of marked cards in the right hopper of the reproducer.
Use the "Mark Sensing" board, The marked cards will be punched.

VII.L Sorter (Model 082) VII.h

Place the cards carefully (this is a fussy device) in the hopper at

the right end of the machine with 9 (bottom) edge toward the machine, face
down,

Set the column on which you wish to sort by moving the crank until the
pointer rests on the right number, You can move it longer distances without
cranking by pushing down on the round release button on the side of the
pointer, The "ON" switch is a round series of suppression switches used
mainly in alphabetic sorting, Consult the manual if you wish to use this
option, When sorting, always sort on the least significant digit first or,
in a field, start on the right~hand column,

VII.5 Character Coding on Cards VII.5

Punched or marked cards have one character per colum., The rows
of the column are called, from top to bottom:

12 (or +)
11 (or -)
]
1
2
3
L
B
6
7
8
g

Thus, the number 3 has a punch in row 3 and so on., Letters and
special characters have more than one punch per column., A "J" for example
has an 11 and a 1 punch, The complete set of character codes are:

Alphameric Character Card
(Blank) (Blank)
« (Period) 12, 3, 8

12, I, 8

ﬁ%

Alphamerie Character Card VII.S

* €9 +
FEE
-
0
-
o]

~ (Minus)

~
o
»w
)

(Comma) 0, 3, 8

~ews (Dash, 222 & minus) 4, 8

sod
| =
N
.

NMHMSdgMTT oW OB rHRagHIET OO HUGQ W >
._.l
" =
“w

O o~1 ONALET W M0 00~ ONALESW D 0 o=3 ONLETW o

Numbers O, 1, ceey 9 0y 1, seey 9 respectively

126

APPENDIX

A. NOTES ON THE STORAGE OF INTEGER AND REAL NUMBERS

A real number may be expressed as a decimal times a power of 10.
All real numbers are stored in computer memory as decimals; the
appropriate power of 10 is stored with the decimal as follows:

JOOORKY, XK,

RREETE, N
MANTISSA EXPONENT
Where: The mantissa is the decimal portion of the number,

The first digit of the mantissa (after the decimal point)
is always non-zero,

The mantissa consists of eight digits. (IBMFII-D does per-
mit the user to specify an alternate mantissa length., OSee
Section V,1 "Varying the word length,")

The exponent is a two digit integer. The mantissa multiplied
by ten to the exponent is equal to the real number as expressed
in the source program or data. The range of the exponent is
discussed in Section II,2a "Real Constants." Note that the
exponent is sometimes referred to as a characteristic.

Example:
A = (B+500,225C) / (,005sD+h.)

500,22 is stored as 03 .50022
Exponent Mantissa

.50022%10° = 500,22

.005 1is stored as -02 5
Exponent Mantissa

-2
05 #* 10 = .OOS

L. is stored as OL b
Exponent Mantissa

1

Qh*lo =,4

Integer(fixed point)numbers are stored in digit form as follows:

XXXX L. & G,
XXXXX K Il

127

Arithmetic operations may be directly performed on integer numbers.
If the result is more digits than permitted by the compiler the high
order digits are truncated.

Example:

I= 9986 + 24

I is stored as 0010 when the statement is processed
using the Load and Go processor.

When performing arithmetic operations on real numbers the computer
must be instructed to handle the mantissa and exponent parts of the
number. The 1620 Model II has built in components capable of carrying
out real {floating point) arithmetic, The 1620 Model I does not

have this capability and the processor must include subroutines

which carry out the real (floating point) arithmetic, (For a dis-
cussion of floating-point arithmetic see Kuo, S. Shan, "Numerical
Methods and Computers," pp 28-29,) Note that when arithmetic
operations develop a mantissa with more than 8 digits the low order
digits are truncated.

B. NOTES ON THE USE OF MARK SENSE CARDS

Use of Fortran Mark Sense cards will enable programmers to prepare
their source decks without losing time waiting for a free key punch
machine, The mark sense cards and the IBM graphite pencil may be
purchased at the bookstore. Instructions for marking the cards are
listed on pages 12k, 125 of the Handbook. A Computing Center staff
member will process mark sensed decks on the IBM 519 reproducer
during the hours listed on the Computing Center bulletin board.

The decks should be placed in the box marked IN on the 519. A
punched deck and LO7 print-out of the deck will-be returned to the
OUT box, To assure the return of the proper deck to the proper
programmer the programmer is required to place the following two
cards at the top of the mark sensed deck.

Card cols. 12 ..t...lll.ll.l.20..l..l...l'l...l'....l.ll.eo
Card 1: Z
Card 2: NAME PROBLEM NUMBER

Where: The first card is blank except for a Z in column 80.
NAME is the name of the user.

PROBLEM NUMBER is the problem number assigned to the user.
Mark the face of Card 1 with the name of the uger and the initials

"F.C." (Use a magic marker type pencil) Mark the back of the last
card of the source deck with the initials "L,C."

128

The Z in column 80 punched on the first card signals the IBM LO7

to vbtart printing the following source deock on a new page. Switch
3 (on the 40O7) mst be sct to the ON position when batch processing
print-outs of mark sensed decks.

The above two cards can be key punched at the beginning of the
semester and re-used for each mark sensed deck.

C. NOTES ON MODEL II-BATCH PROCESSING

1.

Computing Center batch processing schedule

A Computing Center staff member will process Fortran source
decks prepared for batch processing on the Model II during the
hours listed on the Computing Center bulletin board, Source
decks should be left in the IN box next to the Model II, Printed
Output and the source deck will be placed in the OUT box. Please
note that all output should be printed. All decks must include
correctly punched control cards. Mark the first card with your
name and the last card "L.C,"

Listing of required control cards - KFIT
The following cards should be punched at the beginning of the
semester and can then be used throughout the semester for each

Kingston Fortran deck submitted for batech processing:

Ca.I‘d COlumnS: 123)456789...'0-0000020 ...-.............’-..oaSO

Card 1. ##J0B

Card 2, #HXEQ KF2

Card 3. $ JOBNAVME OF PROGRAMMER OPTIONAL USER IDENTIFICATION
Card L, # EOJ

Card 5. ##XEQ RUN

Card 6, #Hi#

Where: The #'s (record marks) are multiple punch 028

NAME OF PROGRAMMER is punched in columns 10-43.
Any additional user identification may be punched in card
colums 45-80.

129

See SectionV,1N "Operating instmuctions, control cards" for ing=-
tructions on placing the control cards in the source deck.

It is suggested that the user use the Kingston Fortran processor

for speed in compiling and executing a Fortran program. However
programs written in Fortran II-D may be batch processed with Kingston
programs if the correct control cards are included with the source
deck.,

Listing of required control cards -~ IBM FII-D
Card columns: 123456789 ..v.veceee32cessssornsoscasP0eB2ccecaccacesssal0
Card 1, ##J0B NAME OF PROGRAMMER OPTIONAL USER

IDENTIFICATION
Card 2. ##FORX

Wheres The #'s (record marks) are multiple punch 028,

NAME OF PROGRAYMER is punched in card columns 32-60.
Any additional user identification may be punched in
card columns 62-80.

Listing of required control cards - disk stored programs.
Gard GOlumnSS 1231-‘567.890.000.00!132.00:0.-0!00100000062v0o-n-ooooo.ooBO
Card 1, ##J0B NAME OF PROGRAMMER OPTIONAL USER

. . , IDENTIFICATION
Card 2. ##¥EQ NAME OF PROGRAIM.

Where: The #'s (record marks) are multiple punch 028 NAME OF PROGRAMMER

is punched in columns 32~60, card columns 62-80 may be punched
with any optional user identification,NAME OF PROGRAM is the
name of the program currently stored on the disk. (See Section
VI.ha for a listing of programs available for disk storage)

The program name is punched starting in Card column 7,

INDEX TO ACCEPTABLE FORTRAN STATEMENTS

Statement

ACCEPT

ACCEPT TAPE

ARITHMETIC IF

ARITHMETIC Statement Function
ASSIGN

CALL name

CALL EXIT

CALL PLOT

CALL RAND

CALL RESOLV

CALL ROUND

NOTE:

G same as general form

FII permitted in IBM FII-D, See

KF permitted in KFII, See KFII

General Form

19, 20

19, 20

16

KF (See NOTE

below)

KF

KF

19

KF

KF

KF

FII

IG permitted in L, and G., See L, and G,

130

L, & G, KFII FII
28 53 MS (See NOTE
below)
N.P.(See 53 MS
NOTE)

G G MS
N.P. 70 MS
N.P. L9 N,P
N.Ps 75 MS
N.P, 52 MS
N.P. 77 NOPi
N.P, 78 N.P,
N.P, 79 N.P,
N.P. N.P. 104

MS See 1620 Monitor I System Reference Manual, Fortran II-D

N.,P. Not permitted

CALL SKIP

CALL SOLVE
CALL SORT
COMMON
COMPUTED GO TO
CONTINUE

DATA
DIMENSION

DO

END
EQUIVALENCE
FORMAT

FETCH

FIND

FUNCTION name
IF(SENSE SWITCH)
PAUSE

PRINT

PUNCH

PUNCH TAPE
READ

RECORD

REREAD

RETURN

STOP
SUBROUTINE name
TYFE

Unconditional GO TO

KF (See NOTE p.1) N.P. 53
KF N.P. 78
KF N.P. 78
KF N.P. 66,69
15 25 50
19 G G
KF N.P. 67
21 G G,69
16 g6 5L
19 27 53
KF N.P. 66,69
20 27 56
FII NP, (R 9
FII N.P. N.P.
KF N.P. 71
16 25 51
19 G 5
LG 27,28 55,65
20 28 55
KF N.P. 55
19,20 28 B3
FII 1 N,P,
KF B B3
KF N.P. 75
19 27 52
KF NP, T4
20 27 55

13

G G

131

NaPs
N,P.

NP,

MS
N.E.
MS
MS

MS

MS

MS

106

NsPes

Ms

MS

