COIPPUTING CENTER HANDBOOK

Third Edition Edited by Charlotte Rubashkin

Computing Center
Newark College of Engineering
Newark, New Jersey

June 1966

INTRODUCTION

I NCE COMPUTING CENTER 1
I. 1 Equipment available 1
I. 2 Applying for use of the 1620 computer 1
I. 3 Charges for computer time 2
I. 4 Scheduling computer time 3
a. Class use of computer time 3
b. Student operation of the 1620 Mod I computer -m scheduled Load and Go periods 3
I. 5 In-Out boxes 5
I. 6 Punched cards 5
I. 7 References and manuals 7
I. 8 Staff 7
I. 9 Courses in programming 7
II BASIC ELENENTS OF THE FORTRAN LANGUAGE 9
II. 1 Source program and object program 9
II. 2 Arithmetic statements 10
a. Constants 10
b. Variables 11
c. Arithmetic operation aymbols 13
d. Arithmetic expressions 13
e. Replacement statements 14
II. 3 Control statements 15
a. Unconditional GO TO statement 15
b. Computed GO TO statement 15
c. Arithmetic IF statement 16
d. IF (SENSE SWITCH) statement 16
e. DO statement 16
f. CONTINUE statement 19
g. PAUSE statement 19
h. STOP, END, and CALL EXIT statements 19
II. 4 Input/Output statements 19
a. General form for input statements for Fortran without Format 19
b. General form for input statements for Fortran with Format 20
c. General form for output statements for Fortran without Format 20
d. General form for output statements for Fortran with Format 20
II. 5 Specification statements 20
a. DIMENSION statement 21
$b_{\text {. O }}$ Other specification statements 21
III NCE LOAD AND GO 22
III.1 Punching input source programs 23
III. 2 Arithmetic statements 23
a. Constants 23
b. Variables 23
c. Arithmetia expressions 24
III. 3 Control statements 25
a. Statement numbers 25
b. Computed GO TO statement 25
c. IF (SENSE SWITCH) statement 25
d. DO statement 26
e. STOP and END statements 27
IIId Input-Output statements 27
a. General rules for input-output statements without format 27
b. Rules for input data 28
c. Rules for output data 29
III. 5 Subprograms 29
a. Library subroutines 29
b. Subprograms written by the programer 30
III. 6 Batch processing instructions - Version Three 31
a. Preparing the source deck for batch processing 31
b. Operator instructions batch processing 31
c. Punched card output-batch processing 32
III. 7 User processing - Version Two 33
a. Preparing the source deck for user processing 33
b. Operator instructions - user processing 34
c. Trace feature - user processing 36
III. 8 Error messages during compilation 37
TABLE 1 37
III. 9 Error messages during execution 38
Table 2. 38
III. 10 Sample problems 39
Sample problem 6 44
IV KINGSTON FORIRAN LANGUAGE SPECIFICATIONS 45
IV. 1 Punching input source program 46
IV. 2 The arithmetic statement 46
a. Constants 46
b. Variables 48
c. Arithmetic expression 49
IV. 3 Control statements 49
a. Statement numbers 49
b. Address variables 49
c. Computed GO TO statement 50
d. IF (SENSE SWITCH) statement 51
e. DO statement 51
... $f_{\text {. P PAUSE statement }}$ 52
g. STOP statement, CALL EXIT, CALL SKIP 52
h* END statement 53
IV. 4 INPUT/OUTPUT statements 53
a. Input statements 53
b. Array input 54
c. Output statements 55
d. Array output 56
e. Maximum size of output records 56
IV. 5 The Format statement 56
a. Numeric conversion codes 57
b. Alphameric conversion codes 61
c. Specifying blank fields 63
d. Repeating specifications 63
e. The use of the slash (/) 64
TABLE 3 65 65
IV. 6 KFII without FORMAT 65
IV. 7 Specification statements 65
a. COMMON statement 66
b。 EQUIVALENCE statement 66
c. Type statements 67
d. DATA statements 67
IV. 8 Subprograms 69
a. Arithmetic statement function 70
bo FUNCTION subprogram 71
c. SUBROUTIIE subprogram 74
IV. 9 Subprograms provided by FORTRAN 76
ag Mathematical subroutines 76
TABLE 4 76
IV. 10 Operating instructions, control cerds 80
a. Required control cards 80
b. Optional control cards 81
IV.11 Operating instructions, automatic console typewriter output during program compilation 83
IV. 12 Operating instructions, error messages during compilation • 84
TABLE 5 85
IV. 13 Operating instructions, error messages during object program execution 84
TABLE 6 93
TABLE 7 94
IV.IL Sample problems 95
Sample problem 7 95
Sample problem 8 95
Sample problem 9 98
Sample problem 10 100
Sample problem 11 101
Sample problem 12 102
V IBM FORTRAN II 103
V.l Varying the word length (number of significant digits stored in the machine). 103
V. 2 Library functions added to the IBM FII compiler 104
V. 3 Instructions which use the 1311 disk for storage of data 104
a. DEFINE DISK statement 104
b. Assigning numbers to disk sectors 105
c. RECORD statement 106
d. FETCH statement 106
e. FIND statement 107
V. 4 Operating instructions, Monitor Control cards 107
V. 5 Sample problems 108
Sample problem 13 108
Sample problem 14 109
VI OTHER 1620 PROGRAMS AVAILABLE. 111
VI.1 AFIT Fortran 111
VI. 2 SPS (Symbolic Programming System) 111
VI. 3 Programs written by the NCE Computing Center staff and stored on the 1311 disk 112
a. Butler 112
b. Equivalence table description 112
c. Programs written by the NCE Computing Center staff and stored on punched cards 112
VI. 4 Library of 1620 programs 113
a. Programs stored on the 1311 disk 113
b. How to clear memory (Model I) 115
c. Programs stored on punched cards or tape 115
VII PUNCHED CARD EQUIPMENT 121
VII.1 Card punch (Model 026) 121
VII. 2 Printer (IBM Accounting Machine) 123
VII. 3 Reproducer (Model 519) 123
VII. 4 Sorter (Model 082) 125
VII. 5 Character coding on cards 125
APPENDIX
A. Notes on the storage of integer and real numbers 126
B. Notes on the use of mark sense cards 127
C. Notes on Model II-batch processing. 128
INDEX TO ACCEPTABLE FORTRAN STATEMENTS 130
\square

INTRODUCTION

The NCE Computing Center Handbook is intended to provide users of the Computing Center with general information about the various 1620 programming procedures. The Handbook discusses in detail the two versions of Fortran in common use at the Center: Load and Go, (called L and G) for the Model I 1620, and Kingston Fortran, (called KFII) for the Model II 1620. Some information is also included on other available programming systems.

Section II lists definitions for those elements of the Fortran language which are common to the Fortran systems discussed in the Handbook.

Section III lists those Fortran language specifications which apply specifically to the Load and Go system. Section III also describes in detail operating instruction for using the NCE Load and Go compiler. The compiler, punched on cards, is available in the Computer room. The card deck containing the compiler will usually be found in a box on top of the 1620 Model I card reader.

Section IV lists those Fortran language specifications which apply specifically to the Kingston Fortran II system. A Kingston Fortran II compiler and an IBM Fortran II Compiler are available on the 1311 disk of the 1620 Model II. Section IV notes operating instructions for using the KFII compiler. Section V notes operating instructions for using the IBrI Fortran II compiler. Section V also lists those IBM Fortran II (called IBM FII) language instructions which provide for operations not permitted by the KFII compiler. Additional IBM Fortran II language specifications are discussed fully in the IBN 1620 Fortran Manval (\#C26-5619).

Section VI briefly describes other systems which may be used on either the 1620 Model I or II. Section VI also lists the library programs available at the Center for use with either the 1620 ifodel I or II. The programs are stored either on the 1311 disk, on punch cards, or on paper tape.

Section VII consists of instructions for using the other equipment in the Center. Included are instructions for using the card punches, the reproducer, the printer and the sorter.

The first section of the Handbook describes the equipment available at the Center and the rules for using the equipment. Users please note the procedures for applying for problem numbers (Section I.2), for using the IN-OUT boxes (Section I.4c) and for signing the Time Sheet when operating the computer (Section I.4).

The Handbook can be used in a loose-leaf binder and is designed so that pages may be removed for use at the machines. The Handbook will also be kept up to date with the printing of revised pages. The revised pages will be numbered by section and page and should be inserted at the appropriate location.

The Computing Cehter at NCE has available for use two analog computers and two digital computers. The analog computers are PACE TR-10 and PACE TR-15 computers manufactured by Electronic Associates, Inc. They may be connected together for use as one larger computer. An associated plotter and oscilloscope are available. They are best adapted to solving small systems of ordinary differential equations. The IBM 1620 computer is a general-purpose computer capable of solving a variety of numerical and logical problems. The 1620 Model I has a 20,000 digit core storage capacity. The 1620 Model II has a 40,000 digit core storage. Modol II users maty use twor 1311 ditks which prowide toxiliary stornge:for 4 million digits.

Input to either 1620 is via punched cards or console typewriter. Output from the 1620 Model I is punched into cards (which can be printed on an off-line device) or typed by the console typewriter. Output from the 1620 . Model II may be printed by a 1443 on-line printer at the rate of 240 lines a minute, or punched into cards (which can be printed on an off-line device) or typed on the console typewriter. Card punches are available at the Center. Card punches and other card-handling off-line machines are discussed in Section VI. Paper tape is also available on the 1620 Model II for input-output in special applications.

This Handbook deals primarily with the 1620. Information about the analog computers may be obtained at the Center. The Center library has several copies of the Handbook of Analog Computation published by Electronic Associates, Inc., Long Branch, New Jersey. (Publ. No. I 8000001 OA.)
I. 2 Applying for use of the 1620 computer I. 2

The computers and their adjunct equipment at the Center are available at NCE for use by classes, student projects, student theses, and student and staff research.

The equipment is available for unsponsored and sponsored research at the charges discussed below. A staff member wishing to use the computer for research should consult with the Data Processing Manager, Mr. Alexander Altieri. If the research is not funded, then the staff member should first see Dean Bedrosian to find out if college funds are available. If they are not, it still may be possible to obtain some free time. Instructors planning to use the computer in their classes should let the Computing Center know at the beginning of the semester how many computer hours they plan to use and what specific times they would like to reserve. Forms for this are obtainable at the Center.

A certain amount of time is also available for use by other educational I. 2 institutions and for commercial applications. Those wishing to use the services of the Center should call the Computing Center MA 4-2424, Ext. 217, and consult with the Data Processing Manager or the Secretary.

All individuals wishing to use a computer must first fill out an application form, available at the Center, and receive a problem number. Problem numbers must also be assigned to each class section wishing to use the Computing Center. Problem numbers are assigned by the Secretary at the Center, Mrs. de la Vega, upon receipt of the application form. A sample application form is shown on page 4.

I. 3 Charges for computer time (all figures quoted are subject to change) I. 3

Computer time is provided free of charge for class use and for unsponsored research on both the undergraduate and graduate levels. Unsponsored research, either by students or faculty, must be approved by Dean Bedrosian unless the work is in connection with a student project or thesis. The general laboratory fee paid by all students includes the use of the computer for approved projects. The fee paid by special students for courses using the computer also covers the computer charge.
N.C.E. COIPUTING CENTER

SCHEDULE OF CHARGES

(Effective June 2966)

1620 Model I with 20 K Memory

Gommercial or Industrial Users $\$ 30.00$

Sponsored Research 15.00
Other Educational Institutions 15.00/Negotiated

1620 Model II with 40 K Memory, two Disk Dirives (2 mitilon digits each) and 1443 On Commercial or Industrial Users 65.00

Sponsored Research 35.00
Other Educational Institutions
35.00/Negotiated
Per Hour
407 Printer 7.00 I. 3
519 Reproducing Machine with Mark Sensing 3.00
082 Sorter 2.00
Services
Keypunching (excluding cards which are $\$ 1 /$ thousand). 4.00
Computer Operation 5.00
Programming 10.00
Problem Analysis 15.00
Minimum Monthly Charges $=\$ 10.00$

I. 4 Scheduling computer time

The Computing Center is normally open $8 \mathrm{~A} . \mathrm{M} .-10 \mathrm{P} . \mathrm{M}_{\text {. }}$ weekdays. Special arrangements can be made with the Computing Center Secretary for computing time during the evening (if the time is not pre-empted by class use) or on Saturdays.
Staff members who have obtained problem numbers and wish to operate the computer themselves may schedule time with the Computing Center Secretary. A schedule of computer time for the week will be postild on the bulletin board in the Center; it should be consulted by all users.
It is required that all individuals operating a computer sign in and out on a time sheet, available at the computer.

I. 4 a Class use of computer time

Instructors wishing to schedule time on the computer for their classes should consult the Computing Center Staff at the beginning of the semester. Each class must be assigned a problem number. See Section I. 2 Applying for the use of the computer.
I. 4 b Student operation of the 1620 Model I
Students may operate the 1620 ifodel I during periods scheduled for student use. Runs of up to five minutes duration only can be run if others are waiting. Otherwise up to 15 minute runs will be permitted. A student

COMPUTING CENTER

HEWARK COLLEGE OF ENGINEERING

Application for Problem Number

Name \qquad
Address \qquad
Telephone Number \qquad
Date \qquad

NCE USERS

OUTSIDE UTERS

Affiliation
Problem or program title \qquad

Problem Number Assigned \qquad Approved by \qquad
may sign up for this time by writing his name on the bottom of the list 1.4 provided daily on the computing center bulletin board. After running he should cross his name off, but he can sign up again immediately (on the bottom!) of the list. No problem number is required for this computer time.

Another block of student time will be scheduled at 6-7 P.M. every day for the benefit of evening students who will have priority at this time,

I. 5 IN-OUT boxes

I. 5

Students may not operate the 1620 Model II unless an instructor or Center Staff member is present at the machine. Center staff members will process source decks prepared by students and staff members for the 1620 Model II. NCE staff members who would-like their programs batch pnocessed by Computing Center staff members should. see Mr. Altieri at the Center office. Students who have prepared source decks for Model II batch processing should leave their decks in a 'file box marked "If-Model II"' Iocated in the preparation room. The face of the first card should be clearly marked with the name of the user and the initiazs UF,C.! The: back of the last card should be marked "L.C.". The programs will be processed on a first come first served basis and the source decks andrall printed output will be placed.in. the woUT-Model II" file. The decks should include all necessary control cards. (See Appendix "Model II-batch processing")
I. 6 Punched cards I. 6

Programmers using the Center must do their own card punching. Blank cards for punching are available at the bookstore at a cost of $\$ 2.00$ a box.

Programmers may also consider using mark sensing which is a method for marking the face of the cards with a special pencil. Fortran cards printed for mark sensing are also available at the bookstore. The marked cards are made into punched cards by processing them through the 519 Reproducing Punch. A Computing Center staff member will process mark sensed decks which are placed in the box marked IN on the 519. See Appendix "Use of Mark Sense Cards" for details on staff processing of mark sense cards. Card punching and mark sensing are also discussed in Section VII.

Room for card storage at the Center is limited, but cardboard boxes for storing programs will be provided for active research projects, and for storing programs for any class section using the computer.

Individuals prone to carry small program decks about with them should be very careful not to dent the card edges; cards with very minor dents often will not be read by the equipment. The Center provides stiff protecting covers which should always be used to protect program decks that are not stored in boxes or card storage drawers.

Fig. 1.

Source decks prepared for batch processing on the 1620 Model II.

I. 7 References, and manuals

The following IBM manuals, which are available at the NCE bookstore, are particularly helpful in programming the 1620 Model I and II:

IBMI	1620	Data Prod	No. A26-4500
IBM	1620	1710 Symbolic Programming Systems	No. C26-6500
IBM	1620	FORTRAN	No. C26-5619
IBM	1620	Monitor II System	No. C26-5774-0
IBrI	1620	Central Processing Unit, Model	No. A26-5781-0

A small collection of books on programming, periodicals on data processing, and a set of 1620 library programs are available at the Center for use as reference materials. The library programs may be borrowed for short periods such as overnight or weekends. The main library has many books on programming, computers, and numerical analysis.

I. 8 Staff

Director	Dr. Frederick G. Lehman
Associate Director...	Dr. Phyllis Fox
Data Processing Manager	Mr. Alexander Altieri
Graduate Assistants	Mr. Young D. Kim Mr. Hubbard Seward
Undergraduate Assistants.............	(Listed on the Center bulletin board)
Computing Center Secretary	Mrs. Hortensia de la Vega
Programmer/Systems Analyst.......... in programming	Mr. Larry Arakaki I.9

In addition to the courses related to computing and data processing in the regular curriculum, the Computing Center provides a non-credit sixweek course in programning which is held each semester starting about three weeks after the start of the semester. There is a $\$ 15$ charge to help cover the cost of the manuals which are provided and the time used on the computer. The course involves about an hour of lecture a week supplemented by individual practice in programming and operating the computer.

There is also a short course in Fortran Programming given under the direction of the Special Courses and Continuing Education Division which is held on the evenings during the fall, spring, and summer sessions, For further information, please contact Mr. Paul Burns, Ext. 330.

II BASIC ELEMENTS OF THE FORTRAN LANGUAGE
II. 1 Source program and object program

A source program is a series of statements written in the Fortran language. The source statements are analyzed by the Fortran compiler, or processor, which then generates machine language instructions. The machine language instructions, produced by the Fortran compiler, comprise the object program. During execution of the object program, the computer uses data supplied by the programmer to execute the arithmetic and logical operations required by the problem.

Fortran source statements can be grouped into 5 categories:

1. Arithmetic statements which define the calculations to be performed. Arithmetic statements include operaitors, variables, constants, paranthesis and functions.

Examples:

$$
\begin{aligned}
& A=4 \cdot-B+6 * * C *(D+E) \\
& R O O T=(-B+(B * B-4 \cdot * A * C) * * 5) /(2 \cdot * \operatorname{LOG}(A))
\end{aligned}
$$

2. Replacement statements which cause the iten to the left of the equal sign to be given the same value as the item to the right. All arithmetic statements are also replacement statements.

Examples:

$$
\begin{aligned}
& A=B \\
& A=4.2
\end{aligned}
$$

3. Control statements which determine the sequence of execution of the object program instructions.
4. Input/output statements which transmit information between the computer and the input/output devices such as the console typewriters, the card read-punch, the paper tape device.
5. Specification statements which supply information required by the processor to allocate locations in storage for certain variables and/or arrays. They may also enable the user to control the allocat,ion of storage.

Fortran compilers may also provide for various types of subprograms.

$$
\begin{array}{ll}
\text { (See L and G: } & \text { III.5a) } \\
\text { (See KFII: } & \text { IV.8) }
\end{array}
$$

ifReference to relevant material in other sections will be indicated in parentheses of this sort. This one indicates for example that Section III. 5 a contains more on subprograms in Load and Go.

Problem to be solved: Sum the integers from 1 to 1000.
Statement Number Source Statement Comment: Type of Statement

	SUM $=0.0$
	$A=1.0$
3	SUM $=A+$ SUM
	$A=A+1$.
6	IF $(A-1000) 3,3,6$
10	PUNCH 10, SUM
	FORMAT $(F 8,2)$
	STOP
	END

Replacement statement Replacement statement Arithmetic statement Arithmetic statement Control statement Input/output statement Input/output statement Control statement Control statement

Instruction for punching a source deck are given in the following sections:

		$\begin{aligned} & \text { (I and G: III.I) } \\ & \text { (KFII: IV .I) } \end{aligned}$	
II. 2	Aptitintic statements		$\text { II. } 2$
II.2a	Constants		II.2a

Integer and real constants may be used in a source program written for either the Load and Go Compiler or the Kingston Fortran II Compiler, Hollerith constants may only be used in a source program written for the KFII compiler.
(See KFII: IV.2a)
Integer constants - An integer constant is a number written without a decimal point.

Example:

$$
\begin{aligned}
& I=678 \quad(678 \text { is a valid integer constant) } \\
& K=I-23 \quad(23 \text { is a valid integer constant) }
\end{aligned}
$$

The magnitude of integer constants depends on the compiler.

(See L and G:	III.2a)
(See KFII:	IV .2a)

Real constants - A real constant is number written with a decimal point and consisting of l-8 significant decimal digits.

Examples:

$\frac{\text { Valid real constant }}{} \quad \frac{\text { Invalid real constant }}{1.0099999}$	234
234.	

The real constant 123456789.1 is accepted by the Load and Go and KFII Fortran processor but it is stored as 1.2345678 . (See Appendix "Storage of integer and real numbersil)

A real constant may be followed by a decimal exponent written as the letter E followed by a one-or two-digit integer constant indicating the appropriate power of 10 .

Example:

$$
\begin{array}{lc}
A=4.2+B *(5 . E 2-D) & \text { (5.E2 is a valid real constant) } \\
& \\
500.0 \text { may be written: } & .5 \text { may be written: } \\
500.0 & .5 \\
5 . \mathrm{E} 2 & 5.0 \mathrm{E}-1 \\
5.0 \mathrm{EE} 2 & 5 . \mathrm{E}-1 \\
5.0 \mathrm{EO} 2 \\
5.0 \mathrm{E}+02 & .05 \mathrm{E} 1 \\
50.0 \mathrm{E} 01
\end{array}
$$

The magnitude of a nonzero real constant must be such that:

$$
1.0 * 10^{-.51} \leq \text { constant } \leq 9.9999999 * 10^{+48}
$$

IBM Fortran II allows for variation in the number of significant digits permitted for real and integer constants.

> (See IBM FII: V.I)

II.2b Variables

II.2b

A Fortran variable is a symbol which represents a quantity that may assume different values. The value of a variable may change either for different executions of a program or at different stages within the program.

Example:

$$
\begin{aligned}
C=5.0+D \quad & \begin{array}{l}
C \text { and } D \text { are variables. The value of } D \text { must } \\
\text { be determined by some previous statement } \\
\text { and may change from time to time. The value } \\
\\
\\
\\
\\
\\
\text { performed with a new value for } D .
\end{array}
\end{aligned}
$$

Variable names;

The number of alphameric (numeric and alphabetic) characters allowed in a variable name depends on which Fortran Compiler is used.

$$
\begin{array}{lc}
\text { (See } L \text { and } G: & I I I, 2 b) \\
\text { (See KFII: } & I V, 2 b)
\end{array}
$$

The first character in a name must be alphabetic. Special characters are not permitted.

Variable types:

A variable may represent either an integer or a real number (i,e. a number containing a decimal point). See the definition above in Section II. 2 a

The type of a variable, that is, whether it is integer or real, can be specified implicitly as follows:

1. If the first character of the variable name is I, J, K, L, M, or N then the variable is an integer variable.
2. If the first character of the name is not I, J, K, L, M, or N, then the variable is a real variable.

Example:

$$
\begin{array}{ll}
\text { INT }=\text { LEMNA }+N U M & \text { (These variables represent integers) } \\
X=Y-A L P H A & \text { (These variables represent real numbers) }
\end{array}
$$

Explicit specification of variable types is only allowed in KFII.
(See KFII: IV.2b)
Subscripted variables:
A subscripted variable consists of a variable name followed by a pair of parentheses enclosing subscripts separated by commas. The number of subscripts ailowed depends on the Fortran Compiler.
(See L and G: III.2b)
(See KFII: IV.2b)
The subscripts specify the position of the variable in an array. An array is a group of quantities arranged in order.

Exampie:

> Let A be an array consisting of the quantities, 700.4 ,
> $.34,532.99$, then
> $A(1)=700.4$
> $A(2)=.34$
> $A(3)=532.99$

An array may be multi-dimensional. The number of dimensions allowed in the array depends on the number of subscripts permitted by the compiler.

Example:
A two-dimensional array M may be a 2 by 3 table of integers with the following:
$M(1,1)=31$
$M(1,2)=6$

$$
M(1,3)=17
$$

$$
\begin{aligned}
& M(2,1)=-4 \\
& M(2,2)=89 \\
& M(2,3)=-11
\end{aligned}
$$

The arithmetic operation symbols: $+,-, *, /, * *$ denote addition, subtraction, multiplication, division, and exponentiation, respectively,
II.2d Arithmetic expressions

An arithmetic expression is usually a combination of constants, subscripted or nonsubscripted variables, function names, (see subprograms) and arithmetic operation symbols.

General Rules for Forming Expressions:
(See L and G: III, 2c)
(See KFII: $\left.\begin{array}{c}\text { IV, 2c } \\ \text { (for specific rules }\end{array}\right)$

1. The variables and constants in an arithmetic expression must be of the same type with the exception that in exponentiation a real variable or constant may have an integer exponent.
2. Any expression may be enclosed in parentheses.
3. Ali operation symbols must be explicitly present.
4. No two operators may appear in sequence. (Note exception: Load and Go use of the minus sign. See L and G: III.2c)
5. Hierarchy of operations - Parentheses may be used in expressions, as in algebra, to specify the order in which operations are to be computed. Where parentheses are omitted, the order is understood to be as follows:
a) Subscript evaluation
b) Subscripting
c) Argunent evaluation, Function evaluation
d) Exponentiation (**)
e) Multiplication and Division (* and /)
f) Addition and Subtraction (+ and -)

Example:

$$
A+B / C-D * * E * F-G \text { is evaluated as } A+(B / C)-\left(D^{E} * F\right)-G
$$

6. An expression is scanned from left to right, and no operation is completed if there is a possibility of one of higher hierarchy first.

7．If operations fall within the same hierarchy rank，and parentheses are not used to indicate which operations are performed first，the following rules apply：
a）$A / B / C$ is always compiled $(A / B) / C$
b）$A * B / D * C$ is always compiled as（ $A *(B / D) * C$ ）
c）$A *$ 和 $*$ 紬 is not acceptable，parentheses must be provided．
d）$A *$＊丷－B is always compiled as（ $A)^{-B}$
$E-B * * C$ is always compiled as $E-\left(B^{C}\right)$
$E=-A * * B$ ，the order of compilation depends upon the compiler．
（See L and G：III．2c）
（See KFII：IV．2c）

Note that the order of compilation discussed above can be important from the point of view of round－off error．（ A / B ）／C may give a different answer then $A /(B / C)$ ，especially，if either B or C are small．

II．2e Replacement statements
In evaluating an arithmetic statement the value of the expression to the right of the equal sign is determined and that value is assigned to the variable to the left of the equal sign．If the result of the expression evaluation is not of the same type as the variable name to the left，the result is converted before assigned．

Example：

$$
\begin{aligned}
& I=B+4 .-(C-D) * \text { Evaluate } B+4 .-(C-D) * * \text {. } \\
& \text { Truncate the result to } \\
& \text { convert it to an integer. } \\
& \text { Assign it to } I \text {. } \\
& X=N U M+L-1 \quad \text { Evaluate } N U M+L-1 \text {. } \\
& \text { Convert the result to a } \\
& \text { real (decimal) number. } \\
& \text { Assign it to } \mathrm{X} \text {. } \\
& A=A+1 . \quad A \text { valid replacement statement. } \\
& \text { The value assigned to } \mathrm{A} \text { is } \\
& \text { increased by } 1 . \\
& \text { A simple replacement statement. } \\
& \text { Value of } J \text { assigned to } I \text {. }
\end{aligned}
$$

Computations involving real variables are truncated (not rounded) to 8 significant digits. However, a subroutine which will round arithmetic computations is available to users of the IBM FII compiler.
(See IBM FII: $\quad \mathrm{V} .2$)

II. 3 Control statements

Normally Fortran statements are executed sequentially. However, it is often undesirable to proceed with each statement in this manner. Control statements alter the sequence of execution of the object program instructions.

A statement number must be assigned to each statement referenced in a program. Statement numbers must be entirely numeric. The number of digits allowed in a statement number depends upon the compiler.

$$
\begin{array}{lc}
\text { (See L and G: } & \text { III.3a) } \\
\text { (See KFII: } & \text { IV.3a) }
\end{array}
$$

KFII also provides for address variables which can be used to reference statements.
(See KFII: IV.3b)
II.3a Unconditional GO TO statement

General form:

GO TO xxxx
Where: xxxx is a statement number
Exampl.es:
GO TO 25 Control is transferred to the statement with number 25.
II. 3 b Computed GO TO statement II. 3b

General form:

GO TO $\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$, i
Where: $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ are statement numbers, i is an integer constant or integer expression depending on the compiler used.

(See L and G:	III.3b)
(See KFII:	IV.3c)

This statement causes control to be transferred to statement x_{1}, x_{2}, or x_{n} depending on whether the current value of i is 1,2 , or n.

Example: GO TO (10, 40, 50), I
When $I=2$ control is transferred to statement number 40 .
II. 3c Arithmetic IF statement

General form:

IF (a) n_{1}, n_{2}, n_{3}
Where: a is an arithmetic expression and n_{1}, n_{2}, n_{3}, are statement numbers.
This statement causes control to be transferred to statement n_{1}, n_{2}, or n_{3}, if the value of the expression (a) is less than, equal to, or greater than zero, respectively.
II. 3d IF (SENSE SWITCH i) n_{1}, n_{2}

Where: i is an integer constant or integer expression depending on which compiler is used and n_{1}, n_{2}, are statement numbers.
(See L and G: III.3c)
(See KFII: IV.3d)

This statement causes control to be transferred to the statement n_{1} if the sense switch is on, or to n_{2} if the sense switch is off. i determines which machine indicator is to be interrogated. Any of the machine indicators can be interrogated by the IF (SENSE SWITCH) statement. However not all machine indicators are relevant to the computations performed by the object program.
II.3e DO statement

| General form: End of Range indexinitial
 value | test
 value | increment |
| :--- | :---: | :---: | :---: | :---: | :---: |

The form (integer, integer expression) that the index (i), initial value $\left(m_{1}\right)$, test value $\left(m_{2}\right)$, and increment $\left(m_{3}\right)$, may take depends on which compiler is used.

$$
\left\{\begin{array}{lc}
\text { See L and G: } & \text { III.3d } \\
\text { See KFII; } & \text { IV.3e }
\end{array}\right.
$$

The DO statement is a command to execute repaatedly the statements that follow, up to and including the statement n. The first time the statements are executed, i has the value \underline{m}_{1}, and each succeeding time 1 is incremented by the value of m_{3}. After the statements have been executed with i equal to the hignest value that does not exceed m_{2} in the direction of incrementation, control passes to the statement féllowing statement number n. This is called a normal exit from the DO statement.

The range is the series of statements to be executed repeatedly. It consists of all statements following the DO, up to and including statement n. The range can consist of any number of statements.

The index is an integer variable that is incremented by the value m_{3} for each execution of the range of statements. Throughout the range of the DO, the index is available for use either as a subscript or as an ordinary integer variable. However, the index should not be changed by a statement within the range of the DO. (See KFII IV for exception). Upon completion of the DO, the index must be redefined before being used again. When transferring out of the range of a DO, the index is available for use and is equal to the last value it attained.

The initial value is the value of the index for the first execution of the range.

The test value is the value that the index must not exceed in the direction of incrementation. After the range has been executed with the highest value of the index that does not exceed the test value, the DO is completed and the program continues with the first executable statement following the range.

The increment is the amount by which the value of the index will be changed after each execution of the range. The increment may be omitted, in which case, it is assumed to be 1 .

Example:

$$
\text { The statement DO } \quad 10 \quad I=1,5,2
$$

will cause the range of the DO to be executed with I taking on the successive values 1,3 , and 5.

Restrictions on statements in the range of a DO
The restrictions on statements in the range of a DO are as follows:
(1) Within the range of a DO may be other DOs. When this is so, all statements in the range of the inner DO must be in the range of the outer DO.

A set of DOs satisfying this rule is called a nest of DOs, For example, the following configuration is permitted (brackets are used to indicate the range of the DOs):

The following configuration is not permitted:

(2) Transfer of control from inside the range of a DO to outside its range is permitted at any time. However, a transfer is not permitted into the range of a DO statement from outside its range.
(3) The range of a DO cannot end with a GO TO, IF, FORMAT, STOP, RETURN, or another DO statement.
II. $3 f$ Continue statement II. 3 f

General form:

CONTINUE
CONTINUE is a dummy statement that does not produce any executable instructions. It is used to furnish a reference point which must be assigned a. statement number. It is required if the last statement of a DO would otherwise be a transfer statement.
II. 3 g Pause statement II. 3 g

General form:

PAUSE
The PAUSE statement causes the program to halt. Pushing START causes the program to resume execution starting at the next statement following the PAUSE statement.
II. 3 h STOP, END, and CALL EXIT statements

The use of the STOP, END and CALL EXIT statement depends on which compiler is used.

$$
\begin{array}{ll}
\text { (See } L \text { and } G: & \text { III.3e) } \\
\text { (See KFII: } & \text { IV.3g) }
\end{array}
$$

II. 4 Input/output statements
II. 4 a General form for input statements for Fortran without Format

READ, list (punched card input)
ACCEPT, list (console typewriter)
ACCEPT TAPE, list (paper tape)
The list specifies the number of items to be read and the locations into which the items are to be placed.

Examples:

$$
\begin{array}{ll}
\text { READ, A, CAT, DOG } \quad \begin{array}{l}
\text { read from a punched card three } \\
\text { numerical values to be assigned } \\
\text { to the variables A, CAT and DOG } \\
\text { respectively }
\end{array} \\
\text { ACCEPT, X } & \begin{array}{l}
\text { Expect a numerical value to be } \\
\text { typed in and become the value for } X .
\end{array}
\end{array}
$$

II. 4 b General form for input statements for Fortran with Format
II.4b

READ n, list
ACCEPT n, list
(punched card input)

ACCEPT TAPE n, list
(console typewriter)
(paper tape)
n references the Format statement number
(See KFII: IV.4a)
(Fortran with Format)
II. 4 c General form for output statements for Fortran without Format II. 4 c

PUNCH, list (punched card output)
The list specifies what items are to be outputted on cards. When the item in a list is a variable name, the last value assigned to the variable name will be punched on the card. All items in the list must be variable names, not numeric values.

Example:

$$
\begin{aligned}
\text { PUNCH, } X, Y, N \text { If the machine assigned } X & =3.4, \\
Y & =100.7, \text { and } N=2,
\end{aligned}
$$

the numbers $3.4,100.7$ and 2 will be outputted on a card.
TYPE, list or PRINT, list may be used to put output on the console typewriter, depending on the compiler used.

$$
\begin{aligned}
& \text { (See L and G: III.4) } \\
& \text { (See KFII: } \\
& \text { IV.6) }
\end{aligned}
$$

II. 4 d General form for output statement for Fortran with Format II.4d

PUNCH n, list (card output)
TYPE n, list (output on console typewriter)
PRINT n, list
(output on 1443 printer) $\quad \begin{aligned} & \text { (See KFII: IV. } 4 \mathrm{c} \text {) } \\ & \text { (Fortran with Format) }\end{aligned}$
II. 5 Specification statements
II. 5
II.5a DIMENSION statement II.5a

General form:
DIMENSION VA $\left(i_{1}\right)$, VB(i_{2})
Where: VA, VB, are variable names and i_{1}, i_{2}, may be one or more unsigned integer constants separated by commas.

The DIMENSION statement provides the information necessary to allocate storage for arrays in the object program.

Example:
DIMEINSION A (10), $B(5,15)$
Space will be set aside for 10 values of A, and 75 values of B.

Dimension statements must be written for each subscripted variable (unless using other specification statements permitted by KFII) and must appear before the subscripted variable is mentioned.
II. 5 b Other specification statements

Additional Specification statements permitted in KFII are discussed in Section IV.7.

Introduction

The NCE Load and Go compiler, written by George Rumrill, Bruce Fowler, and Hubbard Seward and revised by them in January 1965, allows 100 to 200 card FORTRAN source programs to be both compiled and executed on the 1620 Model I in a single continuous run. Furthermore, since the compiler stays in the memory, a sequence of different programs can be run, one after the other. This method of processing is well suited to processing student programs. The system cannot be damaged by errors in programs. Many error checks are made, both during compilation and execution. No format specifications are used. Output format is determined by the type and range of the variable; input format is free form. Features include; arithmetic and flow trace, double subscripting, computed GO TO statements, limited Hollerith listing, and undefined variable detection.

Two versions of the Load and Go processor are available for student and staff use. Version Three is designed for rapid batch processing and eliminates the need for operator intervention during the processing of source programs. All input and output is punched on cards. Statements which require operator intervention, IF (SENSE SWITCH n) and PAUSE, are not recognized by the processor. Version Three, batch processing, should prove adequate for most student programs and its use should save considerable machine time during class laboratory hours. The Computing Center will also schedule hours when a staff member will batch process Load and Go programs placed in the IN box on top of the rodel I. The source decks and a 407 listing of all card output will be placed in the OUT box at the end of the scheduled hour.

Version Two, which is designed for individual user console operation, will also be available during hours scheduled for "hands-on" individual user console operation. Input and output may be punched on cards or typed on the console typewriter, the source program may include STOP, PAUSE, and IF(SENSE SWITCH n) statements, and the user may exercise options which increase the amount of core storage available for the user's program. (See operator instructions, section III.7b.)

The Load and Go system is a variation of Fortran. Only those specifications, which differ from the basic Fortran definitions discussed in Section II, are listed in Section III.
III. NCE LOAD AND GO FORTRAN LANGUAGE SPECIFICATIONS
III. 1 Punching input source programs III. 1

1. The statements of the source program can be punched anywhere on the first 72 columns of the card. Punching is free form; all blanks are ignored (except in input data as described below). If a statement number precedes the statement it can be punched starting at any column; spaces between the statement number and the statement are not necessary. Columns 73-80 are reserved for sequence numbers or other identification.
2. Comment cards are allowed and require a C in Column 1 followed by two blanks.
3. Continuation of a statement to another card is not permitted.
III. 2 Arithmetic statements
III.2a Constants

Intager Constants - The magnitude of an integer constant must not be greater than 9999.

Example:

Valid constants	Invalid constants
9999	10991
0	0.0
-356	-356.0
2	

III.2b Variables
III. 2 b

Variable names
The name of a variable may have no more than five characters.
Example:
NUMB, DAT15, INT, X, Y, FARAD

Subscripted variables

1. A variable may have one or two subscripts. Thus one and two dimensional arrays are permissible.

Example:

$$
A(I), B(I, 2)
$$

2. Subscripts may consist of an integer constant, an integer variable, or an integer variable plus or minus an integer constant.

Forms of subscripts:

$$
\begin{aligned}
& i \\
& i+c^{1} \\
& i-c^{1} \\
& c
\end{aligned}
$$

Where: i is an integer variable and c is an integer constant.
3. The additive integer constant, c^{\prime} must not be larger than 49.
4. Subscripts whose value during execution becomes negative or zero, or whose value exceeds the size of the DIMENSION statement, will result in ERROR 70. (See error messages, III.9)

Examples:

Valid Subscripting
A(IMAX-37)
I($\mathrm{J}, \mathrm{MATH}+17$)
Q(124, LM-3)

Invalid Subscripting
A (IMAX-50)
B (X,IMAX)
$\mathrm{C}(\mathrm{MATH}+51, \mathrm{~J})$
III.2c Arithmetic expressions III.2c

Rules for forming arithmetic expressions

1. Minus sign: The operation symbols, (, $*_{,} /,{ }_{*}^{*}$, may be followed by a minus sign and will be correctly compiled.

Example:
$A-B *-C, A+B /-C, A-B * *-C$ are valid arithmetic expressions.
2. Exponentiation: $A=-B \cdots \cdots I$ will be compiled as $A=(-B)^{I}$ and calculated as the product $(-B)(-B)(-B)$

Example: When $B=2, I=3$

$$
A=(-2)^{3} \text { or }(-2)(-2)(-2), A=-8
$$

$A=-B * * *$ will be compiled as $A=\operatorname{EXP}(C \times 2 O G(-B))$
When ($-B$) is negative ERROR 62 will result. (See error messages, III.9)
When $(-B)$ is negative the value of A is calculated as $A=\operatorname{EXP}(C * \operatorname{LOG}(A B S(-B)))$ during user processing.

Example: When $B=2, C=3$
$A=\operatorname{EXP}(3 \times \operatorname{LOG}(\operatorname{ABS}(-2))), \quad A=8$
ERROR 62 will be indicated
When $B=-2, C=3$
$A=\operatorname{EXP}(3 * \operatorname{LOG}(-(-2))), A=8$
During batch processing all execution errors result in the termination of the program in error. Thus Error 62 will result in termination of program execution during batch processing.
III.2c
$A=X-B * \cdots C$ will be compiled as $A=X-(B * * C)$ and calculated as $A=X-E X P$ (C*LOG(B)).
3. Plus sign: A plus sign may not immediately follow an equal sign, left parenthesis, or any arithmetic operator,

Example:

$$
A=+B, I F(+2.1-A) 12,20,10 \text { are invalid arithmetic expressions. }
$$

4. An integer variable or constant may never be given an exponent.

III. 3 Control statements

III. 3
III. 3 a Statement numbers

Statement numbers may be any one, two, three, or four digit integer.
III.3b Computed GO TO statement
III. Sb

GO TO $\left(J_{1}, J_{2}, \ldots . J_{n}\right)$;
Where: $J_{1}, J_{2}, \ldots . J_{n}$ are statement numbers and i is a nonsubscripted integer variable.

The comma before the i is required punctuation.
The statement may contain any number of statement numbers.
During execution, the index of a computed GO TO statement will be checked to see if it is defined and if it is less than or equal to the number of statement numbers listed in the source statement.

- Sample problem 5 at the end of Section III demonstrates how a computed GO TO statement may be used as the return statement in a subprogram.
III.3c IF (SENSE SWITCH n) statement

IF (SENSE SWITCH n) j_{1}, j_{2}
Where: n is any one or two digit integer constant
j_{1}, j_{2} are statement numbers. Control is transferred to j_{1} if sense switch in is on; control is transferred to j_{2} if sense switch n is off.

The statement may be used to test the condition of any of the machine indicators. Care should be exercised in using the IF (SENSE SWITCH) statement to test the status of the arithmetic indicators since the operating subroutines may leave the indicators in a position which does not correspond to the result of the arithmetic calculation.

The IF (SENSE SWITCH) statement may be used to test the status of the program switches 1, 2 and 3, and the last card indicator, switch 9. The program switches are manually operated and should be set by the programmer prior to the execution of the IF(SENSE SWITCH) statement. Insertion of a PAUSE statement before the IF (SENSE SWITCH) statement will give the operator time to set the program switch. Switch 9, will automatically be set to the ON position when the last data card has been read. The processor will tarn switch 9 off at the beginning of the execution of each program.

Example:
The last card indicator may be interrogated as follows:
IF (SENSE SWITCH 9) n_{1}, n_{2}
Control will be transferred to statement n_{1}, if the last card has been read.

The IF (SENSE SWITCH n) statement should not be included in a source deck prepared for Version Three, batch processing. (See Section III.6a, Preparing the source deck for batch processing)
III.3d D0 statement
III.3d

DO n i $=m_{1}, m_{2}, m_{3}$
Where: n is a statement number and i is a nonsubscripted integer (fixed-point) variable.
m_{1}, m_{2}, m_{3}, are either integer constants or nonsubscripted integer variables. If m_{3} is not stated, it is taken to be $1 . m_{1}, m_{2}, m$, may be negative, zero, or positive but care should be taken when negative or zero values are assigned to m_{1}, m_{2}, or m_{3}. (Note that if during execution the value of a subscript becomes negative or zero ERROR 70 will result, and execution will be terminated.)

No more than seven levels of nested DO-loops are permitted.
Sample problem 2 uses nested DO-loops for data input and output. (See Section III.10)

III. 3 e STOP and END statements

The END statement signals the processor to terminate compilation. Thus it must always appear as the last statement in a source program. The STOP statement need not appear in a program.

The END statement is an executable statement and may have a statement number.

The control exercised by the execution of the STOP and END statements depends on whether the source program is compiled by Version two, individual operator processing or Version three, batch processing. The execution of the STOP or END statements results in transfer of control to the processor. During batch processing, execution of the STOP or END statements results in automatic compilation of the next source program in the batch. During user processing, execution of the END statement results in a machine halt. A new source program may then be compiled by pressing START. (See operator instructions, user processing, Section III.7b) During user processing execution of the STOP statement also results in a machine halt. The user's program may then be reexecuted by pressing START.
III. 4 Input-output statements
III. 4 General rules for input-output statements without format

1. Card input and card output must be used for Version three, batch processing. ACCEPT and PRINT statements will not be accepted by Version three, batch processing; use READ and PUNCH.
2. A format statement number in an input-output statement is ignored. A comma must be present if a list follows the input/output command. Thus:
```
PRINT 3, A, B
PRINT, A, B
PRINT
```

are valid. Format statements may be included in the source program but will be ignored.
3. "TYPE" is not a valid statement (Use PRINT).
4. Input-output statements without lists (with or without format statement numbers) have the following effect:
a) PUNCH produces a blank card during execution
b) PRINT causes a carriage return during execution
c) READ and ACCEPT are compiled, but ignored during execution

Note: Omit comma after PUNCH and PRINT if there is no list.
III. 4 b Rules for input data
III. 4 b

1. To obtain a line or a card of alphameric output, a card or a typed input record containing a T or P as a first character may be inserted in the appropriate place or places in the input data. A READ statement, calling for data, will type or punch, respectively the contents of the rest of the T or P card (or record) before reading in the data from the next card. All other data records must be entirely numeric. See sample problem l, Section III. 10.
2. Input data can follow a free format on a card with spaces separating each piece of data. All columns (1-80) will be read as data.
3. Commas can not be used to separate numbers.
4. Regardless of the mode specified in the input list, data may be in any of the following forms:

$$
2.0 \text { 2. }+0.2 \mathrm{E} 1 \quad 2 \quad .02 \mathrm{E}+02 \quad+20000 \mathrm{E}-4
$$

If no decimal is punched it is assumed to lie at the right-hand end of the number. If a real number is entered when an integer number has been called for, the four digits immediately before the decimal point will be converted to an integer, and there will be no error indication. Thus

```
1. Converts to l
-325.E2 Converts to -2500
```

5. Regardless of the number of input and output statements that are executed, input data will be taken from one record (e.g. one card) until:
a) That record is exhausted
b) A record mark is encountered
c) A change in the input device is required
d) The program is reinitialized
6. Blank records intermixed with the data or source statements are ignored. This if the programmer wishes to read three numbers punched on three cards the read statement can be written as:

Read, A,B,C
and the cards punched as:
Card 1. 234.5
Card 2. 0045.678
Card 3. 4567.9
7. To input (or output) a one or two dimensional array a DO statement must be used. I/O statements with impiled DO statement are not allowed. See sample problems 2 and 3 at the end of Section III.
8. Input data outside the allowed range (e.g. larger than 1049) will be read incorrectly. No error indication is given.
III. 4 c Rules for output data

1. Output is put out five (or fewer, as required) items per typed line or punched card. See output for sample problem 2.
2. Integer numbers will be in the format $15,11 \mathrm{X}$. (where X indicates space)
3. Real numbers whose magnitude falls in the range (.1) to $(99,999,999)$ will be output in the format Fl6.d. (where dindicates a variable number of decimals). Numbers whose magnitude falls outside this range will be in the format E16.7.
4. Sequence numbers will not be punched on output cards.
5. For alphameric output see 1. under Section III.Lb.
III. 5 Subprograms
III. 5a Library subroutines III. 5 a
6. The following library subroutines are allowed with real arguments. Note that the subroutines are to be considered as real functions regardless of their letter.

Example:

$$
Y=A+L O G(B) \text { is a valid arithmetic statement. }
$$

2. The absolute value function is the only library subroutine which may also use an integer argument.

The arithmetic expression containing an absolute value function with an integer argument must be in the integer mode.

Example:

$$
M=J+\operatorname{ABS}(K \times L)
$$

Subroutine	Operation		${ }^{*}$ Symbolic Name
Natural Logarithm	$\log A$	LOG	
Exponential	e	EXP	
Square root	\sqrt{A}	SQRT	
Sine	$\sin A$	SIN	
Cosine	$\cos A$	COS	
Arc tangent	$\tan ^{-1} A$	ATAN	
Absolute value	/A/	ABS	

The argument of the trigonometric functions (SIN, COS,ATAN) must be expressed in radian measure.
${ }^{*}$ A terminal F may be added to function symbolic names. (LOG, EXPF, SQRTF etc.)
3. When a subroutine is given an impossible argument (e.g. SQRT of a negative number) an error message is printed out but the computation procedes. (See Section III. 8 errors 61, 62, 65). The values used for the functions in these cases are the following:

$$
\begin{aligned}
& \frac{0}{0 .}=\frac{X}{0 .} \text { or } \frac{0.0}{0.0}=\frac{X}{0.0} \ldots 9.9999999 \mathrm{E}+48 \\
& 0.0 * * X \rightarrow 0.0 \\
& \text { LOG }(0.0)-\cdots \rightarrow 0.0 \\
& \text { LOG }(X \text { where } X<0) \cdots \operatorname{LOG}(/ X /) \\
& \text { SQRT }(X \text { where } X<0) \rightarrow \operatorname{SQRT}(/ X /) \\
& \text { SIN }(X \text { where } X \geq 1 . E 9 \text { radians }) \rightarrow-\cdots 1.0 \\
& \operatorname{COS}(X \text { where } X \geq 1 . E 9 \text { radians }) \cdots 1.0
\end{aligned}
$$

III. 5b Subprograms written by the programmer

The Load and Go processor does not provide special statements to call subprograms. The programmer who wishes to use a subprogram must
provide for the entry to the subprogram, the transfer of the argument to the subprogram, and the return to the main program. Sample problem 5 indicates how the programmer can use the computed GO TO statement to return to the main program.

III. 6 Batch processing instructions - Version Three

III. 6
III.6a Preparing the source deck for batch processing III. $6 a$

1. The following Load and Go control card must be used to identify the users source deck and to signal the processor that a new source deck is submitted for batch processing. The Load and Go control card must precede the first source statement.

Card col. 123 40 50 72
\$ Name of user Problem number Optional user identification
Where: The $\$$ is punched in column 1, the users name in columns 3-35, users problem number in columns 40-48, and optional user identification in columns 50-72.
2. The following statements will not be accepted by Version Three, batch processing:

$$
\begin{aligned}
& \text { PAUSE } \\
& \text { ACCEPT, list } \\
& \text { PRINT, list } \\
& \text { IF (SENSE SWITCH n) } \mathrm{J}_{1}, \mathrm{j}_{2}
\end{aligned}
$$

3. Either the END or the STOP statement should be the last executable statements in a program. Execution of either the END or STOP statements will cause the processor to compile the next program in the read hopper.
III.6b Operator instructions-batch processing
4. Load the processor, Version Three: (IF in memory go to 2.)
a. Put Load and Go processor - Version Three in read hopper followed by the source decks to be mun.

Press	INSTANT STOP	(on 1620)
	RESET	(on 1620)
	LOAD	(Yellow button on card reader)

b. Put blank cards in punch hopper

Press PUNCH START (on 1622)
c. When the processor has been loaded the typewriter should type the following message:

READY FOR BATCH PROCESSING
d. Remove the processor deck from reader stacker and put away.
e. The "READER NO FEED" light remains on when two cards are left in the read hopper.

Press READER START
2. If the processor is in memory:
a. Put source decks in the read hopper and blank cards in the punch hopper.

Press READER START (red bottom on card reader)
PUNCH START (green button on card reader)
b. The "READER NO FEED" light remains on when two cards are left in the card reader.

Press READER START

During batch processing there should be no program halts, no need to press START, no need to reinitialize or reload the processor.

NOTE: If the control card is incorrectly punched, the source deck following the incorrect control card will not be compiled. Also note that any execution error will cause termination of the program in error.

III. 6e Punched card output - batch processing

All output including error messages is punched on cards. The first card output contains the information punched on the users control card and will identify all subsequent card output resulting from the compilation and execution of the users program. Error messages will be punched as follows:

X X X X + X X ERROR XX
Where: The 4 digit integer in columns l-4 indicates the last statement number encountered before the error. If the error is a compilation error the 2 digit integer in columns 6-7 indicates a count of the number of
additional cards from the indicated statement number up to the source statements containing the error. The card count includes comment cards but not blank source records.

If the error is an execution error the 2 digit integer in columns 6-7 indicates a count of the number of additional statements executed from the indicated statement number up to the statement containing the error. Note that the sequence in which statements are executed may be very different from the sequence in which they are written in the source program. Thus if the numbered statement is part of a loop the executed statements may not be those listed in the source program as directly below the numbered statement. Also note that during execution the count includes only executable statements. Thus blank records, dimension, continue and comment statements are not counted.

ERROR XX is the error code. Tables indicating the error code and the appropriate error message will be found at the end of the chapter. (See Sections III. 8 and III.9)

The trace feature is not available during batch processing. The user should insert PUNCH statements in the source program so that he will have the information necessary to de-bug his program when program execution does not result in satisfactory output.

Note that if the PUNCH statement is placed within a DO loop, output will Include each value calculated during the loop. If the PUNCH statement is placed outside the DO loop, output will include only the last value calculated. (See sample problem 4, III.10)

The last card output signals the IBM 407 Printer to start a new page (for the next program output) and is blank except for a Z punched in card column 80.*
III. 7a Preparing the source deck for user processing

1. A Load and Go control card must not be used.
2. The following statements will be accepted by Version Two.

$$
\begin{aligned}
& \text { ACCEPT, list } \\
& \text { PRINT, list } \\
& \text { IF (SENSE SWITCH n) } J_{1}, j_{2} \\
& \text { PAUSE }
\end{aligned}
$$

3. Execution of the END statement results in a machine halt. A new source program may be compiled by pressing START. Execution of the STOP statement also results in a machine halt. The user's program may be reexecuted by pressing START.
```
                                    --------------- ***********
```

*NOTE SWITCH 3 on the IBM 407 must be set to the ON position when printing output produced during batch processing on the Model I.

Step 1. Loading the processor
If the Load and Go processor is in memory, go to 2.
If Load and Go processor is not in memory proceed as follows:
a) Put Load and Go processor in card reader

Press	INSTANT STOP	(on 1620)
	RESET	(on 1620)
	LOAD	(Yellow button on card reader)

b) After the deck has been read press START (1620). Follow instructions typed on console typewriter as follows: set program switches--normally all off. Special options: Switch 1 ON to omit Trig Functions Switch 2 ON to eliminate Flow Trace Feature

If the TRIG functions are omitted the area available for storage of program and data will be enlarged by 1,040 digits.

If the FLOW TRACE is omitted, the stored program will be shortened by 4 digits for each statement number. However, when the FIOW TRACE is omitted there is no statement identification of execution error messages.

Step 2. Compiling the source statements
a) Set switches for compilation--normally all off. Special options:

Switch 1 ON for typed input
Switch 2 ON will type out source program
Switch 4 to correct typed-in statements as indicated below
b) Entering the source statements punched on cards:

Press START START

The console typewriter will type the message COMPILATION

Press READER START again to read last two cards
If the console typewriter does not type the message COMPILATION the processor must be reinitialized before a new source program will be compiled. (See f below, reinitialization.)
c) Entering the source statements from the typewriter:

Enter source statements on the typewriter, each statement must be terminated by pressing R / S Key. No record mark is required.
d) To correct typed input: (steps may be also followed to correct typed data input during program execution.)

If R / S has already been pressed, it is too late. Otherwise:
Turn Switch 4 to alternate position Depress R/S
Return Switch 4 to original position Retype entire item Depress R/S

The position of Switch 1 may be changed so that part of the source program may be entered on cards and part on the typewriter.
e) Error messages are typed on the console typewriter and follow the form indicated in Section III. 6 c .
f) Reinitialization - only needed when the typewriter did not type COMPILATION after START was pressed twice.

Set Switch 3 OFF for compilation of a new program, ON for eeexecution of previous program.

Press: INST. STOP
RESET
INSERT
RELEASE
START
START
Sense Switches 1 or 2 should be set to control input devices and listing (See $2 a$, "Compiling the source statements")

Step 3. Program execution

a) When the \#ND statement is compiled, if no Error Messages have been typed, program execution will begin.
b) Switches 1, 2 and 3 are available for use during program execution. If the program requires that Switch I, 2 or 3 be reset, it is advisable to use a PAUSE statement before the first executable statement in the program. The PAUSE will give the user time to reset the switches.
c) Switch 4 is set $O N$ to trace. Switch 4 is set $O N$ to correct errors in typed input as described in step $2 b$ above.
d) The program execution may be stopped at any time by pressing INSTANT STOP.
III. 7c Trace feature - User processing

The object program may be traced at any time by turning Switch 4 ON and running the program. The result of each arithmetic statement will then be typed preceded by the work "TRACE". Normal output will not be inhibited.

Note that tracing is time-consuming and should be used sparingly in pursuit of an elusive bug. The user should consider inserting PUNCH statements in the source program so that he will have the information necessary to de-bug his program. (See sample problem 4, III.10)

Switch 4 may be turned ON or OFF at any time during the running of the program, to cause only selected parts of the program to be traced. However, unless care is exercised, it will be difficult to tell what part of the program is being traced.

TABLE 1

COMPILATION ERROR CODES FOR N.C.E. LOAD GO. (REVISED)

NOTE:
ERRORS 21 and 41 can only be detected at the end of the compilation process. Thus when ERROR 41 occurs no statement number will be typed out.

When ERROR 21 occurs the undefined statement number is typed out. No indication is given of the statement in which the undefined statement number is referenced.

TABLE 2

EXECUTION ERROR CODES FOR NUCoEE。 LOAD AND GO（REVISED）

ERROR 60 DIVISION BY ZERO
RESULT－－－9．9999999E＋48，OR 9999
ERROR 61 LOG（A）WITH A＝
RESULT－－－0．0000000
ERROR 62 A＊＊E，LOG（A），OR SQRT（A）… WITH A NEGATIVE RESULT－－FUNCTION OF ABS（A）
ERROR 63 CALCULATED EXPONENT GREATER THAN +49
RESULT－－－9．9999999E＋48
ERROR 64 CALCULATED EXPONENT LESS THAN -50
RESULT－－－0．0000000
ERROR 65 SIN（A） $\operatorname{COS}(A)$ WITH A GREATER THAN 1 OE9 RADIANS
RESULT－－－ 100000 COO
＊ERROR 70 SUBSCRIPT ON VARIABLE EXCEEDS SIZE OF DIMENSIONED ARRAY， OR IS NOT POSITIVE NUMEER，OR THE INDEX OF A COMPUTED GO TO IS OUT OF RANGE
＊ERROR 71 UNDEFINED VARIAELE
＊ERROR 72 unacceptable numeer in input data
＊ERROR 73 EXECUTION HAS TAKEN TOO LONG，PROGRAM MAY GE IN A LOOP
＊ERROR 74 PROGRAM CALLS FOR MORE DATA THAN INCLUDED WITH CARD DECK，OR END STATEVIENT IS MISSING，OR MORE THAN ONE CONTROL CARC

IF ERRORS 7U，71，OR 72 OCCUR DURING USER PROCESSING，THE COMPUTER WILL HALTO SET SWITCH 3 OFF AND PUSH START TO COMPILE A NEW SOURCE PROGRAM。 PUSHING START WITH SWITCH 3 ON WILL CAUSE THE REEXECUTION OF THE PROGRAM WHICH CAUSED THE ERROR．

ERRORS 73 AND 74 ARE INDICATED ONLY DURING EATCH PROCESSING。
A CHECK STOP MAY OCCUR IF THE SOURCE CARDS ARE PUNCHED WITH INVALID CHARACTERS。 REINITIALIZATION WILL BE゙ NECESSARY。

```
II1.10 SAMPLE PROBLEMS
THE FOLLOWING SOURCE DECKS ARE PREPARED FOR BATCH PROCESSING
AND WERE PROCESSED USING VERSION THREE OF THE PROCESSOR
$ Sample Problem 1
C PROGRAM ILLUSTRATES HOW ALPHAMERIC DATA MAY EE USED AS OUTPUT
READ,A,B,C
PUNCH,A,B,C
END
P THIS IS A TEST PROGRAM
P A B C
2.0
4.0
6.999
$ SAMPLE PROBLEM Z
C TO READ IN AND PUNGH OUT A ONE DIMENSIONAL ARRAY THE FOLLOWING
C SOURCF STATEMENTS MAY EE USFD
C N, SIZE OF ARRAY. IS DUNCHED ON FIRST DATA CARD
DIMENSION A(10)
5 0 ~ R E A L , N ~ N
C THE LAST DATA CARD IS PUNCHED }999
1F (N-9999) 20.30.20
2O DO 10 1=1,N
READ,A(1)
1O PUNCH.A(I)
gO TO 50
30 END
P OUTPUT
D
3
4.5
-3.2
2156
6
15.009 9456-36.5 999.59 +15
9999
```

\$ SAMPLE PROBLEM 3
EXECUTION

OUTPUT

$20 W$	$C 0 L$
0001	0001
0001	0002
0001	0003
0002	0001
0002	0002
0002	0003
0003	0001
0003	0002
0003	0003
0004	0001
0004	0002
0004	0003
0001	0001
0001	0002
0001	0003
0001	0004
0001	0005
0002	0001
0002	0002
0002	0003
0002	0004
0002	0005
0001	0001
0001	0002
0002	0001
0002	0002

> NUMBER
> 5.1000000
> 5.2000000
> 5.3000000
> 6.1000000
> 7.2000000
> 50.400000
> 300.00000
> 22.600000
> -34.400000
> 51.000000
> 6.3600000
> .22000000
> 5.3000000
> 9.1100000
> 10.200000
> 11.300000
> 11.500000
> 0.2000000
> 8.3000000
> 9.3000000
> 6.5600000
> 700.82000
> -834.22678
> 111.50000
> $-5.8000000 E-03$
> 5.4000000

- SAMPLE PROBLEM 4 EXECUTION

DUTPUT SAMPLE PROBLEM 4

GROUP NUMEER	GROUF SUM
0001	40.000000
0001	70.000000
0001	94.000000
0001	1.9 .00000
0002	26.000000
0002	53.000000
0002	93.000000
0002	130.00000
0003	25.000000
0003	48.00000
0003	70.000000
0003	120.00000
0002	130.00000

THE FOLLOWING SOURCE DECKS ARE PREPARED FOR USER PROCESSING AND WERE PROCESSED USING VERSION TWO OF THE FROCESSOR.

SAMPLE PROBLEM 5
C PROGRAM CALCULATES THE FORMULA $C(N, R)=N$ PR (N-R)
C FOR GIVEN VALUES OF NGR
C N IS ANY INTEGER GREATER THAN \& AND LESS THAN 50
c C IS ANY INTEGER LESS THAN N
c VALUES OF N•R PUNCHED ON SAME CARD
C LAST DATA CARD PUNCHED 50 IN COL. 1.2 $011=0$
REAO. XN, R
C CHECKS TO SEE THAT THE DATA IS WITHIN THE ALLOWABLE RANGE
IF ($\times \mathrm{N}-50.110 .98 .99$
10 If (XN-1.) 99.99 .05
$05 \times N R=\times N-R$
IF (XNR)99.99.11
C SIMOLEE TRANSFER STATEMENTS CARRY THE ARGUMENT TO THE SUB-ROUTINE
$11 L=X N$
$20 \quad 1=1+1$
GO TO 30
$15 \times N F=F A C$
$L=R$
GOTO 20
$1 B R F=F A C$
$L=X N R$
GO TO 20
$17 \times N R F=F A C$
$C R N=\times N F /(R F * \times N R F)$
97 PUNCH, XN,R•CRN
GO TO 0!
C SUB-PROGRAM COMPUTES THE FACTORIALS
$30 F A C=1$.
DO $50 \quad J=1 \cdot L$
$r=J$
50 FAC=FAC*Y
GO TO (15.16.17).1
99 STOP
98 END
\because
3
31
1910
$50 \quad 32$

5.0000000	3.0000000	10.000000
3.0000000	1.0000000	3.0000000
19.000000	10.000000	92377.987

THE FOLLOWING SOURCE DECKS ARE PREPARED FOR USER PROCESSING AND WERE PROCESSED USING VERSION TWO OF THE PROCESSOR.

SAMPLE PPOBLEM 6
C SOLUTION OF SIMULTANEOUS EQUATIONS
C BY GAUSS-JORDAN ELIMINATION
C MODIFICATION OF USER S GPOUP LISRARY PROGRAM 5.0.007 OOO:
C THE PAUSE AT THE BEGINNING OF THE PROGRAM $\triangle L L O W S ~ T H E ~ O P E R A T O R ~$
C TO SET SENSE SWITCH 1
C SWITCH 1 ON,FUNCH OFF, PRINT OODe
C SWITCH 2 ON.STOP ON TOLERANCE CHECK OFF CONTINUE OROS
C ENTER TOLERANCE AND SIZE OF MATRIX AS FIRST PIECE OF DATA ONOE
C 17 EQUATIONS AND TRIG FUNCTIONG NEED NOT BE ELIMINATED. OONE
C WITH THIS SIZE DIMENSION THE PROGRAM WILL HANDI.E
DIMENSION A(17,18)
PAUSE
10 READ TOLR,N2 0010
$N 1=N 2+1 \quad 0011$
$0021=1 . N 2 \quad 0012$
DO $2 \mathrm{~J}=1, \mathrm{~N} 1 \quad 0013$
2 READ A(I.J)
DO $14 I=1 \cdot N 2$
0016
$D 1 A G=A(1,1)$
IF (DIAG) 4. 20.440020
4 IF (ABS (DIAG)-TOLR) 19.19 .50021
$5 \quad D 06 J=1, N!0022$
$6 \quad A(1 \cdot J)=A(1: J) / D I A G$
$K=1 \quad 0025$
$91 F(K-1) 11 \cdot 13 \cdot 110026$
$11 \quad F C T R=A(K, 1)$
DO $12 \mathrm{~J}=\mathrm{I} \cdot \mathrm{NI} \quad 0029$
$12 \quad A(K, J)=A(K, J)-F C T R * A(I, J)$
$13 K=K+1 \quad 0033$
IF (KONZ) 9.9.14 0034
14 CONTINUE 0035
$J=N 1$
IF (SENSE SWITCH 1) 15.170037
15 DO $15 \mathrm{I}=1$.N2
16 PUNCH A $1, J$)
GO TO 10
17 DO $18 \quad 1=1$ N2
18 PRINT, A(1,J)
GO TO 10
0041
C STATEMENT 19 IS TOLERANCE STOP 0042
19 DAUSE 190043
IF (SENSE SWITCH 2) $10.5 \quad 0045$
C STATEMENT 20 IS ERROR STOP 0046
20 STOP 0048
END 0057
-

The Kingston Fortran II system, composed of a language and compiler for the IBM 1620, was written in July 1964 and revised in November 1964, by J.A,A. Field ${ }_{1}$, D.A. Jardine $2, E_{2}$ S. Lee 1 , J.A.N. Lee 3 and D.G. Robinson ${ }_{2}$. The KFII compiler allows the following operations and specifications, which are not discussed in Section 2 and not permitted by other Fortran compilers:

Use of stored Hoalerith constants.
Explicit specification of variable types.
Use of up to 13 subscripts.
Use of integer expressions in indexing Computed GO TO statements, and DO statements.
Use of DATA specifications.
Optional free format.
A complete listing of library subroutines may be found in Section IV.9a. The KFII compiler includes the followin ${ }_{B}$ library subroutines, which are in addition to the standard library subroutines provided by other Fortran systems:

MAX which chooses the largest value in a group of values.
MIN which chooses the smallest value in a group of values.
PLOT and PLOTP which plot the values of real variables on punch cards or the console typewriter.
SORT which sorts elements in an array using the Shell Method.
The KFII compiler, stored on the 1311 disk of the 1620 Model II and used with appropriate IBM Monitor System control cards, permits convenient and quick one pass compilation and execution of a source deck written in KFII language. The discussion of the KFII language which follows includes only those language specifications which apply specifically to KFII, and assumes that the reader is familiar with the language discussed in Section II.

1. Dept. of Electrical Engineering, University of Toronto, Toronto, Ontario.
2. Du Pont of Canada Ltd., Research Centre, Kingston, Ontario.
3. Computing Centre, Queen's University, Kingston, Ontario.

IV. 1 Punching input source programs

The statements of a Kingston Fortran II source program may be punched in columns $7-72$ of a source program card. If the statement is too long for one card, it may be continued on the following cards. These continuation cards must have a non-zero number in column 6. The first card of a statement must have column 6 either blank or zero. Blanks in columns 7-72 are ignored except for Hollerith specifications, discussed below.

Columns 1-5 on the first card of a statement are used for the statement number, if any.

Columns 73-80 are not used by the compiler and may be used for program identification, sequencing, or any other purpose.

Comments to explain the program may be punched in columns $2 \mathbf{- 8 0}$ of a card, if the letter C is placed in column 1.
IV. 2 The arithmetic statement IV. 2
IV.2a Constants

Integer constants - The magnitude of an integer constant must not be greater than 99999.

Hollerith constants - A Hollerith constant consists of any characters, $1 \leq n \leq 5$, including blanks and special characters. It is written with the integer n, followed by the letter H, followed by exactly n characters.

Example:

Valid	Invalid
1 HA	6HABCDEF
$4 \mathrm{H}(* /-$	0 H
3 HbbC	4 HbbbbD

Note: The b indicates blanks.
Hollerith constants or variables whose values are Hollerith constants, carry symbolic rather than numeric information. They may be used in the following statements:

1. Simple replacement statements may define a Hollerith constant

Example:

$$
\begin{aligned}
& I=3 H Y X A \\
& A=4 \mathrm{Hl} 234
\end{aligned}
$$

2. Data statements may define a Hollerith constant.
3. Input, output statements, using A-format may define a Hollerith constant.

Example:

$$
\begin{aligned}
& \text { READ 2, (TABLE }(J), J=1,5) \\
& 2 \text { FORMAT }(5 A 5)
\end{aligned}
$$

The above statements will read the 5 table values, SMIT, JONES, TERRY, ALPHA, DATUM, into machine core storage labeled TABLE (1), TABLE (2), TABLE (3), TABLE (4), and TABLE (5).

> (See Section IV.5b)
4. Arithmetic statements may include Hollerith constants providing the only arithmetic operations are integer subtraction or addition. Due to the machine representation of the blank as zero, the following equations are correct and may be used in a source program to form Hollerith constants.

Example:

$$
\begin{aligned}
5 \mathrm{HABCDE} & =5 \mathrm{Hbbbbb}+5 \mathrm{HABCDE} \\
2 \mathrm{HIA} & =2 \mathrm{Hlb}+2 \mathrm{HbA} \\
2 \mathrm{HbA} & =2 \mathrm{H} 1 \mathrm{~A}-2 \mathrm{Hlb}
\end{aligned}
$$

5. IF statements may compare two Hollerith constants, or variables whose values are Hollerith constants, for identity.

Example:
If (IIST (1)-ITEM(2)) $10,20,10$
Where LIST and ITEM contain symbolic information.
6. CALL statements may include Hollerith constants as function arguments.
(See Section IV.8c)
7. DO statements may use Hollerith constants as the initial and increment values of the index. Due to the machine representation of an alphabetic character, the following DO statement causes the Index I to assume all the possible letters of the alphabet in order.

Example:

$$
\text { Do } n \quad I=1 H A, 1 H Z, 1 H B-1 H A
$$

Thus the user can sort cards alphabetically.

Variable names- A variable name consists of l-6 alphameric (numeric or alphabetic) characters.

Variable types- The type of a variable, integer or real, can be specified in two ways: implicitly or explicitly. Implicit specification is discussed in Section II. Explicit specification of a variable type requires using an INTEGER or REAL statement.

Example:

> INTEGER DEV, ITA
> REAL ITEM, FAN, IIST

The INTEGER and REAL statements are used to overide the implicit type assignment associated with a variable name. The INTEGER statement declares all variables in its list to be of type integer regardless of their initial letters. Similarly, the REAL statement declares all variables in its list to be of type REAL, regardless of their initial letters. Variables listed in an INTEGER or REAL statement remain that type throughout the program; the type can not be changed. The INTEGER or REAL statement is a type specification statement and must precede the first executable statement of the program, but must follow COMMON, DIMENSION and EQUIVALENCE statement. (See "Order of appearance of specification statements," Section IV.7e)

Subscripted variables- KFII allows up to thirteen subscripts. Subscripts may take the form of any arithmetic expression whatsoever provided that the result of evaluation of the subscript be an integer number. In particular, the subscript may itself contain subscripted variables, whose subscripts, in turn, may be expressions involving subscripted variables.

Example:

Valid subscripts
(I)
(3)
$\left(\begin{array}{l}2+M U \\ (M U+2) \\ (5 \times 5+M) \\ (5 * J) \\ (6 * J-K+2-10 / L+M \\ *(4 * J(K+2-L+M)+K(M(N+2)) / 3) \\ (F I X F(A * B * 2.0 * * C) * L / 2)\end{array}\right)$.

Valid subscripted variables

$$
\begin{aligned}
& A(I) \\
& K(3) \\
& \text { ALPHA(I, } J, 2+M U) \\
& \operatorname{RUN}(M U * 5+M, 4 * J(K(2)-L+M), K(N(M))
\end{aligned}
$$

Invalid subscripted variables
$X(A, I)$
$A(I, J * 2.5)$
*(See library function FIXF,IV.9a)

Rules for forming expressions: (See Section II. for general Fortran rules for forming arithmetic expressions.)

1. $E=-A * * B$ is compiled, $E=-\left(A^{B}\right)$
2. Within the same priority, the addition, subtraction, and multiplication operations are performed from right to left. For example, $A+B+C+D$ will be performed as $(D+C+B+A)$; whereas $(A+B)+(C+D)$ will be performed as the sum of ($D+C$) and $(B+A)$. However $A * B / C * D$ will be calculated as:

$$
A *(B / C) * D .
$$

IV. 3 Control statements

IV.3a Statement numbers

Statement numbers may be any integer $n, 0<n \geq 5999$.
IV. 3b Address variables

An address variable is a variable which has been made equivalent to a statement number. The ASSIGN statement, assigns the statement number to the address variable.

General form of ASSIGN statement:
ASSIGN i to n
where: i is a statement number or address variable.
n is an address variable.
An address variable must be defined ultimately in terms of a statement number. Thus if I is an address variable, it must at the time of execution of an ASSIGN statement, have previously been defined in terms of a statement number or another address variable which was defined in terms of a statement number. The contents of storage assigned to the address variable is not the statement itself, but rather the object time representation of the statement number. Address variables may be subscripted, if desired. If an address variable is assigned to another variable it must be enclosed in parenthesis.

Example:

Valid ASSIGN statements

ASSIGN	12 to K
ASSIGN	(K) to $\mathrm{J}(\mathrm{L})$
ASSIGN	13 to $A(M(\mathrm{~N}))$
ASSIGN	$(\mathrm{A}(\mathrm{M}(\mathrm{N})))$ to K

1. Address variables may appear in the following control statements in place of a statement number:

Statement
UNCONDITIUNAL GO TO
COMPUTED GO TO
ARITHMETIC IF
IF SENSE SWITCH

Example

GO TO K
GO TO ($10, \mathrm{~K}, 30, \mathrm{~L}(\mathrm{M}), 15,35)$, $\operatorname{ITEM}(\mathrm{J})$
$\operatorname{IF}(A(J, K)-B) 10,4, I$
IF(SENSE SWITCH 1) N,A
2. Address variables may not appear in a DO statement.
3. Address variables may be used as the FOBMAT designator in an input/ output statement. Address variables may be reassigned within a program.
(See Section IV.4)
4. Address variables may be transmitted to a subprogram in a CALL statement. Thus address variables may be used to provide multiple returns from a subroutine, each to a different point.
(See Section IV. 8 C)
5. Address variables may be defined in a DATA specification statement. They may not be used in any other type of specification statement.
6. Arithmetic may not be performed on Address variables. They may not be used in an arithmetic statement.
IV. 3c Computed GO TO statement

GO TO $\left(x_{1}, x_{2}, x_{3}, \ldots . x_{n}\right)$, i
where: $x_{1}, x_{2}, x_{3}, \ldots . x_{n}$ are statement numbers or address variables.
i is an integer expression of any complexity whose value is greater than or equal to l and less than or equal to the number of statem ment numbers or address variables within the parentheses. The comma preceding i is optional.

Example: GOTO (10,K, 30, L(M), 15, 35), ITEM(J)
If the value of ITEM(J) is 3 at the time of execution, a transfer occurs to the statement whose number is the third in the series. If the value of ITEM(J) is 4, a transfer occurs to the statement whose number is fourth in the series, address variable $L(M)$.

IF (SENSE SWITCH i) n_{1}, n_{2}
where: 1 is an integer constant or arithmetic expression
n_{1}, n_{2} are statement numbers or address variables.
The last two digits of the integer constant or expression i are used to determine which machine indicator is to be interrogated. Control is transferred to statement n_{1} if the machine indicator is on. Any of the machine indicators can be interrogated by the IF (SENSE SWITCH) statement. However, not all machine indicators are relevant to the computations performed by the object program. Care should be exercised in using the IF (SENSE SWITCH) statement since the operating system subroutines may leave the indicators in a position which does not correspond to the result of the arithmetic calculation.
IV. 3e DO statement
IV. 3 e

End of Range	Index	Initial Value	Test Value	Increment
n	$\mathrm{i}=\mathrm{m}_{1}$,	m_{2},	m_{3}	

where: n is any statement number, but NOT an address variable.
i is a subscripted or nonsubscripted integer variable.
m_{1}, m_{2}, m_{3} are signed or unsigned integer constants, subscripted or non-subscripted or integer expressions of any desired complexity.
m_{3} is optional; if it is omitted, its value is assumed to be l. In this case, the preceding comma must also be omitted.

Rules for using the DO statement

1. The range is the series of statement to be executed repeatedly. The range can consist of any number of statements.
2. The values of the index, test value, or increment, (i, m_{1}, m_{2}, m_{3},) may be changed within the DO loop if and only if they are simple variables. The DO will then be continued with the new values, and normal incrementing will occur until an exit from the range of the DO takes place.
3. The initial value, m_{1}, and test value, m_{2}, may be positive, negative, or zero. The normal algebraic sign convention is applied for incrementing and testing.
4. The increment, m_{3}, may be positive or negative, but not zero.

Example:

$$
\text { The statement DO } 20 I=5,-4,-3
$$

will cause the range of the $D O$ to be executed with I taking on the successive values $5,2,-1,-4$.

Example:

$$
\text { The statement DO } 100 \quad I(J)=L * \mathbb{M}+2,6 * K, N(K)
$$

will cause the range to be executed with $I(J)$ taking on values starting at the value of $L * \mathbb{M}+2$, and continuing with increments of the value of $N(K)$ until the value of $6 * K$ is exceeded in the direction of incrementation.
5. Transfer into the range of a DO statement is permitted if a previous transfer has left the range of the DO and it is desired to return to the range of the DO.

IV. 3 f PAUSE statement

PAUSE n
where: n is an unsigned integer constant, or an integer variable or expression, n is optional.

The PAUSE statement causes the program to halt. PAUSE n is typed on the console typewriter. If n is omitted, the program is halted and there is no typewriter output. Pushing START causes the program to resume execution, starting at the next statement after the PAUSE statement.
IV. 3 g STOP statement, CALL EXIT, CALL SKIP

STOP n
Where: n is an unsigned integer constant, or an integer variable or expression, n is optional.

The STOP statement causes the program to print STOP 0000 on the typewriter if n is not specified. If n is specified, STOP n is printed. In either case, the execution of the program is terminated, and may not be resumed.

CALL EXIT

The CALL EXIT statement halts the object program and returns control to the supervisor so that another source program may be compiled. The

CALL EXIT statement must be the last executable statement in a program written for the IN-OUT box unless a CALL SKIP is used as specified below.

CALL SKIP
The CALL SKIP statement causes interruption of the normal program. The CALL SKIP will usually be employed to stop calculation on a block of data because of an abnormal situation (e.g. failure to converge on an iteration, bad data) which has occurred in the block of data. In such a case, CALL SKIP will cause that particular calculation to be abandoned, and a new set of data to be presented to the program. The data must be sectioned by end of file cards.

General form: End of file card
\$\$\$
where: $\$$ signs are punched in card cols, l-3.
The end of file card indicates the beginning of a new block of data. If the data abandoned is the last block of data, a normal exit to a new program will result. This is the only instance where a CALL EXIT is not the last executable statement in a program.
IV. 3 h END statement
IV. 3 h

END
The END statement defines the end of a program or subprogram for the compiler. Physically it must be the last statement of each program or subprogram. When it is encountered in the flow of the source program, compilation halts and any source program cards following the END card are not compiled.

The END statement is not executable. The last executable statement before the END statement must be a transfer. sttatement (IF, GO TO, STOP, CALL, or RETURN). An END statement may not have a statement number.

IV. 4 INPUT/OUTPUT statements	
IV. 4 I Input statements	
READ n, list	Cards
ACCEPT TAPE n, list	Paper tape
ACCEPT n, list	Console typewriter
REREAD n, list	Causes the last record read (regardless of input device) to be read again.

READ n, list
ACCEPT TAPE n, list
ACCEPT n , list
REREAD n, list

Cards
Paper tape
Console typewriter
Causes the last record read (regardless of input device) to be read again.
where: n : is a statement number, address variable, or the name of an array containing the format in the form of Hollerith constants, representing the FORIMAT statement describing the type of data conversion. n is optional. If omitted, the system will supply a standard format.
(See section IV. 6 KFII without Format)

List is a list of variable names, separated by commas, representing the input data.
IV. 4 b Array input

1. When an array name appears in an I/O list in non-subscripted form, all of the quantities in the array are transmitted. If the list item is a multi-dimension array, it is transmitted columnwlse, with the first subscript varying most rapidly, and the last subscript least rapidly.

Example:

Dimension C(10) Read 40, C

The above statements will cause all of the quantities $C(1) \ldots . .$. (10) to be read into storage.

Given D is a $3 \times 5 \times 5$ array

Example:

Dimension $D(3,5,5)$ Read 40,D

The above statements will cause all of the quantities, $D_{111} \ldots . . D_{2} \ldots \ldots$ $\mathrm{D}_{215 \ldots \ldots D_{311} \ldots . D_{351} \ldots D_{355} \text { to be read into storage in the following }}$ order:
$\mathrm{D}_{111}, \mathrm{D}_{211}, \mathrm{D}_{311}, \mathrm{D}_{121}, \mathrm{D}_{221}, \mathrm{D}_{321}, \mathrm{D}_{131}$, etc.
2. Indexing I/O lists - Variables within an I/O list may be indexed and incremented in the same manner as with a DO statement. For example, suppose it is desired to read data into the first five positions of the array A. This may be accomplished by using an indexed list, as follows:

READ 50, ($A(I), I=1,5$)
This is equivalent to the following:

$$
\mathrm{READ} 50, \mathrm{~A}(1), \mathrm{A}(2), \mathrm{A}(3), \mathrm{A}(4), \mathrm{A}(5)
$$

As with DO statements, a third indexing parameter may be used to specify the amount by which the index is to be incremented at each iteration. IV. 4 b Thus:

$$
\operatorname{READ} 50,(A(I), I=1,10,2)
$$

causes transmission of values for $A(1), A(3), A(5), A(7)$, and $A(9)$.
Furthermore, this notation may be nested. For example, the list:

$$
((C(I, J), D(I, J), J=I, 5), I=I, 4)
$$

would transmit data in the following order:

$$
\begin{aligned}
& C(1,1), D(1,1), C(1,2), D(1,2), \ldots, C(1,5), D(1,5) \\
& C(2,1), D(2,1), C(2,2), D(2,2), \ldots, C(2,5), D(2,5) \\
& C(3,1), D(3,1), C(3,2), D(3,2), \ldots, C(3,5), D(3,5) \\
& C(4,1), D(4,1), C(4,2), D(4,2), \ldots, C(4,5), D(4,5)
\end{aligned}
$$

The notation for the implied DO statement in an I/O list may be of the same complexity as that described earlier for the DO statement proper. In partícular, the indexing variable may itself be subscripted, and the limits may be integer expressions. For example, the following are permitted:

```
READ 10, \(\left(\begin{array}{l}(A(I, J), I=K, L), J=M, N) ~\end{array}\right.\)
READ 10, \(((A(I(K I), J(M I)), K I=K-J O B * 2, L+5,-J 6), M I=M * 8-M M 9, N, 3 * N 18)\)
```


Restriction

In an input list, the items may be only subscripted or nonsubscripted variables or . array names. Ali variables in an implled DO statement must be in the DO loop. Thus the followinglexample is invalid:

$$
\operatorname{READ} 50, \operatorname{DOG},(A(I), I=1,10,2) .
$$

3. Sample problem 7 (Section IV.I4) illustrates array input and output.
IV. 4 c Output statements

PUNCH n, list
PUNCH TAPE n, list Paper tape
TYPE n, list Console typewriter
PRINT n, list 1443 On-line printer
where: n is a statement number, address variable, or the name of an array containing the FORMAT statement in the form of Hollerith constants. If n is omitted, the system will supply a standard format.

 separated by commas. / represents the beginning of a new record.
IV. 5a Numeric conversion codes IV.5a

I-conversion- is used to input or output an integer quantity as follows:

Iw
Where: w represents the number of spaces that are scanned on input or reserved for the number on output.

1. If the number to be output is greater than w spaces, the excess is lost and an error indication results.
2. If the number to be output has less than w digits, the left-most spaces are filled with blanks. Blanks in input data are regarded as zeros.
3. A positive sign need not be punched on input. Space need not be left for a positive sign on output. However, the space preceding the leftmost digit must be reserved for sign, if the quantity to be output is negative,
4. If a real number is output yinder I-conversion, the integer part is punched without rounding. Sufficient width must be allowed for the resulting integer number.

Example:

specification I3 will punch the internal values as follows:	
Internal value	
	721
-721	
-12	721
68114	error message
4336.15	-12
-43.72	error message
	error message

F-conversion- is used to input or output a number with decimal.

General form of F -conversion code:

Fw.d
where: w is the total field reserved on output or scanned on input.
d is the number of places to the right of the decimal.

1. Numbers for E-conversion input need not be punched with four spaces devoted to the exponent field. The start of the exponent field may be marked by an E, or by a plus or minus (not a blank-all blanks in fields are read as zeros).

Example:

$.3 E 2, .3 \mathrm{E}+2, .3+2, .3+02$ are all valid input data.
2. The total field width, reserved for output must include a space for sign if the number is negative, a space for the decimal point, and four spaces for the exponent.
3. The decimal portion is rounded if insufficient spaces are reserved on output.
4. If an integer number is handled with E-conversion, the integer number is changed to the corresponding real number before E-conversion takes place.

Example:

Specification E10. 3 punches the internal values as follows:

Internal Value	Punched
238	$\mathrm{bb} .238 \mathrm{E}+03$
-.002	$\mathrm{~b}-.200 \mathrm{E}-02$
.000000004	$\mathrm{bb} .400 \mathrm{E}-9$
-21.0057	$\mathrm{~b}-.210 \mathrm{E}+02$

N-conversion- is used for input which is punched "free form" and will supply a suandard format on output. Nwconversion neither permits nor allows width or decimal point location specification.

General form of N -conversion code:
(xN)
where: x is the number of variables in the input or output list

1. Input data may be any type; integer, real, or E, punched with one blank separating each number. The internal form of the number is entirely determined by the Type of the variables in the input list.

Example:
READ 10, $\mathrm{X}, \mathrm{I}, \mathrm{N}, \mathrm{Y}$
10 FORMAT (4 N)

2. On output, N-conversion is equivalent to 1 PE 4.7 , IX for real numbers.
(See "Scale factors" below)
and I6,IX for integer numbers.
Example:
PUNCH 10, Y, I
10 FORMAT (2N) will produce
the following output:
Internal Value
$5.6300000 \mathrm{E}+02 \mathrm{bbbb}-21$

$$
\begin{aligned}
& Y=563 \\
& I=-21
\end{aligned}
$$

Scale factors

To permit more general use of E-, and F-conversion, a scale factor followed by the letter P may precede the specification. The magnitude of the scale factor must be between -49 and +49 inclusive. The scale factor is defined for input as follows:

10 scale factor x external quantity $=$ internal quantity
The scale factor is defined for output as follows:
external quantity $=$ internal quantity $\times 10$ scale factor
For input, scale factors have effect only on F-conversion. For example, if input data are in the form $\mathrm{xx} . \mathrm{oxxxx}^{2}$ and it is desired to use it internally in the form . Xxxxxx , then the FORMAT specification to effect this change is 2PF7. 4 For output, scale factors may be used with Ea, and F-conversion.

For example, the statement FORMAT (I2,3Fli.3) might give the following printed line:

$$
27 \mathrm{bbbb}-93.209 \mathrm{bbbbb}-0.008 \mathrm{bbbbb0} 0.554
$$

but the statement FORMAT (I2,1P3F11.3), used with the same data, would give the following line:

Whereas, the statement FORMAT (I2,-1P3F11.3) would give the following line:
27bbbbb-9.321bbbb -0.001 bbbbbb 0.055
A positive scale factor used for output with E-conversion increases the number and decreases the exponent. Thus, with the same data, FORMAT (I2,IP3E12.4) would produce the following line:

27b-9.3209Eb01b-7.5804E-03bb5.5536E-01
The scale factor is assumed to be zero if no other value has been given. However, once a value has been given, it will hold for all E-, and F-conversions following the scale factor within the same FORMAT statement. This applies to both single-record formats and multiple-record formats. Once the scale factor has been given, a subsequent scale factor of zero in the same FORMAT statement must be specified by OP. Scale factors have no effect on I-conversion or N -conversion.

IV. 5 b Alphameric conversion codes

There are two specifications available for input/output of alphameric information: H-Specification and A-Conversion. H-Specification is used for a]phameric daǐa which are not going to be changed by the object program (e.g. page headings); A-Conversion may be used for alphameric data in storage which are to be operated on by the program (e.g, modifying a line to be printed).

H-type FORMAT specification

H-type specification is written within the FORMAT statement and is preceded by nH where n is the number of characters in the specification. For example:

25 FORIMAT ($15 \mathrm{HbTHISbISbH-TYPE} \mathrm{)} \mathrm{)}$
The effect of this statement depends on whether it is used with an input or output statement, A comma separating the H-type specification from a succeeding specitication, is optional.

Output: All characters (including blanks) within the specification are written as part of the output record. Thus, the statements:

5 FORMAT (2\%HbTHISbISbISbALPHAMERICbDATA)
-
-
-
PRINT 5
would cause the following record to be written on the printer:

THIS IS ALPHAMERIC DATA

Input: A number of characters, equal to the number, n, of characters specified, are read from the designated input record and replace, in storage, the characters within the H-Specification. For example, the statements:

5 FORMAT (8HHEADINGS)
-
-
READ 5
would cause the first eight characters to be read from the next input card and these characters would replace the characters HEADINGS in the FORIAT statement.

Restriction: The number of characters in a single H-Specification must not be greater than 99.

Note: If a Hollerith specification extends beyond the end of the source statement card on which it was started, it may be completed on a continuation card. In this case, the first card is considered to end at column 72.

A-Conversion

The specification Aw is used to read or write alphameric data. W must be $1,2,3,4$, or 5 . It causes the w characters to be read into, or written from, the area of storage specified in the I/O list. For example, if a data card having the characters $A B C D$ in columns l-4 were read under control of the following statements

10 FORMAT (A4)
-
-
-
READ 10, SAM
the four alphameric characters $A B C D$ would be read from the card and placed into the field in storage named SAM.

The following statements:
15 FORMAT ($3 \mathrm{HXY}=, \mathrm{F} 9.3, \mathrm{~A} 4 /$)
-
-
-
PUNCH $15, \mathrm{~A}, \mathrm{SAM}, \mathrm{B}, \mathrm{SAM}$
would produce the following lines:
$X Y=5976.214 \mathrm{ABCD}$
$X Y=6173.928 \mathrm{ABCD}$
Characters transmitted under A-conversion are stored in memory as Hollerith constants. Conversely, a Hollerith constant, or a variable whose value is a Hollerith constant, may be output using $\mathrm{A}-\mathrm{conversion}$.

IV. 5 c Specifying blank fields

X-conversion provides for blank characters in an output record, and skipping of characters in an input record.

General Form of X-conversion code:
wX
Where: w characters are skipped on an input record, or w blanks provided in an output record.

1. X-conversion must be carefully distinguished from H-specification with blank characters. Reading an input record under X-conversion causes the appropriate part of the record under X-conversion to be ignored completely.

Example:

$$
\begin{array}{ll}
\text { Card is punched: } & \text { Read 5, A, I } \\
\text { Col. } 1-5 \quad 543.2 & 5 \text { FORMAT (F5.1, 3XI4) } \\
6-8 & 423
\end{array}
$$

IV.5d Repaating specifications

A specification may be repeated as many times as desired (within the limits of the output device) by preceding the specification with an unsigned integer constant.
Thus:
2F10. 4
is equivalent to:
F10.4, F10. 4
Parenthetical expressions are permitted to enable repetition of data fields according to certain format specifications within a longer FORMAT statement.

Thus:
10 FORMAT (2(F10.6, E10.2),I4)
is equivalent to:
10 FORMAT (F10.6, E10.2, F10.6, E10.2, I4)
Five levels of nested parentheses, in addition to the parentheses, required by the FORMAT statement, are permitted.

If there are more items in the list than there are specifications in the FORMPT statement, control transfers to the immediately preceding left parenthesis of the FORMAT statemnt. A new card (or line) is punched with the specifications used again for the next item in the list.

Example:
The following statements:
10 FORMAT (F10.3, E12.4, F12.2)
-
-
$\stackrel{\bullet}{P}$
PUNCH 10, A, B, C, D, E, F, G
cause the data to be transmitted in the following order:
Data Transmitted Specification
A) $\quad \mathrm{FlO} .3$)
B) E12.4) First card
C) Fl2.2)
D) FlO.3)
E) E12.4) Second card
F) F12.2)

G Fl0.3 Third card
IV.5e The use of the slash (/)
IV. 5 e

1. The / may be used to denote the end of a record. On input the / calls for the reading of the next card.

Example:

$$
\begin{aligned}
& 5 \text { FORMAT (F5.2, /F10.2) } \\
& \text { READ 5, A, B, }
\end{aligned}
$$

A is read from the first card, B from the second card.
On output the / calls for the punching (or typing) of a new card.
2. The / may also be used to provide blank lines between output records or records skipped for input records.

For example, if the statement FORMAT (I2,E12.4////F12.3) is used for printed output, three blank dines will be inserted between the data specified by I2,E12.4 and the data specified by F12.3. However if the dashes are placed at the beginning or end of the FORMAT specification an additional blank line (or second skipped) is provided. For example FORMAT (////I6) provides for the insertion of 4 blank lines.

IV. $5 f$ Printer carriage control

A Printer carriage control Hollerith character must be included in each Format statement used with a PRINT statement to designate the desired space or skip operation for each printed line. The printermoriented Format statement must begin with $1 H$ followed by a control character which specifies the desired operation. The control characters and their effects are:

$$
\begin{array}{ll}
\text { blank } & \text { single space before printing } \\
0 & \text { double space before printing } \\
1 & \text { skip to a new page }
\end{array}
$$

The control characier itself does not become part of the printed output.

Example:

$$
\begin{aligned}
& \text { PRINT 2, A,B,J } \\
& 2 \text { FORMAT (IHO, F8.2, F8.2, I8) }
\end{aligned}
$$

This specification will provide a double space between the line being printed and the previous printed line.

The control carriage specification is applicable to the first line of print only. If more than one line is called for, the user must be sure that the carriage control specifications precede the normal specifications for each line of print.

Example:
PRINT 2, A, B
2 FORMAT (28HISMITH, OUTPUT FOR PRORLEM 3/1H ,2F8.2)
The line SIITTH, OUTPUT FOR PROBLEM 3 will be printed on a new page. The value for A, and the value for B will be printed on the next line.

IV. 6 KFII without FORMAT

The FORNAT statement and the corresponding statement number or address variable in an I/O statement are optional in KFII and may therefore be omitted entirely. If no FORMAT statement is specified, the system will supply FORMAT (5 N).

IV. 7 Specification statements

The specification statements are nonexecutable, because they do not cause the generation of instructions in the object program. Instead they provide the processor with information about the nature of the variables
used in the program. In addition, they supply the information required to allocate locations in storage for certain variables and/or arrays. Specification statements must appear at the beginning of the source program. The order in which they must appear is specified at the end of this section. (Section IV.7e)
IV.7a COMMON statement

General form:
COMMYN a, b, c,
Where: $a, b, \ldots .$. are variables that may contain dimension information as in the DIMENSION statement.

Variables, including array names, appearing in a COMMON statement, are assigned locations at the upper end of the memory. This COMMON area permits variables to be shared by a program and its subprograms without transmitting arguments.

1. If the variables appearing in a COMMON statement require dimension information, they must appear in the COMNON statement in the same form as they would in a DIMENSION statement; they must not then appear in a DIMENSION statement.

Example:
COMMON A, B, C(10, 20, 2)
where C is a three-dimensional array $10 \times 20 \times 2$.
2. The locations in the COMMON area are assigned in the sequence in which the variables appear in the COMMON statement, beginning with the first COMMON statement of the program.
3. Two variables in COMMON may not be made equivalent to each other.
IV.7b EQUIVALENCE statement

General form:
EQUIVALENCE ($a, b, c, \ldots \ldots .$.$) , (d, e, f, \ldots .$.)
Where: $a, b, c, d, e, f, \ldots .$. are variables that may be multiple subscripted; the subscripts must be integer constants.

Each pair of parentheses in the statement list encloses the names of two or more variables that are to be stored in the same location during execution of the object program; any number of equivalences (i.e., sets of parentheses) may be given.

Example:

$$
\begin{aligned}
& \text { DINENSION } B(5), C(10,10), D(5,10,15) \\
& \text { EQUIVALENCE }(A, B(1), C(5,5)),(D(1,2,5), E)
\end{aligned}
$$

The EQUIVALENCE statement indicates that A, and the B and C arrays are to be assigned storage locations so that the elements $A, B(1)$, and $C(5,5)$ are to occupy the same location. In addition, it also specifies that $D(1,2,5)$ and E are to share the same location.
IV.7c Type statements

The type statements INTEGER and REAL, are discussed in Section IV. 2 b , Variables types.
IV.7d DATA statements

General form:

DATA V1/Cl/, V2/C2/, Vn/Cn/
Where: Vi is a variable name, an element of an array, or an array name.
Ci is a list of constants (separated by commas).
The address of the variable v, which for an array is the first element of the array, is initialized with the first constant of the list c. If the list c has more than one element, these subsequent constants are stored in order in the memory locations which follow the position of the variable v. If the variable v is an array the constants will be stored in the array in the same sequence that data would be stored in the array by the appearance of the array name in an input list.

If there are more constants in the list c than there are elements in the variable v, difficulties may be encountered at object time. No check is made for this error. Moreover, no check is made to see that the variable and its constant(s) are the same type.

Integer and real constants may be preceded by a minus sign. A plus sign preceding a constant is not permitted, but is implied by the absence of a minus sign.

An address constant is used for pre-assigning a statement number to an address variable. Address constants may not appear anywhere in the program but in the DATA statement.

The DATA statement may appear at any position after the specification statements.

IV.7e Order of appearance of specification statements

The specification statements must be the first statements of the program. The order of these must be (excluding corments cards) as follows:

REAL and INTEGER are considered equivalent, and may be interchanged in the above list.

The DATA statement may appear anywhere after the above list.

IV. 8 Subprograms

The programmer preparing a KFII source program may find that he uses an algebraic function, or a series of source statements, many times in the same program. For example, the program may call for calculating the log of several variables, or the standard deviation of several sets of variables, or the inverse matrix of several sets of matrices. If the source statements that are to be repeated are defined in a subprogram, the programmer need write the source statements only once. These source statements comprise the subprogram definition.

The KFII language provides for four (4) types of subprogram definitions; Arithmetic Statement Functions, Function Subprograms, Subroutine Subprograms, and Library Functions. The Library Function Subprograms are written into the KFII compiler. A list of Library Functions is included in Section IV,9. All other subprograms must be written by the programmer. The Arithmetic Statement Function is expressed in a statement, all other subprograms may include any number of statements.

For each subprogram definition, the KFII language also provides source statements which perform the following operations:

1. Transfer control to the subprogram (Call the subprogram) at each point in the program where the calculations are needed.
2. Transfer the variables to be used in the subprogram calculations (function or subroutine arguments) to the subprogram.
3. Return the values of the calculated variables to the main program.
4. Return control to the main program.

Function subprograms differ from the subroutine subprograms in that functions always return a single value to the main program, whereas a Subroutine Subprogram can return more than one value to the calling program.
IV. 8 a Arithmetic statement function
IV. 8 a

The Arithmetic Statement Function is analogous to an algebraic function. It is defined by a single arithmetic statement within the program in which it appears.

General definition:
name ($a, b,,,, n$) expression
Where: name is the name of the Arithmetic Statement Function and a, b,...n are the function arguments represented by distinct non-subscripted variables.

Expression is any arithmetic expression defining the type of computation to be performed when the function is used in an arithmetic statement.

1. The user, naming an Arithmetic Statement Function, must follow the rules for naming a variable. The name must consist of l-6 alphameric character, the first of which must be alphabetic (special characters may not be used). The name must correspond to the type of arithmetic expression (integer or real); it may be explicitly defined in a Type statement, or implicitly defined by the first letter of the name.
2. Any number of variables appearing in the expression may be used as arguments of the function. Those variables in the expression that are not stated as arguments, are treated as parameters and take the current value of these variables when the Arithmetic Function Statement is called. Parameters may not appear in an equivalence statement.
3. An Arithmetic Statement Function may appear within the expression of another Arithmetic Statement Function provided it has been defined previausly.
4. All the Arithmetic Statement Function definitions to be used in a program must precede the first executable statement of the program, and follow the last specification statement.
5. Control is transferred to an Arithmetic Statement Function definition when its name appear in the arithmetic expression. The arguments in the Arithmetic Statement Function definition are set equal to the value of the variables in the calling arithmetic expression. The computations indicated by the function definition are then performed. The resulting quantity replaces the function reference in the expression.

Example:

Definition \quad AVG $(A, B, C, D)=(A+B+C+D) / 4$
Calling \quad AAGE $=X+\operatorname{AVG}(E, F, G, H)$

The calling statement is evaluated by first substituting the argument values in the Arithmetic Statement Function definition:

$$
\begin{aligned}
& \mathrm{A}=\mathrm{E} \\
& \mathrm{~B}=\mathrm{F} \\
& \mathrm{C}=\mathrm{G} \\
& \mathrm{D}=\mathrm{H}
\end{aligned}
$$

The Arithmetic Statement Function, AVG, is then evaluated with the substituted variables. The resulting value is added to X , and then assigned to AAGE.

Example:
Valid Arithmetic Statement Function Definitions

$$
\begin{aligned}
\operatorname{SUM}(A, B, C, D) & =A+B+C+D \\
\text { FUNC }(A) & =A+X * Y * Z(J)
\end{aligned}
$$

Invalid Arithmetic Statement Function Definitions

$$
\begin{aligned}
& \text { SUBPRG }(3, J, K)=3 * I+J * * 2 \\
& \text { SOMEF }(A(I), B)=A(I) / B+3 \\
& \operatorname{SUBPRFN}(A, B)=A * * 2+B * * 2 \\
& 3 \text { FUNC (D) }=3.14 * D \\
& \text { IDEN }(X, Y, Z)=X / Y+Y / Z \text { (valid if a real specification } \\
& \text { statement is included in the } \\
& \text { program: REAL IDEN) }
\end{aligned}
$$

6. It is not permissible to give the same name to an Arithmetic Statement Function and to a Library Function, subprogram or subroutine subprogram when they are used in the same program.
IV. 8 b FUNCTION subprogram

The FUNCTION subprogram is a FORTRAN subprogram consibting of any number of statements. It is an independently written program that is executed wherever its name appears in another program.

General Definition:

FUICTION name $\left(a_{1}, a_{2}, a_{3}, \ldots a_{n}\right)$

where: name is the name of the FORTRAN function.
$a_{1}, a_{2}, a_{3}, \ldots a_{n}$ are nonsubscripted real or integer vamiable names, array names, dummy names of Library Subprograms or address variables.

1. The FUNCTION subprogram may contain any FORTRAN statement except a SUBROUTINE statement, another FUNCTION statement, or an input/output statement.
2. Ths user, naming a FUNCTION subprogram must follow the rules for naming a variable as follows: The name must be alphabetic (special characters may not be used). The first letter must be alphabetic. The name must correspond to the type of the result of the FUNCTION subprogram. It may be implicitly defined by the first letter of the name or explicitly defined by using the designator REAL FUNCTION or INTEGER FUNCTION.

Example:

$$
\text { REAL FUNCTION MATRIX (} A, I, B \text {) }
$$

-
MATRIX $=A(I, J)+B(I, J)$ RETURN
END
FUNCTION COUNT (I, J, A) ' DINENSION I (10), J(10)
-

COUNT $=I(\mathrm{~J}+1)+\mathrm{L}(\mathrm{J}+2)$
RETURN
END
3. At execution time the arguments of the Function subprogram are replaced by the variables in the calling statement. The current value of the variables is used to perform the calculations. Thus the arguments of the FUNCTION subprogram may be considered to be dummy variable names.

Example:

Program statements
REAL NUT
$\mathrm{X}=\operatorname{NUT}(\mathrm{A})$
Subprogram

Comments
Calling statement, transfers control to function subprogram NUT.
REAL FUNCTION NUT (C)
$D=48.2$
NUT $=\mathrm{C} / D$
RETURN
END

Before evaluating NUT, C is set equal to current value of A.
4. The variable appearing as the function argument in the calling statement should not be re-defined in the subprogram. Thus, in the above example, A should not be re-defined in NUT.
5. When a dummy argument is an array name, an appropriate array specification in a COM TON or DINENSION statement must appear in the FUNCTION subprogram. The DIMENSION specification of an argument of a subprogram need not be the same as the DIMENSION specification in the calling program. Any subscripts will refer to the dimensions of the array as declared in the subprogram.
6. The value calculated by the Function subprogram is returned to the calling program by placing the name of the function at least once as the variable name on the left side of the arithmetic statement in the subprogram.

Example:

> Program statements
> $N=M A X(I, J, K, L)$
> Subprogram
> FUNCTION MAX $(M, L, M M, N N)$
> $\vdots \quad$
> $M A X=M M$
> RETURN
> END

Comments
Calling statement arguments are I, J, K, L, Control transferred to MAX.
$\mathrm{M}=\mathrm{I}, \mathrm{L}=\mathrm{J}, \quad \mathrm{M} M=\mathrm{K}, \quad \mathrm{NN}=\mathrm{L}$ MAX is returned to calling program.
7. The FUNCTION subprogram must return control to the calling program with a RETURN statement. There may be more than one RETURN statement in a subprogram. The FUNCTION subprogram must also contain an END statement which specifies, for the processor, the last instruction of the subprogram.

Example:

Program statements
$A=$ ROOTSI $+\operatorname{CALC}(Y, X, I)$
Sub-program

Comments

Calling statement transfers control to CALC
FUNCTION CALC (A, B, J)
:
CALC $=A / B+B * * J J, 10$
If $(C A L C) 10,20,10$
10 RETURN
:
20 CALC $=A$ ***J
RETURN
END
$A=Y, B=X, J=I$
CALC is calculated and if positive or negative the value is returned to the calling program.

If CALC is zero it is calculated again.
IV. 8 c SUBROUTINE subprogram

The SUBROUTINE subprogram is a set of commonly used operations, it does not restrict itself to a single value for the result, as does the FUNCTION subprogram, A SUBROUTINE subprogram can be used for almost any operation with as many results as desired. Since the SUBROUTINE is a separate subprogram, the variables and statement labels do not relate to any other program, except arguments (including address variables) which are used to carry calculations back to the calling program.

General Definition:

SUBROUTINE name $\left(a_{1}, a_{2}, a_{3}, \ldots . a_{n}\right)$

-

-

RETURN
END
where: name is the subroutine name
$a_{1}, a_{2}, a_{3}, \ldots a_{n}$, are arguments. There need not be any. Each argument used must be a nonsubscripted variable name, array name, or address variable.

1. The user, naming a Subroutine, must note the following rules: The name must consist of l-6 alphameric characters, the first of which must be alphabetic (special characters may not be used). The name does not have to correspond to any Real or Integer type variable.
2. SUBROUTINE subprograms may contain any Fortran statement except FUNCTION or SUBROUTINE definitions. The DIMENSION specification of an argument of a subroutine need not be the same as the DIMENSION specification in the calling program.
3. The arguments may be considered dummy variable names that are replaced at the time of execution by the actual arguments supplied in the CALL statement. (See below) The actual arguments must correspond in number, order, and type to the dummy arguments. None of the dummy arguments may appear in an EQUIVALENCE statement in a SUBROUTINE subprogram.
4. The SUBROUTINE subprogram is called by a special FORTRAN statement: the CALL statement, which consists of the word CALL followed by the name of the subprogram and its parenthesized arguments, if any.

General form of CALL statement:

CALL name $\left(a_{1}, a_{2}, \ldots a_{m}\right)$
where: name is the symbolic name of a SUBROUTINE subprogram.
$a_{1}, a_{2}, \ldots a_{m}$ are the actual arguments (if any) that are being supplied to the SUBROUTINE subprogram.

Example:
Program statements
CALL MATRIX (X, Y, L, M)
SUBROUTINE MATRIX ($A, B, I, J)$
DIMENSION $A(20,20), B(20,20)$
10
A $(K, M)=A(K, M)+B(K, M)$
RETURN
END

Comments
Transfers control to subroutine matrix. $A=X, B=Y, I=L, J=M$

MATRIX A is calculated and returned to the main program. Control is returned to the main program.
5. The RETURN statement returns control to the calling program. Multiple rem turns from a subroutine, each to a different point, can be effected by using address variables as arguments.

If an address variable is carried into a subprogram as an argument, and a transfer to the dummy address variable of the subprogram is executed, control will transfer back to the main subroutine, each to a different point.

Examples:

ASSIGN 173 to J CALL BOMB (J)
 SUBR SUBROUTINE BOMB (ZIP)

GO TO ZIP
main program

Subroutine. The GO TO will transfer control to statement 173 of the Main Program
6. The SUBROUTINE Subprogram must follow the main program. IV. 8 c
IV. 9 Subprograms provided by FORTRAN

KINGSTON FORTRAN II includes several commonly used moutines that are available to the programmer. The mathematical routines that are provided are defined as FUNCTION subprograms.
IV.9a Mathematical subroutines

The names and types (integer or real) of all of these subprograms are automatically assigned by the compiler; therefore, they must not appear in Type statements. Variables used as arguments of mathematical routines must be typed, either explicitly or implicitly, to agree with the type of the arguments of the function reference in which they appear. The mathematical routines are listed in Table 4. In several cases the same routine may be called by more than one name.

TABLE 4
Table of Library Functions

FUNCTION	DEFINITION	$\frac{\mathrm{NO}}{\mathrm{ARGS}}$	$\frac{\text { NAME OR }}{\text { NAMES }}$	ARGUMENT	FUNCTION
Exponential	$e^{\text {Arg }}$	1.	$\begin{aligned} & \text { EXP } \\ & \text { EXPF } \end{aligned}$	Real	Real
Natural logarithm	$\log _{e}($ Arg $)$	1	$\begin{aligned} & \text { LOG } \\ & \text { LOGF } \\ & \text { ALOG } \end{aligned}$	Real	Real
Arctangent	$\begin{aligned} & \arctan (\operatorname{Arg}) \\ & \text { in range- } \frac{\pi}{2} \text { to } \frac{\pi}{2} \end{aligned}$	1	ATAN	Real	Real
Arctangent	$\arctan \left(\operatorname{Arg}_{1} / \mathrm{Arg}_{2}\right)$ in range- π to π	2	ATAN	Real	Real
Trig.Sine	$\sin (\mathrm{Arg}$)	1	$\begin{aligned} & \text { SIN } \\ & \text { SINF } \end{aligned}$	Real	Real
Trig.Cosine	$\cos (\mathrm{Arg})$	1	$\begin{aligned} & \operatorname{COS} \\ & \mathrm{COSF} \end{aligned}$	Real	Real
Square Root	$(\mathrm{Arg})^{\frac{1}{2}}$	1	$\begin{aligned} & \text { SQRT } \\ & \text { SQRTF } \end{aligned}$	Real	Real
Absolute value	$\|\operatorname{Arg}\| \square \square^{-2}$	1	$\begin{aligned} & \text { ABS } \\ & \text { ABSF } \end{aligned}$	Real	
			IABS	Integer	Integer

Choosing largest value	$\operatorname{Max}\left(\mathrm{Arg}_{1}, \mathrm{Arg}_{2},---\right) \geq$	$2 \leq 9$	MAX AMAX	Integer Real	Integer Real
Choosing smallest value	$\operatorname{Min}\left(\mathrm{Arg}_{1}, \mathrm{Arg}_{2},-\cdots\right) \geq$	$2 \leq 9$	MIN AMIN	Integer Real	Integer Real
Float	Conversion from integer to real	1	FLOAT FLOATF	Integer	Real
FIX	Conversion from real to integer	1	$\begin{aligned} & \text { INT } \\ & \text { IFIX } \end{aligned}$	Real	Integer
Transfer of sign	Magnitude of Arg_{1} with sign of Arg_{2}	2	SIGN	Real	Real
Ideal Relay Function	Arg/ABS(Arg) for $\mathrm{Arg} \neq 0$ and 0 otherwise	1	SIGN	Real	Real
Plot	See below (1)	10	$\begin{aligned} & \text { PLOT } \\ & \text { PLOT P } \end{aligned}$	$\begin{aligned} & \text { Real } \\ & 0 \cdot \arg 80 \end{aligned}$	Real
Rand	See below (2)	1	RAND	Real	Real
Sort	See below (3)	2	SORT	Real	Real

The Library Subroutines are CALLED when they are named in an arithmetic statement.

Example:

$$
\mathrm{Y}=\mathrm{SQRT}(\mathrm{~A})
$$

The square root of A is computed and assigned to Y.

1. The PLOT subroutine may be called with a CALL statement.

General form:
CALL PLOT $\left(Z_{1}, Z_{2}, \ldots Z_{m}\right)$
where: $Z_{1}, Z_{2}, \ldots \mathrm{z}_{\mathrm{m}}$ are real variables whose range is 0 to 80 .
The integer value of any argument to be patte? must be scaled to lie within the range 0 arg 80; values outside this range are considered erroneous. Each CALL PLOT statement causes a single card to be punched. The plot is obtained by listing those output cards on the 407 tabulator.

Up to ten quantities can be plotted. The plotted value is truncated, not rounded. The plot of the first argument listed $\left(Z_{7}\right)$ is printed with a "I", the second with a "2" etc. If there is a tenth quantity, it is given a "O". F r example, if $Z_{5}=32.59$ then a 5 is punched in Col. 32 of the Card. If two arguments have the

=r3mmt	TMYaてかt
[80	Ire\%

T1T 4 H2
ryinett $+2$

$5=1$
$\overrightarrow{\mathrm{Tin}} \mathrm{A}$

Lext

$$
\begin{aligned}
& 12
\end{aligned}
$$


```
<4!
```



```
\(\because \quad\) -
```


General form:

CALL SOLVE (A,N,M,DET)
where: A is a matrix with N rows and $\mathrm{N}+1$ columns. The N coefficients of the N unknowns of the first equation are in $A(I, N)$ The N unknowns of the first equation are in $\mathrm{A}(2, \mathrm{~N}$,$) and so on.$ The constant vector must be in column $N+1$ of A. N is the number of equations to be solved and M is the first number in the DIMENSION statement.

DET is the value of the determinent of the N Rows by N columns of Matrix A, and is defined after the execution of SOLVE. The parimeter DET may be left out of the call statement if the value of the determinent is not wanted.

The answers are left in column $N+1$ of A.
(See sample problem 10 Section IV.14)
6. Resolv will re-solve the original coefficient matrix when a new constant vector has been put in column $N+1$ of matrix A. This resolution routine is called by the following statemnt:

CALL RESOLV (A,N,M)
where: A is the A matrix as defined in the solution matrix SOLVE.
N is the number of equations to be solved.
M is the first subscript in the DIMENSION statement
7. The determinant subroutine may be used to evaluate the determinent of a square matrix. It is called by the following statement:

Dummy $=\operatorname{DETER} \quad(\mathrm{B}, \mathrm{N}, \mathrm{M})$
where: B is the square array containing N rows. N is the first subscript in the DIMENSION statement
(See sample problem 10
Section IV.14)
IV. 10 Operating instructions, control cards
IV. 10

The use of the control cards described in the section Required control cards results in one-pass compilation and execution of a surce program Written for the KFII compiler. The cards listed under Required control cards should be included in all source decks submitted to the INmoUT box. Operators of the Model II should note that a COLD START card must be loaded before the Monitor control cards if the compiler is not in memory.

COLD START card:
3400032007013600032007024902402511963611300102
The numbers are punched consecutively starting in card col. 1 .

Processing the control cards mentioned in the sector Optional control cards may involve considerable machine time. Users should exercise discretion when including them in a program.
IV.10a Required control cards

The compiler is loaded from disk memory into machine core storage when the following two Monitor control cards are read. The cards must be punched in the card columns noted below:

Card Col. 123456789
\# \# J O B
\#\#XEQ KF2
NOTE: The \# is a:multiple punch 028.
The above cards must precede the first source statement. A KFII system control card must follow the Monitor cards.

\# J OBNA M E OPTIONAL USER IDENTIFICATION
NOTE: NAME is the programmers name, OPTIONAL USER IDENTIFICATION may include users problem number or class section. The \# JOB card will be printed on the on-line printer and will identify all printed program output including source program listing, error messages and problem solutions.

An EOJ card must follow the last source statement. The EOJ card informs the compiler that the last source statement of the program has been reached.

Card Col. 123456789
\# EOJ (a \$ may be substituted for the \# when punching the \# JOBNAME card or the \# EOJ card)
A program preceded by a $J O B$ card will result in the output of machine language instructions, stored in the disk work area, ready to be loaded into machine core memory. The following control card must be used to load the object program from the disk work area to machine core storage:

This card must follow the EOJ card and immediately precede the data.
A 吕\#\# card (record marks punched in Co. 1-4) must follow the last
 to signal the end of the program execution. A source program submitted for batch processing will not be run if the \#\#\#\# is omitter from the source deck.

Sample: Card Deck prepared for program execution, consisting of source deck, data for execution of the prosram, and monitor control cards.
Monitor Control Car
Internal Control. Ca
Source statements

Internal Control Card	$\#$ EOJ
Data	$\# \# X E Q$ RUN
	$\ldots \ldots \ldots \ldots$
	$\ldots \ldots \ldots \ldots$

IV.10b Optional control cards
IV.10b

A PRESCAN card may be used in place of the JOB card. A program preceded by a PRESCAI card will produce no machine instructions. However, source languase errors will be detected in the normal way. The purpose of this is to allow rapid detection of source language errors. The PRESCAN card must be followed by the H\#XXQ SF2 card.

Sample: Card Deck prepared for rapid detection of source language errors

Monitor Control Cards	\# ${ }^{\prime \prime} \mathrm{XEOKF} \mathrm{KF}$ \# PRESC
Source statements
	-.........
Monitor Control Card	EOJ

\# OBDECK Card

An object deck may be obtained during compilation by punching the letter D in col. 32 and/or 33 of the \#\#XXQ KF2 card. If an bject deck was not obtained during compilation, it is possible to punch an object deck from the program currently in the work areas of the disk. This is done using the following Monitor Control cards:
\#\#JOB
(Col. 6 must be left blank)
\#年XEQ OBDECK
If the object program is in the form of a card deck, the object desk may be loaded by preceding it by the Monitor Control Cards:
\#\#JOB
(Col. 6 must be left blank)
\#\#XEQ RUNDK
The BEGIN TRACE card causes arithmetic trace instructions to be compiled for each arithmetic and IF statement, beginning with the statement following the control card. No additional instructions are generated for arithmetic statements; one additional instruction is generated for each IF statement. An arithmetic trace halts when an END statement is compiled or an END TRACE card is read.

| BEGIN TRACE card: \# BEGIN TRACE | (Card Col. 2-6 are blank |
| :--- | :--- | :--- |
| END TRACE card: \# END TRACE | Card Col. 11-80 may contain any valid |
| characters.) | |

To execute arithmetic and FLOW TRACE instructions, console switch 4 must be on during program execution. The result of arithmetical FLOW TRACING will be punched 5 per card. TRACE output for arithmetic statements is in modified El5. 8 notation preceded by the object time address of the variable on the lefthand side of the arithmetic statement.

The FLOW TRACE card causes instructions to trace the flow of the object program to be generated, beginning with the next executable statement labeled with a statement number. FLOW TRACE generates one additional instruction (12 digits) per statement number traced. The Output of FLOW TRACING is the statement number in order of execution, preceded by the letter NO. (See sample problem 11, Section IV.14).

| FLOW TRACE card: | $\#$ | FLOW TRACE |
| :--- | :--- | :--- | :--- |
| END FLOW TRACE card: | $\#$ | END FLOW TRACE |

A symbol table will be punched for the portion of the program following an INDEX card, unless a STOP INDEX card is read. The symbol table will contain five different types of items, with their names and appropriate addresses. If the variable or subprogram name is undefined, an asterik will appear before the name.

1) Simple variables
2) Dimensioned variables
3) Statement Numbers
4) Subprogram Names
5) Constants

INDEX card: \# ((Ourd mollumis punched as
STOP INDEX card: \# STOP INDEX
IV. 11 Operating instructions, automatic printer output
IV. 11

During compilation all control cards will be printed on the 1443 on-line printer. The \# JOBNAME card will identify all printed output. The source statements and any compilation error messages will also be listed on the printer. The compilation error codes are identified in table 5 "Kingston Fortran II ERROR MESSAGES".

Any variables, statement numbers, or function, which are undefined in a subprogram, will be typed or printed durigg compilation. The name of the undefined quantity will be preceded by an asterisk. If the undefined quantity is a statement number, the letter S will appear to the right of the number.

The compiler will accept a program containing undefined variables as 0.K.; however, the program may rot run, depending on the nature of the pariicular situation. If no source program errors have been detected, the message 0.K. will be printed and the program will be executed. If a source statement error or an undefined statement number has been found, the message NO GO will be printed when the EOJ card is read and the object deck will not load.
IV. 12 Operating instructions, error messages during compilation

If a source statement contains an error, an error message will be printed.Output of machine language instructions is then suppressed for the duration of the job, but the remainder of the compilation will continue until an EOJ card is read, so that any additional errors will be detected.

Source statement errors are prindin the following form:
CC NNNNN MMMM
Where: CC is two digit error code
NNNNNN is the last encountered statement number in the subprogram or main program.
MMIM is the number of statements after statement numbered NNNNN in which error occured (comment cards, monitor control cards, and continuation cards are not counted). (See Table 5, KINGSTON FORTRAN II ERROR MESSAGES).
IV. 13 Operating instructions, error messages during object program execution IV. 13

During the object program execution, errors are noted by inserting digits in a table stored in memory. The error table is printed when a CALL EXIT statement is encountered. The error codes will be printed between the words EXIT XXXXXXXXXXXXXXXXXXX CHECK. A 0 idicates no error. A digit indicates an error; errors are identified by numbers c.id position in the EXIT line (See Table 6). Sample problem (Section IV.14) describes the form of printedecution errors. If there are no execution errors the message. EXIT CHECK will be printed at the conclusion of program execution.

In addition, certain input-output errors are detected at object time. Table 7 outlines these errors and the action taken in each case. (See Table 6 OBJECT TIME ERRORS, and Table 7, I/O ERRORS AT OBJECT TIME).

TABLE 5

KIMGSTON FORTRAN II ERROR MESSAG S

A1	STATEMENTS CONTAINING EXPRESSIONS	Illegal syntax in an expression
A2	.	(1) ILLEGAL SYNTAK IN AN ARITHMETIC STATEMENT (2) AN EXPRESSION OR INTEGER CONSTANT ON THE LHS OF AN ARITHMETIC STATEMENT (3) A SUBSCRIPTED VARIABLE HOT MENTION ED IN A DIMENSION STATEMENT
3		HII XED MODE IN AN EXPRESSION
A4		WRONG NUMBER OF SUBSCRIPTS IN A DIMEN. SIONED VARIABLE
A5		SUBSCRIPT IS A REAL QUANTITY
6		NAME OF A NON EEXTERNAL FUNCTION USED AS A VARIABLE
A7		THE CHARACTERS - OR \$ APPEAR AS OPERATOR IN AN EKPRESSION
A8	-	ONE OF THE TABLES USED by THE COMPILER HAS OVERFLOWN (STATEMENT IS TOO LONG OR COMPLEK)
C1	COMMON DIMENSI ON	(i) SYMBOL is ALREADY IN THE SYMBOL TABLI (1) SYMBOL IS ALREADY IN THE SYMBOL TABLE AND IS NOT A FORMAL PARAMETER (2) NO DIMENSIONS GIVEN FOR VARIABLE
C. 2	C.OMMON OR DIMENSION	ARRAY SIZE IS GREATER THAN 9999 ELEMENTS
C. 3	COMMON OR DIMENSION	MORE THAN 13 dimensions specified
c. 4	commion	(1) INVALID CHARACTER. MOST LIKELY CAUSED BY A MISSING COMMA OR CLOSING PARENTHESIS (2) CONSTANTS WHERE VARIABLE NAMES SHOULD BE
	REAL, INTEGER, EXTERNA FUHCTION, SUBROUTINE, arithmetic statement FUNCTIONS	constants where variable names SHOULD BE

F3 FORMAT

F4 FORMAT

F5 FORMAT	
L1	
	STATEMENTS WITH, OR NUMAEANS

(1) THE W SPECIFICATION IS MISSING IN A AW OR IW TERM
(2) THE W OR D OR DECIMAL POINT IS MISSING IN A EW.D OR FW.D SPECIFICATION (3) AN AW SPECIFICATION HAS A W GREATER THAN 50
(4) UNINTELLIGIBLE
(1) SPECIFICATION EV!.D OR FW.D HAS W-D GREATER THAN 45
(2) SPECIFICATION EW,D OR FW.D HAS D GREATER THAN W
(3) SPECIFICATION IW, FW.D, OR EW.D HAS W GREATER THAN 8C
(4) SPECIFICATION AW HAS W $=0$
(1) SPECIFICATION =NNP OR NNP HAS NN GREATER THAN 49
(2) SPECIFICATION NNH, NNX, NN(, NNE, NNF, NNI, NNA HAS NN $=0$ WHAT SHOULD BE A STATTEMENT NUMBER OR AD DRESS IS EITHER AN ARITHAETIC EXPRESSION REAL (FLOATING POINT) MODE, NEGATIVE, OR ZERO
(1) WHATSHOULD BE A NAME OR NUMBER BEGINC WITH ONE OF (\$ +-*/) (2) DIMENSI ONING INFORMATION IS NOT AN I NTEGER CONSTANT

A SYMBOL HAS MORE THAN SIX CHARACTERS IN IT

REAL (FLOATING POINT) CONSTANT IS GREATEE THAN 0.0 BUT LESS THAN 1.E-5 1

REAL (FLOATING POINT) CONSTANT IS EQUAL TO OR GREATER THAN $1 . E+49$

SOME CONSTANT IN THE STATEMENT CONTA!NS MORE THAN 2 DIGITS
AN INTEGER (FIXED POINT) CONSTANT OR
STATEMENT NUMBER (USSD IN THE STATEMENT)
HAS MORE THAN 5 DIEITS
THE SIZE CONTHAN MORE THAN 5 DIGITS
THE ORIGIN CONTAINS MORE THAN 5 DIGITS
A REAL (FLOATING POINT) CONSTANT CONTAIN: DECIMAL POINTS

N8	NON-FORMAT	a hollerith constant contains more than FIVE LETTERS
P2	ASSIGN	IN THE EXPRESSION ASSIGN I TO J (1) I IS A VARIABLE BUT dOES NOT HAVE GRACKETS AROUND IT (2) THE TO J IS MISSIAG (3) J is NOT AN INTEGER VARIABLE (4) THE J IS NOT THE END OF THE Statemen (5) I is NOT AN INTEGER VARIABLE
P3	IF	(1) THE ARGUMENT OF THE IF STATEMENT IS AN INTEGER CONSTANT (2) THE ARGUMENT IS NOT PROPERLY ENCLOSE WITHIN PARENTHESIS THE SENSE SWITCH I IS MOT PROPERLY ENCLOSED WI THIN PARENTHESIS
P4	GO TO	(1) THERE IS AN UNDESIRABLE) IN GO TO (2) THERE IS AN = SIGN IN A COMPUTED GO TO (3) THE INDEX IN THE COMPUTED GO TO IS NOT THE LAST THING IN THE STATEMENT (4) THE INDEX OF THE COMPUTED GO TO IS A REAL VARIABLE
P7	CALL DATA	InCOMPLETE STATEMENT INVALID DELIMITER
Q5	IF	(1) THERE ARE TOO MANY OR TOO FEW STATEMENT NUMBERS OR LABELS AFTER AN IF (2) THE LIST OF STATEMENT NUMBERS AND LABLES HAS A MISPLACED RIGHT PARENTHESIS
Q7		UNRECOGNIZABLE STATEMENT
QS	STOP N, PAUSE N	THE N IS NOT AN INTEGER EXPRESSION
Q9		DOUBLY DEFINED STATEMENT NUMBER
R1	1/0	INCORRECT $1 / 0$ STATEMENT. PARENTHESIS, COMMAS, AND EQUAL SIGNS (DO S) ARE. MISSING OR MISPLACED.
	DO	INCORRECT DO STATEMENT. PARENTHESIS, COMMAS, AND EQUAL SIGNS (DO S) ARE MISSING OR MISPLACED
	COMPUTED GO TO	INCORRECT COMPUTED GO TO. PARENTHESIS, OR COMMAS ARE MISPLACED OR MISSING.

28 END

Z9
FORMAT
COiflyON
DIMENSION EQUIVALENCE
external
FUNCTION
I NTEGER
REAL
DATA
SUBROUTINE
ARITH.STATE .FUNCTION
GO TO
IF
IF (SEASE SWITCH)
ARITH.STATEMENT
ASSIGH
ACCEPT
PUNCH TAPE
ACCEPT TAPE
PAUSE
PRINT
PUNCH
READ
REREAD
TYPE
CALL
stop
continue
RETURH
DO
GO TO (N1, N2,---), I
(1) EMD STATEMEMT HAD A STATEMEHT NUMBER (2) LAST EXECUTAELE STATEMENT WAS NOT A transfer or call statement
(3) THE PROGRAM CONTAINS NO EXECUTABLE STATEMENTS
(4) NO RETURN STATEMENT IN A FUNCTION SUEPROGRAM
(5) TWO MAIN PROGRAMS IN A JOB. (6) MAIN PROGRAM Ii A RELOCATABLE COMPILATION
(7) IN A FUNCTION SUBPROGRAM, THE fUNCTION HAS HOT BEEN EVALUATED bEFORE the end statement is encountered.
does not have statement number.
has a statement number.

FOLLOW'S A TRANSFER STATEMENT AND DOES not have a statemeint muitber

```
RETURN
LAST STATEMENT IN THE RANGE OF A DO.
STOP
GO TO
GO TO (N1, N2,---), I
IF
IF(SENSE SWITCH)
DO
BAD CARD
PCH CHK
JOB AGANDONED
```

THERE HAS BEEN A READ CHECK. RELOAD THE CARD AND PUSH START. THERE HAS BEEN A PUNCH CHECK WHEN PUNCHING THE LOADER ROUTINE. CLEAR THE PUNCH AND PUSH START TO TRY AGAIN. (1) OCCURS AFTER ERRORS $\times 1$ AND $\times 3$.
(2) INVALID CONTROL CARD.

Table 6

OBJECT TIIE En:O?S

Yosition in Error Field	Digit	Meaning	Action Taken (FAC = Accumblater = Result Fiela)
1st digit	1	Floating Point Underflow	$F A C=0000000000$
2nd	2	Floating Point Overflow	$\mathrm{FHC}= \pm 9999999999$
3 rd	3	Floating Point Divided by Zero	FAC $= \pm 9999999999$
4th	4	Fixed Foint Divided by Lero	FAC is unchanged, i.e. $J / 0 \equiv J$
5th	5	Square Root of Neg. Number	Square root of absolute value of arg.
6th	6	Log of zero or Neg.Number	$\log (0) \equiv-9999999999$; otherwise 10ε of abs. value of \arg.
7th	7	Sin or cos, arg. $>10^{8}$	CALL EXIT
8 th	8	$\operatorname{Exp}(\mathrm{x})$ out of range	$\mathrm{FAC}=+9999999999$ or zero
9th	9	Input number too smali	The number entered memory as 0,00000000
10 th	1	Input nember too big arg <0 or >80	The number entered memory as ± 3999999999
11 th	$\frac{2}{3}$	Flot, $-1 \geq \arg >80$	Point not plotted
12	3	I/O error ${ }^{-}$. (Table 1.3.6.2)	Number ignored. E:2 inserted in output
13	$\overline{4}$	I/O error 1. (Table 1.3.6.2)	Number icnored. . 21 inserted in output
14	5		
15	7	Unused. Available for	
16 4	8	user-defined relocatable subprowrams	

Table 7
I/O ENOCRS AG BJLCT THE

1/0
Error
0
1
2
3
4
5
2
3
4
4
5
6
7

20
Errors in
Variable
Format

2F

Reason
Input record from $T / 1$ or paper tape over 150 characters long iNon-alphabetic data on A-type output
Field width too small on I, E, F output; may be an undefined variable
Invalid character on input data on I, E, F, or N Format
An input word has more than 88 significant digits
Input-output list with no numeric specifications between last openingclosing pare thesis pair in Format statement
Format requires more than 150 characteris in a record
irite-check occurred 3 times when atterptin? to punch output or trace card
Disc error persisted 10 times

- Comna or right parenthesis before co pletion of repeatin format
- Minue sion which is not part of a H - or p-specification
- Incorrect length of H-specification
- No closin parenthesis
- Statement incoriplete
- Non-permissible character

3F

- More than 5 levels of repeated, parerthes ized format
- Repeated Format with more than 49 rereats
- ield width missing in I, A, or F, secification
- Field witdth greater than 50 in A-specification
- d or decimal point miss ng in Iw.d or Fw.d
- non-permissible character
- d>w in Ew.d or Fw.d
- $(w-d)>45$
- Field width, w, >50 in Ew.d, Iw, or Fw.d
- Specification Aw has $w=0$

Call skir

Result

```
CALL EXIT
Number i rnored *
Number " *
CALi SiIP
CHLL MIM
CaLl SXIT
CAE XIT
CALL iXXIT
CaLl XIT
```

CAL $\quad \cup \because 2$

Table 7 Continued:

[^0]
SAMPLE PROBLEM 7

\#\#JOB 5
\#\#XEQ KF2
$\$ \quad$ JOB JOE SMITH
C PROGRAM READS DATA IN BY COLS, PUNCHES DATA OUT BY ROWS DIMENS IOA C $(5,5)$
READ $10,((C(1, j), l=1,4), J=1,5)$
10 FORMAT (5FO. 2)
PUNCH $10,((\dot{C}(1, j), J=1,5), 1=1,4)$
CALL EXIT END
\$ EOJ
\#\#XEQ RUN
00001 . 1000002 . 1000003.1000004 .1000001 .20
00002.2000003 .2000004 .2000001 .3000002 .30 00003.3000004 .3000001 .4000002 .4000003 .40 00004.4000001 .5000002 .5000003 .5000004 .50 \#\#\#\#

1.10	1.20	1.30	1.40	1.50
2.10	2.20	2.30	2.40	2.50
3.10	3.20	3.30	3.40	3.50
4.10	4.20	4.30	4.40	4.50

SAMPLE PROBLEM 8

\#\#JOB \&

\#\#XEQ KF2
\$ JOB JOE SMITH
C PROBLEM OUTPUTS A MATRIX WITH A
C VARIABLE NUMBER OF COLUMNS AHD ROWS
C PROBLEM, TO GENERATE A MATRIX $A(1, J)=1 /(1+J+1)$
C I AND J.ARE INTEGERS BETWEEN 1 AND 30
DIMENSION A(30,30)
10 READ 11, $1, J$
11 FORMAT(212)
IF (1 -99) 112,99, 112
$112 \operatorname{IF}(-30) 111,111,10$
111 IF $(\mathrm{J}-30) 12,12,10$
12 PUACH 13,1,J
13 FORMAT(32HTHE MATRIX IS AS FOLLOWS WITH $I=, 12,3 H \quad J=, 12$)
NOTE Sample problems $7-12$ call for punch card output. An on-line 1443 printer will become available to users of the Model II during the Fall'66 semester. A Computing Center memorandum which will include sample proglems illustrating print output will be issued in the Fall.

$\begin{array}{r} .1111111 \\ .06666667 \end{array}$.10000000 .06250000	.09090909 .05002353	$\begin{array}{r} .03333333 \\ .05555556 \end{array}$	$\begin{aligned} & .07692308 \\ & .05263158 \end{aligned}$	$\begin{array}{r} .07142057 \\ .05000000 \end{array}$
. 04761905	. 04545455				
ROW $=0$					
. 10000000	. 09090909	$.08333333$. 06666667
. 06250000	. 05882353	$.05555556$	$.05263158$	$.05000000$. 04761905
. 04.545455	. 04347826				
. 09090909	. 08333333	. 07692308	. 07142857		$.06250000$
. 05882353	. 05555556	. 05263158	. 05000000	. 04761905	$.045454,55$
. 04347826	. 04166667				
ROW: $=10$					
. 08333333	. 07692308	. 07142857	. 06666667	. 06250000	. 05882353
. 05555556	. 05263158	. 05000000	. 04761905	. 04545455	. 04347826
. 04166667	. 04000000				
		. 06666667			
$.05263150$	$.05000000$	$.04761905$	$.04545455$	$.04,347826$	$\text { . } 04166667$
ROW 040000000	. 03846154				
W $=12$		ztrama	¢		
. 07142057	. 06666667	. 06250000	. 05882353	. 05555556	. 05263158
. 05000000	. 04761905	. 04545455	. 04347826	. 04166667	. 04000000
. 03646154	. 03703704				
THE MATRIK ROW= $\quad 1$	AS FOLLOW	WITH $1=5$	$J=10$		
.33333333	. 25000000	. 20000000	. 16666667	. 14285714	. 12500000
$\text { ROW }=111111$. 10000000	. 09090909	. 08333333		
. 25000000	. 20000000	. 16666667	. 14285714	12500000	11111111
. 10000000	.09090909	. 08333333	. 07692308		
ROW= 3					
. 20000000	. 16666667	. 14205714	. 12500000	. 11111111	. 10000000
. 09090909	. 08333333	. 07692308	. 07142857		
. 166666667	. 14285714	. 12500000	. 11111111	. 10000000	. 09090909
. 06333333	. 07692308	. 07142857	. 06666667		
ROW= 5					
. 14285714	. 12500000	. 11111111	. 10000000	. 09090909	. 08333333
. 07692308	. 07142857	. 06666667	. 06250000		

SAMPLE PROBLEM 9

```
##JOB 5
##XEQ KF2
    JOBJOE SMITTH
    ILLUSTRATION OF PLOT SUBROUTINE
    ESTIMATION OF SQUARE ROOTS WITH PLOT OF SUCCESSIVE ESTIMATES
C FORMULA FOR ESTIMATION OF SQUARE ROOTS.
C EX(N+1) =.5(EX(N)+Y/EX(N))
C WHERE EX IS THE ESTIMATED SQUARE ROOT OF Y
        PUNCH }6
    6 0 ~ F O R M A T ( / / 2 O K 3 7 H A P P R O X I M A T I O N ~ O F ~ T H E ~ S Q U A P E ~ R O O T ~ O F ~ Y / / ) ~
    12 READ 14,Y
    14 FORMAT (FO.2)
        IF (V) 16,1&,20
    20 IF(\gamma-999999.99) 22,24,24
    22N=0
        IF(Y-1 .0)26,28,28
    28 PUNCH SO,Y
    80 FORMAT(27HPLOT OF APPROX.SQ,ROOTS OF,F8,2)
        EK=1.
    30 EX=.5*(EX+Y/EX)
        Z=EK
C SUB-ROUTINE PLOT DOES NOT PLOT ARGUMENTS
C LESS THAN ONE OR GREATER THAN }7
    IF(Z-80 ,)85,82,82
    \delta) IF(Z-1.) &2,ह1 ,\delta1
    82 PUHCHCO,Z.
    83 FORMAT(24HEST.SQ.ROOT NOT PLOTTED, 2 K2HZ=,F9.3)
    GO TO 31
    81. CALL PLOT(Z)
    31 AE=ABSF ((EX**2)-Y)
        RE=AE/Y
        N=N+1
        IF(RE-.0001)50,50,30
    50 PUNCH }3
    34 FORMAT ( }4\times1HY,7\times10HABS. ERROR,4\times1OHREL . ERROR,7K
    11HM,12N13HEST.SQ. ROOT)
        PUNCH 36,Y,AE,RE,N,EX
    36 FORMAT(FE. 2, 3XF12.8,3XF10.&,3\times15,15XF9.3/1)
    GO TO 12
    26 EX=.1
    GO TO }3
    16 PUNCH 30,Y
    38 FORMAT ( 11HY NEGATIVE=,FE. 2, 2X,
    132HEST. SQ. ROOT OF ABS. VALUE,OF Y)
    Y=ABSF (Y)
    GO TO 70
70 PUNCH }7
71 FORMAT (//)
        GO TO 22
    18 PUNCH 40
    4 0 ~ F O R M A T ~ ( ~ 3 H Y = 0 ) ~
```


APPROKIMATION OF THE SQUARE ROOT OF Y

PLOT OF APPROX, SQ.ROOTS OF 1608.01
EST.SQ.ROOT NOT POTTED, $Z=804.505$
EST.SQ.ROOT HOT PLOTTED, $Z=403.252$
EST.SQ.ROOT NOT PLTTED, $Z=203.620$
EST.SQ.ROOT NOT PLOTTED, $Z=105.758$

SAMPLE PROBLEM 10

```
##JOB 5
##XEQ KF2
$ JOBTOE SMITH
C SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS USING THE
C SOLV AND RESOLV SUB-ROUTINES STORED ON THE DISK
C DIMENSION STATEMENT PERMITS USE OF 10 EQUATIONS
        DIMENSION A(10,11)
        READ4,N
        4 FORMAT(12)
        L=FN+1
    READ 10,((A(I,J),J=1,L),I=1,N)
    10 FORMAT (4F6.2)
C HEADER CARD
        PUINCH 5,N
        5 FORMAT(1GHTHE ANSWERS FOR, 12,32H LINEAR EQUATIONS ARE AS FOLLOWS)
        M=10
    CALL SOLVE (A,N,M)
    PUNCH 20,(A(1,L),I=1,M)
    20 FORMAT (3F6.2)
    READ 20,(A(I,L),I=1,N)
    CALL RESOLV (A,N,M).
    PUNCH 20,( A( }1,N+1),I=1,N
C SINCE THERE IS NO INSTRUCTION TO SIGNAL THAT THE
C LAST DATA CARD HAS BEEN READ
C THE END OF DATA CARD IS READ AS THE LAST DATA CARD
C ADDITIONAL DATA CARDS COULD BE ADDED WITH AN INSTRUCTION
C SIGNALLING THE COMPUTER TO RETURN TO THE FIRST READ
C INSTRUCTION
        CALL EXIT
        END
$ EOJ
03
+08.00-05.00\div07.00+29.00
-01.00+09.00-06.00+01.00
+00.00+02.00-02.00-02.00
+27.00+12.12+03.02
THE ANSWERS FOR 3 LINEAR EQUATIONS ARE. AS FOLLOWS
    2.00 3.00 4.00
NOTE: \#\#XEQ RUN should precede the \$ EOJ card. \#\#\#\# should follow data cards.
```

SAMPLE PROBLEM 11

```
    ##JOB
    ##XEQ KF2
    $ JOEJOE SMITH
    C ILLUSTRATION OF FLOW TRACE
    C TO SUM THE ODD NUMBERS FROM 1TO }9
    * bEGIN TRACE
    * FLOW TRACE
    SUM=0.0
        DO 30 I=1,100,2
        X=1
```

 30 SUM=SUM+K
 PUNCH 40, SUM
 40 FORMAT(\(4 \mathrm{HSUM}=, \mathrm{F} 12.2 /\))
 CALL EXIT
 END
 \$ EOJ
 \#\#XEQ RUN
 1. ADDRESS OF $X{ }^{2}$. INITIAL VALUE OF X 3. STATEMENT NUMBER 4. ADDRESS OF SUM 5. INITIAL VALUE OF SUM 6. ADDRESS OF X 7. SECOND VALUE OF X ©. STATEMENT NUMBER

SAMPLE PROBLEM 12

```
##JOB 5
##XEQ KF2
JOBJOE SMITH
C ILLUSTRATION OF EXECUTION ERROR
C TO SUM THE ODD NUMBERS FROM 1 TO }9
        SUM=0.0
        Y=0.0
        D0 30 I=1,100,2
        k=1
    30 SUM=SUM-**
        SUM=SUM/Y
        PUNCH 40,SUM
    4 0 ~ F O R M A T ( F 1 2 . 2 )
        CALL EXIT
        EWD
$ EOJ
        ##XEQ RUN
        ####
            ER2
```

THE CONSOLE TYPEWRITER TYPED THE FOLLOWING LINE WHEN THE CALL EXIT STATEMENT WAS EXECUTED,

EXIT 003000000003000000 CHECK
THE FIRST 3 INDICATED ERROR 3, FLOATING POINT DIVIDE BY ZERO
THE SECOND FLAGGED. 3 INDICATES I/O ERROR 2

V. IBM FORTRAN II

This section describes those IBM FII instructions which are not yet available to users of the KFII system. Included in the section are instructions for using the disk to store data and program segments, instructions for varying the number of significant digits stored in the machine, and instructions for using the subroutine, ROUND.

The IBM Monitor II System Reference Manual (C26-5774-0) includes detailed operating instructions for using the Monitor II system, and detailed instructions for programming using the IBM FII compiler. The user should note that there are many differences in the language required by the KFII system and the IBM FII system. The IBM manual should be consulted when writing for the IBM FII compiler.
V. 1 Varying the word length (number of significant digits stored in V. 1

The IBM FII compiler will automatically convert numbers either to floating point form in which the number is specified as a decimal fraction times a power of 10 , or to fixed-point form in which the number represents an integer. The number of decimal digits, x, and the number of integer digits, y. may be varied by using a FANDK control card.

General form:

*FANDKxxyy

where: * is punched in col. 1.
FANDK is punched in col. 2-6.
xx is the number of decimal digits (that is, the length of the mantissa) punched in col. 7-8.
yy is the digits used to represent an integer, punched in col. 9-10.
The range of x is 2 through 28 ; the range of y is 4 through 10 .
Example:
*FANDKI505
Fifteen decimal digits plus 2 exponent digits will be stored for each real (floating point) number, and five digits will be stored for each integer (fixed point) number.

The FANDK card must follow the \#\#FORX control card, and qust precede the source deck. (See section V.4). If a FANDK card is not used the compiler will automatically convert floating point numbers to 8 decimal digits plus 2 exponent digits, and fixed point numbers to 4 digits.

V. 2 Library functions added to the IBM FII compiler

The function ROUND will round an arithmetic expression to a spscified number of significant digits.

General form

CALL ROUND (A, B)
The arithnetic expression A will be rounded to B significant digits.
V. 3 Instructions which use the 1311 disk for storage of data V. 3

The following instructions, DEFINE DISK, FIND, RECORD are used to store data on the 1311 disk. The data must be in machine core storage. The FETCH statement is used to read data from the disk into machine core storage.

$$
\text { V. } 3 \mathrm{a} \text { DEFINE DISK statement } \quad \text { V. } 3 \mathrm{a}
$$

The DEFINE DISK statement specifies to the FORTRAN processor the size and quantity of data records that will be used with a particular program and its associated subprograms. The statement must appear in the main program when Disk I/O statements appear in any part of the program or subprograms, and may appear only once in that program. Thus, all subprograms used by that main program must use the same size record defined in the statement.

The DEFINE DISK statement must not be used in subprograme.

General form

DEFINE DISK ($\mathrm{N}_{1}, \mathrm{~N}_{2}$)
where: N_{1} is a fixed point (integer) constant which specifies the number of variables contained in a record of data.
N_{2} is a fixed-point constant which specifies the number of data records that will be used by the main program and its associated subprograms.

The program may use either one-sector records or two sector records for data storage.

A record of data may contain up to 100 digits if the programmer chooses to use a onemsector record or up to 200 digits if the programmer chooses to use a two-sector record. The user should estimate the number
of digits he wishes to store on the disk for each record and then choose either one or two sector records, whichever makes the most efficient use of disk storage.

Example:
DEFINE DISK (10, 3)
Stores a vector containing 13 variables on the disk. Given that the word length is 10,8 for the mantissa and 2 for the exponent the total number of digits to be stored is 13×10. These 130 digits are stored on 3 onesector records. Space for 7 additional variables is reserved on every third record. This space is not used by the program.

Example:
DEFINE DISK (16,50)
Stores a 20×40 matrix on the disk given that the word length is 12 digits, 10 for the mantissa and 2 for the exponent, the total number of digits to be stored is 800×12. These 9,600 digits can be stored on 50 data records if 192 digits are stored on each two sector record. Thus 16 variables may be stored on each data record. Space for 8 digits is reserved on each record. This space is not used by the program.

Note: If two sector records are specified the two sectors are tyeated as a unit. Thus the digits of a variable may be split between the sectors of a two sector record, (See sample problem 13)
V.3b Assigning numbers to disk sectors
V. 3b

All disk records are referenced by an integer (fixed-point) variable name. The current value assigned to the variable name references the first sector in a record when the variable name is used in a RECORD or FETCH statement. The programer must assign, in a simple initialization statement, a value to the first disk sector before the first RECORD statem ment is executed.

Example:

$$
\text { IREC }=1
$$

During execution of a RECORD or FETCH statement the Monitor Control system will assign numbers to every sector if one sector records are specified, to every second sector if two sector records are specified. The numbers assigned to the sectors will start with the value assigned to the first sector (one (1) if it is the first RECORD statement in a program, or one greater than the number assigned to the last sector during execution of the preceding RECORD or FETCH statement) and will be incremented by one for each. sector if one sector records are specified. If two sector records are specified the number will be incremented by one for every second sector.

If more than one RECORD statement is included in a program, the programmer must determine the numbers assigned to the first sector of each record. Before execution of a FETCH statement the programmer must set the variable name assigned to the RECORD equal to the number assigned to the first sector of the RECORD when the RECORD statement was executed. (See sample problem 14).

V.3c RECORD statement

The Record statement is used to write data from core storage into the 1311 Disk storage drive.

General form

RECORD (IREC) List
where: IREC is a non-subscripted or subscripted fixed-point variable, assigned by the programmer to represent the record. The same variable name is used when referring to the record in either a FIND, or FETCH statement. IREC must be set equal to 1 , in the program before the first REGORD statement in the program is read. This assigns the number one to the first sector of the record. All records are referenced by the number assigned to the first sector of the record.

LIST is as described in input/output statements.
The data designated by the list are written as the total record represented by (IREC). If the list specifies more items than can be contained in one or two disk sectors, the value of (IREC) is incremented by one, by the Monitor Control system, and writing proceeds to the next sequential seator. This procedure continues until either all items in the list have been written or until the end of the area specified by N_{2} in the DEFINE DISK statement has been reached,
V.3d FETCH statement V.3d

The FETCH statement is used to read date from the 1311 disk into machine core storage.

General form

FETCH (IREC) List
where: IREC is the variable name that was assigned by the programmer to the Record in the RECORD statement. Before the FETCH statement is executed IREC must be set equal to the number assigned to the first sector of the record. (See sample problem I4).

LIST is as described in input/output statements.
The data designated by the list is read from the record specified by IREC. If the list specifies more items than can be obtained from one record; than the value of IREC is incremented by one and reading proceeds from the next sequential record. This procedure continues until either the list has been "satisfied" or until the end of the area specified by N_{2} in the DEFINE DISK statement has been reached. At the conclusion of a read operation, the value of IREC is one greater than the number of the last record read.
V.3e FIND statement V.3e

This statement may be used before a RECORD statement or a FETCH statement to cause the disk access arm to be positioned over a cylinder which will subsequently be read from or written on.

General form
FIND (IREC)
where: IREC is a nonsubscripted or subscripted fixed-point variable name which references the disk to be read from or written on.
V. 4 Operating instructions, Monitor Control cards V. 4

The following monitor control cards must precede a source deck written for the IBM FII compiler

Card Col

V. 5 SAMPLE PROBLEMS

\&.

SAMPLE PROBLEM 13

WWJOB 5
WWF:ORX
*FANDK0506
C PROGRAM STORES 25 VARIABLES, EACH VARIABLE CONSISTING OF
C 8 DIGITS ON THE DISK
DIMENSION A(25)
C DEFINE A TWO SECTOR RECORD CONTAINING 200 DIGITS
DIMENSION A(25)
DEFINE $\operatorname{DISK}(25,1)$
DO $10 \mathrm{~K}=1,25$
$10 \quad A(K)=K$
PUNCH $20,(A(K), K=1,25)$
$20 \operatorname{FORMAT}(5$ 1. 14,2).
c the name of the first record must be assigned
C the integer value 1
| $A=1$
$\operatorname{RECORD}(I A)(A(K), K=1,25)$
DO $30 \mathrm{~K}=1,25$
$\mathrm{B}=\mathrm{K} * \mathrm{~K}$
$30 \mathrm{~A}(\mathrm{~K})=\mathrm{B}$
PUNCH 20, (A(K), K=1,25)
C THE NAME OF. THE FIRST. RECORD MUST bE ASSIGNED THE INTEGER C VALUE 1
$\mid A=1$
FIND (IA) (A (K) , K=1,25)
FETCH (|A) (A $K), K=1,25)$
DO $40 \mathrm{~K}=1,25$
$40 \quad A(K)=A(K)+1$.
PUNCH 20, (A(K), $K=1,25$)
CALL EXIT
END

1.00	2.00	3.00	4.00	5.00
6.00	7.00	8.00	9.00	10.00
11.00	12.00	13.00	14.00	15.00
16.00	17.00	18.00	19.00	20.00
21.00	22.00	23.00	24.00	25.00
1.00	4.00	9.00	16.00	25.00
36.00	49.00	64.00	81.00	100.00
121.00	144.00	169.00	196.00	225.00
256.00	289.00	324.00	361.00	400.00
441.00	484.00	529.00	576.00	625.00
2.00	3.00	4.00	5.00	6.00
7.00	8.00	9.00	10.00	11.00
12.00	13.00	14.00	15.00	16.00
17.00	18.00	19.00	20.00	21.00
22.00	23.00	24.00	25.00	26.00

NOTE: The W's punched in the Monitor control cards are record marks, multi-punch 028.

SAMPLE PROELEM 14
\#\#JOB 5
\#\#FORX
C PROGRAM STORES 25 VARIABLES, EACH VARIABLE CONSISTING OF 10 DIGITS ON DIMENSION A(25)

THE DISK
C DEFINE 6 ONE SECTOR RECORDS
DEFINE DISK $(10,6)$
DO $10 \mathrm{~K}=1,25$
$10 \mathrm{~A}(\mathrm{~K})=\mathrm{K}$
PUNCH 20, ($A(K), K=1,25)$
20 FORMAT (5F14.2)
C THE NAME OF THE RECORD MUST BE INITIALIZED TO EQUAL 1
| $A=1$
$\operatorname{RECORD}(\mid A)(A(K), K=1,25)$
D0 $30 \mathrm{~K}=1,25$
$B=K * K$
$30 \quad A(K)=B$
C THE NAME OF THE RECORD MUST BE REINITIALIZED TO EQUAL 1
PUNCH 20, $(A(K), K=1,25)$
| $A=1$
FIND (IA) $(A(K), K=1,25)$
FETCH (IA) (A(K), $K=1,25$)
DO $40 K=1,25$
$40 \mathrm{~A}(\mathrm{~K})=\mathrm{A}(\mathrm{K}) \div 1$.
PUNCH 20, (A(K), $K=1,25$)
RECORD (IA) (A(K), $K=1,25$)
DO $50 \mathrm{~K}=1,25$
$50 A(K)=A(K) \div 2$.
PUNCH 20, ($A(K), K=1,25$)
C THE NAME OF THE RECORD MUST BE REINITIALIZED TO EQUAL 4
| $A=4$
FIND ($\mid A$) (A $(K), K=1,25)$
FETCH ($1 A$) (A $(K), K=1,25$)
DO $60 K=1,25$
60
PUNCH 20, ($\mathrm{A}(\mathrm{K}), \mathrm{K}=1,25$)
CALL EXIT
END

1.00	2.00	3.00	4.00	5.00
6.00	7.00	8.00	9.00	10.00
11.00	12.00	13.00	14.00	15.00
16.00	17.00	18.00	19.00	20.00
21.00	22.00	23.00	24.00	25.00
1.00	4.00	9.00	16.00	25.00
36.00	49.00	64.00	81.00	100.00
121.00	144.00	169.00	196.00	225.00
256.00	289.00	324.00	361.00	400.00
441.00	484.00	529.00	576.00	625.00

2.00	3.00	4.00	5.00	6.00
7.00	0.00	9.00	10.00	11.00
12.00	13.00	14.00	15.00	16.00
17.00	18.00	19.00	20.00	21.00
22.00	23.00	24.00	25.00	26.00
4.00	5.00	6.00	7.00	0.00
9.00	10.00	11.00	12.00	13.00
14.00	15.00	16.00	17.00	18.00
19.00	20.00	21.00	22.00	23.00
24.00	25.00	26.00	27.00	20.00
3.00	4.00	5.00	6.00	7.00
8.00	9.00	10.00	11.00	12.00
13.00	19.00	15.00	16.00	17.00
18.00	24.00	20.00	21.00	22.00
23.00	24.00	25.00	26.00	27.00

VI

VI.I

The AFIT system is a Fortran system designed for use on the 1620 Model I. Programs which do not fit into core storage when the Load and Go system is used may fit when the AFIT system is used. The Load and Go compiler allows approximately 4,200 digits for the conpiled program. The AFIT compiler allows approximately 14,000 digits for the compiled program.

The AFIT system consists of an AFIT compiler, punched on cards, and language specifications. The language specifications are modifications of the basic Fortran language discussed in Section II. Fortran language specifications which apply specifically to the AFIT system can be found in a manual, AFIT Fortran, available in the center office.

Unlike a Load and Go system, the AFIT compilation proceeds in two stages. There is also a precompilation stage that checks the program for clerical errors, punctuation, and spelling, During the first stage of actual compilation, the AFIT processor reads the source deck and produces another deck known as the object deck. The second stage is the execution stage during which the new object deck is read in and run. The manual, AFIT Fortran, also lists operating instructions for using the AFIT compiler. A subroutine which finds the arcsine of a number has been added to the library subroutines. The card deck containing the AFIT compiler may be found on top of the 1620 Model I card reader.

VI. 2 SPS (Symbolic Programming System)

For those who wish to write in a language more intimately associated with computer operation, we provide the programming language described in IBM's Reference Manual for the IBM 1620/1710 Symbolic Programming System \#C26-6500. A copy of the SPS assembler, punched on cards for use on the 1620 Model I, is available at the Center office.

The 1620 Model II Monitor System includes a SPS II-D assembler stored on the disk. Instructions for using the assembler may be found in IBM 1620 Monitor II System Reference Manual C26-5774-0.

The following subroutines have been added to the SPS IImD subroutine set 02 by NCE Computing Center staff members:

1. OUTC, output conversion, see write-up for LIB, 1.6.053
2. INC, input conversion, see write-up for LIB. 1.6.053
3. FC, Floating compare, see write-up for LIB. 7.0.050

VI. 3 Programs written by the NCE Computing Center staff and stored on

The following programs were written by the Center staff for general use and stored on the 1311 disk. They are ready to be used with the approm priate Monitor Control cards.
VI.3a Butler

The program Butler will accept as data a Fortran or SPS source deck, and will repunch the deck as follows:

1. The Fortran deck will have the statement numbers in columns $2-5$, column 6 will be blank, the statement itself will start in column 7. A sequence number will be punched at the end of the card.
2. Continuation cards are not produced from a long Fortran statement.
3. The SPS deck will have new page/line numbers punched in column 1-5 starting with the number entered from the typewriter.

Before entering Fortran or SPS source deck, set the console switches as follows:

1 ON for SPS
1 OFF for Fortran
2 and 3 are not used
The following Monitor Control cards are placed in front of the Fortran or SPS source deck:

Card col:
Monitor Control card Monitor Control card

1	2	3	4	5	6	7	8	9	10	11	$12 \ldots \ldots$	$\ldots 2$
$\#$	$\#$	J	0	B								
$\#$	$\#$	X	E	Q		$;$	U	T	L	E	R	
USER 'S NAME												

Note: \# is a multiple punch 028
The card must be punched as indicated with the USER'S NAME punched in card columns 32-60
VI.3b Equivalence table description

A description of the program is available at the Center. The Monitor Control card is punched as follows:

Card col:
Control card

$$
\begin{array}{rrrrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\# & \# & X & E & Q & & \mathrm{E} & \mathrm{Q} & \mathrm{~T} & \mathrm{~B} & \mathrm{~L} & \mathrm{E}
\end{array}
$$

A \#\# JOB 5 card precedes the \#\#XEQ card as shown above.
VI.3c Programs written by the NCE Computing Center staff and stored on

The following programs, written for general use are stored on punched cards. A descriptive writemp is available at the Center.

Number
EEPD I

EEPD 2

EEPD 3
VI. 4 Library of 1620 programs

A set of 1620 library programs containing descriptive write-ups of programs available for general use may be found in the Computing Center library. Listed below are the programs which are stored either on the 1311 disk, ready for use on the 1620 Model II, or on cards or tape ready for use on the 1620 Model I or II. A descriptive writeup of each program will be found under the appropriate library program reference number. The descriptive write-up will specify input format and indicate the output format.
VI. 4 a Programs stored on the 1311 disk

A program stored on the 1311 disk is executed when the appropriate Monitor Control card is read by the 1620 Model II. The Monitor Control card signals the system to read the program off the disk into machine core storage. The Monitor Control card also informs the Monitor system that the program is to be executed with the data following the control card. The data should be in the form specified by the prosram write-up which will be found under the appropriate Library program number. The data should be followed by a card punched with record marks in col. l-4 (\#\#\#\#).

The following list includes a brief description of each program and indicates the Monitor Control card and the Library program number for each program. Monitor control cards are punched with \#\# in col. 1-2, XEQ.in col. 3-5 and the name of the program in col. 7-12. The \# is a multiple punch 028.

General form of cards used when executing a program stored on the 1311 disk

Card col	1	2	3	4	5	6	7	8	9	10	11	12	
Monitor Control card	\#	\#	J	0	B								User's
Monitor Control card	\#	\#	X	E	Q	S	\cdots	A	M	E	0	F	
Data cards	-	-	-	-	-	-	-	-	-	-	-	-	
(specified by	-	-	-	-	-	-	-	-	-	-	-	-	
Library program)	-	-	-	-	-	-	-	-	-	-	-	-	
End of data card	\#	\#	\#	\#									

1. Computation of Bessel functions, first kind, integral order, for arguments in the range greater than 0.001 to less than 200.0 .

LIB．No．3．0．005
Monitor Control card \＃Hy H YEQSBESSEL
2．Solution for initial value problems involving n first order differential equations by Runge－Kutta－Gill and Hamming＇s method

LIB，No．4．0．001
Monitor Control card \＃\＃XEQSDIFEQS
3．Solution of simultaneous linear equations．The maximum number of equations is 25 ．

LIB．No．5．0．007
Monitor Control Card \＃\＃XEQSSIMEQS
4．Calculation of eigenvalues and eigenvectors of real symmetric matrics．
LIB．No．5．5．016
Monitor Control card \＃XEQSEIGENV
5．Computation of the sum，mean，standard deviation，error of estimate， sum of square deviations，and coefficient of variation，for each variable，and t－ratio and degree of freedom，between all pairs of variables，for up to 50 variables．

LIB．No．6．0．039
Monitor Control card \＃\＃\＃EQSSTATIS
6．Linear regression analysis for all combination of variables．The program selects variables to be included in a complete multiple linear regression analyses．

LIB．No．6．0．057
Monitor Control card \＃\＃XEQSLRAVAR
7．Linear regression of two variables by least squares fit．
LIB．No．6．0．067
Monitor Control card \＃\＃XEQSLR2VAR
8．Electric circuit analysis program
LIB．No，ECAP 1620－EE－02X Monitor Control card \＃\＃XEQSECA

Note：The JOB card for the above program must be punched with an 01 in col．8－9 as follows：

Card col：\quad	I	2	3	4	5	6	7	8	9
$\#$	$\#$								
$⿲ 二 丨 匕 刂$									

9. Finite Fourier analysis including coefficients determination and plotback program.

LIB. No. 6.0.056
Monitor Control card \#\#XEQSFORIER
VI.4b How to clear memory (MODEL 1)

Various programs may weouire that the memory be cleared (set to zeros)
before they are run. So clear memory:

1. Set all check switches to PROGRAM
2. Depress INSTANT STOP and RESET
3. Depress INsERT
4. Type 160001000000 (12 digits , no spaces)
5. Depress RELEASE and START (or the R/S key)
6. After the MAR lights have cycled through memory at least once, depress INSTANT STOP.
7. Depress RESET

V1.5 PROGRAIIS STORED ON PUNCH CARDS OR TAPE

1.1 .002	ADDITIONAL INSTRUCTION MACRO SUBROUTINE	CARD)	
1.1 .005	MULTIPROCESSING FORTRAN	(TAPE)	
1.1 .006	MULTIGPURPOSE SPS CARD OUTPUT COMPRESSO		
1185\%01.1.009	LOAD + GO FORTRAN FOR CARD OPERATION	(CARD) 5	0
1185-01.1.010	AFIT IMPROVED FORTRAN	(CARD) 6	D
1.1 .011	AN INTERPRETIVE LANG ASSEMBLER IBM 1620		
01.1 .012	OSAP ASSEMBLY SYSTEM (CONDENSED DECKS)	(CARD) C	D
118501.1 .012	OSAP ASSEMBLY SYSTEM (SYMBOLIC DECKS)	(CARD) 8	D
1185-01.1.014		(CRD) 12	D
1185-01.1.019	PROGRAM WRITEUP	(CRD) 14	D 1620
1185-01.1.019	PROGRAM DECK	(CRD) 14	D 1620
1105-01.1.020	PROGRAM WRITEUP	(CRD) 14	D 1620
1185-01.1.020	PROGRAM DECK	(CRD) 14	D 1620
1185-01.1.020	PROGRAM DECK	(CRD) 14	D 1620
110501.1 .023	DOCUMENTATION	(CRD) 21	D 1620
1105-01.1.024	PROGRAM DECK	(CRD) 23	D 1620
118501.1 .024	DOCUMENTATION	(CRD) 23	D 1620
110501.1 .026	DOCUMENTATION	(CRD) 24	D 1620
1185-01.1.026	PROGRAM DECK	(CRD) 24	D 1620
1185-01.2.003	PROGRAM CONDENSER AND LOADER	(CARD) 3	

01.2 .005	RELOCATOR PROGRAM	CARD) 30
01.2 .006	DUMP TO RELOAD	(CARD) 5 D
01.2 .007	FORTRAN COMPRESSOR-LOADER	(CARD) 50
01.2 .000	A FLEXIBLE CARD READ ROUTIME	(CARD) 6 D
1.2 .009	FORMAT FORTRAN OBJECT DECK COMPRESSOR	
01.3 .003	1620 GENERAL PURPOSE CARD COMPRESSOR	(CARD)2 D
01.3 .005	SQUEEZ	(CARD) 30
01.3 .006	SQUISHER	(CARD) 6 c
$01.3 .008$	1620 FORTRAN COMPRESSOR AND 75 COL.DUMP	(CARD) 6 C
01.4.002	TRACE PROGRAM FOR CARD 1/0	(CARD) 1 C
01.4 .003	1620 MULTI-TRACE	(CARD) 1 C
01.4 .004	STROBIC	(CARD) 1 D
01.4 .005	TRACE AND 1A SIMULATOR	(TAPE) 1 C
01.4 .006	1620 MULTITRACE	(TAPE) 1 C
01.4 .007	1620-402 MULTI-TRACE	(CARD) 2 D
01.4 .008	DYNAMIC TRACE PROG FOR IBM 1620 COMP	(CARD) 2 D
01.4 .010	general trace routilive	(CARD) 3 D
01.5 .001	FORTRAN SOURCE TAPE CORR	(TAPE) 1 D
01.5 .004	POST MORTEM DUMP	(CARD) 1 C
01.5 .005	UNIVERSAL TAPE DUPLICATOR	(TAPE)
01.5 .008	ALPHANUMERIC TAPE DUP. AND CORRECTOR	(TAPE)
01.6.001	FEGRESSLON ANALYSIS DATA PREPARATION	(TAPE) 1 D
01.6.003	1620 AUTOPLOTTER	(TAPE) 1 C
01.6 .004	1620 AUTOPLOTTER	(CARD) 1 C
01.6.008	FORTRAN I/O ROUTINE FORMAT CONTROL.	(CARD) 1 D
01.6 .015	DYNAMIC DUMP	(CARD) 1 C
01.6 .017	FORMAT CONTRL SUBROUT FOR CARD FORTRAN	(CARD) 1 D
1165-01.6.019	FORTRAN II DIAGNOSTICIAN	(CARD) 1 C
01.6 .020	402 CORES DUMP	(CARD) 2 D
01.6 .021	SYMBOL TABLE ANALYZER	(CARD) 2 D
01.6 .022	ANL MNEMONICS DUMP	(CARD)2 D
01.6 .024	IMPROVED HASH TOTAL PROGRAM	(TAPE)
01.6 .028	1/0 SUBROUT FOR USE IN SYM PROG	(CARD) 2 D
01.6 .029	PROGRAM INTERPRUPT	(CARD) 2 D
01.6.030	CARD DUMP AND LOAD	(CARD) 2 D
01.6 .031	CARD HASH TOTAL	(CARD) 2 D
01,6.032	HASH TOTAL FOR CARDS	(CARD) 3 D
01.6 .033	FLOATIPG POINT OUTPUT SUBROUTINE	(TAPE)
01.6,042	SBRS. FOR PRESET PREC. F.P. ARITHMETIC	(CARD) 40
01.6 .043	LOGGING PROGRAM	(CARD) 4 D
01.6 .044	GENERAL COMPRESSOR	(CARD) 5 D
01.6 .04 .5	FORTRAN COMPRESSOR + MULTI-PROGRAMMER	(CARD) 5 D
01.6 .047	DBD (DAYS BETWEEN DATES) SUBROUTINE	(CARD) 6 D
01.6.049	L. 106 FLT PT TO FIXED PT CD, $0 / \mathrm{P}$ R RUUT, SPS	(CARD) 6 C
1185\%01.6.055	PLOT SUBROUTINE FOR FORTRAN	(CRD) 10 D
118501.6 .056	PLOT SUBROUTINE FOR FORTRAN W FORMAT	(CRD) 10 D
$01.6 .058$	TRANSLATOR OF ALPHANUMER.TO EXCESSS 50	(TPE) 10 D
01.6 .060	SPS OBJECT DECK ANALYZER	(
8501.6 .061	1620 RECORD DUMP	(TPE) 10 D
02.0 .003	INTERPRTIVE SYS PERFRM OPER COMPLEX NO.	(TAPE) 1
02.0 .006	INTERPRETIVE ROUTINE	(TAPE)
1185-02.0.000	FORGO (LOAD AND GO FORTRAN)	(CARD) 2 D
1185-02.0.009	FOR-TO-GO (2 PASS FORGO)	(CARD) 2 D
02.0.011	INT. SYS. FOR PERFORM OPS COMPLEX NOS.	(CARD) 3 D
02.0 .012	NOVATRDN I	(TAPE)
03.0.001	VARIABLE FIELD SQUARE ROOT SUBR.	(CARD)1 D

```
03.0.002 1620 FIXED POINT SQR (CLOSED) SUBRTN (CARD) 03.0.003 ORTHOGONAL POLYHOMIAL COEFFICIENTS (CARD)2 D 03.0.005 COMP OF BESSEL FUHCT. OF INTGRAL ORDER
```



``` 04.0 .002 SOL.FOR |N1.VAL. PROE. 1 FIRST ORD.D.EQ. 04.0.003 SOL,FOR INI.VAL.PROB. 1 FIRST ORD.D.EQ.
1185
05.0 .002 SIMULTANEOUS EQUATIOA SOLUTION
05.0 .003 EIGEAVALUES OF REAL SYMMETRIC MATRICES
05.0 .004 EIGENVALUES OF REAL SYMMETRIC MATRICES
05.0 .005 EVALUATION OF DETERMUNANTS (CARD)
*1185-05.0.007 SOLUTION OF SIMULTS LINEAR EQUATIONS (CARD)IC
05.0 .008 SIMULTANEOUS EQUALTIONS A LA KING
(CARD) 2 C
\(1185 \times 05.0 .009\) CAL EIGENVALS+EIGENVECTOR OF HY \(=\) LDY
05.0.013 MATRIX INVERSION SUBROUTIAE
05.0 .014 SIMULTANEOUS EQUATIONS
05.0 .015 MADAME
1185-05.0.016 CAL.OF EIGENVALUES + VECTORS OF ZV=LAV
\(05,0.017\) FLT. PT, MACRO INST FOR SOL OF LIN.SYS.EQ(CARD) 6 D
\(1185-05.0 .019\) EVALUATION OF A DETERMINANT
(CRD)11 D 6.0.002 MULTIPLE LINEAR NONaREGRESS ANALYSIS
06.0 .003 SCRAP
06.0 .004 STRAP
1185-06.0.007 STEPWISE MULT. LIN. REGRESSION ANALYSIS
06.0.009 CORRELATING PROGRAM- UP TO 30 VARI
06.0.010 ANALYSUS OF VARIANCE
06.0 .011 NON LINEAR PATCH FOR MLR PROG OF WILDER(CARD) 2 D
```


*06.0.012 DISTRIBUTION STATISTICS

```
06.0 .013 SIMPLE LINEAR CORRELATION
06.0.014 GENERAL ANOV
\(06.0 .015 \quad 40-40\) CORRELATI ON
(CARD) 1 C
6.0.016 FREOUENCY OISTRIBU
06.0.017 MULTIPLE LINEAR REGRESSION
06.0.018 MULTIPOE LINEAR REGRESSION
06.0.019 MANN-WHITNEY TEST
06.0.020 SCATTERGRAM GENERATOR
06.0.021 CORRELATION COEFFICIENTS (UCRBL 0024)
06.0 .022 PRODUCT MOMENT CORRELATIONS (UCRBL 0004)
06.0.023 ANALYSIS OF COVARIANCE (UCRBL 0007)
06.0.024 AHALYSIS OF COVARIANCE (UCRBL 0009)
06.0.026 ANALYSIS OF VARIANCE (UCRBL 0013)
06.0.027 ANALYSIS OF VARIANCE (UCRBL 0014)
06.0.020 ANALYSIS OF VARIANCE (UCRBL 0015)
06.0.029 ANALYSIS OF VARIANCE (UCRBL 0016)
06.0.030 ANALYSIS OF VARIANCE (UCRBL 0019)
06.0.031 STEPWISE REGRESSION (UCRBL 0018)
06.0.032 ANALYSIS OF COVARIANCE (UCRBL 0025)
06.0.033 ANALYSIS OF VARIANCE (UCRBL 0026)
06.0.034 NORMALITY (UCRBL 0027)
06.0.035 HOMOGEMEITY OF VARIANCE (UCRBL 0032) (CARD)2 D
06.0 .036 HIULT RANGE TEST OF MEAN DIF (UCRBLO034)
06.0.037 MAT INVERSION-SIMULT EQ (UCRBLOO52)
06.0.036 LINEAR CORRELATION COEFFICIENT
06.0.039 STATISTICS 1
\(1185 \times 06.0 .041\) FACTORIAL ANALYSIS OF VARIANCE
(CARD) 2 D
(TAPE)
(CARD) 2 D
(CARD) 2
(CARD) 2
(CARD) 2 D
(CARD) 3 D
06.0 .042 CONT FOREST INV. STATISTICAL CHECK PROG (CARD) 3 D 06.0.043 MULTIPLE REGRESSION PACK FOR CARD 1620 (CARD) 3 D
*NOTE: Programs have been modified for Load and Go. A print-out of the modified programs and card source decks are available in the Center office.
```


Three card (or key) punches are available at the Center. During operation of the 1620 Model II, the card punch next to the computer is reserved for short corrections. A fourth card punch is available at Tiernan Hall, 240 High Street.

Single-card punching
The ON - OFF switch is a toggle switch on the card stacker on the upper left-hand corner of the punch.

Slide the blank card in the punching station (the right-hand station) and press the key on the keyboard marked REG (register). The card should engage; if it does not, make sure the right edge of card is under hook.

With the card engaged you can punch any combination of numbers, letters, or special characters present on the keyboard. The keyboard works much as does a typewriter keyboard: the punch is normally in alphabetic shift; to punch numbers, or characters on the upper level of the keys, press the numeric shift, a key marked "NUM". This must be held down while you are punching the numbers or characters. To punch more than one number or sign, in the same column hold down MULP PCH while punching. When you have finished the card, press REL to release the card. Then push REG, REL, REGG to get the card through the reading station (the left-hand station) and up irito the card stacker.

Single-Card duplicating and correction

Slide the card to be duplicated and/or corrected into the left-hand (reading station), and a blank card into the rightmand (punching station), and push REG. For duplication push DUP, and note that a pointer in the window at the center of the punch indicates which column of the card is passing by the stations. To insert corrections, stop duplicating at the appropriate column and type in the corrections. Duplication of the rest of the card can then be done.

Multiple-card punching

Put your blank deck of cards in the feed hopper on top of the punch at the right between the spring-loaded follower and the front of the punch. With the AUTO FWED teggle above the keyooard off, you must push FEED and REG to get a card to the purching station. With the AUTO FEED toggle on, pushing REw will accomplish the same thing. (You must start the process by pushing REL twice)

Note (-) The minus signs on the card punch is the one on the right (on the key which says SKIP). It gives on "eleven" punch in either mode. The dash on the $=$ key gives and " 8 " and " 4 " punch.

Note
(0) Be careful not to use the letter 0 (alphabetic mode) for the number (zero), 0 , (numeric mode).

When you are punching a deck of cards it often saves time to set up a control card to control the punching in the various columns of the card. The convrol can set the punch in the alphabetic mode or the numeric mode, determine which fields are to be duplicated, skipped, etc.

The control unit visible through a smal. 1 window in the cover, consists of a cylinder around which a card is wrapped. The cover swings back to permit access. Once the small Voswitch locsied below the cover window is turned off (down to the right). The cylinder can be removed from the spindle and the card changee. To put a control card on the cylincor, hold the cylinder wich the vertioal chrome strip towaids you and the lever at the top. Turn the lever to the extreme left. Slip the rightmand end of the control card under the left-hand side of the chrcme strip and push the bottom of the card down against the ledge at the bottom of the cyinder. Check that the card is straight by looking at the two smali holes in the chrome strip. The cyiinder should not show at the eige of the card through these holes. To clamp this end or the card, more the lockjng lever at the top around to its center position. Then mran the contal cand arowd the cylinder end slip the free end undor the other side ot the chrome strip, making sure the card is wrapped srugly around the cylinder. Iock the card in place by moving the top iever to the right. Gently repiace the cylizder, being sure the bottom pin is seated, and close the cover. Tixn the V-switch to the leYt, turn on the AUPO REED, AUTO SKIP, Turn the V mwitch to the left, turn on the AUTO EEED, AUTO SKIP, AUTO DUP, and PRINT switches, and the punch is ready to operate.

A control card may be removed from the control cylinder by reversing the sequence given above.

The format for a cylinder control card consists of variations of 4 punches:

+ continues whatever operation was done in the previous column
- causes the punch to skip that column

0 casues automatic duplication (numeric) of the same
1 activates the alphabetic shift
blank activates the numeric shift
An example of a control card is the following:
column
123
which causes an automatic skip to column 6, then a shift to alphabetic mode (an "A" is a combination of a " + " and a "I" punch) and continues the shift. The reason for the 1 in colums 12 and 16 is to break the field definition so that pushing the "SKIP" key will advance the card to the next field from wherever it was positioned in the previous field. Columns 75 and 76 will cause automatically duplication from the card at the reading station into the card at the punchiigg station. The last four columns (column 77 is b for a blank, i.e., no punch) permit numeric card numbering to be punched.
VII. 2 Printer (IBM 407 Accounting Machine)
VII. 2

Control Panels
The format of the printing or "listing" from cards is controlled by the control panel and switches on the rightmhand end of the machine. The control panel is held in a drawer that tilts outward from the printer so that the panel can be slid in or out. Never try to run the machine unless a control panel is securely in the holder and the drawer is closed.

Ordinarily the "Reproduce $80-801$ control panel is used to print cards exactly as they are punched. Other control panels can be wired to distribute the information on the cards across a printed line in various formats. Wiring diagrans are included in the 407 manual.

Operation
Turn on the ONmOFF switch on the left-hand side of the machine. Put the cards 9-edge leading, face down, into the card hopper to the left. Hold down the START button for three cycles to start the cards feeding through the machine; hold it down again to get the last cards through and out.

If the CARD FEED STOP light comes on, the bottom card of the feed deck is probably bent. Duplicate this card and replace it, press the STOP then START to continue the listing. If one of your cards is missing, you will have to get help from a staff member in extricating it from the machine.
VII. 3 Reproducer (Model 519)

The reproducer's major use is in duplicating decks and in punching regular punched cards from mark sensed cards (See Below VII.3). It can also compare two decks, rearrange the columns of a card, and punch sequence identification numbers.

There are two card feeds on the top of the reproducer. The lefthand one is for the deck to be read and the right-hand one is for the deck to be punched. The control panel holder is below the card feeds.

Reproducing
Use the panel marked "80-80 REPRODUCING". Put the deck to be
reproduced in the read feed (left-hand hopper) face down, 12 or top edge to the right, and put blank cards in the punch feed in the same relative position. Turn on the switch on the right side of the machine. Hold the START button down for three cycles, and then the machine should go by itself. Hold the START button down again to get the last card to go through. The old deck will come out in the left stacker; the new duplicate deck will come out in the right stacker.

Error stops on reproducer
If the machine stops with the red light labeled "C OMP" an error in the duplicating process has been detected. In the window low down on the front of the machine metal pointers indicate the columns containing errors.

Remove the cards not yet processed from the hoppers, and run the cards in the machine out by holding down the "START" button. Take the top three cards off both piles. Put the three from the old deck back in the left hopper. Throw out the three from the new deck. Put the remaining unprocessed cards back in their respective hoppers.

Pull up on the lever beside the compare light until the light goes off. Press START as in the beginning.

Save the portion of the new deck already punched -- it is valid. When the machine has finished processing, combine the parts of the new deck.

Sequence numbering of cards
To punch sequence numbers into colums $76-80$ of a deck of cards use the control panel labeled "SEQUENCE NUMBERING". Put a card containing zeros in columns 76-80 on top of the deck to be numbered and place the deck face down, top edge to the right, in the right-hand hopper. Certain adjustments can be made inside the machine to permit the sequence numbers to be printed on the cards. See a member of the staff for more details.

Partial reproducing and gang punching

It is possible to wire a control panel to reproduce only certain columns on the card (possibly rearranging them), or to insert the same information in the same columns of several cards. (The latter is called "gang-punching".) Consult a member of the Computing Center Staff if you want help.

Mark Senaing

Mark sensing is based on the principle that a special pencil mark with a high graphite, content can conduct electricity. The mark-sensing device on the reproducer reads the pencil marks on the cards and punches corresponding holes. Each mark-sensing column covers three punching columns so that up to 27 columns of data can be marked on a card. For our purposes the first markmsensing column will be converted to the first punched column, etc., so that the 27 columns spanning the marked card become holes in the first 27 columns of the punched card.

We plan to try to lighten the load on the card punches and also make card preparation more convenient for our users by providing the special cards for mark sensing and the device on the reproducer to convert them to punched cards. The special pencils required can be purchased at the bookstore. The allowance of 27 columns should be adequate for almost any Fortran statement. (Also see Appendix "Use of Mark Sense Cards")

Marked to punched-card conversion

Place the deck of marked cards in the right hopper of the reproducer. Use the "Mark Sensing" board. The marked cards will be punched.
VII. 4 Sorter (Model 082)

Place the cards carefully (this is a fussy device) in the hopper at the right end of the machine with 9 (bottom) edge toward the machine, face down.

Set the column on which you wish to sort by moving the crank until the pointer rests on the right number. You can move it longer distances without cranking by pushing down on the round release button on the side of the pointer. The "ON" switch is a round series of suppression switches used mainly in alphabetic sorting. Consult the manual if you wish to use this option. When sorting, always sort on the least significant digit first or, in a field, start on the right-hand column.

VII. 5 Character Coding on Cards

Punched or marked cards have one character per column. The rows of the colum are called, from top to bottom:

12	(or +)
11	(or -$)$
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Thus, the number 3 has a punch in row 3 and so on. Letters and special characters have more than one punch per column. A "J" for example has an 11 and a 1 punch. The complete set of character codes are:

Alphameric Character	Card
$\left.\begin{array}{cc}\text { (Blank) } & \text { (Blank) } \\ \text { (Period) } & 12,3,8 \\ & 12,4,8\end{array}\right)$	

APPENDIX

A. NOTES ON THE STORAGE OF INTEGER AND REAL NUMBERS

A real number may be expressed as a decimal times a power of 10. All real numbers are stored in computer memory as decimals; the appropriate power of 10 is stored with the decimal as follows:

Where: The mantissa is the decimal portion of the number. The first digit of the mantissa (after the decimal point) is always non-zero.

The mantissa consists of eight digits. (IBMFII-D does permit the user to specify an alternate mantissa length. See Section V.I "Varying the word length.")

The exponent is a two digit integer. The mantissa multiplied by ten to the exponent is equal to the real number as expressed in the source program or data. The range of the exponent is discussed in Section II.2a "Real Constants." Note that the exponent is sometimes referred to as a characteristic.

Example:

$$
A=(B+500.22 \times C) /(.005 \div 2+4 .)
$$

$$
500.22 \text { is stored as } 03
$$

Exponent Mantissa
$.50022 * 10^{3}=500.22$
.005 is stored as $\frac{-02}{.5}$
$.5 * 10^{-2}=.005$
4. is stored as 01.4 Exponent Mantissa
$.4 * 10^{1}=4$
Integer (fixed point) numbers are stored in digit form as follows:

$$
\begin{array}{ll}
\text { XXXX } & \text { L. \& } \mathrm{G}_{\mathrm{XXXXX}} \\
\mathrm{~K} \mathrm{~F} \text { II }
\end{array}
$$

Arithmetic operations may be directly performed on integer numbers. If the result is more digits than permitted by the compiler the high order digits are truncated.

Example:

$$
I=9986+24
$$

I is stored as 0010 when the statement is processed using the Load and Go processor.

When performing arithmetic operations on real numbers the computer must be instructed to handle the mantissa and exponent parts of the number. The 1620 Model II has built in components capable of carrying out real (floating point) arithmetic. The 1620 Model I does not have this capability and the processor must include subroutines which carry out the real (floating point) arithmetic. (For a discussion of floating-point arithmetic see Kuo, S. Shan, "Numerical Methods and Computers," pp 28-29.) Note that when arithmetic operations develop a mantissa with more than 8 digits the low order digits are truncated.
B. NOTES ON THE USE OF MARK SENSE CARDS

Use of Fortran Mark Sense cards will enable programmers to prepare their source decks without losing time waiting for a free key punch machine. The mark sense cards and the IBM graphite pencil may be purchased at the bookstore. Instructions for marking the cards are listed on pages 124, 125 of the Handbook. A Computing Center staff member will process mark sensed decks on the IBM 519 reproducer during the hours listed on the Computing Center bulletin board. The decks should be placed in the box marked IN on the 519. A punched deck and 407 print-out of the deck will be returned to the OUT box. To assure the return of the proper deck to the proper programmer the programer is required to place the following two cards at the top of the mark sensed deck.

Card cols. 1220.................................... 80
Card 1: 2
Card 2: NAME PROBLEM NUMBER
Where: The first card is blank except for a Z in column 80.
NAME is the name of the user.
PROBLEM NUNBER is the problem number assigned to the user. Mark the face of Card 1 with the name of the user and the initials "F.C." (Use a magic marker type pencil) Mark the back of the last card of the source deck with the initials "L.C."

The 2 in column 80 punched on the first card signals the IBM 407 to start printing the following source deck on a new page. Switch 3 (on the 407) must be set to the ON position when batch processing print-outs of mark sensed decks.

The above two cards can be key punched at the beginning of the semester and re-used for each mark sensed deck.

C. NOTES ON MODEL II-BATCH PROCESSING

1. Computing Center batch processing schedule

A Computing Center staff member will process Fortran source decks prepared for batch processing on the Model II during the hours listed on the Computing Center bulletin board. Source decks should be left in the IN box next to the Model II. Printed Output and the source deck will be placed in the OUT box. Please note that all output should be printed. All decks must include correctly punched control cards. Mark the first card with your name and the last card "L.C."
2. Listing of required control cards - KFII

The following cards should be punched at the beginning of the semester and can then be used throughout the semester for each Kingston Fortran deck submitted for batch processing:

Card columns: 123456789............. 20 50
Card 1. \#\#JOB
Card 2. \#\#XEQ KF2
Card 3. $\quad \$$ JOBNANE OF PROGRAMMER OPTIONAL USER IDENTIFICATION
Card 4. \# EOJ
Card 5. \#\#XEQ RUN
Card 6. \#\#\#\#

Where: The \#'s (record marks) are multiple punch 028 NAIE OF PROGRAMMER is punched in columns 10-43. Any additional user identification may be punched in card columns 45-80.

See Section IV. 10 "Operating instnuctions, control cards" for insm tructions on placing the control cards in the source deck.

It is suggested that the user use the Kingston Fortran processor for speed in compiling and executing a Fortran program. However programs written in Fortran II-D may be batch processed with Kingston programs if the correct control cards are included with the source deck.
3. Listing of required control cards - IBM FII-D

Where: The \#'s (record marks) are multiple punch 028, NAME OF PROGRAIMER is punched in card columns 32-60. Any additional user identification may be punched in card columns 62-80.
4. Listing of required control cards - disk stored programs. Card columns: 123456789........... 32.. 80

Card 1. \#\#JOB NAME OF PROGRAMMER OPTIONAL USER IDENTIFICATION
Card 2. \#\#XEQ NAME OF PROGRAMI.
Where: The \#'s (record marks) are multiple punch 028, NAME OF PROGRAMMER is punched in columns $32 m 60$, card columns $62-80$ may be punched with any optional user identification, NAME OF PROGRAM is the name of the program currently stored on the disk. (See Section VI. 4 a for a listing of programs available for disk storage) The program name is punched starting in Card column 7.

INDEX TO ACCEPTABLE FORTRÁN STATEMENTS

Statement	General Form	L. \& G ${ }_{*}$	KFII	FII
ACCEPT	19, 20	28	53	$\begin{gathered} \text { MS (See NOTE } \\ \text { below) } \end{gathered}$
ACCEPT TAPE	19, 20	N.P. (See	53	MS
ARITHMETIC IF	16	G	G	MS
ARITHMETIC Statement Function	$\begin{gathered} \text { KF (See NOTE } \\ \text { below) } \end{gathered}$	N. P.	70	MS
ASSIGN	KF	N. P.	49	N. P
CALL name	KF	N.P.	75	MS
CALL EXIT	19	N. P.	52	MS
CALL PLOT	KF	N. P.	77	N. P.
CALL RAND	KF	N. P.	78	N.P.
CALL RESOLV	KF	N.P.	79	N. P.
CALL ROUND	SII	N. P.	N. P.	104
NOTE:				
G same as general form				
FII permitted in IBM FII-D, See FII				
KF permitted in KFII, See KFII				
LG permitted in L. and G., See L. and G.				
MS See 1620 Monitor I System Reference Manual, Fortran II-D				
N.P. Not permitted				

CALL SKIP	KF (See NOTE p.1)	N.P.	53	N.P.
CALL SOLVE	KF	N.P.	78	N. P.
CALL SORT	KF	N. P.	78	N. P.
COMMON	KF	N. P.	66,69	MS
COMPUTED GO TO	15	25	50	MS
CONTINUE	19	G	G	MS
DATA	KF	N.P.	67	N.P.
DIMENSION	21	G	G,69	MS
DO	16	26	51	MS
END	19	27	53	MS
EQUIVALENCE	KF	N.P.	66,69	MS
FORMAT	20	27	56	MS
FETCH	FII	N. P.	N.P.	106
FIND	FII	N. P.	N.P.	107
FUNCTION name	KF	N.P.	71	MS
IF (SENSE SWITCH)	16	25	51	MS
PAUSE	19	G	52	MS
PRINT	LG	27,28	55,65	MS
PUNCH	20	28	55	MS
PUNCH TAPE	KF	N. P.	55	MS
READ	19,20	28	53	MS
RECORD	FII	N. P.	N.P.	106
REREAD	KF	N. P.	53	N.P.
RETURN	KF	N.P.	75	MS
STOP	19	27	52	MS
SUBROUTINE name	KF	N.P.	74	MS
TYPE	20	27	55	MS
Unconditional GO TO	15	G	G	MS

[^0]: ** Alphabetic lield is replaced by jR1. Last item in record ray be lost Numeric field is replaced by 22 . Last item in recordmay be lost.

