
COMPUTING CENTER HANDBOOK

Third Edition

Edited by Charlotte Rubashkin

Computing Center

Newark College of Engineering

Newark, New Jersey

June 1966

NCE COMPUTING CENTER HANDBOOK

CONTENTS

INTRODUCTION

I

II

NCE COMPUTING CENTER , •

I.l Equipment available •••••••• , • • • , • • • 0 • • •

I ,2 Applying for use of the 1620 computer • • .~ • • • • • • • •

r.3 Charges for computer time •••• , • • • • , • • • • • • •

1

1

1

2

I,4 Scheduling computer time •• • •• , • o • , •• • • • • • 3

a. Class use of computer time •••• ,. • • • • • • o " • 3

b1t Student operation of the 1620 Mod I computer
scheduled Load and Go periods •• • ••• • • • • • • • 3

r.5

I.6

In-Out boxes

Punched cards

• • • • • • • • •

• • •

• • •

• • • • • • • • • • •

5

5

I,7 References and manuals , •• • • ••• , •• • • • • • • ~ 7

Staff• • • • • • • • • • • • • • •• , .• ,...o.o ..•• 7

I,9 Courses in programming ., • • •• • , • o , •. • • • • • • 7

BASIC ELEMENTS OF THE FO.Rl'RAN LANGUAGE. , o • • • •, • • • o o 9

n.1

II.2

Source program and object program. • • . " . • • • • • • 0

Arithmetic statements • • • • • • 0 • • • • • •

a., Constants •

Variables •

•••••• • • • • • • • • • • • • • • • •

b, • • • • •••••• • • • • • • • • • •

9

10

10

ll

c. Arithmetic operation symbols •••••••• • • • • • 13

a. Arithmetic expressions ••••••.• ~ ••••• o • 13

e. Replacement statements ••.•••• o •• o •• • • • 11.i.

I
II.J Control statements • o. • •• , • ~ , ~ , • • •••• , • 15

I

Unconditional GO TO statement • • • • • • 0 • IJ • • • • 15

b. Computed GO TO statement , • o ••• , •••• , • • • 15

Arithmetic IF statement. • • • • • • • • •

d. IF (SENSE SWITCH) statement , ., • • • •

• • • •

• • • • • •

16

16

e. DO statement • , • • •• , ••••••••••••• • 16

f, CONTINUE statement • ~ , •• o ••• , •••••• , • 19

PAUSE statement • o • • • • . . " . • • • • • • •••• 19

h, STOP, END, and CALL EXIT statements, • •, , o • • • • 19

Input/Output statements ••••••• • • • • • • • • • • • 19

a. General form for input statements for Fortran without
Format • ., • , • • , ,, • • . • • • • , • • • • • • , • 19

b. General form for input statements for Fortran with
Format • • • • , • 0 • • • , • • • • • • • • • • • • • 20

c, General form for output statements for Fortran without
Format • • • • • • , • • . • • , • • • • • • • .-. • • • 20

d, General form for output stat,ements for Fortran with
Format • • • • • • • , • • • • , • , • • • • • • • • • 20

II,5 Specification statements ••••• • o •••• • ••• • • 20

DIMENSION statement•• • • ••• • • • • ••• • • • • 21

b~ Other specification statements • ••• • •• , • o • , 21

--III NCE LOAD AND GO , " • • • • • • • • • • • • • ,. • • • • , • • "' 22

III~l Punching input source programs • • • • • -• • • • • , • • • 23

Arithmetic statements. • • • • • • •

a. Constants

Variables

• • • • • • • 0 • • • • •

• • • • • • • • • • • • Cl

• • •

• • 0

• 0 • •

• e • 0 • • •

• • • ••••

23

23

23

c.. .. Arithmetio · .ei:xpl!essious ,. ••••••••••••• • 24

III.3 Control statements ••••••••••••••••••••••••••••••••••••••· 25

a. Statement numbers ... ••••••••••••••••••••••••·•••••·••• 25

b. Computed GO TO statement••·••••••••••··••••••••••••••• 25

c. IF (SENSE SWITCH) statement••••••••••••••••••••••••••• 25

d. DO statement ••• 26

e. STOP and END statements••••••••••••••••••••••••••••••• 27

7II.4 Input-Output statements ••••••••••••••••••••••••••••••••••

a. General rules for input-output statements without
i'orniat •

b. Rules for input data ••••.•••••••••••••• ~ ••• • ••• •.•• • • • • •

c. Rules for output da:ta •••.•.•.••••••••••••••••• • .•• • • • • •

lII.5 Subprograms ••••• I·•• a e. a e' llt I. I e •• e •. e •.• e •• •.•.••I • •·•. e •. e.

a. Library subroutines •••••••••••••••••••••••••••••••••

27

27

28

29

29

29

b. Subprograms writt,en by the progr~r •••.•.•••••••.••• ,. 30

III.6 Batch processing insttuctions - Version Three ••.•...•..•••• 31

a. Preparing the source deck f;,r. batch processing ~ .-. • • • • • 31

b. Operator instructions batch processing•••••••••·•••••• 31

c. Punched card output-batch. processing•••••·••••,••••••• 32

III. 7 User ,proc.essing - Version Two .••••.•• ., • • • • . • • . . . • • . • . • • • • • • 33

a. Pr~paring the source deck for user processing •..•...••• 33

b. Operator instructions - user pr.ocessing ••·•••••••••••• 34

c., Trace feature - user processing•••••••••••••••·••••••• 36

III.8 Er~or messages .during compilation •••••••••••••••••••••••• 37
TABLE l •••·••• 37

III.9 Error messages during execution••··••••••••••••••••••••••• 38
Table 2. •••~••••••• 38

III.lo Sample pro~lems •··•·•••••••••••••••••••••••••••·•••••••••· 39

Sample p~oblem 6 • • • • • • • • • • • • 0 • • • • • • • • 44

IV KINGSTON FORI'RAN LANGUAGE SPECIFICATIONS • • • • • • • • • • • • 4S

IV.l Punching input source· program • • • • • • • • • . • • • • • 46

rv.2 The arithmetic statement • • • • • • • • • • • • • • • • • 46

a. Constants. • • • It • • • • • • • • • • • • •. • • • • • 46

b. Variables. • 46

c. Arithmetic expression • • • • • • • • • • • • • • • • • 49

IV • .3 Control statements • 49

a. Statement numbers• ' . ' • • • • • • • • • 49

b.- Address varl:ables ••••• • • • • • • • • •· • • • • • • • 49

c.- ·Computed GO TO statement • • • • • • • • • • ... • • • 50

d. IF·{SENSE·SWITCH) statement •• • • • • • • • • • • • • • 51

e. DO statement• • •• • • • • • • • • • • • • . .• • • • 51

f •. PAUSE statement • • • • • • • • " • • • • • • • • • • • 52

g. STOP statement, CALL EXIT, CALL SKIP • • • • • • • • • 52

h. END statement • • • • • • • • • • • • • . ·- • • • • • • 53

IV.4 ·INPUT/OUTPUT statements • • • • • • • • • • • • . . • • • • • 53

a. ·Input statements • • • • • • • • • • • • • • • • • • • 53

b. Array input • 54
-o. ,, Output statements , • • • • • • • • ,. • • • • • • • • • 55

d• Array output • 56

e. Maximum size of output records • • • • • • , • • • • • 56

IV.S ·The Format statement • • • • .. • • • • • • • • • • • • • • 56

a. Numeric conversion codes • • • • • • • • • • • • • • • 57

·b• • Alpharneric conversion codes··• . ~·-· .. .• ••• • • • • • • • 61

rv.6

c. Specifying bl&nk fields., • • • • • • o • • • • • • • • 63

d. Repeating specifications .••••••••••• • • • 63

e1 The use of the slash (/) • • • • • • • . • • • • • • • • •
T,ABLE 3 • e o •

KFII without FORMAT • • • • • • • • • • • • • • • • •

64
65

65

IVa7 Specification statements •••••••• • • • • • • • • o 65

COMMON statement • a • • • • • • • • • • • • • • • • •

bo EQUIVALENCE statement • • • • • • • • • ·" • • • • • • • •

66

66

c. Type statements • • • • q b • • • • • • • • • • • • • • 67

DATA statements • • • • . " • • , • a • o 67

IV .8 Subprograms • , • • • • . • • . • • • • • • • • • • , • • • 69

a. Arithmetic statement function ••••••••••• o • 70

bo FUNCTION subprogram• o o • • • • • • • • • • Q • • • • 71

c. SUBROUTINE subprogram ••••••••• • • • • • • • o 74

IV.9 Subprograms provided by FORI'RAN. • • • • • • • • • • • o o 76

ao Mathematical subroutines • o • • • • o • • • • • • 0
• 76

TABLE 4 • • • , • • • • • • • • • • • • • • • • • • • o 76

IV.1O Operating instructions, control cards. • • • • • • ~ • 0 0

ao Required control cards • • • • ■ 0 • • • • • • • • • 0

80

Bo

b. Optional control cards ••• o •••• o •• , • • • o 81

IVoll Operating instructions, automatic console typewriter
output during program compilation• • • • • , • , • • • • 0 83

IV&12 Operating instructions, error messages during compilation• 84
TABLE 5 o • • • • • • • , • • • • • , • • " • • • • • • • o 85

IV.13 Operating instructions, error messages during object
program execution, ~ ••••.•••• , •• • ••• • • • 84
TABLE 6 , , ,. • • • • • , • • • . • . • • • • • • , , , • • 9.3
TABLE 7 o • • • • • • ,. • • • • • • • • • • • • • • • • • o 94

V

VI

IVol4 Sample problems • 95

Sample problem 7 • • • • • 0 • • • • • • • • • • • • • • • 95

Sample problem 8 • 95

Sample problem 9 • • • • • • • • • • .. • • • • • • 0 • • • 98

Sample problem 10 • • • • • • • • • • • • • • • • I • • • • 100

Sample problem 11. 0 • • • • ~ ♦·, • I.•• • • • . '.,, . ·• .. 101

Sample problem 12 • ~ • • • • • • • • • • ~ • • • • • • • • 102

IBM FOffi'R~N II • • • • • • • • • • • ••••••••••••••• 103

V,l Varying the word length (number of significant digits
stored in the machine) ••• o •••••••• & •••••• 103

v.2 Library functions added to the IBM FII compiler ••• • • • 104

V ,3 Instructions which use the 1311 disk for storage of data • 104

DEFINE DISK statement, • • • • • • • • • • • • • • • • 104

b. Assigning numbers to disk sectors •• o • o • • • • • • 105

c. RECO!D statement •••••••••••••••• • • o 106

FETCH statement. • • • • • • • • • • • • • • • • • 106

e. FIND statement • • • • • • • ,, • • • .• • • • • • • • • 107

v.4 Operating instructions, Monitor Control cards. • • a • • o 107

V.5 Sample problems. •

• • Sample problem 13

Sample problem 14.
• • • • • • • • • • • • • • • • • • •

• • • • • 0 • • • • • • • • " . . • • •

OTHER 1620 PROGRAMS AVAILABLE. • • • • • • • • • • • • • • • • •

vr.1 AFIT Fortran •

108

108

109

111

VIa2 SPS (Symbolic Programming System) • • • • • •• • • • • • • lll

VII

VI,,,J Programs written by the NCE Computing Center staff and
stored on the 1311 disk a •. • • • • • • • • • = • • • • • 112

112

VI.4

Butler •• .,. •••• • • • • • • • • -
b~ Equivalence table description •••• • • •••••.• , 112

c,. Programs written by the NCE Computing Center staff and
stored on punched cards • • • • • • • • • • • • • • • • ll2

Library of 1620 programs •.. • • • • • 0 . . • • • • 113

a., Programs stored on the 1311 disk ••••••••• • • 113

b. How to clear memory (Model I)• ••.••••••••• 115

c • Programs stored on punched cards or tape • o • • • • " 115

PUNCHED CARD EQUIPMENT • • • • • • • • • • " . . • • 121

VII.l Card punch (Model 026) • • • • •• • • • •••• • • , • • 121

VII.2 Printer (IBM Accounting Machine) •• • • ••• o 123

VII.,.3 Reproducer (Model 519) ••••• " ••••••••••• ~ 123

VII.4 Sorter (Model 082) Q • ,. • 4 • •••••••• o •• • • • 125

vrr.5

APPENDIX

Character coding on cards • . •· ' 125

A, Notes on the storage of integer and real numbers ...•....... 126

B. Notes on the use of mark sense cards •••••·••••••·•·•··•••• 127

C. Notes on Model II-batch processing•......••. 128

INDEX TO ACCEPTABLE FORTRAN STATEMENTS•................. 130

INTRODUCTION

The NCE Computing Center Handbook is intended to provide users of
the Computing Center with general information about the various 1620
programming procedures. The Handbook discusses in detail the two versions
of Fortran in common use at the Center: Load and Go, (called Land G) for
the Model I 1620, and Kingston Fortran, (called KFII) for the Model II 1620.
Some information is also included on other available programming systems.

Section II lists definitions for those elements of the Fortran
language which are common to the Fortran systems discussed in the Handbook.

Section III lists those Fortran language specifications which apply
specifically to the Load and Go system. Section III also describes in
detail operating instruction for using the NCE Load and Go compiler. The
compiler, punched on cards, is available in the Computer room. The card
deck containing the compiler will usually be found in a box on top of the
1620 Model I card reader.

Section IV lists those Fortran language specifications which apply
specifically to the Kingston Fortran II system. A Kingston Fortran II
compiler and an IBM Fortran II Compiler are available on the 1311 disk of
the 1620 Model II. Section IV notes operating instructions for using the
KFII compiler. Section V notes operating instructions for using the IBr1
Fortran II compiler. Section V also lists those IBM Fortran II (called
IBM FII) language instructions which provide for operations not permitted
by the KFII compiler. Additional IBM Fortran II language specifications
are discussed fully in the IB111620 Fortran Manual (#C26-5619).

Section VI briefly describes other systems which may be used on
either the 1620 J1odel I or II. Section VI also lists the library programs
available at the Center for use with either the 1620 i1odel I or II. The
programs are stored either on the 1311 disk, on punch cards, or on paper
tape.

Section VII consists of instructions for using the other equipment
in the Center. Included are instructions for using the card punches, the
reproducer, the printer and the sorter.

The first section of the Handbook describes the equipment available
at the Center and the rules for using the equipment. Users please note
the procedures for applying for problem numbers (Section I.2), for using
the IN-OUT boxes (Section I.4c) and for signing the Time Sheet when operat
ing the computer (Section I.4).

The Handbook can be used in a loose-leaf binder and is designed so
that pages may be removed for use at the machines. The Handbook will also
be kept up to date with the printing of revised pages. The revised pages
will be numbered by section and page and should be inserted at the appropriate
location.

(

1

I NCE COMPUTING CENTER I.l

I.l Equipment available

The Computing Cebter at NCE has available for use two analog
computers and two digital computers. The analog computers are PACE TR-10
and PACE TR-15 computers manufactured by Electronic Associates, Inc. They
may be connected together for use as one larger computer. An associated
plotter and oscilloscope are available. They are best ad~pted to solving
small systems of ordinary differential equations. The IBM 1620 computer
is a general-purpose computer capable of solving a variety of numerical
and logical problems. The 1620 Model I has a 20,000 digit core storage•
capacity. The 1620 Model II has a 40,000 digit core storage. ~odol II users
m.ay; uae·::l:.wor·l.311 disks which prov1.d:.c • nuxaliary,- . .s.tblt'ngtL.f:or~ 4 million digits ••

Input to either 1620 is via punched cards .:or console typewriter.
Output from the 1620 Model I is punched into cards (which can be printed
on an off-line device) or typed by the console typewriter. Output from
the 1620.Model II may be printed by a 1443 on-line printer at the rate
of 240 lines a minute, or punched into cards (which can be printed on an
off-line device) or typed on the console typewriter. Card punches are
available at the Center. Card punches and other card-handling off-line
machines are discussed in Section VI. Paper tape is also available on
the 1620 Model II for input-output in special applications.

This Handbook deals primarily with the 1620. Information about the
analog computers may be obtained at the Center. The Center library has
several copies of the Handbook of Analog Computation published by Electronic
Associates, Inc., Long Branch, New Jersey. (Publ. No. L 800 0001 OA.)

I.2 Applying for use of the 1620 computer I.2

The computers and their adjunct equipment at the Center are available
at NCE for use by classes, s.tudent projects, student theses, and student
and staff research.

The equipment is available for unsponsored and sponsored research at
the charges discussed below. A staff member wishing to use the computer
for research should consult with the Data Processing Manager, Mr. Alexander
Altieri. If the research is not funded, then the staff member should
first see Dean Bedrosian to find out if college funds are available. If
they are not, it still may be possible to obtain some free time. Instructors
planning to use the computer in their classes should let the Computing
Center know at the beginning of the semester how many computer hours they
plan to use and what specific times they would like to reserve. Forms for
this are obtainable at the Center.

2

A certain amount of time is also available for use by other· educational I.2
institutions and for commercial applications. Those wishing to use the
services of the Center should call the Computing Center i'1A 4-2424, Ext. 217,
and consult with the Data Processing Manager or the Secretary.

All individuals wishing to use a computer must first fill out an
application form, available at the Center, and receive a problem number.
Problem numbers must also be assigned to each class section w:1.shing to use
the Computing Center. Problem numbers are assigned by .the Secretary at
the Center, Mrs. de la Vega, upon receipt of the application form. A sample
application form is shown on page 4.

I.3 Charges for computer time (all figures quoted are· subject to change)

Computer time is provided free ·of charge for class use and for unspon
sored research on both the undergraduate and graduate levels. Unsponsored
research, either by students or faculty, must be approved by Dean Bedrosian
unless the work is -in connection with a student project or thesis. The
general laboratory fee paid by all students includes the use of the computer
for approved projects. The fee paid by special students for courses using
the computer also covers the computer charge.

N. C .E. CO· IPUTING CENTER

SCHEDULE OF CHARGES

(Effective June ·1966)

1620 Model I with 20 K Memory

6ommercial or Industrial Users
Sponsored Research··•••·•••·•••••·•····•··••·•••

Other Educational Institutions ·•······•••·•···••

Per Hour

$,30.00

15.00

15.00/Negotiated

I• .3

1620 Model II with 40 K Memory,_ two_ Disk .Drives (2 .rdlli-oll. digits each) and 1143 On.-
-- - Line Printer

Commercial or Industrial Users·•••····•······•·•

Sponsored Research ·••...•..........

Other Educational Institutions••··•·•·••••·•••·•

65.00

35.00

35.00/Negotiated

Per Hour

407 Printer ,, 1.00

519 Reproducing l'1achine with Mark Sensing • • • . • • • • . 3.00

082 Sorter ..
Services

Keypunching (excluding cards which are $1/thousand).

Computer Operation••··••••••••••••·•·••••••··••••·•

Progra.rnrn:ing •••••••••.••••••.•••..•••••••••••• • • • • • •

Problem Analysis

Minimum Monthly Charges:: $10.00

I.4 Scheduling computer time

2.00

4,00

5.oo

10.00

15.00

The Computing Center is normally open 8 A.M. - 10 P.M. weekdays.
Special arrangements can be made with the Computing Center Secretary for
computing time during the evening (if the time is not pre~empted by class
use) or on Saturdays.

Staff members who have obtained problem numbers and wish to operate
the computer themselves may schedule time with the Computing Center Secretary.
A schedule of computer time for the week will be post4d on the bulletin
board in the Center; it should be consulted by all users,

It is required that all individuals operating a computer sign in
and out on a time sheet, available at the computer.

I.4a Class use of computer time

Instructors wishing to schedule time on the computer for their classes
should consult the Computing Center Staff at the beginning of the semester.
Each class must be assigned a problem number. See Section I.2 Applying for
the use of the computer.

I,4b Student operation of the 1620 Model I

Students may operate the 1620 rlodel I during periods scheduled for
student useo Runs of up to five minutes duration only can be run if others
are waiting. Otherwise up to 15 minute runs will be permitted. A student

3

I.3

I.4

L,4a

I.4b

Name

Address

4
COAPUTING CErnER

NEhlARK COLLEGE OF ENGINEERING

Application for Problem Number

Telephone Number -----------
Date

Staff Member Department Telephone Ext. ---
Type of Use: □ Class Use Number of Students -----

Time Blocks

[J Unsponsored Research

[] Sponsored Research Account Number ------
,--·· __ I Other

Student Year Department --------
Type of Use: □ Thesis Subject

LJ Computer Education

Other

OUTSIDE U'iERS

Affiliation -----------------------------
Problem or program title ----------------------

Problem Number Assigned -------- Approved by -------------

s

may sign up for this time by writing his name on the bottom of the list I.4
provided daily on the computing center bulletin board. After running he
should cross his name off, but he can sign up again immediately (on the
bottom!) of the list. No problem number is required for this computer
time.

Another block of student time will be scheduled at 6 - 7 P.M. every
day for the benefit of evening students who will have priority at this time.

I.S IN-OUT boxes

Students may not operate the 1620 Model II unless an instructor or
Center Staff member is present at the machine~ Center staff members will
process source decks prepared by students and staff members for the 1620
Model II. NCE staff members who 1-mu.ld· like their programs 'batch processed
br,Computing Center staff members should. see ·Mr. Altieri· at the Center
offi~e. Students, who have prepared s.ource decks· for. Model II batch
pr(?c9ssing should leave their decks· in ·a 'file box marked •1-rN...-1'1odel II"'
located in the preparation room. Xhe face of the first ca-rd should be
clearly marked with the name of the user and the initihls '!F.C,.U The·

I.5

back of the last card should be marked 111.c. 11 • The programs -will .be·
processed on a first come first served. basis. and the . sour.ce de.ck.s .and rall
pri~ted output will be placed .in. the IJ.OUT-Model II" file. The decks should
include all necessary control cards. (See Appendix "Model II-batch processing")

I.6 Punched cards I.6

Programmers using the Center must do their own card punching. Blank
cards for punching are available at the bookstore at a cost of $2.00 a box.

Programmers may also consider using mark sensing which is a method
for marking the face of the cards with a special pencil. Fortran cards
printed for mark sensing are also available at the bookstore. The marked
cards are made into punched cards by processing them.through the 519 Repro
ducing Punch. A Computing Center staff member will process mark sensed
decks which are placed in the box marked IN on the 519. See Appendix
"Use of Mark Sense Cards" for details on staff processing of mark sense cards ..
Card punching and mark sensing are also discussed in Section VII.

Room for card storage at the Center is limited, but cardboard boxes
for storing programs will be provided for active research projects, and
for storing programs for any class section using the computer.

Individuals prone to carry small program decks about with them should
be very careful not to dent the card edges; cards with very minor dents
often will not be read by the equipment. The Center provides stiff protect
ing covers which should always be used to protect.program decks that are
not stored in boxes or card.storage dra.wers.

6.

Fig. 1.

Source decks prepared for batch processing on the 1620 Model II.

I

(
I.7 References, and manuals

The following IBM manuals, which are available at the NCE bookstore,
are particularly helpful in programming the 1620 Nodel I and II:

IBM 1620 Data Processing System
• • • • • • • • • • • • • • • e • ll e • •

No. A26-4500
IBiV! 1620 1710 Symbolic Programming Systems No. C26-6$00
IBM 1620 FORTRAN No. C26-5619
IBM 1620 Monitor II System••••••••••·••••••••••••••• No. C26-5774-0
IB1•1 1620 Central Processing Unit, "i1odel 2 ••••••••• 0 • No. A26-5781-0

A small collection of books on programming, periodicals on data
processing, and a set of 1620 library programs are available at the Center
for use as reference materials. The library programs may be borrowed for
short periods such as overnight or weekends. The main library has many
books on programming, computers, and numerical analysis.

I.8 Staff --
Director Dr. Frederick G. Lehman

Associate Director•. Dr. Phyllis Fox

Data Processing Manager Mr . Alexander Altieri

Graduate Assistants Mr. Young D. Kim
Mr. Hubbard Seward

Undergraduate Assistants (Listed on the Center
bulletin board)

7

I.7

I.8

Computing Center Secretary .•.•.•.... Mrs. Hortensia de la Vega

Programmer/Systems Analyst Mr. Larry Arakaki
I.9 Courses in programming

In addition to the courses related to computing and data processing
in the regular curriculum, the Computing Center provides e non-credit six
week course in programming which is held each semester starting about three
weeks after the start of the semester. There is a $15 charge to help cover
the cost of the manuals which are provided and the time used on the computer.
The course involves about an hour of letture a week supplemented by individual
practice in programming and operating the computer.

There is also a short course in Fortran,Programming given under the
direction of the Special Courses and Continuing Education Division which
is held on the evenings during the fall, spring, and summer sessions~ For
further information, please contact Mr. Paul Burns, Ext. 330.

I.9

,

II BASIC ELEMENTS OF TlfE FORTRAN LANGUAGE

II.l Source program and object program

A source program is a series of statements written in the Fortran

9

II

II.l

language. The source statements are analyzed by the Fortran compiler, or processor,
which then generates machine language instructions. The machine language
instructions, produced by the Fortran compiler, comprise the object pro-
gram. During execution of the object program, the computer uses data
supplied by the programmer to execute the arithmetic and logical operat-
ions required by the problem.

Fortran source statements can be grouped into 5 categories:

1. Arithmetic statements which define the calculations to be performed.
Arithmetic statements include oper.a:tors., variables, constants, pa1'9.nthe sis and
functions.

Examples:
A= 4. - B + 6.-lt-C*(D+E)
ROOT= (-B + (B➔<B - 4.*A*C)~.5)/(2.*LOG(A))

2. Replacement statements which cause the item to the left of the equal
sign to be given the same value as the item to the right. All
arithmetic statements are also replacement statements.

Examples:
A = B
A = 4.2

3. Control statements which determine the sequence of execution of the
object program instructions,

4. Input/output statements which transmit information between the computer
and the input/output devices such as the console typewriters, the card
read-punch, the paper tape deyice.

5. Specification statements which supply information required by the processor
to allocate locations in storage for certain variables and/or arrays.
They may also enable the user to control the alloca~ion of storage.

Fortran compilers may also provide for various types of subprograms.

(See Land G:
(See KFII:

* III.Sa)
IV .8)

➔(Reference to relevant material in other sections will be indicated
in parentheses of this sort, This one indicates for example that Section III.Sa
contains more on subprograms in Load and Go.

10
Example of a source program:

Problem to be solved: Sum the integers from 1 to 10000

Statement Number Source Statement Comment: Type of

3

6
10

SUM= O.O
A = 1.0
SUM"" A + SUM
A = A + 1.
IF (A-1000.) 3,3,6
PUNCH 10, SUM
FORMAT (F8o2)
STOP
END

Statement

Replacement statement
Replacement statement
Arithmetic statement
Arithmetic statement
Control statement
Input/output statement
Input/output statement
Control statement
Control statement

Instruction for punching a source deck are given in the following sections:

(L and G: III.l)
(KFII: IV .1)

II.2a Constants

II.2

II.2a

Integer and real constants may be used j_n a source program written for
either the Load and Go Compiler or the Kingston Fortran II Compiler. Hollerith
constants may only be used in a source program written for the KFII compiler.

(See KFII: IV.2a)

Integer constants - An integer constant is a number written without a
decimal point.

Example:
I~ 678 (678 is a valid integer constant)
K = I - 23 (23 is a valid integer constant)

The magnitude of integer constants depends on the compiler.

(See Land G:
(See KFII:

III.2a)
IV 0 2a)

Real constants - A real constant is number written with a decimal point and
consisting of 1-8 significant decimal digits.

Examples:
Valid real constant

1.0099999
234,.

Invalid real constant

234

The real constant 123456789.1 is accepted by the Load and Go and KFII
Fortran processor but it is stored as 12345678., (See Appendix "Storage cf
integer and real nurnbersi•)

ll

A real constant may be followed by a decimal exponent written as the letter
E followed by a one-or two-digit integer constant indicating the appropriate
power of lO.

Example:

500.0 may be written:
soo.o
5.E2
5.0E2
5o0E02
5.0E+02

50.0EOJ..

(5.,E2 is a valid real constant)

.5 may be written:
.5
5.0E-1
5.E-1
.05El

The magnitude of a nonzero real constant must be such that:

l.O*lO -.5:l ~ constant =-9.9999999*10+ 4B

IBM Fortr~n II allows for variation in the number of significant
digits permitted for real and integer constants.

(See IBM FII: V.l)

II .2b Variables

A Fortran variable is a symbol which represents a quantity that may
assume different values. The value of a variable may change either for
different executions of a program or at different stages within the program.

Example:

Variable names;

C = 5.0 + D C and Dare variables. The value of D must
be determined by some previous statement
and may change from time to time. The value
of C varies whenever this computation is
performed with a new value for D.

The number of alphameric (numeric and alphabetic) characters allowed
in a variable name depends on which Fortran Compiler is used.

(See Land G:
(See KFII:

The first character in a name must be alphabetic. Special characters
are not permitted.

Variable types:

II.2a

II.2b

A variable may represent either an integer or a real number (i.e. a
number containing a decimal point). See the definition above in Section II.2a

The type of a variable, that is, whether it is integer or real, can
be specified implicitly as follows:

1. If the first character of the variable name is I, J, K, L, M, or N
then the variable is an integer variable.

2. If the first character of the name is not I, J, K, L, M, or N, then
the variable is a real variable.

Example:

l2

II.2b

INT= LEMMA+ NUM
X = Y .. ALPHA

(These variables represent integers)
(These variables represent real numbers)

Explicit specification of variable types is only allowed in KFII.

(See KFII: IV.2b)

Subscripted variables:

A subscripted variable consists of a variable name followed by a pair
of parenth~ses enclosing subscripts separated by commas. The number of sub~
scripts allowed depends on the Fortran Compiler.

(S0e L and G:
(See KFII:

III.2b)
IV.2b)

The subscripts specify the position of the variable in an array.
An array is a group of quantities arranged in order.

Examp~:
Let A be an array consisting of the quantities, 700.4,
.34, 532.99, then

A(l) = 700.4
A(2) = .,34
A(J) = 532-99

An array may be ffiulti-dimensional. The number of dimensions allowed
in the array depends on the number of subscripts permitted by the compiler.

Example:
A two-dimensional array M may be a 2 by 3 table of
integers with the following:

M(l,l) ""31
M(l,2) = 6
M(l,3) = 17

M(2,l) = -4
M(2.,2) = 89
M(2.,3) = -11

(

II.2c Arithmetic operation symbols

The arithmetic operation symbols:+,~,*, I,* denote addition,
subtraction, multiplication, division, and exponentiation, respectively,

II.2d Arithmetic expressions

An arithmetic expression is usually a combination of constants,
subscripted or nonsubscripted variables, function names, (see subprograms)
and arithmetic operation symbols.

General Rules for Forming Expressions:

(See Land G: III.2c)
(See KFII: IV.2c)
(for specific rules)

1. The variables and constants in an arithmetic expression must be of
the same type with the exception that in exponentiation a real va
riable or constant may have an integer exponent.

2. Any expression may be enclosed in parentheses.

3. All operation symbols must be explicitly present.

4. No two operators may appear in sequence. (Note exception: Load and Go
use of the minus sign. See Land G: III.2c)

5. Hierarchy of operations~ Parentheses may be used in expressions, as

13

II.2e

II.2d

in algebra, to specify the order in which operations are to be computed.
Where parentheses are omitted, the order is understood to be as follows:

a) Subscript evaluation

b) Subscripting

c) Argument evaluation, Function evaluation

d) Exponentiation (-!Pk)

e) Multiplication and Division(* and/)

f) Addition and Subtraction(+ and-)

Example:
A+ B/C - D-¾-¾-E*F - G is evaluated as A+ (B/C) - (DE*F) - G

6. An expression is scanned from left to right, and no operation is
completed if there is a possibility of one of higher hierarchy first.

7. If operations fall within the same hierarchy rank, and parentheses II.2d
are not used to indicate which operations are performed first, the
following rules apply:

a)

b)

c)

d)

A/B/C is always compiled (A/B)/C

A*B/D~ is always compiled as (A*(B/D)-¾-C)

A~B~ is not acceptable, parentheses must be provided.

A~-B is always compiled as (A)-B
E-B➔~ is always compiled as E-(BC)
E = -A**B, the order of compilation depends upon the compiler.

(See Land G:
(See KFII:

III.2c)
IV.2c)

Note that the order of compilation discussed above can be important from the
point of view of round-off error. (A/B)/C may give a different answer then
A/(B/C), especially, if either B or Care small.

II.2e Replacement statements

In evaluating an arithmetic statement the value of the expression to
the right of the equal sign is determined and that value is assigned to the
variable to the left of the equal sign. If the result of the expression
evaluation is not of the same type as the variable name to the left, the
result is converted before assigned.

Example:
I= B + 4. - (C-D)~E

X "'NUM + L - 1

A.,. A+ 1.

Evaluate B + 4.-(C-D)~.
Truncate the result to
convert it to an integer.
Assign it to I.

Evaluate NUM+L-1.
Convert the result to a
real (decimal) number.
Assign it to X.

A valid replacement statement.
The value assigned to A is
increased by 1.

II.2e

I = J A simple replacement statement.
Value of J assigned to I.

Computations involving real variables are truncated (not rounded) to
8 significant digits. However, a subroutine which will round arithmetic
computations is available to users of the IBM FII compiler.

(See IBM FII: V.2)

II.3 Control statements

Normally Fortran statements are executed sequentially. However, it
is often undesirable to proceed with each statement in this manner. Control
statements alter the sequence of execution of the object program instructions.

A statement number must be assigned to each statement referenced in
a program. Statement numbers must be entirely numeric. The number of digits
allowed in a statement number depends upon the compiler.

{See Land G: III.3a)
(See KFII: IV,3a)

KFII also provides for address variables which can be used to reference
statements.

II.3a Unconditional GO TO statement

General form:

GO TO xxxx

Where: xxxx is a statement number

Examples:

(See KFII: IV .Jb)

GO TO 25 Control is transferred to the statement with
number 25.

II.Jb Computed GO TO statement

General form:

Where: x1, ~, x3 , ••• ~ are statement numbers, i is an integer constant or
integer expression depending on the compiler used.

(See Land G:
(See KFII:

III.Jb)
IV.Jc)

This statement causes control to be transferred to statement x1, ½, or
Xn depending on whether the current value of i is 1, 2, or n.

II.2e

II.3

II.Ja

II.Jb

Example:
GO TO (10, 40, SO), I

When I= 2 control is transferred to statement number 40.

IIe3c Arithmetic IF statement

General form:

IF (a) n1, n2, n
3

Where: a is an arithmetic expression and n1, n2, n3, are statement numbers.

This statement causes control to be transferred to statement n1, n2,
or n3, if the value of the expression· (a) is less than, equal to, or greater
than zero, respectively$

II,.Jd IF (SENSE SWITCH i) n
1

J....!1
2

Where: i is an integer constant or integer expression depending on which
compiler is used and n1, n2, are statement numbers.

(See L and G:
(See KFII:

III.Jc)
IVoJd)

This statement causes control to be transferred to the statement n1 if the sense switch is on, or to n
2

if the sense switch is off. i determines
which machine indicator is to be interrogated. Any of the machine indicat
ors can be interrogated by the IF (SENSE SWITCH) statement. However not all
machine indicators are relevant to the computations performed by the object
program.

II.Je DO statement

General form: End of Range index initial
value

test increment
value

DO n i "' ml' m2 , m3
The form (integer, integer expression) that the index (i), initial

value (m1), test value(~), and increment (m3), may take depends on which
compiler is used.

(See Land G:
(See KFII:

IlI.3d)
IV.Je)

]6

II.3b

IIoJC

The DO statement is a command to execute r&paated1y the statements
that follow, up to and including the statement n. The first time the
statements are executed, ! has the value ~1,-and each succeeding time
! is incremented by the value of ~1. After ~he statements have been
executed with i equal to the hignest value that does not exceed m2_in
the direction of incrementation, control passes to the statement f~llowing
statement number n. This is called a normal exit from the DO statement. -

The range is the series of statements to be executed repeatedly.
It consists of all statements following the DO, up to and including
statement n. The range can consist of any number of statements.

The index is an integer variable that is incremented by the value
m
01

for each execution of the range of statements. Throughout the range
r the DO, the index is available for use either as a subscript or as an

ordinary integer variable. However, the index should not be changed by a
statement within the range of the DO. (See KFII IV for exception). Upon
completion of the DO, the index must be redefined before being used again.
When transferring out of the range of a DO, the index is available for
use and is equal to the last value it attained.

The initial value is the value of the index for the first execution
of the range.

The test value is the value that the index must not exceed in the
direction of increriieiit.a.tion. After the range has been executed with the
highest value of the index that does not exceed the test value, the DO is
completed and the program continues with the first executable statement
follow:i.ng the range.

The increment is the amount by which the value of the index will
be changed after each execution of the range. The increment may be omitted,
in which case, it is assumed to be 1.

Example:
The statement DO 10 I.= 1,5,2

will cause the range of the DO to be executed with I taking on the success
ive values l, J, and 5.

Restrictions on statements in the range of a DO

The restrictions on statements in the range of a DO are as follows:

(1) Within the range of a DO may be other DOs. When this is so, all
statements in the range of the inner DO must be in the range of the
outer DO.

II.Je

A set of DOs satisfying this rule is called a nest of DOs. For example,
the following config~ration is permitted (brackets are used to indicate
the range of the DOsJ:

r -··--

C
r-

L
I
I

The following configuration.is not permitted:

···-+----

(2) Transfer of control from inside the range of a DO to outside its range
is permitted at any time. However, a transfer is not permitted into
the range of a DO statement from outside its range.

(3) The range of a DO cannot end with a GO TO, IF, FORMAT, STOP, RETURN,
or another DO statement.

18

II.Je

(

(

II.3f Continue statement

General form:

CONTINUE

CONTINUE is a dummy statement that does not produce any executable
instructions. It is used to furnish a reference point which must be assigned
a statement number. It is required if the last statement of a DO would
otherwise be a transfer statement.

II.Jg Pause statement

General form:

PAUSE

The PAUSE statement causes the program to halt. Pushing START causes
the program to resume execution starting at the next statement following the
PAUSE statement.

II~3h STOP, END, and CALL EXIT statements

The use of the STOP, END and CALL EXIT statement depends on which
compiler is used.

II.4 Input/output statements

(See L and G:
(See KFII:

III.Je)
IV.Jg)

II.4a Aeneral form for input statements for Fortran without Format

READ, list

ACCEPI', list

ACCEPI' TAPE, list

(punched card input)

(console typewriter)

(paper tape)

The list specifies the number of items to be read and the locations
into which the items are to be placed.

Examples:
READ, A, CAT, DOG

ACCEPI', X

read from a punched card three
numerical values to be assigned
to the variables A, CAT and DOG
respectively

Expect a numerical value to be
typed in and become the value for X.

1.9

II.3f

IIvJg

II.Jh

II.4

II.4a

20

II&4b General form for input statements for Fortran with Format

READ n, list

ACCEPI' n, list

ACCEPT TAPE n, list

(punched card input)

(console typewriter)

(paper tape)

n references the Format statement numbe-r

(See KFII: IV.4a)
(Fortran with Format)

II.4c General form for output statements for Fortran without Format

PUNCH, list (punched card output)

The list specifies what items are to be outputted on cards. When
the item in a list is a variable name, the last value assigned to the
variable name will be punched on the card. All items in the list must be
variable names, not numeric values.

Example:
PUNCH, X, Y, N If the machine assigned X = 3.4,

Y = 100.7, and N=2,
the numbers 3.4, 100.7 and 2 will be outputted on a card.

TYPE, list or PRINT, list may be used to put output on the console
typewriter, depending on the compiler used.

(See Land G:
(See KFII:

III.4)
rv.6)

II.4d General form for output statement for Fortran with Format

(card output) PUNCH n, list

TYPE n, list

PRINT n, list

(output on console typewriter)

(output on 1443 printer)

II.5 Specification statements

(See KFII: IV.4c)
(Fortran with Format)

II.4c

II.4d

II.5

II.Sa DIMBNSION statement

General form:

Where: VA, VB, are variable names and i 1, i 2, may be one or more unsigned
integer constants separated by commas.

The DIMENSION statement provides the information necessary to
allocate storage for arrays in the object program.

Example:

DIMENSION A (10), B(5,15)

Space will be set aside for 10 values of A,
and 75 values of B.

Dimension statements must be written for each subscripted variable
(unless using other specification statements permit~ed by KFII) and must
appear before the subscripted variable is mentioned.

II.Sb Other specification statements

Additional Specification statements permitted in KFII are discussed
in Section IV.7.

21

II.Sa

II.Sb

22

III NCE LOAD AND GO III

Introduction

The NCE Load and Go compiler, written by George Rumrill, Bruce Fowler,
and Hubbard Seward and revised by them in January 1965, allows 100 to 200 card
FORTRAN source programs to be both compiled and executed on the 1620 Model I
in a single continuous run. Furthermore, since the compiler stays in the memory,
a sequence of different programs can be run, one after the other. This method
of processing is well suited to processing student programs. The system cannot
be damaged by errors in programs. Many error checks are made, both during
compilation and execution. No format specifications are used. Output format
is determined by the type and range of the variable; input format is free form.
Features include; arithmetic and flow trace, double subscripting, computed GO TO
statements, limited Hollerith listing, and undefined variable detection.

Two versions of the Load and Go processor are available for student and
staff use. Version Three is designed for rapid batch processing and eliminates
the need for operator intervention during the processing of source programs.
All input and output is punched on cards. Statements which require operator
intervention, IF(SENSE SWITCH n) and PAUSE, are not recognized by the processor.
Version Three, batch processing, should prove adequate for most student programs
and its use should save considerable machine time during class laboratory hours.
The Computing Center will also schedule hours when a staff member will batch
process Load and Go programs placed in the IN box on top of the Model I. The
source decks and a 407 listing of all card output will be placed in the OUT box
at the end of the scheduled hour.

Version Two, which is designed for individual user console operation,
will also be available during hours scheduled for "hands-on" individual user
console operation. Input and output may be punched on cards or typed on the
console typewriter, the source program may include STOP, PAUSE, and IF(SENSE
SWITCH n) statements, and the user may exercise options which increase the
amount of core storage available for the user's program. (See operator
instructions, section III.?b.)

The Load and Go system is a variation of Fortran. Only those specificat
ions, which differ from the basic Fortran definitions discussed in Section II,
are listed in Section III.

III. NCE LOAD AND GO FORTRAN LANGUAGE SPECIFICATIONS

III.l Punching input source programs

23

1. The statements of the source program can be punched anywhere on the

III

III.l

first 72 columns of the card. Punching is free form; all blanks are
ignored (except in input data as described below). If a statement number
precedes the statement it can be punched starting at any column; spaces
between the statement number and the statement are not necessary.
Columns 73-80 are reserved for sequence numbers or other identification.

2. Comment cards are allowed and require a C in Column 1 followed by two
blanks.

3. Continuation of a statement to another card is not permitted.

III.2 Arithmetic statements

III.2a Constants

III.2

III.2a

Intbger Constants - The magnitude of an integer constant must not be greater
than 9999.

Example:

III .2b Variables

Variable names

Valid constants

99~9
0
-356

2

Invalid constants

10991
o.o

-356.o

The name of a variable may have no more than five characters.

Example:
NUMB, DAT15, INT, X, Y, FARAD

Subscripted variables

III.2b

1. A variable may have one or two subscripts. Thus one and two dimensional
arrays are permissible.

Example:
A(I), B(l,2)

2. Subscripts may consist of an integer constant, an integer variable,
or an integer variable plus or minus an integer constant.

24

III. 2b

Forms of subscripts:
i
i + C I

i - c·•
C

Where: i is an integer variable and c is an integer constant.

3. The additive integer constant., c I must not be larger than 49.

4. Subscripts whose value during execution becomes negative or zero, or whose
value exceeds the size of the DIMENSION statement, will result in ERROR
70. (See error messages, III.9)

Examples:
Valid Subscripting

A(IMAX-37)
I(J,MATH+l7)
Q(l24, LM-3)

III.2c Arithmetic expressions

Rules for forming arithmetic expressions

Invalid Subscripting

A(IMAX-50)
B(X,IMAX)
C(MATH+51,J)

III.2c

1. Minus sign: The operation symbols, (,*,l,-',H}, may be followed by a minus
sign and will be correctly compiled.

Example:
A-B*-C, A+B/-C, A-B-!H!--C are valid arithmetic expressions.

2. Exponentiation: A=-B➔8q: will be compiled as A=(-B)1 and calculated as
the product (-B) (-B) (-B) •........•

Example: When B= 2, I=3

A= (-2) 3 or (-2)(-2)(-2), Aa -8

A= -B-¾-¾C will be compiled as A=EXP(C*LOG (-B))

When (-B) is negative ERROR 62 will result. (See error messages, III.9)
When (-B) is negative the value of A is calculated as A= EXP(C*LOG(ABS(-B)))
during user processing.

Example: When B=2, C=3
A=EXP(3➔~LOG(ABS(-2))), A=8
ERROR 62 will be indicated

When B= -2, C=3
A= EXP(3*LOG(-(-2))), A= 8

During batch processing all execution errors result in the termination of
the program in error. Thus Error 62 will result in termination of program
execution during batch processing.

25

III.2c

A= X-B-ll-'JC will be compiled as A= X-(B~) and calculated as A= X-EXP
(C*LOG(B)).

J. Plus sign: A plus sign may not immediately follow an equal sign, left
parenthesis, or any arithmetic operator1

Example:
A=+B, IF(+2.l-A) 12,20,10 are invalid arithmetic expressions;

4. An integer variable or constant may never be given an exponent.

llI.3 Control statements III.3

III,3a Statement numbers

Statement numbers may be any one, two, three, or four digit integer.

III.Jb Computed GO TO statement

are statement numbers and i is a nonsubscripted
integer variable.

The comma before the i is required punctuation.

The statement may contain any number of statement numbers.

During execution, the index of a computed GO TO statement will be
checked to see if it is defined and if it is less than or equal to the
number of statement numbers listed in the source statement.

III.Jb

• Sample problem 5 at the end of Section III demonstrates how a computed
GO TO statement may be used as the return statement in a subprogram.

III.Jc IF (SENSE SWITCH n) statement

IF (SENSE SWITCH n) jl' j 2

Wheres n is any one or two digit integer constant

III.Jc

are statement numbers. Control is transferred to jl if sense
switch his on; control is transferred to j 2 if sense switch n is off.

26

III.Jc

The statement may be used to test the condition of any of the machine
indicators. Care should be exercised in using the IF(SENSE SWITCH) statement
to test the status of the arithmetic indicators since the operating subroutines
may leave the ibdicators in a position which does not correspond to the result
of the arithmetic calculation.

The IF(SENSE SWITCH) statement may be used to test the status of the
program switches 1, 2 and 3, and the last card indicator, switch 9. The program
switches are manually operated and should be set by the programmer prior to
the execution of the IF(SENSE SWITCH) statement. Insertion of a PAUSE state
ment before the IF(SENSE SWITCH) statement will give the operator time to set
the program switch. Switch 9, will automatically be set to the ON position when
the last data card has been read. The processor will turn switch 9 off at the
beginning of the execution of each program.

Example:
The last card indicator may be interrogated as follows:

IF(SENSE SWITCH 9) n1, n2

Control will be transferred to statement n1,if the last card
has been read.

The IF(SENSE SWITCH n) statement should not be included in a source deck
prepared for Version Three, batch processing. (See Section III.6a, Preparing
the source deck for batch processing)

III.3d DO statement III.3d

DO n i = rn1, ~, m3

Where: n is a statement number and i is a nonsubscripted integer (fixed-point)
variable.

rn1, m2, m3, are either integer constants .or noesubscripted integer
variables. If m3 is not stated·, it is taken to be 1. mi, m , m , may
be negative, zero, or positive but care should be taken when2neg~tive
or zero values are assigned to m1, m2J or m3. (Note that if during
execution the value of a subscript becomes negative or zero ERROR 70
will result, and execution will be terminated.)

No more than seven levels of nested DO-loops are permitted.

Sample problem 2 uses nested DO-loops for data input and output. (See
Section III.10)

27

III.Je

III.3e STOP and END statements

The END statement signals the processor to terminate compilation. Thus
it must always appear as the last statement in a source program. The STOP
statement need not appear in a program.

Th~ END statement is an executable statement and may have a statement
number.

The control exercised by the execution of the STOP and END statements
depends on whether the source program is compiled by Version two, individual
operator processing or Version three, batch processing. The execution of the
STOP or END statements results in transfer of control to the processor. During
batch processing, execution of the STOP or END statements results in auto-
matic compilation of the next source program in the batch. During user proces
sing, execution of the END statement results in a machine halt. A new source
program may then be compiled by pressing START. (See operator instructions,
user processing, Section III.7b) During user processing execution of the STOP
statement also results in a machine halt. The user's program may then be re
executed by pressing START.

III.4 Input-output statements

III.4a General rules for input-output statements without format

1. Card input and card output must be used for Version three, batch
processing. ACCEPT and PRINT statements will not be accepted by
Version three, batch processing; use READ and PUNCH.

2. A format statement number in an input-output statement is ignored.
A comma must be present if a list follows the input/output command.
Thus:

PRINT 3, A, B
PRINT, A, B
PRINT

III.4

III.4a

are valid. Format statements may be included in the source program but
will be ignored.

3. 11TYPE11 is not a valid statement (Use PRINT).

28

III.4a
4. Input-output statements without lists (with or without format

statement numbers) have the following effect:

a) PUNCH produces a blank card during execution
b) PRINT causes a carriage return during execution
c) READ and ACCEPT are compiled, but ignored during

execution

Note: Omit comma after PUNCH and PRINT if there is no list.

III.4b Rules for input data III.4b

1. To obtain a line or a card of alphameric output, a card or a typed
input record containing a Tor Pas a first character may be inserted
in the appropriate place or places in the input data. A READ state
ment, calling for data, will type or punch, respectively the contents
of the rest of the Tor P card (or record) before reading in the data
from the next card. All other data records must be entirely numeric.
See sample problem 1, Section III.10.

2. Input data can follow a free format on a card with spaces separating
each piece of data. All columns (1-80) will be read as data.

3. Commas can not be used to separate numbers.

4. Regardless of the mode specified in the input list, data may be in
any of the following forms:

2.0 2. +0.2El 2 .02E+02 +20000E-4

If no decimal is punched it is assumed to lie at the right-hand end of
the number. If a real number is entered when an integer number has been
called for, the four digits immediately before the decimal point will
be converted to an integer, and there will be no error indication. Thus

1.
-32S.E2

Converts to 1
Converts to -2500

5. Regardless of the number of input and output statements that are
executed, input data will be taken from one record (e.g. one card)
until:

a) That record is exhausted
b) A record mark is encountered
c) A change in the input device is required
d) The program is reinitialized

6. Blank records intermixed with the data or source statements are ignored.
This if the programmer wishes to read three numbers punched on three
cards the read statement can be written as:

Read, A,B,C
and the cards punched as:

Card 1. 234.5
Card 2, 0045.678
Card 3. 4567.9

29

III.4b

7. To input (or output) a one or two dimensional array a DO statement must
be used. I/0 statements with impiled DO statement are not allowed.
See sample problems 2 and 3 at the end of Section III.

8. Input data outside the allowed range (e.g. larger than 1049) will be
read incorrectly. No error indication is given.

III.4c Rules for output data

1. Output is put out five (or fewer, as required) items per typed line
or punched card. See output for sample problem 2.

2. Integer numbers will be in the format I5,11X. (where X indicates space)

3. Real numbers whose magnitude falls in the range (.1) to (99,999,999) will
be output in the format Fl6.d. (where d indicates a variable number
of decimals). Numbers whose magnitude falls outside this range will be
in the format El6,7.

4. Sequence numbers will not be punched on output cards.

S. For alphameric output see l. under Section III.4b.

III.5 Subprograms

III.5a Library subroutines

1. The following library subroutines are allowed with real arguments.
Note that the subroutines are to be considered as real functions
regardless of their letter.

Example:
Ya A+ LOG (B) is a valid arithmetic statement.

III.5

III,5a

2. The absolute value function is the only library subroutine which may
also use an integer argument.

The arithmetic expression containing an absolute value function
with an integer argument must be in the integer mode.

Example:
M Q J + ABS(K*L)

Subroutine Operation -ltSymbolic Name

Natural Logarithm log A LOG

Exponential e EXP

--Square root jA SQRT

Sine sin A SIN

Cosine cos A cos
Arc tangent tan- 1A ATAN

Absolute value /A/ ABS

30

III.Sa

The argument of the trigonometric functions (SIN,COS,ATAN) must be
expressed in radian measure.

*A terminal F may be added to function symbolic names. (LOG, EXPF, SQRTF etc.)

3. When a subroutine is given an impossible argument (e.g. SQRT of a
negative number) an error message is printed out but the computation
precedes. (See Section III.8 errors 61, 62, 65). The values used
for the functions in these cases are the following:

o. = X or o.o ~ X
-5; -o. o~cr o:·o -----y 9.9999999 E+48

LOG (o.o) -----~ o.o

LOG (X where X < 0) ---·-··--~ LOG (/X/)

SQRT (X where X <- 0) ·-----~ SQRT (/X/)

SIN (X where X?. l.E9 radians) ----·>1.,0

COS (X where X .. ::::.:;;l.E9 radians) ·--·-➔ 1.0

III.Sb Subprograms written by the programmer

The Load and Go processor does not provide special statements to
call subprograms. The programmer who wishes to use a subprogram must

III.5b
provide .for the entry to the subprogram, the tran·sfer of the argument to
the subprogram, and the return to the {Pain program. Sample problem 5
indicates how the programmer can use the computed GO TO statement to return
to the main program.

III.6 Batch processing instructions - Version Three III.6

III.6a Preparing the source deck for batch processing III.6a

l. The following Load and Go control card must be used to identify the
users source deck and to signal the processor that a new source deck
is submitted for batch processing. The Load and Go control card must
precede the first soUlI'ce statement.

Card col. l 2 3 ••••••••••40 ••••••••••• SO •••••••••••••••••••••••••·72
$ Name of user Problem number Optional user identification

Where: The$ is punched in column 1, the users name in columns 3-35, users
problem number in columns 40-48, and optional user identification in
columns 50-72.

2. The following statements will not be accepted by Version Three, batch
processing:

PAUSE.
ACCEPT, list
PRINT, list
IF (SENSE SWITCH n) j_p j2

3. Either the END or the STOP statement should be the last executable state
ments in a program. Execution of either the END or STOP statements will
cause the processor to compile the next program in the read hopper.

III.6b Operator instructions-batch processing III.6b

1. Load the processor, Version Three: (IF in memory go to 2.)

a. Put Load and Go processor - Version Three in read hopper followed
by the source decks to be run.

Press INSTANT STOP (on 1620)
RESET (on 1620)
LOAD (Yellow button on card reader)

b. Put blank cards in punch hopper

Press PUNCH START (on 1622)

32

c. When the processor has been loaded the typewriter should type
the following message:

READY FOR BATCH PROCESSING

a. Remove the processor deck from reader stacker and put away.

e. The "READER NO FEED" light remains on when two cards are left
in the read hopper.

Press READER START

2. If the processor is in memory:

III.6b

a. Put source decks in the read hopper and blank cards in the punch
hopper.

Press READER START
PUNCH START

(red bottom on card reader)
(green button on card reader)

b. The "READER NO FEED" light remains on when two cards are left
in the card reader.

Press READER START

During batch processing there should be no program halts, no need to
press START, no need to reinitialize or reload the processor,

NOTE: If the control card is incorrectly punched, the source deck following
the incorrect control card will not be compiled. Also note that any
execution error will cause termination of the program in error.

III.60 Punched card output - batch processing

All output including error messages is punched on cards. The first
card output contains the information punched on the users control card and
will identify all subsequent card output resulting from the compilation and
execution of the users program. Error messages will be punched as follows:

Card cols. l 2 3 4 5 6 7 ····•••·••··•••·••••••··•·•••••••·•···•••••••••••72
XX XX+ XX ERROR XX

Where: The 4 digit integer in columns 1-4 indicates the last statement number
encountered before the error. If the error is a compilation error the
2 digit integer in columns 6-7 indicates a count of the number of

33

additional cards from the indicated statement number up to the source
statements containing the error. The card count includes comment cards
but not blank source records.

If the error is an execution error the 2 digit integer in columns 6-7
indicates a count of the number of additional statements executed from
the indicated statement number up to the statement containing the
error. Note that the sequence in which statements are executed may
be very different from the sequence in which they are written in the
source program.. Thus if the numbered statement is part of a loop the
executed statements may not be those listed in the source ~rogram. as
directly below the numbered statement. Also note that during execution
the count includes only executable statements. ·;ll'hus blank records,
dimension, continue and comment statements·are not counted.

ERROR XX is the error code. Tables indicating the error code and the
appropriate error message will be found at the end of the chapter.
(See Sections IIT.8 and III.9)

The trace feature is not available during batch processing. The
user should insert PUNCH statements in the source program so that he
will have the information necessary to de-gug his program. when program.
execution does not result in satisfactory output.

Note that if the PUNCH statanent is placed within a DO loop, output
will include each value calculated during the loop. If the PUNCH
statement is placed outside the DO loop, output will include only the
last value calculated. (See sample problem 4, III.10)

The last card output signals the IBM 407 Printer to start a new page
(for the next program output) and is blank except for a Z punched in
card column 80.*

III.7a Prepa:rrl.ng the source deck for user processing

l. A Load and Go control card must not be used.

2. The following statements will be accepted by Version Two.

ACCEPT, list
PRINT, list
IF (SENSE SWITCH n) Jl, j2
PAUSE

III.7a

3. Execution of the END statement results in a machine halt. A new source
program. may be compiled by pressing START. Execution of the STOP state
ment also results in a machine halt. The user's program may be re
executed by pressing START.

~OTE SWITCH 3 on the IBM 407 must be set to the ON position when printing
output produced during batch processing on the Model I.

34

III,?b Operator instructions - user urocessing III.?b

Step l. Loading the processor

If the Load and Go processor is in memory, go to 2.
If Load and Go processor is not in memory proceed as follows:

a) Put Load and Go processor in card reader

Press INSTANT STOP
RESET
LOAD

{on 1620)
(on 1620)
(Yellow button on card reader)

b) Afte~ the deck has been read press START (1620). Follow
instructions typed on console typewriter as follows:

set program switches--normally all off. Special options:

Switch 1 ON

Switch 2 ON

to omit Trig Functions

to eliminate Flow Trace Feature

If the TRIG functions are omitted the area available for
storage of program and data will be enlarged by 1,040 digits.

If the FLOW TRACE is omitted, the stored program will be
shortened by 4 digits for each statement number. However,
when the FLOW TRACE is omitted there is no statement identi
fication of execution error messages.

Step 2. Compiling the source statements

a) Set switches for compilation--normally all off. Special options:

Switch l ON

Switch 2 ON

Switch 4

for typed input

will type out source program

to correct typed-in statements as indicated below

b) Entering the source statements punched on cards:

Press START
START

The console typewriter will type the message COMPILATION

Press
Press

35

READER START
READER START a~ain to read last two cards

III. 7b

If the console typew~iter does not type the message COMPILATION
the processor must be reinitialized before a new source
program will be compiled. (See f below., reinitialization.)

c) Entering the source statements from the typewriter:

Enter source st~ternents on the typewriter, each statement must
be terminated by pressing R/S Key. No record mark is required.

d) To correct typed input: (steps may be also followed to correct
typed data input during program execution.)

If R/S has already been pressed, it is too late. Otherwise:

Turn Switch 4 to alternate position
Depress R/S
Return Switch 4 to original position
Retype entire item
Depress R/S

The position of Switch 1 may be changed so that part of the
source program may be entered on cards and part on the type-
writer. •

e) Error messages are typed on the console typewriter and follow
the form indicated in Section III,6c.

f) Reinitialization - only needed when the typewriter did not
type C01'1PILATION af~er START was pressed twice.

Set Switch 3 OFF for compilation of a new program., ON for
eeexecution of previous program.

Press: INST. STOP
RESET
INSERT
RELEASE
START
START

Sense Switches 1 or 2 should be set to control input devices
and listing (See 2a., "Compiling the source statements")

Step 3.

36

Program execution

a) When the &ND statement is compiled, if no Error Messages have
been typed, program execution will begin.

b) Switches 1, 2 and 3 are available for use during program execution.
If the program requires that Switch 1, 2 or 3 be reset, it is
advisable to use a PAUSE statement before the first executable
statement in the program. The PAUSE will give the user time to
reset the switches.

c) Switch 4 is set ON to trace. Switch 4 is set ON to correct
errors in typed input as described in step 2b above.

d) The program execution may be stopped at any time by pressing
INSTANT STOP.

III.7c Trace feature - User processing III.7c

The object program may be traced at any time by turning Switch 4 ON
and running the program. The result of each arithmetic statement will then
be typed preceded by the work "TRACE". Normal output will not be inhibited.

Note that tracing is time-consuming and should be used sparingly in
pursuit of an elusive bug. The user should consider inserting PUNCH state
ments in the source program so that he will have the information necessary
to de-bug his program. (See sample problem 4, III.10)

Switch 4 may be turned ON or OFF at any time during the running of the
program, to cause only selected parts of the program to be traced. However,
unless care is exercised, it will be difficult to tell what part of the program
is being traced.

37
1e8 ERROR MESSAGES DURJNG COMPILATION

TABLE 1

COMPILATION ERROR CODES FOR N.C.Ee LOAD GOe CREVTSED>

ERROR 11
ERROR 12
ERROR 13
ERROR 14
ERROR 15

ERROR 20
ERROR 21
ERROR 22

ERROR 23
ERROP 24

U~ECOGNIZABLE STATEMENT, INCORRECT SPELLING• ETC•
MIXED MODE, OR MISSING RIGHT-PARENTHESIS IN tF STATEMENT
MISPLACED OR MISSING COMMA OR EQUAL SIGN
MISPLACED OR MISSING PARENTHESIS
MISPLACED OP MISS l NG VAR l ABLE OR OPE~AND •·· l')R

ILLEGAL SPEC/AL CHARACTER· SEQUeNCE

STATEMENT NUMBER USED MORE THAN ONCE
UNDEFINED STATEMENT NUMBER CALLED•••••
WRONG NUMBER OF PARAMcTERS ON A TRANSFE~ STATE~ENT, OR

INVALID INDEX ON COMPUTED GO TO STATEMENT•
CONSTANT IN UNACCEPTABLE POSITIO~• OR STATEMENT NO. IS ZERO
MISSING OR UNACCEPTABLE STATEMENT NUMBER OR ARRAY SIZE,

OR CONSTANT IS fN UNACC~PTA8LE FOPM•

ERROR 30 DTMENSIONED VARTABLE USED WITHOUT SUPSCPIPT,OR
SUBSCRlPTEO VARIABLE HA~ NOT BEF-N DIMENSIONED, OR
TNCOR~ECT FUNCTION NAME, OR

ERROR
ERROR

ERROR
ERQOR
ERROQ

ERROR

ERROR
ERROR
ERROR
ERROR

NOTE:

31
32

40
41
42

4::3

50
51
52
53

TRIG FUNCTJONS WERE ELIMIN~TEOe
SUBSCRIPT IN INCORRECT FORM OP MlSSJNG OPERATOR
FUNCTION NAME USED JN NON-~RITHMETTC STATEMENT

DO STATEMENT IS INCORRECTLY FORMED-,
DO LOOPS INCORRECTLY NESTED• OR ERROR IN LAST STATEMENT OF LOt
00 LOOP ENOS WITH AN IF,GO TO, COMPUTED GO TO, DOt

STOP, OR END STATE~ENT
MORE THAN SEVEN LEVELS OF DO LOOP NESTING ENCOUNTERED

VARIABLE NAME CONSISTS OF MORE T~AN FIVE CHARACTERS
RAISING FIXED POINT QUANTITY TO A POWEq
A**B**C, PARENTHESES MUST PE ADDED TO JNDICAT~ OROE~
SOURCE PROGRAM IS TOO LARGE TO COMPILE

ERRORS 21 and 41 can only be detected at the end of the comoilation process.
Thus when ERROR 41 occurs no sta~ement number will be typed out.

When ERROR 21 occurs the undefined statement number is ty~d out. No
indication is g1ven of the statement in which the undefined statement
number is referenced.

38

TABLE 2

EXECUTION ERROR CODES FOR NuCoEo LOAD AND GO <REVISED)

ERROR 60 DIVISION l::lY ZERO
RESULT 9o9999999E+48• OR 9999

ERROR 61 LOGCA) ------------- WITH A = 0
RESULT 000000000

ERROR 62 A**ij, LOG (A) g OR SQRTCA) WITH A NEGATIVE
RESULT FUNCTION OF AE::lS(A)

ERROR 63 CALCULATED cXPONENT GREATER THAN +49
RESULT 9o9999999E+48

ERROR 64 CALCULATED EXPONENT LESS THAN -50
RESULT 000000000

ERROR 65 SINCA>, COSCA> WITH A GREATER THAN l oE9 RADIANS
RESULT loOOOOCOO

* ERROR 70 SUBSCRIPT ON VARIA~LE EXCEEDS SIZE OF DIM~NSIONED ARRAY,
OR IS NOT POSITIVE NUMBER, OR THE INDEX OF A
COMPUTED GO TO IS OUT OF RANGE

*
*
**
**

ERROR 71
ERROR 72
ERROR 73
ERROR 74

UNDEFINED VARIABLE
UNACCEPTAl::lLE NUMBER IN INPUT DATA
EXECUTION HAS TAKEN TOO LONG,PROGRAM MAY bE IN A LOOP
PROGRAM CALLS FOR MORE DATA THAN INCLUDED WITH CARD DECK,OR

END STATEMENT IS MISSING, OR MORE THAN ONE CONTROL CARC

* IF ERRORS 7U, 71, OR 72 OCCUR DURING USER PROCE~SING, THE COMPUTER
WILL HALT" SET SWITCH 3 OFF AND PUSH START TO COMPILE A NEW ~OURCE
PROGRAMo PUSHING START WITH SWITCH 3 ON WILL CAUS~ THE REEXECUTION
OF THE PROGRAM WHICH CAU~ED THE ERRORv

** ERRORS 73 AND 74 ARE INDICATED ONLY DURING 8ATCH PROCESSINGo

A CHECK STOP MAY OCCUR IF THE SOURCE CARDS ARE PUNCHED WITH INVALID
CHARACTERSo REINITIALIZATION WILL bE NECESSARYo

IIlel0 SAMPLE PROBLEMS

T~E FOLLOWING SOURCE DECKS A~E PREPARED FOR BATC~ PROCESSING
ANO wERE PROCESSED USING VERSION THREE OF rHf PROCESSOR

$ SAMPLE PROBLE~ l

39

C PROGRAM ILLUSTRATES HOW ALPHAMERIC DATA MAY BE USED AS OUTPUT
READ,A,!:3,C
PUNC~,A,B,C
END
p

p ~

2.0
4 • C•
6e999

THIS IS A lESl PROGRAM
B

$ SAMPLE PROBLEM 2

C

C TQ R~AD IN AND PUNCH OUT A ONf DIMENSIONAL ARRAY THE FOLLOWING
C SOURCF STATEMENTS MAY BE USFO
C ~. SIZE OF ARRAY, IS 0 UNCHED ON FIRST DAfA CARD
DIN,C:NSION A(lv)

50 REAL' ♦ N

C TrlE LA3T DATA CARU I~ PUNtHED 9999
lF CN-9999) 2U,30,20
20 DO lC· 1-=-l ,N
REAO, .0. < I >

1 0 PUNC!·"- A< I >

GO TO 5(",
30 END
p

p
3
4e5

-3.2
2156
6

OUTPUT

15 e009 9456 -36e5 999.9g +l~
9999

$ SAMPLE PROBLEM 3
EXECUiION

OUTPUT

RO'.IJ
000]
CJOOJ
0001
00(;2
r:or:2
00 1:2
OOC3
0003
OOC3

cc,::,4
0(J;4

OC..04

U(;(' 1
,)UC l

0(101
uon t
('(,() 1

~C,,) 2
()002

,J l• (J?.

oc 1:i2
rJ(") 2

uu() l
(,CJu i.

(.•G02

OC02

COL•
0001
0002
!)003
(10() 1
0002
C003
000}
CJ(; 02

')(;;)J

0 ClO l
'."'.)02
C C-ll:,

0001
0002
COC3
~00a
'/}C':,

~) (') ()}

coc:;;::
f.003
0004
{)() 05

0001
c,or;2
U00j

OGOc
$ SAMPLE PROBLEM 4

EXECUTlON
OUTPUT

GROUP NUMBER
0(;01

0001
C0Gl
lOO!

0002
coo2
0::.02

0002
0003

C003
0003
ooc2

SAMPLE

GROUP SUM
40.00000n
70.ooococ,
94.000000
119.0000C,

26.000000
52-.(;00000
93eCOCOOC
]J0.001)00
2s.:iooooo
48 • C,00000
7O.cocno0
120e00QOG
130.000cc

I\.JUM::3ER

s.1000000
s.2000000
s.2000000
6.10000no
7.200000~
60.40000()
300.00000

22 • 600 (;0()
-34.400000

51.000000
6e3600GOC
.22000000

5e3t,GCOOO
9 • l l S<:OOC
1c,.2ocn01)

i l • 30C000
1 1. 5,Jc,coo

6 • 2(l()CJl"'l(J0

a.:-:-ooooor
q.3000000
6e560Q'JOC'
70:-, .82001)

-83Ae22678
111.scooo

-6e8000000E-03
':-, .,1000000

PROBLEM 4

42

THE FOLLOWI~G SOURCE DECKS ARE OREPA~EO r-oQ U5E~ PROCESSING AND
WE~E PROCESSED USING VERSION TWO OF THE ~ROCESSOR•

C
C

SAMPL~ PROBLEM 5
PQOGRAM CALCULATES THE FORMULA CfN,R):N /R CN-R)
FOP G!VEN VALUES OF N,R
N JS ANY INTEGER GREATER THAN t ANO LESS THAN 50

C R rs ANY JNTFGER LESS THAN N
C VALUES OF NeR PUNCHED ON SAME CARD
~ LAST DATA CARD PUNCHED 50 tN C0Le1t2
0 l I =O
READtX 1•,hR
C ~HECKS TO SEE THAT THE DATA IS WITHIN T~E 6LLOWABLE P~NGt
IF <XN-S0e)t0,9Pt99
10 JF(XN-le)99t~9•05
05 XNR=XN-q
T F < XNR) 99, 99 • 1 t

43

C SIMPLE TqANSFER STATEMENTS CARRY THE ARGUMENT TO THE sua-ROUTtN~
11 L•XN
2C 1=1+1
GO TC, 30
\ S XNF'=FAC
L=R
GO TO 20
1oRi::-=FAC
L:-XNR
GO TO 20
17XNQFaFt\C
CRN=XNF/(RF*XNRF)
q7 PUNCH,XN,R,CR~
GO TO 01
C SUB-PROGRAM COMPUTES THE FACTO~tALS

r.e,50J•ltL
V:J

'50 FAC=F"AC*Y
,o .,.o < 1 5 .. t 6. 1 7 >. 1
->C) :=:TOP
8 END

'"' 3
~ 1
t 9 10
c:;o '3;?

~.0000000
3.0000000
19.000000

; I

3.0000000
1.0000000
10.000000

10.000000
3e0000000
92377eq87

THE FOLLOWING SOURC~ DECKS ARE PR~PARED FOR US~R PROCESSING AND
WERE PROCESSED USING VERSION TWO OF THE PROCESSOR•

SAMPLE PROBLEM 6

C SOLUTION OF SIMULTANEOUS EauATtONS
C BY GAUSS-JORDAN ELIMINATION
C MODIFICATION OF USEP S GPOUP Ll8RARY PROGRAM 5tOe007
C THE PAUSE AT THE BEGINNING OF THE PROGRAM ALLOW~ THE OPERATOR
C TO SF.T SEN~E SWYTCH 1
C SWITCH 1 ON,PUNCH OFF, PRINT

44

ooo:

C SWITCH 2 ON.STOP ON TOLF.:PANC:E CHECK OFF• CONTINUE
f'lOl')t

000=
OOOt
no(')e

C ENTER TOLERANCE AND SIZF. OF MATRIX AS FIRST PIECE OF DATA
C 17 EOUATtON$ AND TRIG FUNCT!ONS NEED NOT B~ ELIMINATED•
C WITH THIS SIZE DIMENSION THE PROGRAM WILL HANDLE

DtMENSION A<17,18>
PAUSE

10 READ .TOLRtN2
Nl=N2+1
00 2 l:. 1 • N2
DO 2 J:q ,Nl

2 READ tA(J.J)

DO 14 I :-: r • N2
D 1 AGr:. A (! t I }
IF <OIAG} 4t 20• 4

4 JF(A8SCDtAG>-TOLR) 19~19t5
S DO 6 J=I,N1
6 A<I,J): A<I,J)/OIAG

K=t
9 IF <K-t> llt13dl
11 FCTR= A (Kt J)

DO 12 Je. I , N l
12
1 3

14

15
16

17
18

C
19

C
20

K=K+l
TF fK-N2> 9t9tl4
CONTINUE
J=Nl
IFCSENSE SWITCH l > 15,17
DC 16 I= t • N2
PUNCH ,A<ItJ)
GO TO 10
DO 18 I= 1 ,N2
PRINT •A<t,J)
GO TO 10

STATEMENT fq IS TOLERANCE $TOP
Pi!\USE
IF <SENSE SWITCH 2) 10,5

STATEMENT 20 tS ERROR STOP
STOP
END

0010
00 l 1
0012
0013

0016

002(

0021
0022

0025
0026

0029

0033
0034
0035

0037

0039

0041
0042
0043
0044
0045
0046
0047
0048
0057

IV KINGSTON FORTRAN LANGUAGE SPECIFICATIONS

The Kingston Fortran II system, composed of a language and compiler
for the IBM 1620, was written in July 1964 and revised in November 1964, by
J.A.A. Field 1, D.A. Jardine 2, E.s. Lee1, J.A.N. Lee3 and D.G. Robinson2• The
KFII compiler allows the following operations and specifications, whicli are
not discussed in Section 2 and not permitted by other Fortran compilers:

Use of stored Hollerith constants.
Explicit specification of variable types.
Use of up to 13 subscripts.
Use of integer expressions in indexing Computed GO TO statements, and
DO statements.
Use of DATA specifications.
Optional free format.

45

IV

A complete listing of library subroutines may be found in Section IV.9a.
The KFII compiler includes the follomn 6 library subroutines, which are in
addition to the standard library subroutines provided by other Fortran
systems:

MAX which chooses the largest value in a group of values.
~ITN which chooses the smallest value in a group of values.
PLOT and PLarP which plot the values of real variables on punch

cards or the console typewriter.
SORT which sorts elements in an array using the Shell Method.

The KFII compiler, stored on the 1311 disk of the 1620 Model II and
used with appropriate IBM Monitor System control cards, permits convenient
and quick one pass compilation and execution of a source deck written in
KFII language. The discussion of the KFII language which follows includes
only those language specifications which apply specifically to KFII, and
assumes that the reader is familiar with the language discussed in Section II.

1. Dept. of Electrical Engineering, University of Toronto, Toronto, Ontario.

2. Du Pont of Canada Ltd., Research Centre, Kineston, Ontario.

3. Computing Centre, Queen's University, Kingston, Ontario.

IV.1 Punching input source programs

The statements of a Kingston Fortran II source program may be punched
in columns 7-72 of a source program card. If the statement is too long !or
one card, it may be continued on the. following cards. These continuation
cards must have a non-zero number in column 6. The first card of a statement
must have column 6 either blank or zero. Blanks in columns 7-72 are ignored
except for Hollerith specifications, discussed below.

Columns 1-5 on the first card of a statement are used for the statement
number, if any.

Columns 73-80 are not used by the compiler and may be used for program
identification, sequencing, or any other purpose.

Comments to explain the program may be punched in columns 2-80 of a
card, if the letter C is placed in column 1.

IV.2 The arithmetic statement

IV.2a Constants

Integer constants - The magnitude of an integer constant must not be greater
than 99999.

Hollerith constants - A Hollerith constant consists of any characters,
l '=' n -==:. S, including blanks and special characters.. It is written with

rv.1

IV.2

rv.2a

the ihteger n, followed by the letter H, followed by exactly n characters ••

Example:
Valid

lHA
4H(*/
,3HbbC

Invalid

6HABCDEF
OH
4HbbbbD

Note: The b indicates blanks.

Hollerith constants or variables whose values are Hollerith constants, carry
symbolic rather than numeric information. They may be used in the following
statements:

1. Simple replacement statements may define a Hollerith constant

Example:
I= JHYXA
A = 4Hl234

2. Data statements may define a Hollerith constant.

(See Section IV. 7d)

,;, •1 I

. I I

I ___, ____ _

3. Input, output statements, using A-format may define a Hollerith constant.

Example:
READ 2, (TABLE (J) ,J = 1,.5)

2 FORMAT (SA.5)

The above statements will read the 5 table values, S1'1IT·-r, JONES, TERRY,
ALPHA, DATUM, into machine core storage labeled TABLE (1), TABLE (2),
TABLE (3), TABLE (4), and TABLE (5).

(See Section IV.Sb)

4. Arithmetic statements may include Hollerith constants providing the only
arithmetic operations are integer subtraction or addition. Due to the
machine representation of the blank as zero, the following
equations are correct and may be used in a source program to form
Hollerith constants.

Example:
5HABCDE = 5Hbbbbb + 5HABCDE

2HlA = 2Hlb + 2HbA
2HbA = 2HlA - 2Hlb

S. IF statements may compare two Hollerith constants, or variables whose
values are Hollerith constants, for identity.

Example:
If (LIST (l)-ITEM(2)) 10,20,10
Where LIST and ITEM contain symbolic information.

6. CALL statements may include Hollerith constants as function arguments.

(See Section IV.Be)

7. DO statements may use Hollerith constants as the initial and increment
values of the index. Due to the machine representation of an alpha
betic character, the following DO statement causes the Index I to assume
all the possible letters of the alphabet in order.

Example:
Do n I = lHA, lHZ, lHB - lHA

Thus the user can sort cards alphabetically.

h7

IV.2a

ii

■

■

i
■

■

■

■ ■

-- - ■

48
■

■

Ii - ...
IV .2b Variables ■ IV.2b

Variable names- A variable name consists of 1-6 alphameric (numeric or
alphabetic) characters.

Variable types- The type of a variable, integer or real, can be specified
in two ways; implicitly or explicitly. Implicit specification is discussed
in Section Ir.· Explicit specification of a variable type requires using
an INTEGER or REAL statement.

■

■

■ ..
■

--
Example: ---T & I! ..:

INTEGER DEV, ITA
REAL ITEM, FAN, LIST

.. ii •

-
I

The INTEGER and REAL statements are used to overide the implicit type
assignment associated with a variable name. The INTEGER statement declares
all variables in its list to be of type integer regardless of their initial
letters. Similarly, the REAL statement declares all variables in its list
to be of type REAL, regardless of their initial letters. Variables listed
in an INTEGER or REAL statement remain that type throughout the program; the
type can not be changed. The INTEGER or REAL statement is a type specific

II ■

ation statement and must precede the first executable statement of the
program, but must follow COMl10N, DIMENSION and EQUIVALENCE statement.
(See "Order of appearance of specification statements," Section IV.7e)

Subscripted variables- KFII allows up to thirteen subscripts. Subscripts
may take the form of any arithmetic expression whatsoever provided that

■

the result of evaluation of. the subscript be an integer number. In particular,
the subscript may itself contain subscripted variables, whose subscripts,
in turn, may be expressions involving subscripted variables.

Example:
Valid subscripts Valid subscripted variables

A(I)
K (3) -

' '

■

ALPHA(t,J, 2+MU)
RUN(MU*5+M, 4-lfJ(K(2)-L+M),K(N(M))

■

■

■

Invalid subscripted variables

X(A,I)
A(I,J*2.5)

-
.... • - ..

I
---, -Iii- - !

-
■

■

:-: ~ i■ ~·
* (See library function FIXF1IV.9a)

ii

-■

1!

IV.2c Arithmetic expression

Rules for forming expressions; (See Section II. for general Fortran rules
for forming arithmetic expressions.)

l. E = -A¾-¾B is compiled, E = -(AB)

2. Within the same priority, the addition, subtraction, and multiplication
operations are performed from ri~ht to left. For example, A+B+C+D will be
performed as (D+C+B+A); whereas (A+B)+(C+D) will be performed as the swn
of (D+C) and (B+A). However A*B/C*D will be calculated as: •

A *(B/C)-l©.

IV,3 Control statements

IV.2c

IV.3

IV,3a Statement numbers IV,3a

Statement numbers may be any integer n, o.:-.::.. n "'~ 99999.

IV.3b Address variables

An address variable is a variable which has been made equivalent to
a statement nwnber. The ASSIGN statement, assigns the statement number to
the address variable,

General form of ASSIGN statement:

ASSIGN i ton

where: i is a statement nwnber or address variable.
n is an address variable.

An address variable must be defined ultimately in terms of a statement
nwnber, Thus if I is an address variable, it must at the time of execution
of an ASSIGN statement, have previously been defined in terms of a statement
number or another address variable which was defined in terms of a statement
number. The contents of storage assigned to the address variable is not the
statement itself, but rather the object time representation of the statement
nwnber. Address variables may be subscripted, if desired. If an address
variable is assigned to another variable it mu.st be enclosed in parenthesis.

Example:
Valid ASSIGN statements

ASSIGN
ASSIGN
ASSIGN
ASSIGN

12 to K
(K) to J(L)
13 to A(M(N))
(A(M(N))) to K

IV.Jb

-. I
..I

Rules for using address variables

1. Address variables may appear in the following control statements in place
of a statement number:

ii
Statement ,I

■

Example

UNCONDITIONAL.GO TO GO TOK, COMPUTED GO TO GO TO (10,K, 30, L(M), 15,35), ITEM(J) ,_
ARITHMETIC IF IF(A(J,K)-B)l0,4,L -IF SENSE SWITCH IF(SENSE SWITCH 1) N,A --

2. Address variables may not appear in a DO statement. ■

·3. Address variables may be used as the FOql'1AT designator in an input/
output statement. Address variables may be reassigned within a program.

(See Section IV.4)

4. Address variables may be transmitted to a subprogram in a CALL statement.
Thus address variables may be used to provide multiple returns from a
subroutine, each to a different point.

~ (See Section IV.Be)

5. Address variables may be defined in a DATA specification statement.
They may not be used in any other type of specification statement.

6. Arithmetic may not be performed on Address v·ariables. They may not
be used in an arithmetic statement.

- - l""I

IV.Jc Computed GO TO statement--

GO TO (xi, x2, x3, . •~-Xu), i ■

where: xl' ~, xy .. ·•~ are statement numbers or address variables.

~ is an integer expression of any complexity whose value is greater
than or equal to 1 and less than or equal to the number of state
ment numbers or address variables within the parentheses. The
comma preceding i is optional.

Example: GO TO (10,K, 30, L(M), 15, 35), ITEM(J)

If the value of ITEM(J) is 3 at the time of execution, a transfer occurs
to the statement whose number is the third in the series. If the value
of ITEM(J) is 4, a transfer occurs to the statement whose number is fourth
in the series, address variable L(M).

IV.3b

IV.Jc

IV,Jd IF SENSE SWITCH statement

IF (SENSE SWITCH i) n1, n2

where: 1 is an integer constant or arithmetic expression
n1, n2 are statement numbers or address variables.

The last two digits of the integer constant or expression i are
used to.determine which machine indicator is to be interrogated. Control
is transferred to statement n1 if the machine indicator is on. Any of
the machine indicators can be interrogated by the IF (SENSE SWITCH) statement.
However, not all machine indicators are relevant to the computations performed
by the object program. Care should be exercised in using the IF (SENSE
SWITCH) statement since the operating system subroutines may leave the
indicators in a position which does not correspond to the result of the
arithmetic calculation,

IV.3e DO statement

End of Index Initial Test Increment
Range Value Value

DO n i - m1, ~, m3

where: n is any statement number, but NOT an address variable.

1 is a subscripted or nonsubscripted integer variable.

Mi, m2, m3 are signed or unsigned integer constants, subscripted or

non-subscripted or integer expressions of any desired complexity.

m3 is optional; if it is omitted, its value is assumed to be 1. In

this case, the preceding comma must also be omitted.

Rules for using the DO statement

1.

4.

The range is the series of statement to be executed repeatedly. The
range can consist of any number of statements.

The values of the index, test value, or increment, (i, m1, m2, m3 ,)
may be changed within the DO loop if and only if they are simple variables.
The DO will then be continued with the new values, and normal in
crementing will occur until an exit from the range of the DO takes place.

The initial value,~, and test value, m, may be positive, negative,
or zero. The normal algebraio sign conv€ntion is applied for increment~
ing and testing.

The increment, m3, may be positive or negative, but not zero.

IV.Jd

IV.Je

I
I
I

"""

•
• -

I

r

Example:

.a;
I ■

■ ~

The statement DO 20 I = 5, -4., -3

will cause the range of the DO to be executed with I taking on the
successive values 5, 2, -1, -4,

....,...,......, -
Example:

The statement DO 100 I(J) a 1~~+2, 6-lfK, N(K)

,....,..
I I

will cause the range to be executed with I(J) taking on values starting
at the value of L*M+2, and continuing with. increments of the value of

IV.3e

..
N(K) until the value of 6-lfK is exceeded in the direction of incre- f
mentation. ,- oJa

5. Transfer into the range of a DO statement is permitted if a previous
transfer has left the range of the DO and it is de.sired to return to - 1
t}?.~ range of the DO. ~ r

IV.Jf PAUSE statement

PAUSE n

""' I .a....
- _- ' ..

-- .. r IV,Jf
r

■ r

-
-

where: n is an unsigned integer constant, or an integer variable or
expression, n is optional.

-.. -...
-.. -

[jj The PAUSE statement causes the program to halt. PAUSE n is typed
on the console typewriter. If n is omitted, the program is halted and
there is no typewriter output. Pushing START causes the program to resume
execution, starting at the next statement after the PAUSE statement,

IV.Jg STOP statement, CALL EXIT, CALL SKIP

STOP n

-
Where: n is an unsigned integer constant, or an integer variable or •

expression, n is optional. _.-

The STOP statement causes the program to print STOP 0000 on the
typewriter if n is not specified. If n is specified, STOP n is printed.
In either case, the execution of the program is terminated, and may not
be resumedo

- ·-
....

CALL EXIT

The CALL EXIT statement halts the object program and returns control
to the supel'.Visor so that another source program may be compiled. The

I
- I

-

...
... .. -...
IV.Jg

-_.
..

• I -

CALL EXIT statement must be the last executable statement in a program
written for the IN-OUT box unless a CALL SKIP is used as specified below.

CALL SKIP

The CALL SKIP statement causes interruption of the normal program.
The CALL SKIP will usually be employed to stop calculation on a block of
data because of an abnormal situation (e.g. failure to converge on an
iteration, bad data) which has occurred in the block of data. In such a
case, CALL SKIP will cause that particular calculation to be abandoned,
and a new set of data to be presented to the program. The data must be
sectioned by end of file cards.

General form: End of file card

$$$
where:$ signs are punched in card cols, 1-3.

The end of file card indicates the beginning of a new block of data.
If the data abandoned is the last block of data, a normal exit to a new
program will result. This is the only instance where a CALL EXIT is not
the last executable statement in a program.

IV.3h END statement

END

The END statement defines the end of a program or subprogram for the
compiler. Physically it must be the last statement of each program or sub
program. When it is encountered in the flow of the source program, com
pilation halts and any source program cards following the END card are not
compiled.

The END statement is not executable. The last executable statement
before the END statement must bee. transfer. slta.tement (IF, GO TO, STOP, CALL,
or RETURN). An EUD statement may not have a statement number.

IV.4 INPUT/OUTPUT statements

IV.4a Input statements

READ n, list

ACCEPT TAPE n, list

ACCEPT n, list

REREAD n, list

Cards

Paper tape

Console typewriter

Causes the last record read (regardless
of input device) to be read again.

53

IV.Jg

IV.3h

IV.4

IV.4a

■
I

•
■

-
where: n: is a statement number, address variable, or the name of an array

containing the format in the form of Hollerith constants, represent
ing the FORMAT statement describing the type of data conversion.

■

■

n is optional. If omitted, the system will supply a standard format.

(See section IV.6
KFII without Format)

List is a list of variable names, separated by commas, representing
the input data. -IV.4b Array input

_
1. When an array name appears in an I/0 list in non-subscripted form, all

of the quantities in the array are transmitted. If the list item is a
multi-dimension array, it is transmitted column~ise, with the first
subscript varying most rapidly, and the last subscript least rapidly.

I

Examplei
Dimension C(lO)
Read 40,C

I l ! ••

The above statements will cause all of the quantities C(l) •.•. c (10) to
be read into storage.

Given Dis a 3 x 5 x 5 array

Example:
Dimension D(J,5,5)
Read 40,D

1 I

Indexing I/0 lists - Variables within an I/0 list may be indexed and
incremented in the same manner as with a DO statement. For example,
suppose it is desired to read data into the first five positions of
the array A. This may be accomplished by using an indexed list, as
follows:

READ 50, (A(I),I • 1,5)

This is equivalent to the following:

READ 50,A(l),A(2),A(3),A(4),A(5)

-

54

IV.4a

IV.4b

55
As with DO statements, a third indexing parameter may be used to specify
the amount by which the index is to be incremented at each iteration. IV.4b
Thus:

READ 50,(A(I),I = 1,10,2)

causes transmission of values for A(l),A(3),A(5),A(7), and A(9).

Furthermore, this notation may be nested. For example, the list:

((C(I,J),D(I,J),J = 1,5),I = 1,4)

would transmit data in the following order:

c(1,1),D(l,l),c(1,2),D(l,2), ..• ,c(1,5},D(l,S)
c(2,1),n(2,1),c(2,2),D(2,2), ... ,c(2,5),D(2,5)
C(3,1),D(3,1),C(3,2),D(3,2), ..• ,C(3,5),D(3,S)
C(4,l),D(4,l),C(4,2),D(4,2), ... ,C(4,5),D(4,5)

The notation for the implied DO statement in an I/0 list may be of the
same complexity as that described earlier for the DO statement proper.
In particular, the indexing variable may itself be subscripted, and
the limits may be integer expressions. For example, the following are
permitted:

READ 10,((A(I,J), I= K,L), J = M,N)
READ 10,((A(I(Kl),J(Ml)),Kl = K-JOB*2,L+5,-J6), Ml= M*8-MM9,N,3-lfN18)

Restriction

In an input list, the items may be only subscripted or nonsubecripted
variables er. array names. All variables in an implied no·.statc
ment must be in the DO loop .. Thus the followinglexample is invalid: . .

READ 50, DOG,(A(I),I = 1, 10, 2).

3. Sample problem 7 (Section IV.14) illustrates array input and output.

IV.4c Output statements

PUNCH TAPE n, list

TYPE n, list

PRINT n, list

Cards

Paper tape

Console typewriter

1443 On-line printer

IV.4c

where: n is a statement number, address variable, or the name of an array
containing the FORMAT statement in the form of Hollerith constants.
If n is omitted, the system will supply a standard format.

(See section IVo6:
KFII without format)

I
■

■

■

I

■

•■

■

■

■

I -

I

■
■

■

■

..

■

-- !!!!!!

L ■ -

■ -... !!l!!I

-■-

■ ■

I i --' -■

■ ...

.. -
--

■

■
!!II - ■ ■

-
--

■

-
■

■

---- C _-- . -
- .,. --. -- -

-

Wheres Iw, Fw.d, Ew.d, wX, Iw, Aw, represent data conversion codes
separated by commas.
/ represents the beginning of a new record.

IV.Sa Numeric conversion codes

I-conversion- is used to input or output an integer quantity as follows:

Iw

Where: w represents the number of spaces that are scanned on input or
reserved for the number on output.

1. If the number to be output is greater thanw spaces, the excess is
lost and an error indication results.

2. If the number to be output has less than w digits, the left-most spaces
are filled with blanks. Blanks in input data are regarded as zeros.

3o A positive sign need not be punched on input. Space need not be left
for a positive sign on output. However, the space preceding the left
most digit must be reserved for sign, if the quantity to be output is
negative4

4. If a real nwnber is output ~nder I-conversion, the integer part is
punched without rounding. Sufficient width must be allowed for the
resulting integer number.

Example:

57

IV.5

IV.Sa

specification I3 will punch the internal values as follows:

Internal value

721
-721
-12

68114
4336.15
-43.72

Punched

721
error message
-12
error message
error message
-43

F-conversion- is used to input or output a number with decimal.

General form of F-conversion code:

where: w is the total field reserved on output or scanned on input.
d is the number of places to ~he right of the decimal.

■

L
■

..
■

■

■

... C.
■

:.- .,_ 'I - • -- ■

.. ■ _ ..

..

■

■

..

-

•■

I ■

- ■

ii

■

-i.

a

■

-

■

■

I

...
-

■- -

■ ■ • I

■ ■ ■

■

■ .. -
■

~- :-. ... ,,. - __
- - I -
,..:!Cr i ■

- ..
■ ..

- -
- ... - M

•

■
■ -

■ -- -.....
■

"~ ■•■ ■ ..

-

l. Numbers £or E-conversion input need not be punched with four spaces
devoted to the exponent field. The start of the exponent field may be
marked by an E, or by a plus or minus (not a blank•-all blanks in
fields are read as zeros),

Example:
.3E2, .3E+2, .3+2, .3+02 are all valid input data.

2. The total field width, reserved for output must include a space £or
sign if the number is negative, a space for the decimal point, and
four spaces for the exponent.

3. The decimal portion is rounded if insufficient spaces are reserved on
output.

4. If an integer number is handled with E-conversion, the integer number
is changed to the corresponding real number before E-conversion takes
place.

Example:

59

IV .Sa.

Specification El0.3 punches the internal values as follows:

Internal Value

238.
-,002

.0000000004
-21.0057

Punched

bb.238E+03
b-.200E-02
bb.400E-9
b-.210E+02

N"".P_<.?nversion-is used for input which is punched "free form" and will supply
a i,·.,andard format on output. N-conYersion neither permits nor allows
width or decimal point location specification.

General form of N-conversion codes

(xN)

where: x is the number of variables in the input or output list

1. Input data may be any type; integer, real, or E, punched with one blank
separating each number. The internal form of the number is entirely
determined by the Type of the variables in the input list.

Example:
READ 10, X , I, N, Y
10 FORMAT (4 N)

■

■

■

■

- ---

t
■

.... -

The eard is punched:
IV.Sa J "iiillll The numbers are read as follows:

Card Cols. Contents --- I
■

--1-3 462 ■

4 b
5-6 b2
7 b

I
■

■

X = 462 =I
I .. 2
N "'-398
Y ""'539.3218

• ■•

7- ■
-■ 8-11 -398 -

12
-II .,

b -13-20 539.3218
-- Ii

2. On output, N-conversion is equivalent to J.PEl.4.7, lX for real numbers.

(See "Scale factors" below)
and r6,1X for integer nUITlbers.

Example:

Scale £actors

PUNCH 10, Y, I
10 FORMAT (2N) will produce

the following output:
5.6300000E+02bbbb-21

--- - ----
Internal Value L-

Y = 563 ---

■J -■ I= -21 Iii

■
■ =-

To permit more general use of E-, and F-conversion, a scale factor
followed by the letter P may precede the specification. The magnitude of the
scale factor must be between -49 and +49 inclusive. The scale factor is
defined for input as follows:

ecale factor .
• 10 • . x external quantity "" internal quantity

The scale factor is defined £or output as follows:

external quantity= internal quantity x 10 scale. factor

For input, scale factors have effect only on F-oonversion. For example,
if input data are in the form xx.xxxx and it is desired to use it internally
in the form .xxxxxx, then the FORMAT specification to effect this change is
2PF7.4 For output, scale factors may be used with E-, and F-conversion.

For example, the statement FORMAT (I2,3Fll.3) might give the follow
ing printed line:

27bbbb-93.209bbbbb-0.008bbbbb0.554 ■

ii
but the statement FORMAT (I2,1P3Fll,3), used with the same data, would give
the following line:

.-.e-.. ---
■ -· ■ ■

■--II •
■

■

■

■

I

1111 ■
I

,.. -.
.. L .--!I

"'IC!!

■

■ I-■
■ I ■

27bbb-932.094bbbbb-0.076bbbbbb5,536

Whereas, the statement FORMAT (I2,-1P3Fll,3) would give the following line:

27bbbbb-9,32lbbbb-0,00lbbbbbb0,055

A positive scale factor used for output with E-conversion increases
the number and decreases the exponent. Thus, with the same data, FORMAT
(I2,1P3El2,4) would produce the following line:

The scale factor is assumed to be zero if no other value has been
given. However, once a value has been given, it will hold for all E-, and
F-conversions following the scale factor within the same FORMAT statement.
This applies to both single-record formats and multiple-record formats. Once
the scale factor has been given, a subsequent seale factor of zero in the
same FORMA.T statement must be specified by OP. Scale factors have no
effect on I-oonversion or N-conversion,

IV,5b Alphameric conversion codes

There are two specifications available for input/output of alpha.
meric information: H~Specification and A"Conversion, H-Specification is
used for alphameric data which are not going to be changed by the object
program. (e.g. page headings); A-Conversion may be used for alphameric data
in storage which are to be operated on by the program (e*g• modifying a
line to be printed).

H-type FORMAT specification

H-type specification is written within the FORMAT statement and is
preceded by nH where n is the number of characters in the specification.
For example :

25 FORMAT (15HbTHISbISbH-TYPE)

The effect of this statement depends on whether it is used with an input
or output statemont ,, A comma separating the H-type specification from a
succeeding specification, is optional.

Output: All characters (including blanks) within the specification are
written as part of the output record. Thus, the statements:

5 FORMAT (27JibTHISbISbISbALPHA.MERICbDATA)
•
•
•
PRINT 5

61

IV.Sa

IV.Sb

'I

--
-r -..
....
-,
-
I --
I

-. I

.,
I

--
■ --

-- ... - -.. - --
would cause the following record to be written o~ the printer:

THIS IS ALPHAHERI C DATA

Input: A number of characters, equal to the number, n, of characters
specified, are read from the designated input record and replace, in storage,
the characters within the H-Specification. For example, the statements:

s FORMAT (8HHEADINGS)
• •
•

■

-READ 5 I ■ ..
-■-

would cause the first eight characters to be read from the
and these char~ters would replace the characters HEADINGS
statement.

next input card - ~
in the FORMAT - - I

-- I
-- ,k ■

Restriction: The number of characters in a single H-Specification must
not be greater than 99.

Note: If a Hollerith specification extends beyond the end of the source
statement card on which it was started, it may be completed on a continu
ation carde In this case, the first card is considered to end at column 72.

A .. Conversion

The specification Aw is used to read or write alphameric data. w
must be 1,2,3,4, or$. It-causes thew characters to be read into, or -
written from, the area of storage specified in the I/0 list. For example,
if a data card having the characters ABCD in columns 1-4 were read under
control of the following statements

10 FORMAT (A4)
0

•
•
READ 10, SAM

■ -
the four alphameric characters ABCD would be read from the card and placed
into the field in storage named SAM.

The - folloWi.ng statements:
,.... .,.

I I

r-,--.. -

r. ~
15 FORMAT (3HXY= ,F9. 3 ,A4/)

•
•
•
PUNCH 15 ,A,SAM,B ,SAM

-•-r-.- ___ 1_ ~ ---

1. • I

■

■

■

• ...

..

would produce the following lines:

XY = 5976.214ABCD
XY = 6173.928ABCD

Characters transmitted under A-conversion.are stored in memory as Hollerith
constants. Conversely, a Hollerith constant, or a variable whose value
is a Hollerith constant, may be output using A-conversion.

IV.Sc Specifying blank fields

X-conversion provides for blank characters in an output record, and skipp
ing of characters in an input record.

General Form of X-conversion code:

wX

Where: w characters are skipped on an input record, or w blanks provided
in an output record.

1. X-conversion must be carefully distinguished from H-specification
with blank characters. Reading an input record under X-conversion
causes the appropriate part of the record under X-conversion to'lb>e
ignored completely.

Example:
Card is punched:
Col. 1-5 543.2

6-8 423
9-12 3233

IV.5d Repeating specifications

Read 5, A, I
5 FORMAT (F5.l, 3XI4)
will result in:

A=543.2
I:3233

A specification may be repeated as many times as desired (within the
limits of the output device) by preceding the specification with an
unsigned integer constant.
Thus:

2Fl0.4
is equivalent to:

Fl0.4, Fl0.4

Parenthetical expressions are permitted to enable repetition of data
fields according to certain format specirications within a longer FORMAT
statemant,

IV.Sb

IV.5c

IV.5d

- - i---!
}IA

tJ.

I■

■ I■

I -·

■
--■ ■

■

■•• t ■ ■

■

• I

■ ■

Thus:
10 FORMAT (2(Fl0.6, El0,2),I4)

is equivalent to:
10 FORMAT (Fl0.6, El0.2, Fl0.6, El0.2, I4)

Five levels of nested parentheses, in addition to the parentheses,
required by the FORMA.T statement, are permitted.

If there are more items in the list than there are specifications in
the FORM/l.T statement, control transfers to the immediately preceding left
parenthesis of the FORMAT statemnt. A new card (or line) is punched with
the specifications used again for the next item in the list.

Example:
The following statements:

10 FORMAT (FlO.J, El2.4, Fl2.2)
•
•.
•
PUNCH 10, A, B, c, D, E, F, G

-
■ -

- - ... --
1

cause the data to be transmitted in the following order:

I

Data Transmitted SEecification

A) Fl0.3~
B) El2.4 First card
C) Fl2.2)

I
■

D) Fl0.3)
E) El2.4) Second card
F) Fl2.2)

G Fl0.3 Third card

IV.Se The use of the slash(/)

1. The/ may be used to denote the end of a record. On input the/ calls
for the reading of the next card.

Ii Example: -5 FORMAT (F5,2, /Fl0.2) -
READ 5, A, B,

..

I

A is read from the first card, B from the second

the / calls for the punching (or typing) of a new card.

IV.Se

2. The/ may also be used to provide blank lines between output records
or records skipped for input records.

65

IV.Se

For example, if the statement FORMAT (I2,El2.4////Fl2.3) is used for
printed output, three blank Mnes will be inserted between the data specified
by I2,El2.4 and the data specified by Fl2.J. However if the dashes are placed
at the beginning or end of the FORMAT specification an additional blank line
(or second. skipped) is provided. For example FORMAT (////I6) provides for the
insertion of 4 blank lines.

IV .5f Prj.nter carriage control

A Printer carriage control Hollerith char~cter must be included in each
Format statement used with a PRINT statement to designate the desired space
or skip operation for each printed line. The printer-oriented Format state
ment must begin with lH followed by a control character which specifies the
desired operation. The control characters and their effects are:

blank
0
1

single space before printing
double space before printing
skip to a new page

The control characher itself does not become part of the printed output.

Example:
PRINT 2, A,B,J

2 FORMAT (lHO, F8.2, F8.2, 18)
This specification will provide a double space between the line being

printed and the previous printed line.

The control carriage specification is applicable to the first line of print
only. If more than one line is called for, the user must be sure that the
carriage control specifications precede the normal specifications for each line
of print.

Example:
PRINT 2, A, B

2 FOR1'1A.T (28H1SMITH, OUTPUT FOR PRORLEM 3/lH ,2F8.2)
The line SMITH, OUTPUT FOR PROBLE1"13 will be printed on a new page. The

value for A, and the value for B will be printed on the next line.

IV.6 KFII without FORMAT IV.6

The FOR.1"\/JAT statement and the corresponding statement number or address
variable in an I/0 statement are optional in KFII and may therefore be omitted
entirely. If no FORMAT statement is specified, the system will supply FORMAT (5N).

IV.7 Specification statements IV.7

The specification statements are nonexecutable, because they do not
cause the generation of instructions in the object program. Instead they
provide the processor with information about the nature of the variables

■

...

• . -
I ••

- .
!!I •

•
.Ir ... --

used in the program. In addition, they supply the information required to
allocate locations in storage for certain variables and/or arrays. Specific
ation statements must appear at the beginning of the source program. The
order in which they must appear is specified at the end of this section.
(Section IV.7e) -

'IV. 7a COMMON statement .- I 1 -- IV• 7a
- • 1-- --

General form:
- -. I _... II

... _. - - -
COMMON a, b, c,

_ _ -
•••••••

Where: a, b, ••••• are variables that may contain dimension information as
in the DIMENSION statement.

Variables, including array names, appearing in a COMi10N statement,
are assigned locations at the upper end of the memory. This CO,vJMON area
permits variables to be shared by a program and its subprograms without
transmitting arguments .

1. If the variables appearing in a COMMON statement require dimension
information, they must appear in the COMHON statement in the same form
as they would in a DIMENSION statement; they must not then appear in a
DIMENSION statement.

L- I j - I

COMl'10N A, B, C(lO, 20, 2)

■ ■

Example:

where C is a three-dimensional array 10 x 20

2. The locations in the COMMON area ·are assigned in the sequence in which
the variables appear in the COMMON statement, beginning with the f:irst
COMMON statement of the program.

3. Two variables in COMJ.'10N may not be made equivalent to each other.

-1

IV.7b EQUIVALENCE statement • I - - - -

■

General form· - -
------• I

I

EQUIVALENCE (a,b,c,), (d, e, f, .••••)

Where: a, b, c, d, e, f, ••.•• are variables that may be multiple subscripted;
the subscripts must be integer constants.

■ ---I -- -- I - -I -t -
■-■ -!!Ill -

•

Each pair of parentheses in the statement list encloses the names
of two or more variables that are to be stored in the same location during
execution of the object program; any number of equivalences (i.e., se.ts
of parentheses) may be given.

Example:
Dii'-'.IENSION B(5), C(l0 110), D(5, 10, 15)

EQUIVALENCE (A, B(l), C(S,5)), (D(l, 2, 5), E)

The EQUIVALENCE statement indicates that A, and the Band C arrays are to
be assigned storage locations so that the elements A, B(l), and C(5,5) are
to occupy the same location. In addition, it also specifies that D(l,2,5)
and E are to share the same location.

IV.7c Type statements

The type statements INTEGER and REAL, are discussed in Section IV.2b,
Variables types.

IV.7d DATA statements

General form:

DATA Vl/Cl/, V2/C2/, •.•.• vn/Cn/

Where: Vi is a variable name, an element of an array, or an array name.
Ci is a list of constants (separated by commas).

The address of the variable v, which for an array is the first element
of the array, is initialized with the first constant of the list c. If the
list c has more than one element, these subsequent constants are stored in
order in the memory locations which follow the position of the variable v.
If the variable vis an array the constants will be stored in the array in
the same sequence that data would be stored in the array by the appearance
of the array name in an input list.

If there are more constants in the list c than there are elements
in the variable v, difficulties may be encountered at object time. No check
is made for this error. Moreover, no check is made to see that the variable
and its constant(s) are the same type.

Integer and real constants may be preceded by a minus sign. A plus
sign preceding a constant is not permitted, but is implied by the absence
of a minus sign.

67

IV. 7b

IV.7c

IV.7d

I

I

..
II

■ -
An address constant is used .for pre-assigning a statement number to

an address variable. Address constants may not appear anywhere in the
program but in the DATA statement •

The DATA statement may appear at any position after the specific
ation statements.

■

-- I

~:7d JJJ

I

I .. !I I Examples:
p

I

~

■

I

~
..I

I.._

■

~ ..

~ ..
I - 11

DIMENSION
•
•

DATA
DATA
DATA
DATA

•
•

variable

R
HOLL
JOB
NUM

F
PIE
TRANS(l)
TRANS(2),TRANS(3)
TRANS (4), (5), (6)
TRANS(7),(8),(9),(~0)

11

X(l0,5),B(2,2),I3,TRANS(lO) .r
-...

R/3 .o/ ,HOLL/$HABCDE/ ,JOB/-1/ • .,
NUM/23S/ ,,_'!,

F/-J.6/,PIE/.Jl415927E+l/ i!III
TRANS/3S,4S,4S,3*7S,4*3S/.:: •_J _ 1

is i]'litialized with:

3.0
ABCDE
-1

~- ~
' p .,...._. _ _, .Ii

!iii
the object time representation
of statement No.• 23
-3.6
3.1415927
statement no.

II II

It II

II II

I!

J(obj.
4 II

7 II

3 II

--
time representation)

II II

II _r II

II II

1

_I -- 11

,:· ..
.. ..

IV.?e Order of appearance of specification statements IV.?e

The specification statements must be the first statements of the
program. The order of these must be (excluding comments cards) as follows:

11

1--
..

■

■

- ---- -
■
- - - -

COMaON if any
DIMENSION if any
EQUIVALENCE if any
REAL if any
INTEGER if any

REAL and INTEGER are considered equivalent, and may be inter
changed in the above list.

The DATA statement may appear anywhere after the above list.

rv.a Subprograms

The programmer preparing a KFII source program may find that he uses
an algebraic function, or a series of source statements, many times in the
same programo For example, the program may call for calculating the log of
several variables, or the standard deviation of several sets of variables,
or the inverse matrix of several sets of matrices. If the source state
ments that are to be repeated are defined in a subprogram, the programmer
need write the source statements only once. These source statements
comprise the subprogram definition.

The KFII language provides for four (4) types of subprogram defin
itions; Arithmetic Statement Functions, Function Subprograms, Subroutine
Subprograms, and Library Functions. The Library Function Subprograms are
written into the KFII compiler. A list of Library Functions is included
in Section IV,9. All other subprograms must be written by the programmer.
The Arithmetic Statement Function is expressed in a statement, all other
subprograms may include any number of statements.

For each subprogram definition, the KFII language also provides
source statements which perform the following operations:

1. Transfer control to the subprogram (Call the subprogram) at each point
in the program where the calculations are needed.

2. Transfer the variables to be used in the subprogram calculations
(function or subroutine arguments) to the subprogram.

3. Return the values of the calculated variables to ~he main program.

4. Return control to the main program.

Function subprograms differ from the subroutine subprograms in that
functions always return a single value to the main program, whereas a
Subroutine Subprogram can return more than one value to the calling program.

69

IV.7e

IV.8

■

■

■

I

I ..
■ ■•

I ■••
■ I

10 -
-IV.Ba Arithmetic statement function IV~Ba

The Arithmetic Statement Function is analogous to an algebraic
function. It is defined by a single arithmetic statement within the
program in which it appears.

-
....

General definition:
'

name (a, b,,,,n) expression

Where: name is the name of the Arithmetic Statement Function and a, b, ••• n
are the function arguments represented by distinct non-subscripted
variables,

..

1.

2.

Expression is any arithmetic expression defining the type of computat
ion to be performed when the function is used in an arithmetic
statement.

The user, naming an Arithmetic .Statement Function, must follow the
rules for naming a variable. The name must consist of 1-6 alphameric
character, the first of which must be alphabetic (special characters
may not be used). The name must correspond to the type of arithmetic
expression (integer or real); it may be explicitly defined in a Type
statement, or implicitly defined by the first letter of the name.

Any number of variables appearing in the expression may be used as
arguments of the function. Those variables in the expression that are
not stated as arguments, are. treated as parameters and take the current
value of these variables when the Arithmetic Function Statement is
called. Parameters may not appear in an equivalence statement.

•

..

-

3. An Arithmetic Statement Function may appear within the expression of
another Arithmetic Statement Function provided it has been defined
previous.~Y.

--
-All the Arithmetic Statement Function definitions to be used in a

program must precede the first executable statement of the program, and
follow the 1 last specification statement. ..

..

..

■

■

---' ~ -.:.... ..
..

..

I
)

,.
.. , -

-
I

L
..

Control is transferred to an Arithmetic Statement Function definition
when its name appear in the arithmetic expression. The arguments in
the Arithmetic Statement Function definition are set equal to the value
of the variables in the calling arithmetic expression. The computat
ions indicated by the function definition are then performed. The
resulting quantity replaces the function reference in the expression.

.. ..
- ~ - ..

Example:

■

Definition

Calling

.., ■

AVG (k,B,C,D) = (A+B+C+D)/4

AAGE = X + AVG(E,F,G,H)

-...

' ' ... -r -... .. -- ..

The calling statement is evaluated by first substituting the argument
values in the Arithmetic Statement Function definition:

A= E
B = F
C = G
D = H

The Arithmetic Statement Function, AVG, is then evaluated with the substituted
variables, The resulting value is added to X, and then assigned to AAGE.

Example:
Valid Arithmetic Statement Function Definitions

SUM (A,B,C,D) = A+B+C+D
FUNC (A) = A+X~~Y*Z(J)

Invalid Arithmetic Statement Function Definitions

SUBPRG (3,J K)
SOMEF (A(I),B)
SUBPRFN(A~B)
3 FUNC (DJ
IDEN (X,Y,Z)

= 3*I +J-lHf-2
= A(I)/B+3
= AiHl-2+B-lH~2
"' 3 ,l4➔~D
= X/Y,.. Y/Z (valid if a real specificat~on

statement is included in the
program: REAL IDEN)

6. It is not permissible to give the same name to an Arithmetic Statement
Function and to a Library Function, subprogram or subroutine subprogram
when they are used in the same program.

IV.8b FUNCTION subprogram

The FUNCTION subprogram is a FORTRAN subprogram consisting of any
number of statements. It is an independently written program that is
executed wherever its name appears in another program,

General Definition:

FUHCTION name (a1, a2, a3, •••an)
•
•
•

RETURN
END

Tl

IV.Ba

IV ,8b

-~~

~
-.._~I -
.... . ~
I-

■ -■ .. -
name is the name of the FORTRAN function.

a1, a2, a3, ••••an are nonsubscripted real or integer va~i&ble
names, array names, dummy names of Library Subprograms or address
variables.

1. The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or an input/output
statement.

- -

2. Ths user, naming a FUNCTION subprogram must follow the rules for nam-
ing a variable as follows:- The name must be alphabetic (special charac
ters may not be used). The first letter must be alphabetic. The
name must correspond to the type of the result of the FUNCTION sub
program. It may be implicitly defined by the first letter of the
name or explicitly defined by using the designator REAL FUNCTION or
INTEGER FUNCTION.

Example, ,. REAL FUNCTION i~TRIX (A,I,B) ::r

I

I

I

•
•

MATRIX= A(I,J) + B(I,J)
RETURN
END

FUNC~ION COU'Nt (I,J,A) f
DIMENSION I(lO), J(lO)

•

•
COUNT c I(J+l) + L(J+2)
RETURN
END

■

■ ■

-
- -I

- ■- -

J. At execution time the arguments of the Function subprogram are re-

...

placed by the variables in the calling statement. The current value
of the variables is used to perform the calculations. Thus the ar
guments of the FUNCTION subprogram may be considered to be dummy
variable names.

Example:
Program statements

REltL NUT
X = NUT (A) ..
Subprogram

r r

Comments

Calling statement,
control to function
program NUT .

IV.8b

■

REAL FUNCTION NUT(C)

D De 48.2
NUT Cl C/D
RETURN
END

Before evaluating NUT, C
is set equal to current
value of A.

4. The variable appearing as the function argument in the calling statement
shquld not be re~efined in the subprogram. Thus, in the above example,
A ·should not be re-defined in NUT.

5. When a dummy argument is an arr~ name, an appropriate array spe
cification in a COM:10N or DIMENSION statement must appear in the FUNCTION
subprogram. The DIMENSION specification of an argument of a subprogram
need not be the same as the DIMENSION speoification in ·;the calling
program. Any subscripts will refer to the dimensions of the array as
declared in the subprogram.

6. The value calculated by the Function subprogram is returned to the
calling program by placing the • name of the function at least once as
the variable riame on·the left side of the arithmetic statement in the
subprogram.

Example:
Program statements

N = MAX (I,J,K,L)

Subprogram
FUNCTION i'1AX (M,L,MM,NN)
! -
MAX = MM
RETURN
END

Comments

Calling statement arguments
are I,J,K,L, Control trans
ferred to MAX.

M=I, L=J, MM=K, NN=L
MAX is returned to calling
program.

7. The FUNCTION subprogram must return control to the calling program with
a RETURN statement. There may be more than one RETURN statement in a
~ubprogram. The FUNCTION subprogram must also contain an END state-
ment which specifies, for the processor, the last instruction of the
subprogram~

Example:
Program statements

A= ROOTSl + CALC(Y,X,I)

Sub-program

Comments

Calling statement transfers
control to CALC

7l

IV.8b

·----

FUNCTION CALC (A,B,J)
•
•
•
CALC =-A/B+ B~J
If (CALC) 10,20,10

10 RETURN

•
20 CALC .,, A-iH~J

RETURN
END

IV .Be SUBROUTINE subprogram

A=Y, BaX, J•I
CALC is calculated and if
positive or negative the
value is returned to the
calling program.

If CALC is zero it is
calculated again •

The SUBROUTINE subprogram is a set of commonly used ope~ations, it
does not restrict itself to a single value for the result, as does the
FUNCTION subprogram. A SUBROUTINE subprogram can be used for almost any
operation with as many results as desired. Since the SUBROUTINE is a
separate subprogram, the variables and statement labels do not relate to
any other program, except arguments (including address variables) which
are used to carry @alculations back to the calling program.

General Definition:

•
•
•
RETURN
END

where: name is the subroutine name

a1, a2, a3, •••an, are arguments. There need not be any. Each
argument used must be a nonsubseripted variable name, array name,
or address variable.

l. The user, naming a Subroutine, must note the following rules: The name
must consist of 1-6 alphameric characters, the first of which must be
alphabetic (special characters may not be used). The name does not
have to correspond to any Real or Integer type variable.

2, SUBROUTINE subprograms may contain any Fortran statement except
FUNCTION or SUBROUTINE definitions. The DIMENSION specification of
an argument of a subroutine need not be the same as the DIMENSION
specification in the calling program.

7h

rv.Bb

IV.Be

---- ----------

3. The arguments may be considered dummy variable names that are replaced
at the time of execution by the actual arguments supplied in the CALL
statement. (See below) The actual arguments must correspond in number,
order, and type to the dummy arguments. None of the dummy arguments
may appear in an EQUIVALENCE statement in a SUBROUTINE subprogram.

4. The SUBROUTINE subprogram is called by a special FORTRAN statement:
the CALL statement, which consists of the word CALL followed by the
name of the subprogram and its parenthesized arguments, if any.

General form of CALL statement:

CALL name (a1, a2, •.•• am)

where: name is the symbolic name of a SUBROUTINE subprogram.

a1, a2, ••••¾ are the actual arguments (if any) that are
being supplied to the SUBROUTINE subprogram.

Example:
Program statements

CALL MATRIX (X,Y,L,M)

SUBROUTINE MATRIX (A,B,I,J)
DIMENSION A(20,20), B(20,20)

Comments

Transfers control to
subroutine matrix.
A=X, B=Y, I=L, J=M

-.
10 it~~i=A(K,M)+B(K,M)

MATRIX A is calculated and
returned to the main program.
Control is returned to

END the main program.

5. The RETURN statement returns control to the calling program. Multiple re
turns from a subroutine, each to a tti.fferent point, can be effected
by using aadress variables as arguments.

If an address variable is carried into a subprogram as an argument, and
a transfer to the dummy address variable of the subprogram is executed,
control will transfer back to the main subroutine, each to a different
point.

Examples:
ASSIGN 173 to J) main
CALL BOMB(J)) program

•
•
•

SUBROUTINE BOMB (ZIP)) Subroutine, The GO TO
•) will transfer control to
•) statement 173 of the
•) Main Program

GO TO ZIP

IV.Be

■

I
6. The SUBROUTINE Subprogram must follow the main program. ... -• Ii-- -
IV• 9 Subprograms provided by FOR TRAN ---

KINGSTON FORTRAN II includes several commonly used EOutines that are
available to the programmer. The mathematical routines that are provided
are defined as FUNCTION subprograms.

IV.9a Mathematical subroutines ..
The names and types (integer or real) of all of these subprograms

are automatically assigned by the compiler; therefore, they must not appear
in Type statements, Variables used as arguments of mathematical routines
must be typed, either explicitly or implicitly, to agree with the type
of the arguments of the function reference in which they appear. The
mathematical routines are listed in Table 4, In several cases the same
routine may be called by more than one·name. -
■

TABLE 4 --- i
Table of Library Functions

FUNCTION DEFINITION

Exponential eArg

Natural
logar:i,.t,hm

loge(Arg)

NO.OF
ARGs":°'

l

.1

Arctangent arctan(Arg) 1
in range- TI to Jl

--z. 2.

Arctangent arctan(Arg 1/Arg2) 2
in range- rr to 11'

Trig.Sine sin(Arg)

Trig.Cosine cos(Arg)

l

Square Root (Arg)~

Absolute
value

IArgl

1

1

I l

1

NAME OR TYPE OF
NAMES- ARGUMENT -FUNCTION -
EXP Real Real
EXPF --
LOG 111111 Real
LOGF
ALOG

ATAN Real Real

ATAN Real Real

SIN Real Real
SINF

cos Real Real
COSF

SQRT Real Real
SQRTF

ABS Real Real
ABSF
IABS Integer Integer

76

IV.Sc

IV.9

IV,9a

I

■

Choosing Max(Arg1,Arg2,---) > 2-:::_9 MA.X Integer Integer
largest AMAX Real Real
value

Choosing Min(Arg1,Arg2,---) -:=:: 2-=:9 MIN Integer Integer
smallest AMIN Real Real
value

Float Conversion from 1 FLOAT Integer Real
integer to real FLOATF

FIX Conversion from 1 INT Real Integer
real to integer IFIX

Transfer of Magni tucte of Arg1 2 SIGN Real Real
sign with sign of Arg2

Ideal Relay Arg/ABS(Arg) for 1 SIGN Real Real
Function Arg -~o and O

otherwise

Plot See below (1) 10 PLOT Real Real
PLOT p 0 • arg 80

Rand See below (2) 1 RAND Real Real

Sort See below (3) 2 SORT Real Real

The Library Subroutines are CALLED when they are names in an arithmetic
statement .

. Example:
Y = SQRT (A)

The square root of A is computed and assigned to Y.

1. The PLOT subroutine may be called with a CALL statement.

General form:

where: Z1, Z2, •••Zm are real variables whose range is Oto 80.
~he integer value of any argument to be p~ottc;.: must be scaled to lie within

11

IVi9a

the range O arg BO; values outside this range arc cronsi1ered erroneous. Each
CALL PLCYr stat~ment causes a single card to be punched. The plot is obtained
by listing those output cards on the 407 tabulator.

Up to ten quantities can be plotted. The plotted value is truncated, not rounded.
The plot of the first argument listed (Z1) is printed with a 111", the second with
a 112" etc. If there is a tenth quantity, it is given a 110". F ":" example, if
Z5 ~ 32059 then a 5 is punched in Col4 32 of the Card. If t~o arguments have the

79

General .form:

CALL SOLVE (A,N,M,DET)

where: A is a matrix with N rows and N+l columns.
The N coefficients of the N unknowns of the first equation are in
A(l,N) The N unknowns of the first equation are in
A(2,N,) and so on.
The constant vector must be in column N+l of A.
N is the number of equations to be solved and
Mis the first number in the DIMENSION statement.

DET is the value of the determinent of the N Rows by N columns
of Matrix A, and is defined after the execution of SOLVE. The
parimeter DET may be left out of the call statement if the value
of the determinent is not wanted.

The answers are left in column N+l of A.

(See sample problem lO
Section IV.14)

6. Resolv will re-solve the original coefficient matrix when a new constant
vector has been put in column N+l of matrix A. This resolution routine
is called by the following statemnt:

CALL RESOLV (A ,N ,M)

where: A is the A matrix as defined in the solutioh matrix SOLVE.
N is the number of equations to be solved.
Mis the first subscript in the DIMENSION statement

?. The determinant subroutine may be used to evaluate the determinent of
a square matrix. It is called by the following statement:

Dummy= DETER (B,N,M)

where: Bis the s~are array containing N rows.
N is the first subscript in the DIMENSION statement

(See sample problem 10
Section IV.14)

IV .10 Operating instructicns, contr,ll cards

Bo

IV.10

The use of the control cards described in the secti::m Required contr;:,l
cards results in one-pass compilatirm and executi,m :,f a s:mrce program
written for the KFII compiler. The cards listed under Required c,·.ntrol cards i

should be included in all s::iurce decks submitted t·:, the IN-OUT box. Operators •
of the Model II should nr,te that a COLD START card must be loaded before the
Monitor control cards if the compiler is not in memory.

COLD START card: 3400032007013600032007024902402511963611300102

The numbers are punched consecutively starting in
card col., 1.

Processing the control cards mentioned in the secto'r Optional control
cards may involve considerable machine time. Users should exercise discretic,n
when including them in a prog~am.

IV.lOa Required control cards

The compiler is loaded from disk mem::>ry into machine core storage
when the following two Monitor control cards are read. The cards must be
punched in the card columns noted below:

Card Col. 1234 S 6 7 8 9
##'JOB
X E Q K F 2

NOTE: The # ie a .:inultiplo punch 028.

The above cards must precede the first source statement. A KFII
system control card must follow the Monitor cards.

IV.lOa

Card Co 1. 1 2 3 4 5 6 7 8 9 10 45 • • · • • • • • • • •
J O B NA M E .• • • • • • . OPTIONAL USER IDENTIFICATION

NOTE: NAME is the programmers name, OPTIONAL USER IDENT'IFICATION may
include users problem number or class section. The # JOB_ card
will be printed on the on-line printer and will identify all
printed program output including source program listing, e~ror
messages and problem solutions. •

An EOJ card must follow the-last source statement. The EOJ card informs
the compiler that the last source .statement of the program has been reached.

Card Col. l 2 3 4 5 6 7 8 9 .
E o J (a$ may be substituted for the# when punching the#

JOBNAME card or the# EOJ card)
A program preceded by a JOB card will result in the output of machine

language instructions, stored in the disk work area, ready to be loaded into
machine core memory. The following control card nrust be used to load the
object program from the disk work area to machine core storage:

Card Col. 1 2 3 4 5 6 7 8 9
##XEQ RUN

This card must follow the EOJ card and immediately precede the data.

A~### card (record marks punched in Co. 1-4) must follow the last
data card. Even if no data cards are used, the i;:#J# card should be used

IV.lOa

to signal the end of the program execution. A source program submitted f8r batch
processin.g will not be run if the #### is umitted fr·)m the source deck.

Sample: Card Deck prepared for proGram execution, consisting of
source deck, data for execution of the pro~:r.am, and mon
itor control cards.

##tTOB_ Monitor Control Cards

Internal Controi,C?.rd

Source statements

##XEQ KF2 . _
if,.,. .• ~JOBJoE sMIT-H . · ., .. MATH 90

Internal Control Card

Data

••••••••• •·
EOJ
##XEQ -RlJN ~ ...

Monitor Control Card #:'.##

IV.lob Optional control cards
.. .

A PRESCAN card may be used in plaoe.• ,of the JOB card. A program
preceded by a PRE,SCAlT card will produce no machine instructions. However,
source langua;e errors will be detected in the normal way. The purpose
of this is to allow rapid detection of source langua~e errors. The
PRESCAN card must be followed by the ##XEQ :CF2 card.

Sample: Card Deck prepared for rapid detection of source language
errors

Monitor Control Cards

Source statements

Monitor Control Card

#1~XE<"J1 KF2
.# PP.:E:SCA,N

•••••••••
• • • • • • • • •
• • • • • • • • •

EOJ

(Card Col •. 2-6 must be blank)
(Carrt CciL' 2:-:6 mus~, be blank')

IV.lOb

..I
-

I

1111 --

..

..

-- - -

'
-1 - -cl - ...

OBDECK Card

An object deck may be obt~ned during compilation by punching the
letter Din col. 32 and/or 33 of the ##'X$,Q KF2 card. If an .bject deck
was not obtained during compilation, it is possible to punch an object
deck from the program currently in the work areas of the disk. This is
done using the following Monitor Control cards:

##JOB (Col. 6 must be left blank)
##XF,Q OBDECK

If the object program is in the form of a card deck, the object
de·ek may be loaded by preceding it by the Monitor Control Cards:

##JOB (Col. 6 must be left blank)
##XEQ RUNDK

IV.lOb

--

The BEGIN TRACE card causes arithmetic trace instructions to be compiled
for each arithmetic and IF statement, beginning with the statement following

■ -the control card~ No additional instructions are generated for arithmetic
statements; one actditional instruction is generated for each IF statement. An
arithmetic trace halts when an END statement is compiled or an END TRACE card
is read. -
BEGIN TRACE card: # BEGIN TRACE (Card Col, 2 ...6 arc blank

-Card Col. 11-80 may contain any valid
END TRACE card: # END TRACE characters.)

To execute arithmetic and FLOW TRACE instructions, console switch 4 must
be on during program execution. The result of arithmetical FLOW TRACING will
be punched 5 per card. TR.ACE output for arithmetic statements is in modified
El5.8 notation preceded by the object time address of the variable on the left
hand side of the arithmetic statement.

The FLOW TRACE card causes instructions to trace the flow of the object
program to be generated, beginning with the next executable statement labeled
with a statement number. FLOW TRACE generates one additional instruction
(12 digits) per statement number traced. The Output of FLOW TRACING is the
statement number in order of execution, preceded by the letter NO. (See sample
problem 11, Section IV.14) .

FLOW TRACE card:

END FLOW TRACE card:

FLOW TRACE (see above} 'I

.I

END FLOW TRACE ■ ..

A symbol table will be punched for the portion of the program following
an INDEX card, unless a STOP INDEX card is read. The symbol table will contain
five different types of items, with their names and appropriate addresses •
If the variable or subprogram name is undefined, an asterik will appear before
the name.

-•,,
i· .. :· .

-~

•
•

•

1) Simple variables
2) Dimensioned variables
3) Statement Numbers
4) Subprogram Names
S) Constants

INDEX card:

STOP INDEX card:

INDEX

STOP INDEX

<..Ctlmt.H millrumn:s punchod as
.rloisarlbc::d · cbo,ro) • -

83

IV.lOb

IV.11 Operating instructions, automatic printer output rv.11

During compilation all control cards will be printed on the 1443 on-line
printer. The# JOBNAME card will identify all printed output. The source
statements and any co~pilation error messages will also be listed on the printer.
The compilation error codes are identified in table S "Kingston Fortran II
ERROR MESSAG1::S11•

Any variables, statement numbers, or function, which are undefined in
a subprogram, will be typed or printed duriBg compilation. The name of the
undefined quantity will be preceded by an asterisk. If the undefined quantity
is a statement number, the letter Swill appear to the right of the number.

The compiler will accept a program containing undefined variables as
O.K.; however, the program may Lot run, depending on the nature of the palticular
situation. If no source program errors have been detected, the message O.K.
will be printed and the program will be executed. If a source statement error
or an undefined statement number has been found, the message NO GO will be
printed when the EOJ card is read and the object deck will not load.

IV.12 Operating instructions, error messages during compilation IV.12

If a source statement contains an error, an error message will be
printed.Output of machine language instructions is then suppressed for the
dura~ion of the job, but the remainder of the compilation will continue until
an EOJ card is read, so that any additional errors will be detected.

Source statement errors are prinW in the following form:

cc NNNNN MMMM

Where: CC is two digit error code
NNNNN is the last encountered statement number in the subprogram or
main program.
MM!"lM is the number of statements after statement numbered NNNNN in
which error occured (comment cards, monitor control cards, and contin
uation cards are not counted). (See Table 5, KINGSTON FORTRAN II ERROR
MESSAGES).

IV.13 Operating instructions, error messages during object program
execution

During the object program execution, errors are noted by inserting
digits in a table stored in memory. The error table is printed when a

84

IV.13

CALL EXIT statement is encountered, The error codes will be printed between
the words EXIT XXXXXXXXXXXXXXXXXX CHECK. AO i1dicates no error. A digit
indicates as· error; errors are identified by number1:1 c.~,d ~osition in the
EXIT line (See Table 6). Sample problem (Section IV.14) describes the form
of prinedexecution errors. If there are no execution errors the message·
EXIT CHECK will be printed at the conclusion of program execution.

In addition, certain input-output errors are detected at object time.
Table 7 outlines these errors and the action taken in each case. (See
Table 6 OBJECT TIME ERRORS, and Table 7, I/0 ERRORS AT OBJECT TIME).

Al

A2

A3

A4

AS

A6

A7

A8

Cl

C2

C3

C4

TABLE 5

KI MGSTON FORTFiAi'J I I Efl~Of; MC:SSt;G c:S

STATEMENTS CONTAINING
EXPRESSIONS

••

• •
...

• •

• •

••

• •

COMMON
DI-MENS I OM

COMMON OR DIMENSION

COMMON OR DIMENSION

COMMON

REAL, INTEGER, EXTERNA
FUNCTION susgouTJNE,
ARITHMEr[c STATEMENT.
FUI\ICTI OMS

ILLEGAL SYNTAX ~NAN EXPRESSION

(1) ILLEGAL SYNTAX IN AN ARITHMETIC
STATEMENT
(2) AN EXPRESSION OR INTEGER CONSTANT ON
THE LHS OF AN ARITHMETIC STATEMENT
(3)· A SUBSCRIPTED VARIABLE NOT MENTION~
ED IN A DIMENSION STATEMENT

NIXED MODE tN AN EXPRESSION

WRONG NUMBER OF SUBSCRIPTS IN A OIMEN~
SIOMED VARIABLE

~uastRIPT IS A REAL QUANTITY

NAME OF A NON•EXTERNAL FUNCTION USED AS
A VARtABLE

THE CHARACTERS• OR$ APPEAR AS OPERATOR
IN AN.· EXPRESS I ON

ONE. OF THE TABLES USED BY THE COMPILER
HAS. OVERFLOWN (STATEMENT IS TOO LONG OR
COMPLEX)

(1) SYMBOL IS ALREADY IN THE SYMBOL TABLf
(1) SYMBOL IS ALREADY IN THE SYMBOL TABL1
AND IS NOT A FORMAL PARAMETER
(2) NO DIMENSIONS GIVEN FOR VARIABLE

ARRAY SIZE IS GREATER THAN 9999 ELEMENTS

MORE THAN 13 DIMHlSIONS SPECIFIED

(1) INVALID CHARACTER• MOST LIKELY CAUSED
DY A MISSING COMMA OR CLOSING PARENTHESIS
(2) CONSTANTS WHERE VARIABLE NAMES
SHOULD BE
CONSTANTS WHERE VARfABLE NAMES
SHOULD BE

cs

C6

D1

D2

D3

• ■
COMMON, DIMENSION, EQU STATEMENTS ARE NOT IN THE SPECIFIED
ALENCE, INTEGER, REAL~ SEQUENCE

■ EXTERNAL

COMMON, EQUIVALENCE ILLEGAL EXPAMS I Oi~ OF COMMON IN A SUS..
PROGRAM t-:

DO, I /0 DO ■

DO, 1/0 DO

DO

(l)VARIABIE 0~ EXPRESSION IS REAL
(FLOA Tl NG POI NT) MOOE RATHER THAM I MT EGER
(2) THE INDEX OF THE DO IS AN EXPRESSION

SYNTAX ERROR. TOO MANY OR TOO FEW TERMS,
OR COMMA OR RIGHT PARENTHESIS MISPLACED

__ THE STATEMENT NUMBER SPECIFYING THE RANG1
OF THE 00 HAS ALREADY BEEN DEFINED

04 TERMINATION OF A DO OR PREVIOUS ERRORS HAVE MESSED UP THE 00

El

E2

E3

■

F2

l/0 DO TERMINATIONS. WHEN ALL DO STATEMENTS AND
THEIR RANGES ARE CORRECT THIS ERROR
CANNOT OCCUR

EQUIVALENCE

EQUIVALENCE

EQUIVALENCE -

TRYING TO EQUIVALENCE A DEFINED VARIABLE
TO SOMETHING ELSE

TRY I NG TO EQUIVALENCE TI'/0 ARRAYS IN SUCH
A WAY THAT THEY HAVE NO COMMON ELEMENTS
(1) STATEMENT SAID EQUIVALEMCE (Vl), -:-.·
AND DID NOT SPECIFY THE SECOND ITEM
(2) INVALID EXPRESSION (ARITHMETIC) IN

~ EQUIVALENCE

DATA

FOP-MAT

FORMAT -- ---

- ------DATA -,.■ -
CALL
OTHERS

(3) STATEMENT rs INCOMPLETE
STATEMENT IS INCOMPLETE

(1) A LEFT PARENTHESIS HAS BEEN FOUND
BEFORE THE REPEATING SECTION NN(.•••••)
HAS BEEN COMPLETED
(2) A MINUS SIGN THAT IS NOT PART OF A
HOLLERITH FIELD OR A -NNP TERM
(3) MORE THAN 5 LEVELS OF NN(.•...)IN A
NEST
(4) INVALID LETTER IN WHAT LOOKS LIKE A
NUMERIC SPECIFICATION

FINAL CLOSING PARENTHESIS IS MISSING. MAY
BE DUE TO A HOLLERITH STATEMENT WITH TOO
SIG A CHARACTER COUNT
INCOMPLETE STATEMENT. MAY BE MISSING A/
MO SUBROUTINE NAME
INCOMPLETE OR GARBLED STATEMENT

F3

F4

F5

L1

Nl

M3

M4

NG

N7

FORMAT

FORMAT

STATEMENTS WITH, OR
CONTAINING STATEMENT
MUMBERS

FOP.Mt\ T

OTHER THAN FORMAT

SIZE
OR I GI ,J

87

(1) THEW SPEClFICATlON IS MISSING IN A
AW OR IW TERM
(2) THEW ORD OR DECIMAL POINT IS
MISSING IN A EW.D on FW.D SPECIFICATION
(3) AN AVJ SPECIFICATION HAS A 'vi GREATER
THAN 50
(4) UNINTELLIGIBLE

(1) SPECIFICATION EV! .D OR FVJ .D HAS \t-/-D
GREATER THAN 45
(2) SPECtFICATION E~J ,D OR F\t'1 .D HAS D
GREATER THAN W .
(3) SPECIFICATION I ~I, HJ .. D, OR E'v! .D HAS
W GREATER THAN 8G . .
(4) SPECIFICATION AW HAS W=O

(1) SPECIFICATION ~NNP OR NNP HAS NN
GREATER THAN 49
(2) SPECIFICATION NNH, NNX, NN(, NNE,
NNF, NNI, NNA HAS NN=O - - -
WHAT SHOULD BE A STATEM~NT NUMBER OR AD
DRESS IS EITHER A!1.J f\r~i-fHi'iETiC !:XPRESSIOM
REAL (FLOATING POINT) MOJE, NEGATIVE,
OR ZERO

(1) WHATSHOULD BE A NAME OR NUMBER BEG!~
WITH OWE OF($ + - * /)
(2) D1MENSIONiNG INFORMATION IS NOT AN
INTEGEn CONSTANT

A SYMBOL HAS MORE THAN SIX CHARACTERS IN
IT

REAL (FLOATING POINT) CONSTANT IS GREATER
THAN 0,0 BUT LESS THAN 1 ~E-51

REAL (FLOATING POINT) CONSTANT IS EQUAL
TO OR GREATER THAN 1 .E+L}9

SOME COh!STANT IN THE STATEMENT Cot-JTA I /\IS
MORE THAN 2 DlG!TS
AM INTEGER (Fl /i:D POl NT) CONS T,~NT OR
STATEMENT NUMBER (US~D tN THE STATEMENT)
HAS MORE THhN 5 o;G!TS
THE SIZE CONTAINS MORE THAN 5 DIGtTS
THE ORIGIN CONTAINS MOnE THAN 5 DIGITS

A nEAL (FLOATING POINT) CONSTANT CONTAINE
DECIMAL POINTS

M8

P2

P4

P7

Q7

Q9

Rl

NON-FORMAT

ASSIGN

IF(SENSE SWITCH I)

GO TO

CALL
DATA

IF

-=--,...
- -r-... ' I

STOP N, PAUSE N

DO

88

A HOLLERITH CONSTANT CONTAINS MORE THAN
FIVE LETTERS

IN THE EXPRESSION ASSIGN I TO J
(1) I IS A VARIABLE BUT DOES NOT HAVE
BRACKETS AROUND IT
(2) THE TO J 1S MISSING
(3) J IS NOT AN INTEGER VARIABLE
(4) THE J IS NOT THE END OF THE STATEME~
(5) I IS NOT AN INTEGER VARIABLE

(1) THE ARGUMENT OF THE IF STATEMENT IS
AN INTEGER CONSTANT
(2) THE ARGUMENT IS NOT PROPERLY ENCLOSf
WITHIN PARENTHESIS
THE SENSE SWITCH I IS NOT PROPERLY
ENCLOSED WITHIN PARENTHESIS

(1) THERE IS AN UNDESIRABLE) IN GO TD~
(2) THERE IS AN= SIGN IN A COMPUTED GO
TO
(3) THE INDEX IN THE COMPUTED GO TO I~
NOT THE LAST THING IN THE STATEMENT
(4) THE INDEX OF THE COMPUTED GO TO IS A
REAL VARIABLE

INCOMPLETE STATEMENT
tNVALID DELIMITER

(1) THERE ARE TOO MANY OR TOO FEW STATE·
MENT NUMBERS OR LABELS AFTER AN IF
(2) THE LIST OF STATEMENT NUMBERi AND
LABLES HAS A MISPLACED RIGHT PARENTHESIS

UNRECOGNIZABLE STATEMENT

THEN IS NOT AN INTEGER EXPRES~ION

DOUBLY DEFINED STATEMENT NUMBER

INCORRECT 1/0 STATEMENT. PARENT~ESIS,
COMMAS, AND EQUAL SIGNS (DOS) ARE •
MISSING OR MISPLACED,
INCORRECT DO STATEMENT. PARENTHESIS,
COMMAS, AND EQUAL SIGNS (DOS) ARE -

- Ml SS I NG OR Ml S PLACED
COMPUTED GO TO INCORRECT COMPUTED GO TO. PARENTHESIS,

OR COMMAS ARE MISPLACED OR MISSING. -

R2

R3

R4

Sl

S2

S3

S4

Tl

1/0

1/0

1/0

FUNCTION

SUBROUTINE

ARITHMETIC STATEMENT F

ARITHMETIC STATEMENT

B9

(1) EXPRESSION IN AN INPUT STATEMENT.
(2) I MVALI D SYMTAX. MAY BE A Ml SPLACED
CLOSING PAR~NTHESIS

(1) THE FORMAT MUr1BER IS FOLLOWED BY A
RIGHT PARENTHESIS.
(2) SYNTAX ERROR. PROBABLY SOME OTHER
DELIMITER WHERE A COMMA SHOULD BE

FUNCTION SUBPROGRAM HAS AN INPUT
STATEMENT

(1) NOT FIRST STATEMENT IN A FUNCTION
SUBPROGRAM
(2) DOES NOT HAVE ARGUMENTS
(3) SUBPROGRAM NAME OR OTHER INVALID
ARGUMENT
(4) INVALID SYNTAX. PROBABLY MISSING
COMMA OR RIGHT PARENTHESIS
(1) NOT FIRST STATEMENT IN A SUBROUTINE
SUBPROGRAM
(2) SUBPROGRAM NAME OR OTHER INVALID
ARGUMENT
(3) INVALID SYNTAX. PROBABLY MISSING
COMMA OR RIGHT PARENTHESIS
(1) STATEMENTS NOT IN PROPER SEQUENCE
(2) DOES NOT HAVE ARGUMENTS
(3) SUBPROGRAM i~AME OR OTHER INVALID
ARGUMENT
(4) INVALID SYNTAX. PROBABLY MISSlNG
COMMA OR RIGHT PARENTHESIS
SUBSCRIPTED VARIABLE ON LEFT HANO SIDE
FOR WHICH NO DIMENSION STATEMENT EXISTED

FUNCTION SUBROUTINE, NAME OF FUNCTION OR SUBROUTINE IS DEFINE
ARITHMETIC STATEMENT-F TWICE OR IS THE SAME AS A LIBRARY PROGRA

RETURN

CALL

I !HEGER, REAL

PROGRAM IS NOT A SUBPRGORAM

STATEMENT HAS INVALID SYNTAX. PROBABLY
A COMMA OR RIGHT PARENTHESIS IS OUT
OF PLACE

ATTEMPTED TO CHANGE THE MODE OF ALREADY
DEFINED FUNCTION

90

T2 EXTERNAL TRYI MG TO MAKE A VARIABLE INTO A FUNCTION

T3 INTEGER, ~EAL, EXTERNA INVALID CHARACTER IN STATEMENT WHERE A

Xl

X2

X3

XS

X7

XG

21

Z2

23

25

Z6

27

EQU I VAL~NCE - COMMA SHOULD OE

SIZE

ORIGIN

EOJ

HAVE DESTROYED DlMENS I ON TABLES AND MA.IBE
PART OF SYMBOL TABLE. JOB ABANDONED

PUNCH CHECK P_'.~S I STS FOR TWO TR I ES

SYMBOL TABLE FULL. JOB ABANDONED

PROGRAM TOO BIG FOR MEMORY AVAILABLE.
JOB ABANDONED

WORK AREA FULL. STATEMENT TOO LONG TO
·PROCESS

t I ,•1 .,

• ~ 'fVMCTION CARD(S) ARE UNINTELLIGIBLE ' ..

• -:::0.l"SK ERROR PERSIS TED FOR TEN ATTEMPTS

.INVALID CONTROL CARD. JOB ABANDONED

STATEMENT IS A MEANINGLESS COLLECTION
OF ZERO TO THREE CHARACTERS

THERE IS AN UNPAIRED CLOSING PARENTHESIS

,HOLLERITH FIELD WAS INCOMPLETE AT END OF
_S,TATEMENT

;

THE EXPRESSION NNNNNH (WHERE N IS A
DI.GIT) HAS OCCURRED. THIS IS TOO MANY
DIGITS FOR A VALID HOLLERITH, AND ALSO
TOO MANv:·r-o BE PART OF A SYMBOL

A STATEMENT WHICH IS NOT AN ARITHMETIC
STATEMENT IS NOT COMPLETE

STATEMENT MUMBER lS GARGLED SOMEHOW
THE SIZE SPECIFICATION IS MISSING
OR GARBLED

THE ORIGIN SPE61FtCATION IS MISSING
OR GARBLED

(1) EOJ CARO NOT PRECEDED 0V AN END CARD
(2) NO MAIN PROGRAM IN A NONJRELOCATAGLi
JOB

ZO END

• !
•••• I

29 FOr.:MAT

COMMOi~
DIHH!SION
EQUIVALENCE
EXT:::RNAL
FUNCTION
INTEGER
REAL
DATA
SUBROUTINE
ARITH.STATE.FUNCTION

GO TO
IF
IF (S Ei'!S E SWITCH)
ARI TH.STATEMENT
ASSIGM
ACCEPT
PUNCH TAPE
ACCEPT TAPE
PAUSE
PRINT
PUNCH
READ
REREAD
TYPE
CALL
STOP
CONTI MUE
~ETURi·l
00
GO TO (1\11, N2,---), I

91

{ 1) EllD STATEMEMT HAD A STATEMEMT NUMBER
(2) LAST EXECUTAGLE STATfMENT.WAS NOT A
TRANSFER OR CALL STATEMENT
(3) THE PROGRAM CONTAlNS NO EXECUTABLE
STATEMENTS
,(4) NO RETURN STATEMENT IN A FUt!CT I ON
S'UOPROGRAM
(5) TWO MAIM PROGRAMS IN A JOB.
(6) MAIN PROGRAM IN A RELOCATABLE
COMP f LAT I OM
(7) IN A FUNCTION· SUBPROGRAM, THE
FUNCTION HAS NOT BEEN EVALUATED BEFORE
THE END STATEMENT IS ENCOUNTERED.

DOES NOT HAVE STATEMENT NUMBER.

HAS A STATEMENT NUMBER.

FOLLO\t/S A TRANSFER STATEMENT AND DOES
NOT HAVE A STATEMENT NUMBER

RETURN 11 "" -
STOP
GO TO
GO TO (Nl, N2,---), I
IF .
IF(SENSE SWITCH) a
DO
BAD CARD

PCH CHK

JOB ABANOOMED -
--

- ■

LAST STATEMENT IN THE RANGE OF A DO, 1

ll

'
THERE HAS BEEN A P-EAD CHECK.
RELOAD THE CARD ANO PUSH START.
THERE HAS BEEN A PUNCH CHECK WHEN
PUNCHING THE LOADER ROUTINE. CLEAR
THE PUNCH AND PUSH START TO TRY AGAIN.
(1) OCCURS AFTER ERRORS Xl AND X3.
(2) INVALID CONTROL CARD.

Position
in Error
Field Digit

1st digit 1

2nd 2

3rd 3

4th 4

5th 5

6th 6

7th 7

8th 8

9th 9

10th 1

11th 2
12 3

13 4

14 -. 51
15

_,
• I

16 T'
rt m

Table 6

Meaning

Floating Point Underflow

Floating Point Overflow

Floating Point Divided
Zero

Fixed Point Divided by
Lero

by

Act;t.Q!!_Taken (FAC ·- Aceum.til:,ator :a;:: Res.tt1.t

FAC :: OOOOOCOO0O

PrtC = +9999999-~99

FAC = +99999-:j9999

FAC is unchansed, i.e. J/O .:. J

Square n.oot of Nep,. Number Square root of absolute valve of arg.,

Fiel<l}

Log of zero or Nee.Number Log(0) =: -9999999999; otherwise loe of abs.
value of arg.

Sin or cos, arg. > 10 8

I:xp(x) out of range

Input ncrnber too small

Inpt 1 t nn1ber too big
arg <0 or >80

Plot, -1 > arg >80
I/0 error-2. (Table
1.3.6.2)
I/0 error 1. (Table
1.3.6.2)

Unused. Available for
user-defined relocatable
s u bm: ~ -t' ar-is

CALL £XIT

PAC= +9999999999 or zero

The number entered memory as 0)00000000

The nvmbtr entered memory as +)9)9999999

Point not plotted

Number isnored.
Number i:::nored.

E~2 inserted in output
.Jll inserted ::.n output

...
I
■ ■

iii

I

■ -
p

• I■
■ ,..

■ -...
■

■ • -

I ■

■

I I■
■

I■- 1■■!

■

■

I

:Ii

■
■

Table 7

I/0
Error Reason Result

0
1
2
3
4
s
6
7

ao
l:.rrors in
Variable
Forr.:iat
lF

2F

3F

I11put record from T/ 1.7 or paper tape over 150 characters long
IJon-aiphabetic data on A-type output
Field width too small on I, E, F outJut; may be an undefined variable
Invalid character on input data on I,~, f, or N format
An input word has more than 88 si~nificaPt di~its
Input-output list with no nvmeric s:i;ecifications between last opening
closine par~ ,thesis pair in Format statement
Format requires more than 150 characteris in a record
i~rite-check occ11rred 3 times w1'en atterw---tin:- to punch output or trace
card
Disc error persisted 10 tirnes

- Forri1at too lon-~ or coF,plex for a.vailable vmrk area
- Cor:u11a or ri::-:;ht parenthesis before co· ~)letio:11 of repeat_;_n :: format

- Finue si::_rn which is not part of a H- or P-s~~ecification
- Incorrect length of H-specification
- No closin~ parenthesis
- 3tatement inco~plete
- Non-perm-i..ssible character

- Viore than 5 levels of repeated, pare:-.thes.::..zcd Format
- Repeated Format with Bore than 49 rereats
- l ield width m • . .ssing in I, A, ~~, or F, s ,ecification
- Field witdth 1re£ter t~an 50 in ~-specification
- d or decimal point r,1~:::s ne in Lw.d or Fw.d
- non-permissible character
- d>w in Ew.d or Fw.d
- (w-d)>45

Field width, w, >50 in i::.w.d, Iw, or Fw.d
- Specification Aw has w = 0

C1'-L ..:.:XIT
Number i~nored *
Nember " *
CPLi.. :~i.~IP
Cf.LL ~/.L'

Ci\L.L _:_XIT
CAL:_ ; __ x IT
CALL 1.:XIT

Ci\LL Si:Il"'

Table 7 Continued:

~t.un 1
READ 2
READ 5

Kead ch.eek on T/~i
n 11 " paper tave
" " " cards

* Alphabet1c f 1eld is replaced by TIU. Last item _ _.1.n record r;~ay

** NumEric field is replaced b_y :~2. Last item in ·record may be

Co 1puter halts.
:1'en start is

pressed, the
machine will

at·;;e·, ,)te to read

the· record aga~n.

*1v.14 SAMPLE PROOLEMS

SAMPLE PROBLEM 7
##JOB 5
##XE.Q KF2
$ JOB .TOE SMITH
C PROGRAM READS DATA IM BY COLS,PUNCHES DATA OUT BY ROWS

DIMENSION C(S,5) -
10 READ 10,(~~(}tJ),J=d,L~),J::,1,5)

FORMAT ~5Fv.2J . . - .
PU MC H 1 0 , ((C (I , J) , J ,._, 1 , 5) , I == 1 , L:.)
CALL E}(IT
Er-JO

$ EOJ
##XEQ RUN
00001 .1000002.1000003.1000004.1000001 .20
00002.2000003.2000004.2000001 .3000002.30
00003.3000004.3000001 .4000002.4000003.40
00004.4000001 .5000002.5000003.5000004.50

1 . 10
2. 10
3. 10
4. 10

##JOB~
##XEQ KF2

1 .20
2.20
3.20
4 .20

$ JOB JOE SMITH

1 .30 1 .L~Q
2. .30 2 ,l}0

3.30 3 .LrO
L~ .30 L:, .L~O

SAMPLE PROBLEM

C PROBLEM OUTPUTS A MATRIX WITH A

1 .50
2 .50
3.50
4.50

8

C VARIABLE HUMBER OF COLUMNS MW _110WS
C PROBLEM,TO GENERATE A MATRIX A(l,J)=l/(l+J+l)
C I AND J_ARE INTEGERS BETWEEN 1 A~D 30

DIMENSION A(30,30)
10 READ 111 1,_J
11 FORMt.T(:LI i.)

IF (I -~99) 112, 99, 112
112 IF(!-30)111,111,10
1 11 I F (J - 30) 1 2 , 1 2 , 10
12 PUNCH 13,1,J
13 FORMAT(32HTHE MATRIX IS AS FOLLOWS WITH l=,12,3H J=,12)

95

!NOTE Sample problems 7-12 call for punch card output. An on-line ll..i43 printer will
become available to users of the Model II during the Fall 166 semester, A
Computing Center memorandum which will include sample proglems illustrating
print output will be issued in the Fall.

DO 14 K= 1 , I
DO 14L=l ,J
B=K
C=L

1 4 A (K , L) = 1 ,J (B+C + 1 ,)
C OUTPUT.ROUTINE

DO 21 K=l, I
21 PUNCH 22,K,(A(K L) L=l ,J)
22 FORMAT(4HROW=, 14//l6F11.C, lX))

GO TO 10
99 CALL E)(IT

END
$ EOJ
##XEQ RUN
6123
1214
0510

THE MATRIX
ROVJ= 1

.33333333

.11111111

.06666667
ROW= 2

.25000000

.10000000

.06250000
ROW= 3

.20000000

.09090909

.05802353
ROW= 4

.16666667

.0C333.333

.05555556
ROW= 5

.14285714
.076923C 1C
.052 631 SG

RO\fl= 6

e 125000'.)Q
07 1L•t,rr_-c7

• ' ' , '~ J

<>OSOOJC.,QO
RO'w= 7

IS AS FOLLOWS Wei TH 1=12

.25000000 .. 20000000

.1 OOCODDO

.06250000
.09090909

.20000000 .16666667

.09090~)09 .08333333

.o5CB2353

.1666667 e 142C5 7 Jl~
Or'\3"' 'l "33 • <..I 5.'):.> .• o769230C

.05555556

.,142C5714 , 12500000
~07 692 308 0071 L~2857
.052 63158

, 12500000 .11111111
.0711~2857 .06666667
.C500G000

.11111111 e 10000000

.r) b666667 .06250000

.0476·, 905

J=14

.16666667

.08333333

i,14285714
.07692308

11

.12500000
.07142857

.11111111

.06666667

.10000000

.06250000

.09090909
~05882353

96

.142C57t4

.07692308
.12500000
.07142857

• 12500000 .11111111
.07 l 42C57 .06666667

.11111111 .10000000
.06666667 .06250000

.10000000 ,09090909

.06250000 .05882353

.09090909 .00333333

.05882353 .0555555 6

.08333333 .07692308

.05555556 .05263158

91

.11111111 .10000000 .09090909 .00333333 .07692308 .07142.C57

.06666667 .06250000 .05GG2.353 .05555556 .0526315G .05000000
~04761905 .OL~545455

ROW= n
0

.10000000 .09090909 .08333333 .o769230C .07142C57 .06666667

.06250000 .05882353 .05555556 .052 63158 .05000000 ,.04761905

.04545455 .04347826
ROW== 9

.09090909 .08333333 .07692308 .07142857 .06666667 .06250000

.05882353 .05555556 .052 63158 .05000000 a04761905 .o4545L~s5

.04347C26 .04166667
ROW= 10

.08333333 .07692308 .07142857 .06666667 .06250000 .05882353

.. 05555556 .,05263158 .osoooooo .04761905 .045L~5455 .04347826

.04166667 .04000000
ROW= 1 1

,07692300 .0714285 7 .06666667 .06250000 .05882353 .05555556
.05263150 .05000000 .04761905 .04545455 .o4347G26 .04166667
.04000000 .03846154

ROW= 12

.07142G57 .06666667 .06250000 .05882353 .05555556 .05263158

.05000000 .04761905 .04545455 .04347826 .04166667 .04000000

.03846154 .03703704
THE MATRIX IS AS FOLLOWS WITH I= 5 J=lO
ROW= 1

.33333333 .25000000 .20000000 • t 6666667 .1428571li, .12500000

.11111111 .10000000 .09090909 .08333333
ROW= 2

.25000000 .20000000 .16666667 ,.14205714 .12500000 .11111111

.10000000 .09090909 .08333333 .07692308
ROW= 3

.20000000 .16666667 .142G5 714 .12500000 .11111111 .10000000

.09090909 .08333333 .07692308 .07142857
ROW= 4

,.16666667 .14285714 .12500000 .11111111 .10000000 .09090909
.OG333333 .07 692308 .07142857 .06666667

RO~/= 5

.14285714 .12500000 .11111111 .10000000 ,09090909 .08333333

.07 692300 .07142857 .06666667 .06250000

SAMPLE PROBLEM 9

##JOB 5
##XEQ KF2
$ J 08JOE SMITH •
C ·ILLUSTRATfON OF PLOT SUBROUTINE
C ESTIMATION OF SQUARE ROOTS WITH PLOT OF SUCCESSIVE
C FORMULA FOR ESTIMATION OF SQUARE ROOTS~
C EX(N+1)=.5(EX(N)+Y/EX(N))
C WHERE EX IS THE ESTIMATED SQUARE ROOT OF Y

PUNCH 60
60 FORMAT(//20X37HAPPROXI MATI ON OF THE SQUA?E ROOT OF
12 READ 14 Y
14 FOP.MAT lF0.2)

. -IF ·cv> 16,18,20
20 IF(Y-999999.99) 22,24,24
22 N=O

IF(Y-1.0)26,28,28
2C PUNCH GO,Y
80 FORMAT{27HPLOT OF APPROX, ,sQ.ROOTS OF.F8,2)

. EX=-1 .
30 EX=.S*(EX+Y/EX)

2::.:EX
C SUB-ROUTINE PLOT DOES NOT PLOT ARGUMENTS
C LESS THAN ONE.OR GREATER THAN 79

" IF(z-oo.}Gsis2ia2 •
u5 IF(Z-1.)C2,c:.i1,o1 r

82 Put1CHC3, Z -
83 FORMAT(24HEST.SQ,ROOT NOT PLOTTED,2X2HZ=,F9.3)

GO TO 31
81. CALL· PLOT(Z)
31 AE::.:ABSF((EX**2)-Y)

RE=AE/Y
i~=M-:-1
IF(RE~.0001)50,50,30

50 PUNCH 34 - -
34 FORMAT (4X1HY,7X10HABS. ERROR,4X10HREL. ERROR,7X,

1HIM,12X13HEST. SQ, ROOT) - · •
"· -PUNCH 36 V AE, RE N EX
36 FORMAT(F~.!,3XF1i.~,3XF10,8,3Xl5,15XF9.3//)

GO TO 12
26 EX=.1

· GO TO 30
16 PUNCH 38,Y
38 FORMAT (11HY NEGATIVE=,F8.2,2X,

132HEST, SQ. ROOT OF ABS. VALUE~OF V)
Y=ABSF(Y)
GO TO 70

70 PUNCH 71
71 FORMAT(//)

GO TO 22
18 PUNCH 40
40 FORMAT (3HY=O)

96

GO TO 12
24 CALL EXIT

Er~o
$ EOJ

!#1o°o.~Yr
+ .25
+1608 .01
99999999

APPROXIMATIOM OF

PLOT OF APPROX. SQ .ROOTS OF 1608.01
EST.SQ.ROOT MOT PLOTTED, -, 804.505 L=

EST.SQ.ROOT MOT PLOTTED, Z= L~03 .252
EST.SQ.ROOT MOT PLOTTED, Z= 203.620
EST.SQ.ROOT NOT PLOTTED, Z= 105.758

V ABS. ERROR REL. ERROR
1608 .01 .01G30000 .00001138

1
EST.SQ.ROOT NOT PLOTTED, Z= .746
EST.SQ.ROOT NOT PLOTTEDt-Z= .SL} 1
EST.SQ.ROOT NOT PLOTTED, Z= .502
EST.SQ.ROOT NOT PLOTTED, Z= .soo

V ABS. ERROR~ REL. ERROR
.25 .00000230

.!
.000009.zo

PLOT OF APPROX. SQ.ROOTS OF 100. 10

V
100. 10

ABS. ERROR REL. ERROR
.00107000 .00001069

THE

l
1

SQUARE

N
0
l•

N·
5

M
6

99

ROOT OF V

EST. SQ. ROOT
L}0.100

EST. SQ. ROOT
- .500

EST. SQ. ROOT
10.005

1-,,----
1 r

L ##JOB s

-..., • 1.-'-.. ,~. ..
■

SAMPLE PROBLEM 10
I --- -

JOQJOE SMITH .. r._ #$#XEQ KF2

C SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS USING THE
II C SOLV AMO RESOLV SUB-ROUTIMES STORED ON THE DISK I._ C DIMENSION STATEMENT PERMITS USE OF 10 EQUATIONS

DIMENSION A(l0,11)
flEAD4,N

1 tt 4 FORMAT{l2}
L.:::H+l
READ 101((A(l,J},J=1,L),1=1,N)

10 FORMAT ~ 4F 6 .2 J . .
I C HEADER CARO

I
■

I -100

r
I

.J

■

- ,,. .,
r

- I

-
~ • PUIJCH 5 ,i~

5 FORNAT(1 6HTHE ANS\IJERS FOR , I 2, 32H LI NEAR EQUA Tl ONS ARE AS FOLLOWS)
M=lO

.. ii&.

]
.r

-
CALL SOLVE (A,N M)
PUi-.lCH 20,(A(l,d,1=1,M)

20 FORMAT (3F6.2J -
READ 2~,(A(1 1L},1=1,M)
CALL R~SOLV ~A,~,M).
PUNCH 20,(A(l,M+l),1=1,N}

I
■

C SINCE THEflE~IS MO li'JSTRUCTIOM TO SIGNAL THAT THE - • -. -
C LAST DATA CARD HAS BEEN READ •
C THE END OF DATA CARD IS READ AS THE LAST DATA CARD
C ADDITIONAL DATA CARDS COULD BE ADDED WITH AN INSTRUCTION
C SIGNALLING THE COMPUTER TO RETURN TO THE FIRST READ
C INSTRUCTION

CALL EXIT
END

$ EOJ
03
+oB.oo-os.00+01.00+29.oo
-01 .00+09.00-06.00+01 .oo
+oo.00+02.00-02.00-02.00
+27.00+12.12+03.02
THE ANSWERS FOR 3 LI NEAR EQUA Tl ONS ARE. AS FOLLOWS

2 .00 3 .00 l} ,00
4 • 1 O 2 . 39 .88

NOTEt ##XEQ RUN should precede the$ EOJ card.
should follow data cards.

I I

! l r-1 I ..._ !a
"'P

■ ■

ii .. _

..
• II

...
I • -

■

I

SAMPLE PROBLEM 11

##JOB
##XEQ KF2

$ JOf.'JOE SMITH
C ILLUSTKATtON OF FLOW TRACE
C TO SUM THE ODD NUMBERS FROM lTO 99
* BEGIN TRACE
* FLOW TRACE

SUM=O.O
DO 30 I= 1 , 1 00, 2
X=I .

30 SUM=SUM+X
PUNCH 40,SUM

40 FORMAT(4HSUN=,F12.2/)
CALL E)(IT
END

$ EOJ

101

'/J!!Q~UN G\ ™'> © '(b) 6) ®
V39949T000000001 '910 00030 ~99991000000001399493000000001 NO 0003

399994000000001399495000000001 NO 00030 399999000000001399497000000
NO 00030 399991600000002399499000000001 NO 00030 399992500000

399491100000002 HO 00030 399993600000002399491300000002 MO 0003
399994900000002399491500000002 NO 00030 399996400000002399491700000

NO 00030 399998100000002 399491900000002 i·lO 00030 3995:91000000
399492100000002 NO 00030 399991210000003399492300000002 HO 0003
399991440000003399492500000002 NO 00030 399991690000003399492700000

i~O 00030 399991960000003399492900000002 NO 00030 399992250000
399493100000002 NO 00030 3999925 600000033994 93300000002 NO 0003
399992890000003399L}93500000002 NO 00030 399993240000003399493700000

NO 00030 399993610000003399L:•93900000002 1,JO 00030 399994000000
399L~94100000002 NO 00030 39999L~410000003399494300000002 NO 0003
399994040000003399494500000002 NO 00030 399995290000003399'+94700000

NO 00030 399995760000003399494900000002 MO 00030 399996250000
399495100000002 NO 00030 3999967 600000033994 95 300000002 MO 0003
399997290000003399495500000002 NO 00030 399997840000003399495700000

NO 00030 399998410000003399495900000002 NO 00030 399999000000
399496100000002 NO 00030 3999996100000033994 96300000002 i'JO 0003
39999102L~000004399496500000002 NO 00030 399991089000004399496700000

NO 00030 399991156000004399496900000002 MO 00030 399991225000
3?9497100000002 t~O 00030 399991296000004399497 300000002 MO 0003
39999136S000004399497500000002 MO 00030 399991444000004399497700000

i·JO 00030 399991521000004399497900000002 NO 00030 399991600000
399L,98100000002 MO 00030 399991681000004399498300000002 NO 0003
3999917 64000004 399498500000002 MO 00030 39999184 9000004 3994 98700000

MO 00030 3999919360000043991+98900000002 MO 00030 399992025000
399499100000002 NO 00030 399992116000004399499300000002 NO 0003
399992209000004399499500000002 NO 00030 399992304000004399499700000

NO 00030 399992401000004399499900000002 NO 00030 399992500000
SUM= 2500.00
1. ADDRESS OF X 2~ INITIAL VALUE OF X 3. STATEMENT NUMBER
4. ADDRESS OF SUM 5. INITIAL VALUE OF SUM 6. ADDRESS OF X
7. SECOND VALUE OF X 8. STATEMENT NUMBER

##JOB 5
##XEQ KF2
$ JO B'JOE SMITH

SAMPLE PROBLEM 12

C ILLUSTRATION OF EXECUTION ERROR
c TO SUM THE ODO NUMBERS FROM 1 ro 99

$

SUM=O.O
Y=O.O
DO 30 I= 1 , 100, 2
X=I

30 SUM=SUM-i-X
SUM=SUM/Y
PUNCH 40,SUM

40 FORMAT(F12.2)
CALL EXIT
Elm
EOJ
##XEQ RUN

ER2
THE CONSOLE TYPEWRITER TYPED THE FOLLOW I NG LI NE WHEN THE CALL
EXIT STATEMENT WAS EXECUTED,

EXIT 003000000003000000 CHECK
-.

THE FIRST 3 li~DICAT~D ERROR 3,FLOATING POINT DIVIDE BY ZERO

THE SECOND FLAGGED. 3 INDICATES 1/0 ERROR 2
_.,.

-I ,I

u-- - -Y--liJI - 111 ?' --
:l'I -
(_ I

__]

--
I ~ -

-'.,.,. -- -- I 7

I --

,.

1111

• .

.. -
,.

.. _

i.:

l

-
1•
I

'

~

I

- u
C.' I

...
~

- .(-- r--... ---- _J -

✓ •, •' .. fl
r I 111111911.

~Ir ...
~

t.l r i'. -
■

r .._
• ~ II - - _,. I"'

w- -• ■I

' r - - • I
r

I

102

v. IBM FORTRAN II

This section describes those IBM FII instructions which are not yet
available to users of the KFII system. Included in the section are ins
tructions for using the disk to store data and program segments, instructions
for varying the number of significant digits stored in the machine, and
instructions for using the subroutine, ROU·ND.

The IBM Monitor II System Reference Manual (C26-5774-0) includes
detailed operating instructions for using the Monitor II system, and
d~tailed instructions for programming using the IBM FII compiler. The
user should note th§,t there are many differences in the language required
by the KFII system and the IBM FII system. The IBM manual should be
consulted when writing for the IBM FII compiler.

Varying the word length (number of significant digits stored in
the machine)

The IBM FII compiler will automatically convert numbers either to
floating point form in which the number is specified as a decimal fraction
times a power of 10, or to fixed-point form in which the number rep~esents an
integer. The number of -decimal digits, x~ and the.number of integer digits,
y . may. be ,Varied by using a FANDK control card.

General form:

-r~FANDKx:xyy

where:* is punched in col. 1.
FANDK is punched in col. 2-6.
xx is the number of decimal digits (that is, the length of the
mantissa) punched in col. 7-8.
yy is the digits used to represent an integer, punched in col. 9-10.

The range of xis 2 through 28; the range of y :is 4 through 10.

Example:
*FANDK150.5

Fifteen decimal digits plus 2 exponent digits will be stored for eaeh
real (floating point) number, and five digits will be stored for each
integer (fixed point) number.

The FANDK card must follow the ##FORX control card, and 1,PJ.st precede
the source deck. (See section V.4). If a FANDK card is not used the
compiler will automatically convert floating point numbers to 8 decimal
digits plus 2 exponent di~its, and fixed point numbers to 4 digits~

103

V.

v .. 1

v.2 Library functions added to the IBM FII compiler

The function ROUND will round an arithmetic expression to a specified
number of significant digits.

General form

CALL ROUND (A,B)

The arithmetic expression A will be rounded to B significant digits.

v.3 Instructions which use the 1311 disk for storage of data

V.Ja DEFINE DISK statement

The DEFINE DISK statement specifies to the FORTRAN processor the size
and quantity of data records that will be used with a particular program
and its associated subprograms. The statement must appear in the main
program when Disk I/0 statements appear in any part of the program or sub
programs, and may appear only once in that program. Thus$ all subprograms
used by that main program must use the same size record defined in the
statement.

The DEFINE DISK statement must not be used in subprogra·li#,,

General form

DEFINE DISK (N1, N2)

where: N1 is a fixed point (integer) constant which specifies the number
of variables contained in a record of data.

N2 is a fixed-point constant which specifies the number of data
records that will be used by the main program and its associated
subprograms.

The program may use either one-sector records or two sector records
for data storage.

A record of data may contain up to 100 digits if the programmer
chooses to use a one-sector record or up to 200 digits if the programmer
chooses to use a two-sector record. The user should estimate the number

10~

v.2

V.3

V.Ja

(

1.05

of digits he wishes to store on the disk for each record and then choose V.3a
either. one. or two sector records, whichever makes the most efficient use
of disk storage.

Example:
DEFINE DISK (10 1 3)

Stores a vector containing 13 variables on the disk. Given that the
word length is 10 1 8 for the mantissa and 2 for the exponent the total number
of digits to be stored is 13 x 10. These 130 digits are stored on 3 one
sector records. Space for 7 additional variables is reserved on every third
record. This space is not used by the program.

Example:
DEFINE DISK (16, 50)

Stores a 20 x 40 matrix on the disk given that the word length is 12
digits, 10 for the mantissa and 2 for the exponent, the total number of
digits to be stored is 800 x 12. These 9,600 digits can be stored on SO
data records if 192 digits are stored on each two sector record. Thus 16
variables may be stored on each data record. Space for 8 digits is reserved
on each record. This space is not used by the program.

Notes If two sector records are specified the two sectors are t~eated as
a unit. Thus the digits of a variable may be split between the sectors of
a two sector record. (See sample problem 13)

V.Jb Assigning numbers to disk sectors

All disk records are referenced by an integer (fixed-point) variable
name. The current value assigned to the variable name ~eferences the first
sector in a record when the variable name is used in a RECORD or FETCH
statement. The programmer must assign, in a simple initialization state
ment, a value to the first disk sector before the first RECORD state-
ment is executed, -

Example:
IREC = 1

During execution of a RECORD or FETCH statement the Monitor Control
system will assign numbers to every sector if one sector records are specified,
to every second sector if two sector records are specified. The numbers
assigned to the sectors will start with the value assigned to the first
sector (one (1) if it is the first RECORD statement in a program, or one
greater than the number assigned to the last sector during execution of the
preceding RECORD or FETCH statement) and will be inc·remented by one fer each·
sector if one sector records are specified. If two sector records are
specified tha number will be incremented by one for every second sector.

V.Jb

lo6

V.Jb
If more than one RECORD statement is included in a program, the program

mer must determine the nwnbers assigned to the first sector of each record.
Before execution of a FETCH statement the programmer must set the variable
name assigned to the RECORD equal to the number assigned to the first sector
of the RECORD when the RECORD statement was executed. (See sample problem 14).

V.Jc RECORD statement v.Jc

The Record statement is used to write data from core storage into the
1311 Disk storage drive,

General form

RECORD (IREC) List

wheres IREC is a non-subscripted or subscripted fixed-point variable, assigned
by the programmer to represent the record. The same variable name
is used when referring to the record-in either a FIND, or FETCH
statement. IREC must be set equal to 11 in the program before the
first REOORD statement in the program is read. This assigns the
number one to the first sector of the record. All records are
referenced by the number assigned to the first sector of the record.

LIST is as described in input/output statements.

The data designated by the list are written as the total record re
presented by (IREC). If the list specifies more items than can be contained
in one or two disk sectors, the value of (!REC) is incremented by one, by
the Monitor Control system, and writing proceeds to the next sequential
se~tor, This procedure continues until either ~11 items in the list have
been written or until the end of the area specified by N2 in the DEFINE
DISK statement has been reached.

v.Jd FETCH statement

The FETCH statement is used to read date from the 13ll disk into
machine core storage.

General form

FETCH (IREC) List

where: IREC is the variable name that was assigned by the programmer to the
Record in the RECORD statement. Before the FETCH statement is
executed IREC must be set equal to the number assigned to the first
sector of the record. (See sample problem 14).

V.,Jd

(
LIST is as described in input/output statements.

The data designated by the list is read from the record specified by
IREC. If the list specifies more items than can be obtained from one record1
than the value of !REC is incremented by one and reading proceeds from the
next sequential record. This procedure continues until either the list has
been "satisfied" or until the end of the area specified by N2 in the DEFINE
DISK statement has been reached. At the conclusion of a read operation,
the value of IREC is one greater than the number of the last record read.

V.Je FIND statement

This statement may be used before a RECORD statement or a FETCH state
ment to cause the disk access arm to be positioned over a cylinder which will
subsequently be read from or written on.

General form

FIND (!REC)

where: IREC is a nonsubscripted or subscripted fixed-point variable name
which references the disk to be read from or written on-

V.4 Operating instructions, Monitor Control cards

The following monitor control cards must precede a source deck written
for the IBM FII compiler

107

V.Jd

V.Je

Card Col. 1 2 3 4 5 6 7 8
If# JOB
##FORX

9, 32 ,. 62•.....• ,,••••• Bo
USER'S NAME OPTIONAL USER IDENTIFICATION

'
·V .5 SAMPLE PR0BLE1'vlS

WWJGB 5 ·
WWF:0RX
'i:F ANDK0506

SAMPLE PROBLEM 13

C PROGRAM STORES 25 VARIABLES, EACH VARIABLE CONSISTING OF
C 8 D rG I TS ON THE DI SK

DIMEMSI-0N A{25}
C 0EFJNE A TWO SECTOR RECORD CONTAINING 200 DIGITS

DIMENSION A(25)
DEFINE DISK(25,1)
DOlOK=l,25.

10 A(l()=K .
PUNCH 20,(.A(K),K=l,25)

20 F0RMAT(5i14.2). .
C THE NAME OF THE FIRST RECORD MUST BE ASSIGNED
C THE INTEGER VALUE 1

IA=l
RECORD(I A.) (A(K), K=l, 25)_
DO 30 K=l,25 A •

B=K~':K
30 A(K)=B

PUNCH 20,(A(K),K=l,25)
C THE NAME OF.THE FIRST.RECORD MUST BE ASSIGNED THE INTEGER
C VALUE 1

IA=l
FIND (IA)(A(K) K=l 25)
FETCH (IA)(A(K~,K=f~25)
DO 40 K=l,25 ~ .

40 A(K)=A(K)+l.
PUNCH 20,(A(K),K=l,25)
CALL EXIT
END

1 .oo 2.00
6.oo 7.00

11 .oo 12.00
16.00 17.00
21 .oo 22.00

1 .oo 4.oo
36.oo 4, .. oo

121 .oo 14 .oo
2s6.oo 2sz.oo
441 .oo 48 .oo

2.00 3.00
7.00 B.oo

12.00 13.00
17.00 16.00
22.00 23.00

3.00 4.oo
a.oo 9.00·

13.00 14.oo
18.00 19 .oo
23.00 24.00

9.00 16.00
64.oo B 1 .oo

169.00 1 96 .oo
324.00 361 .oo
529.00 576.oo

4.oo 5,00
9.00 10.00

14.oo 15.00
19.00 20.00
24.oo 25 .oo

NOTE: The W's punched in the Monitor control cards are record marks,
multi-punch 028.

108

s.oo
10.00
15 .oo
20.00
25.00
25.00

100.00
225.00
400.00
625 .oo

6.oo
11 .oo
16.00
21 .oo
26.06

SAMPLE PROBLEM 14

##JOB 5
##FORX

109

C PROGRAM STORES 25 VARIABLES.EACH VARIABLE CONSISTING OF 10 DIGITS ON
DIMENSION A(25) - THE DISK

C DEFINE 6 ONE SECTOR RECORDS
DEFINE DISK (10,6}
DO 10 K== 1 , 25

10 A(K)=K
PUNCH 20,(A(K),K=l,25)

20 FORMAT(5F14.2) .
C THE NAME OF THE RECORD MUST BE INITIALIZED TO EQUAL 1

I A= 1
RECORD(IA)(A(K),K=l,25)
DO 30 K=l,25 - .
B=K~':K

30 A(K)=B
C THE NAME OF THE RECORD MUST BE REINITIALIZED TO EQUAL 1

PUNCH 20, (A(K) ,K=l ,25)
IA=l - .
FIND (IA)(A{K),K=l,25)
FETCH{IA)(A{K),K=1~25)
DO L~O K= 1 , 25 -

40 A{K)=A{K)-1-l.
PUNCH 20,(A(K) K=l,25)
RECORD(I A) (A{K~ ,K=l, 25)
DO 50 K=l ,25

50 A(K)=A(K)-1-2.
PUNCH 20,(A(K),K=l,25)

C THE NAME OF-THE RECORD MUST BE REINITIALIZED TO EQUAL 4
IA=4
FIND (IA)(A(K),K=l,25)
FETCH{IA){A(K),K=l,25)
DO 60 1<==1,25

60 A{K)=A(K)+l.
PUNCH 20,(A(K),K=l,25)
CALL EXIT -
END

1 .oo 2.00
6.oo 7.00

11 .oo 12.00
16.00 17.00
21 .oo 22.00

1 .oo 4.oo
36.oo 49.00

121 .oo 144.oo
2s6.oo 289 .oo
441 .oo 484.00

3.00 4.oo
8.oo i .oo

13.00 1 .oo
18.00 19 .oo
23.00 24.oo

9.00 16 .oo
64.00 81 .oo

169 .oo 1 96 .oo
324.oo 361 .oo
52~.oo 576 .oo

5.00
10.00
15.0C
20.00
25.00
25.00

100.00
225.00
400.00
625 .oo

110

2.00 3.00 4.oo s.oo 6.oo
7.00 n.oo 9.00 10.00 11 .oo

12.00 13.00 14.oo 15.00 16.00
17.00 18 .oo 19.00 20.00 21 .oo
22.00 23.00 24.oo 25 .oo 26.00

l+ .00 s.oo 6.oo 7.00 8.oo
9.00 10.00 11 .oo 12 .oo 13.00

14.00 15 .oo 16.00 17.00 18.00
19 .oo 20.00 21 .oo 22.00 23.00
24.00 25 .oo 26.00 27 .oo 28.00

3.00 4.oo 5.00 6.oo 7.00
o.oo 9.00 10.00 11 .oo 12 .oo

13 .oo 14.oo 15 .oo 16.00 17.00
18 .oo 19.00 20.00 21 .oo 22.00
23.00 24.oo 25.00 26.00 27 .oo

(

VI GrHER 1620 PROGRAMS AVAILABLE

VI.I AFTI Fortran

The AFIT system is a Fortran system designed for use on the 1620
Model I. Programs which do not fit into core storage when the Load and
Go system is used may fit when the AFIT system is used. The Load and Go
compiler allows approximately 4,200 digits for the compiled program. The
AFIT compiler allows approximately 14,000 digits for the compiled program.

The AFIT system consists of an AFIT compiler, punched on cards, and
language specifications. The language specifications are modifications of
the basic Fortran language discussed in Section II. Fortran language
specifications which apply specifically to the AFIT system can be found in
a manual., AFIT Fortran., available in the center office.

Unlike a Load and Go system, the AFIT compilation proceeds in two
" stages. There is also a pre compilation stage that checks the program for

clerical errors, punctuation., and spelling, During the first stage of
aGtual compilation., the AFIT processor reads the source deck and produces
another deck known as the object deck. The second stage is the execution
stage during which the new object deck is read in and run. The manual.,
AFIT Fortran, also lists operating instructions for using the AFIT compiler.
A subroutine which finds the arcsine of a number has been added to the
library subroutines. The card deck containing the AFIT compiler may be
found on top of the 1620 Model I card reader.

VI.2 SPS (Symbolic Programming System)

For those who wish to write in a language more intimately associated
with computer operation, we provide the programming language described in
IBM's Reference Manual for the IBM 1620/1710 Symbolic Programming System
#C26-65oo. A copy of the SPS assembler, punched on cards for use on the
1620 Model I, is available at the Center office.

The 1620 Model II Monitor System includes a SPS II-D assembler stored
on the disk. Instructions for using the assembler may be found in IBM 1620
Monitor II System Reference Manual C26-5774-0.

The following subroutines have been added to the SPS II-D subroutine
set 02 by NCE Computing Center staff members:

1. OUTC, output conversion~ see write-up for LIB, 1.6.053

2. INC., input conversion, see write-up for LIB. 1.6.053

3. FC, Floating compare~ see write-up for LIB. 7.0.050

lll

VI

VI.l

VI.3 Programs written by the NCE Computing Center staff-and stored on
the 1311 disk

The following programs were written by the Center staff for general
use and stored on the 1311 disk. They are ready to be used with the appro
priate Monitor Control cards.

VI,3a Butler

The program Butler will accept as data a Fortran or SPS source
deck, and will repunch the deck as follows:

1, The Fortran deck will have the statement numbers in columns 2-5,
column 6 will be blank, the statement itself will·atart in column 7, A
sequence number will be punched at the end of the card.

2. Continuation cards are not produced from a long Fortran statement,

3. The SPS deck will have new page/line numbers punched in column 1-5
start:ing with the number entered from the typewriter.

Before entering Fortran or SPS source deck, set the console switches
as foll01r1s:

1 ON for SPS
1 OFF for Fortran
2 and 3 are not used

The ·following Monitor Control cards are placed in front of the Fortran
or SPS source deck:

Card col: 10 1112 32

112:

VI.3

VI.Ja

Monitor Control card
Monitor Control card

1 2 3 4 5 6 7 8 9
J O B USER'S NAME
##XEQ UT L E R

Note: # is a multiple punch 028
The card must be punched as indicated with the USER'S NAME punched in card
columns 32-60

VI,3b Equivalence table description VI.3b

A description of the program is available at the Center. The Monitor
Control card is punched as follows:

Card col:
Control card

l 2 3 4 5 6 7 8 9 10 11 12
##XEQ EQT BL E

A## JOB 5 card precedes the ##XEQ card as shown above.

VI,3c Programs written by the NCE Comput:ing Center staff and stored on
punched cards

The following programs, written for general use are stored on punched
cards. A descriptive write-up is available at the Center.

VI.3c

(Number
EEPD 1

EEPD 2

EEPD 3

vr.4 Library of 1620 programs

Program name
Muller's method for finding the
roots (real or complex) of an
algebraic equation with real
coefficients

Transient response evaluation:
Time function obtained from
Laplace transform

Frequency response analysis

A set of 1620 library programs containing descriptive write-ups of
programs available for general use may be found in the Computing Center
library. Listed below are the programs which are stored either on the
1311 disk, ready for use on the 1620 Model II, or on cards or tape ready
for use on the 1620 Model I or II. A descriptive write-up of each program
will be found under the appropriate library program reference number. The
descriptive write-up will specify input format and indicate the output
format.

VI.4a Programs stored on the 1311 disk

A program stored on the 1311 disk is executed when the appropriate
Monitor Control card is read by the 1620 Model IL The Monitor Control
card signals the system to read the program off the disk into machine core
storage. The Monitor Control card also informs the Monitor system that
the program is to be executed with the data following the control card.
The data should be in the form specified by the pro6ram write-up which
will be found under the appropriate Library program number. The data
should be followed by a card punched with record marks in col. 1-4 (####).

The following list includes a brief description of each program and
indicates the Monitor Control card and the Library program number for each
program. Monitor control cards are punched with## in col. 1-2, XEQ.in
col. 3-5 and the name of the program in col. 7-12. The# is a multiple
punch 0280

General form of cards used when executing a program stored on the 1311 disk

Card col 1 2 3 4 5 6 7 8 9 10 11 12 32
Monitor Control card# # J () B User's
Monitor Control card# # X E Q s ·• A M E 0 F
Data cards - .. - .. - - - -
(specified by - - - -
Library program) - - - - - - - -
End of data card # # # #

1. Computation of Bessel functions, first kind, integral order, for
arguments in the range greater than 0.001 to less than 200.0.

Name

113

VI.4

VI.4a

114
LIB. No. 3.0.005
Monitor Control card ##XEQSBESSEL

2. Solution for initial value problems involving n first order differential
equations by Runge-Kutta-Gill and Hamming ts method

LIB. No. 4.0.001
Monitor Control card ##XEQSDIFEQS

3. Solution of simultaneous linear equations. The maximum number of
equations is 25.

LIB. No. 5.0.007
Monitor Control Card ##XEQSSIMEQS

4. Calculation of eigenvalues and eigenvectors of real symmetric matrics.

LIB. No. 5.5.016
Monitor Control card ##XEQSEIGENV

5. Computation of the sum, mean, standard deviation, error of estimate,
sum of sq~are deviations, and coefficient of variation, for each
variable, and t-ratio and degree of freedom, between all pairs of
variables, for up to 50 variables.

LIB. No. 6.0.039
Monitor Control card l#XF,QSSTATIS

6• Linear regression analysis for all combination of variables. The
program selects variables to be included in a complete multiple
linear regression analyses.

LIB. No. 6.0.057
Monitor Control card ##XEQSLRAV/ill

7. Linear regression of two variables by least squares fit.

LIB. No. 6.0.067
Monitor Control card ##XEQSLR2VAR

a. Electric circuit analysis program

LIB. No. ECAP 1620-EE-02X
Monitor Control card ##XEQSECA

Note: The JOB card for the above program must be punched with an 01
:in col. 8-9 as follows:

Card col: 1 2 3 4 5 6 7 8 9
J O B 5 0 1

(

9. Finite Fourier analysis including coefficients determination and plot
back program.

LIB. No. 6.0.056
Monitor Control card ##XEQSFORIER

VI.4b How to clear memory (MODEL 1)

Various program~ may ::·eouire that the memory be cleared (set to zeros)
before they are :r--..m. ':i.'o clea.1· memory:

1. Set all check switches to PROGRAM

2. Depress INSTANT STOP and RESET

3. Depress INSERT

4. Type 160001000000 (12 digits , no spaces)

5. Depress RELEASE and START (or the R/S key)

6. After the MAR lights have cycled through memory at least once,
depress INSTANT STOP.

7. Depress RESE'r

Vl .5 PROGRAMS STORED ON PUNCH CARDS OR TAPE

1 .1 .002 ADDITIONAL INSTRUCTION MACRO SUBROUTINE(CARD)
1 .1 .005 MULTIPROCESSING FORTRAN (TAPE)
1 .1 .006 MULTt@PURPOSE SPS CARO OUTPUT COMPRESSO(

1185X01 .1 .009 LOAD+ GO FORTRAN FOR CARO OPERATION (CARD)5 0
1185-01.1 .010 AFIT lMPROVED FORTRAN {CARD)6 D

1 .1 .O 11 AN I MTERPRETI VE LANG ASS EMBLER I BM 1620
01 .1 .012 OSAP ASSEMBLY SYSTEM (CONDENSED DECKS) (CARD)8 D

1185 01 .1 .012 OSAP ASSEMBLY SYSTEM (SYMBOLIC DECKS) (CAR0)8 D

ll5

1185-01 .1.014 (CR0)12 0
1105-01.1 .019 PROGRAM WRITEUP (CRD)14 D 1620
1185-01.1 .019 PROGRAM DECK (CR0)14 D 1620
1105-01.1 .020 PROGRAM WRITEUP (CR0)14 D 1620
1185-01.1 .020 PROGRAM DECK (CRD)14 D 1620
1185-01.1 .020 PROGRAM DECK (CRD)14 D 1620
1185 01 .1 .023 DOCUMENTATION (CRD)21 D 1620
1185-01.1 .024 PROGRAM DECK (CRD)23 D 1620
1185 01 .1 .024 DOCUMENTATION (CRD)23 D 1620
1105 01 .l.026 DOCUMENTATION (CR0)24 0 1620
1185-01.1 .026 PROGRAM DECK (CRD)24 D 1620
1185-01 .2.003 PROGRAM CONDENSER AND LOADER (CARD)3 D

01.2.oos RELOCATOR PROGRAM
Ol .2 .-006 DUMP TO RELOAD
01 .2,007 FORTRAN COMPRESSOR-LOADER
01 .2.00G A FLEXIBLE CARO READ ROUTINE

l .2.009 FORMAT FORTRAN OBJECT DECK COMFRESSOR

(CARD)3 D
(CARO)S 0
(CARD)S D
(CAR0)6 D

01 .3.003 1620 GENERAL PURPOSE CARD COMPRESSOR (CARD)2 D
01 .3.005 SQUEEZ (CARD)3 0
01 .3.006 SQUISHER (CAR0)6 C
01 .3.00B 1620 FORTRAN COMPRESSOR AND 75 COL,DU~P(CARD)6 C

1 .4.001 SELECTIVE TRACE
01 .4.002 TRACE PROGRAM FOR CARD 1/0 (CARO)l C
01 .4,003 1620 MULTI-TRACE (CARD)l C
01 .4.004 STROBIC (CARD)l D
01 .4.005 TRACE AND 1A SIMULATOR (TAPE)l C
01 .4.006 1620 MULTI TRACE (TAPE)l C
01 .4 .007 1 620-402 MULTI -TRACE (CARD) 2 D
01 .4.008 DYNAMIC TRACE PROG FOR IBM 1620 COMP (CAR0)2 D
01 .4.010 GENERAL TRACE ROUTINE (CAR0)3 D
01 .5.001 FORTRAN SOURCE TAPE CORR (TAPE)l D
01 .5.004 POST MORTEM DUMP (CARD)l C
01.s.oos UNIVERSAL TAPE DUPLICATOR (TAPE!
01 .5.008 .ALPHANUMERIC TAPE DUP. AND CORRECTOR (TAPE
01.6.001 t{EGRESSLON ANALYSIS DATA PREPARATION (TAPE 1 D
01 .6.003 1620 AUTOPLOTTER (TAPE)l (
01 .6.004 1620 AUTOPLOTTER (CARO)l C
01 .6.008 FORTRAN 1/0 ROUTINE FORMAT CONTROL (CARO)l D
01 .6.015 DYNAMIC DUMP (CARD)l C
01.6.017 FORfvlAT CONTRL SUBROUT FOR CARO FORTRAN (CARO)l D

11&5-01 .6.019 FORTRAN 11 DIAGNOSTICIAN (CARO)l C
01 .6.020 402 CORES DUMP (CAR0)2 D
01 .6.021 SYMBOL TABLE ANALYZER (CARD)2 0
01 .6.022 ANL MNEMONICS DUMP (CARD)2 D
01 .6.024 IMPROVED HASH TOTAL PROGRAM (TAPE)
01 .6.028 t/0 SUBROUT FOR USE IN SYM PROG (CARD)2 D
01 .6.029 PROGRAM lNTERPRUPT (CAR0)2 D
01 .6.030 CARD DUMP. ANO LOAD· (CARD)2 D
01 .6.031 CARD HASH TOTAL (CAR0)2 0
01 .6.032 HASH TOTAL FOR CARDS (CAR0)3 D
01 .6.033 FLOATIPG POINT OUTPUT SUBROUTINE (TAPE)
01 .6.042 SBRS. FOR PRESET PREC. F.P. ARiTHMETIC (CARD)4 D
01 .6.043 LOGGING PROGRAM (CARD)4 D
01 .6.044 GENERAL COMPRESSOR (CAR0)5 D
01 .6.045 FORTRAN COMPRESSOR+ MULTI-PROGRAMMER (CARD)S D
01 .6.047 DBD (DAYS BETWEEN OATES) SUBROUTINE (CAR0)6 D
01 .6.049 L106 FLT PT TO FtXED PT co.O/P ROUT.SPS(CARD)6 C

1185X01 .6.055 PLOT SUBROUTINE FOR FORTRAN (CRO)lO D
1 HlS 01.6.056 PLOT SUBROUTINE FOR FORTRAN W FORMAT (CRD)10 D

01 .6.oso TRANSLATOR OF ALPHANUMER.TO EXCESS 50 (TPE)lO D
01 .6.060 SPS OBJECT DECK ANALYZER ()

65 01 .6.061 1620 RECORD DUMP (TPE)lO D
02 .O .003 I MTERPRTI VE SYS PERFRM OPER COMPLEX NO.(TAPE) 1 0
02.0.006 INTERPRETIVE ROUTINE • (TAPE)

11ss-02.o.ooo FORGO (LOAD AND GO FORTRAN) (CARD)2 0
11ss-02.o.009 FOR-TO-GO (2 PASS FORGO) (CAR0)2 D

02,0.011 INT. SYS. FOR PERFORM OPS COMPLEX NOS. {CARD)3 D
02.0.012 NOVATRDN I (TAPE)
03.0.001 VARIABLE FIELD SQUARE ROOT SUBR. (CARO)l D

ll.6

(

(

03.0.002 1620 FIXED POINT SQR (CLOSED) SUBRTN
03.0.003 ORTHOGONAL POLYNOMIAL COEFFICIENTS
03.o.oos COMP OF BESSEL FUNCT. OF INTGRAL ORDER
04.0.001 SOL.FOR INt.VAL.Pnos.N FIRST 0RD.D.EQ.
04.0.002 SOL.FOR INl .VAL.PR0B.l FIRST 0RD.D.EQ.
04.0.003 SOL.FOR INI .VAL.PR0B.1 FIRST 0RD.D.EQ.

1185 os.0.002 SIMULTANEOUS EQUATl0N SOLUTION
os.0.003 EIGENVALUES OF REAL SYMMETRIC MATRICES
05.0o004 EIGENVALUES OF REAL SYMMETRIC MATRICES
05.0,005 EVALUATION OF DETERMUNANTS {CARD}

*1185-05.0.007 SOLUTION OF SIMULTS LlNEAR EQUATIONS
05 .o .008 SI MULTAME0US EQUAL Tl OMS A LA KI NG

1185X05.0~009 CAL. EIGENVALS+EIGENVECT0R OF HY =LOY
05.0.013 MATRIX INVERSION SUBROUTINE
os.0.014 SIMULTANEOUS EQUATIONS
os.0.015 MADAME

(CARD)
(CARD)2 D
(CARD)3 D
(CARD)3 D
(CARD)3 D
(CARD)3 D
(CARD}
(CARD)l C
(TAPE}

(CAR0)l C
(CARD}2 C
(CARD)3 D
(CARD)3 0
(CARD)3 D
(CARD)L• D

1185-05.0.016 CAL.OF EIGENVALUES+ VECTORS
05.0.017 FLT~PT.MACR0 INST FOR SOL OF

1185-05.0.019 EVALUATION OF A DETERMINANT

OF ZV=LAV (CARD)5 D
LlN.SYS.EQ{CARD)6 D

6 .o .002 i'-iUL Tl PLE LI NEAR N0N@REGRESS ANAL VS IS
(CRD) 11 D

06.0.003 SCRAP (CARD}l C
06.0.004 STRAP (TAPE!l C

1185-06.0.007 STEPWISE MULT, LtN. REGRESSION ANALYSIS{CARD 1 C
06.0.009 CORRELATING PROGRAM-UP TO 30 VARI (CARD
06.0,010 ANALVSUS OF VARIANCE (CARD)
06.0.011 NON LINEAR PATCH FOR MLR PR0G OF WILDER(CARD)2 D

➔O6.0.012 DISTRIBUTION. STATISTlCS (CARD)2 D
06.0.013 SIMPLE LINEAR CORRELATION {CARD)2 D
06.0.014 GENERAL AN0V (CARD)2 D
06.0.015 40-40 CORRELATION {CAR0)2 D
06.0.016 FREQUENCY 0ISTRIBUTI0NS~SINGLEPDBLE C0L{CARD)2 D
06.0.017 NULTIPLE LINEAR REGRESSION (CARD}2 D
06 .O .o H} NULT I POE LI NEAR REGRESS I ON (TAPE)
06.0.019 MANN-WHITNEY TEST (CARD)2 D
06.0.020 SCATTERGRAM GENERATOR (CARD}2 D
06.0.021 CORRELATION COEFFICIENTS (UCRBL 0024) (CARD)2 D
06.0.022 PRODUCT MOMENT C0RRELATI0NS(UCRBL 0004)(CARD)2 D
06.0.023 ANALYSIS OF COVARIANCE (UCRBL 0007) (CARD}2 D
06.0.024 ANALYSIS OF COVARIANCE (UCRBL 0009} (CARD)2 D
06~0.026 ANALYSIS OF VARIANCE (UCRBL 0013} (CARD)2 D
06.0o027 ANALYSIS OF VARIANCE (UCRBL 0014) (CAR0)2 D
06.0.020 ANALYSIS OF VARIANCE (UCRBL 0015) (CARD)2 D
06.0.029 ANALYSIS OF VARIANCE (UCRBL 0016) (CARD)2 D
06.0.030 ANALYSIS OF VARtANCE (UCRBL 0019) (CARD)2 D
06.0.031 STEPWlSE REGRESSION (UCRBL 0018) (CARD)2 D
06.0.032 ANALYSIS OF COVARIANCE (UCRBL 0025) (CARD)2 D
06.0.033 ANALYSIS OF VARIANCE (UCRBL 0026) (CARD}2 D
06.0.034 NORMALITY (UCRBL 0027) (CAR0)2 D
06 .0 .035 H0M0GEME I TY OF VAR I ANCE (UCRBL 0032) (CARD) 2 D
06.0.036 t-iULT RANGE TEST OF MEAN DlF (UCRBL0034)(CARD)2 D
06.0.037 MAT IMVERSI0N-StMULT EQ (UCRBL0052) (CAR0)2 D
06.0.038 LINEAR CORRELATION COEFFICIENT (CARD)2 D
06.0.039 STATISTICS 1 (CAR0)2 D

ll..7

1185X06,0.041 FACTORIAL ANALYSIS OF VARIANCE (CARD)3 D
06.0.042 CONT. FOREST INV.STATISTICAL CHECK PR0G(CARD)3 D
06.0,043 MULTIPLE REGRESSION PACK FOR CARD 1620 (CARD)3 D

➔!NOTE:Programs have been modified for Load and Go. A print~out of the modified
programs and card source decks are available in the Center office.

06.0,044 ANAL.OF 2-LEVEL FACTOR EX,FOR CARD 1620(CARD)3 D·
06.0.045 CORRELATION. FOR THE 13M lb20 • {CARD)3 D
06.0.046 CORRELATION FOR.THE IBM 1620 (TAPE)3 D
06.0,049 PROGRAM TO PLOT CONTOURS OF,CONST,RESP.(CAR0)4 D

1185-06.o.oso FISHERS EXACT .PROBA. BILITY FOR 2X2 T_ABLE(CARD)4 ·D
06.0,056 FINITE FOURIER ANALYSIS . . (CARD)S D
06.0.057 LltJ.REG.ANAL,OF ALL COMB. OF VARIABLES (CARD)S C
06.0.050 MANN WHITNEY U TEST (. TAPE)5 0
06.0.059 PROBIT ANALYSJS {CARD)S C

1185-06.0.063 FISHERS EXACT METHOD (CAR0)6 0
06.011.066 STRAPCaA STEPWISE REGRESSION ANALYSIS P !CARO)
06.0.067 LINEAR REGSS (2·VARIABLES) LEAST SQ FIT CARO)
06,0,075 ROUNDING SUBROUTINE CARO!

1185-06.0.077 RlOGE ANAL, HIGHLY CORRELATED DATA (TAPE ·7 D
06.0.078 WEIBULL ANALYSIS PACKAGE !TAPE

1185 06 .O, 111 RANDOM EXPONENT I AL NO• GEN• SUBPROGRAM CRD) 11 D
07.0.001 POLYNOMIAL CURVE FITTING TAPE)l C
07.0.002 POLYNO~IAL CURVE FITTING (CARO)l f
07.0.003 1620 FIX POINT SQUARE ROOT (CARO)l D
07,0.005 SQUARE ROOT SUBROUTINE (CAR0)2 D

Ml 07,0.006 ARCTANGENT SUBROUT1NE (CAR0)2 D
07.0,007 PLYNOMAL CURVE FIT LEGNDR PLYNOMAL (CARD)2 D
07.o.oos SINE-COSINE SUBROUTI.NE (CAR0!2 D
07 .O .009 16.20 f~NOOM NUM SUB FOR FORTRAN W/FORMAT(TAPE 2 D
07.0.010 DBLE .PRECISION FLOATPT ARITH SUBROUT (TAPE 2 D
07.0.012 POLY.REGRESSION PROGRAM FOR IBM 1620 (CARD)3 D
07.0.014 REAL ANO COMPLEX RTS OF.POLYNOMIALS (TAPE)4 0
07.0.015 FORTRAM SYS REL.SUB.FOR GEN.RAND.NOS. (TAPE)S D
07,0,016 INTERPOL.BY NEWTONS METHOD OF 3RD OlfF,(TAPE)6 D
07.0.017 CAL, OF REAL ROOTS OF REAL POLY, EQUA, (CARD)6 D
07,0.020 EMPIRICAL EQUAT BY METH LEAST SQUARES (CARD} •
07 ,..O .021 RANDOM NUMBER SUBROUTINE FOR FOR TRAM F (CARO)
01,.0,022 RANDOM NO, SUBR,-FORTRAN "'1/ FORMAT (TAPE)7 C
0.7 .0.023 POLYNOMIAL CURVE FIT .@.ctNEW.TONS DIV OIF F(CAROl
OJ.0.024 FOURIER CURVE FITTING@. 1 PASS (CARO
07.0.025 GAMMA SUBROUTINE FOR FORMAT FORTRAN (CARO
07 .O .026 ERROR FUNCTI ON@l 620 FORTR:AN SUBROUTINE (CARD

1185X07.0.027 POLY. CURVE.FITTING ANO EVALUATION (CARD)B C
1185X07.0.029 CAL,OF THE ROOTS OF A COMPLEX POLY.EQ. (CARD)8 D
1185-0700.030 LAGRANGE INTERPOLATION (CARD)8 D
1185X07,0.031 FOURIER CURVE FITTING - 2 PASS (CARD)B C
1185X07.0.032 CAL. OF THE ROOTS OF A REAL POLY~ EQUA.(CARD!B D

07.0.033 CAL.REAL ROOTS-REAL NON-LIN.EQ.IN .1 VAR(CARO 8 D
1185X07.0.036 ROOTS OF POLYNOMIAL EQUATtON . (CARD 9 D
1185 07.0.037 BESSEL FUNCTION SUB, FORTRAN W FORMAT (TPE)lO D
1185 07.0.039 SIVARlATE CURVE FIT (CRD)ll C
1185 07.0.041 CAL. OF THE REAL ROOTS OF A SYS. OF K (CRD)ll .D

08.2e001 A ONE DIMENSIONAL FEW GRP OIFF. CODE (CAR0)5 D
os.2.002 CAPTURE GAMMA SHIELDING PROGRAM (CARD)5 D
os.2.004 SPEK (SPEEDY KATE) (CARD)

+ os.2.oos RSNT (CARD)
09.1 .001 ARDC MODEL ATMOSPHERE SUBROUTINE (CAR0)2 C
09.2.001 1620 SUBDIVISION PROGRAM (TAPE)l C

ll8

..

09.2.002 CUT AND FILL (TAPE)l C
09.2.003 CUT+FILL (CARD)l C
09.2.004 WATERWAY COMPULATlm.s (TAPE)l D
09.2.006 TRAVERSE ANALYSIS (CARD)l C
09.2.007 TRAVE~SE ANALYSIS (TAPE)l C
09 .2 .008 WATERWAY COMPUTA TJ OMS PROG' (TAPE) 2 D
09.2.009 SKEWED BRIDGE ELEVAtlONS (TAPE)2 0
09.2.012 RELOCATION OFFSETS' .· (CAR0)2 D
09.2.013 RECANGULAR CONCRETE COLUMN ANALYSIS (TAPE)2 D
09.2.014 GEN.VIRTUAL.WORK ANALYStS OF STRUCTURES(TAPE)3 0
09.2.016 OTM DESIGN SYSTEM PROGRAM (CARD)4 D
09.2,019 OTM DESIGN SYSTEM 40K (CARD)S D
09.2.020 SLOPE STABILITY ANALYSIS (TAPE)S D
09.2.022 COL.ANAL.UNDER A~IAL LD.+2 WAY BENDING (CARD)S C
09.2.024 BEAM CAMBER CALCULATIONS (CAR0)6 D
09.2.028 BACKWATER CURVE PROGRAM (CARD)8 D

1185 09,2fl032 VEHICLE SlM. ANO OPER. COST SYSTEM (CRO)lt D
09.3.001 GAS NETWORK ANALYSIS (TAPE)l C
09.3.002 SHORTCUT DISTILLATION (TAPE)l C
09.3.003 GAS NETWORKS ANALYSlS-PUBLfC UT, DEPT. (CARD)l t
09.3.006 ASTM-TO-TBP+TBP-TO-ASTM.DJSTtLL,CONVER (TAPE)3 D

1185-09.3.007 FLASH VAPORI.ZATION CALCULATIONS (CAR0)6 C
09.3.008 MULTI.DISTIL.TOWER DESIGN SHT/CUT METH,(CAR0)6 C
09.3.009 UNIT OPERTS. SIMULATOR VAPORCiiLIQD. SYST(CARO)

1185-09,3.010 PLATE@T(XQPLATE DISTILLATION PROGRAM (CARD)
09.,4.001 ELECTRIC LOAD FLOW PROGRAM • • (TAPE-}1 C
09.4.002 LOCA OF SHUNT CAPACITOR ON RADIAL LINES(TAPE)l C
09.4.003 ELECTRIC LOAD FLOW PROGRAM (CARD)l C
09,4,004 SELECTION OF ECONOMIC CONDUCTOR SIZE (CARD)l D
09,4.oos ECOM CONDCTR StZE SELEC BY KELVIN LAW {TAPE)l C
09.4.006 SHORTCJRCUIT ANALYSIS (CARO)l D
09.4.007 SHORT CIRCUfT CALCULATION (CARD)l D
09,4.008 TRANSMISSION LOSSESPPENALTV FACTORS (CARD)l D
09.4.009 CURVE FIT-SIMUL PLANT RECORD(NEES-38) (CARD)l 0
09,4.010 ECONOMIC DISPATCH DETERMINATION (TAPE)2 D
09.4.012 TRANFORMR RATING FOR NORMAL+EMERG OPER (CARD)2 D
09.4.013 TRANSIENT STABILITY FOR TEN MACHINES (CARD)2 D
09.4.014 TRANSFORMER SHORT TIME LOADING CURVES (CARD)2 D
09.4.015 SIMULT WQ SOLPMAT INVERSION/COMPLEX VAL(CARD)2 D
09.4.016 METWORK REDUCTION PROGRAM (TAPE)3 D
09 .4 .020 RAD .3 PHASE LI NE DROP CAL• IN 2 PASSES (CARO) 5 0
09~4,021 BATCH LOAD FLOW (TAPE)S D
09.4.022 ECON GENERATION DISPATCH PROGRAM (CARD)5 C

1185-09.4.023 SHORT CIRCUIT ANALYStS BY MATRIX METHOO(CARD)6 D
09.4,025 LOAD ANALYSIS OF A COMMUNICATIONS NETIA/K(CARO)
09.6.00l STRAtN GAGE DATA REDUCTION (CARD)l D
09.6,002 STRAIN GAGE DATA REDUCTION {TAPE)l D

1105 09,7.001 DlST OF WATER FLOW IN A PIPE NEnJORK (TAPE)l C
09.7.002 GENERALIZED PLOTTER II {CARD)l C
09.7.003 GENERAL1ZED PLOTTER (CARD)l C
09,7.004 S-100 STRESS ANAL FLNGE WITH TAPED HB · (CARO)l D

9.7 .006 HYDRAULIC ANAL.OF FLOW IN Pl PE NETWORK (CARD)4 D
09,7.007 STEAM+ WATER PROP. OF EFFICIENCY PROG.(CARD)5 D

1185-09.7 .008 \JATER FLOW IN A Pt PE NET. BY H,C.SOL. {CARD)5 D

119

1185 09.7.009 MULTICURVE PLOTTING PROGRAM (CRD)lO C
1185 09.7.010 BLIVIT • • (CRD)lO D

10 .1 .OO t LI NEAR PROGRAMMING FOR' THE l 620 (TAPE) 1 C
10.1.0Q2 LI. PROGRAMMING CODE FOR~THE IBM 1620 (CARO)l C
10.1.004 MXV PROGRAM FOR L.P. MATRtx·PREPARATION(CARO)l D
10.1.oos TRANSPORTATION PROGRAM1 FOR THE IBM 1620{CAR0)1 D

1185 10.1.006 LtNEAR·PROG CODE,CRo· PUNCH C OPTION FIN OUTP
10. l..008 LI NEAR PROGRAMMl}!G 11 • (CARD) 6 D
10.2 .• 001 INVENTORY MANAGEMENT SIMULATOR (CARD)l C
10.2-.003 AN INVENTORY MANAGEMENT SIMULATOR (CARO)
10.2.004 SALES FORECASTING SIMULATOR • (CARO)
10.2.005 BOSTON COLLEGE DECISIOif-MAKING EXERCISE(CARD)3 D
10.2~006 MANAGEMENT OECISI.ON MAKJNG (CARD)4 D
10.2.007 EXPONENTIAL SMOOTHING PROGRAM·. (CARD)4 D
10.3.001 LEAST-COST ESTIMATING ANO SCHEDULING (TAPE)
10.3 .• 002 LEAST COST ESTIMATING AND SCHEDULING' (TAPEl
10,3.003 LESS (CARD 1 C
l0~3.004 LESS It (TAPE 1 C
10.3.005 CRITICAL PATH SCHEDULING (CARD)l C
10.3.006 1620 PERT • . (CARD)2 C
10.3.007 A PROG FOR ANALYZING THE JNVSTMT OF CAP{CARD)2 C
10,_3.000 1620 NOOE NUMBERING (CZRD)
10_ •. 3 .009 1620 PERT . (TAPE) 3 D
10.3.010 ECON.ANALYSIS OF PLANS OUTOUT 1 + 2 (CARD)5 D
10.3.011 MISS LESS (CARD)6 C
10.3.012 MISS LESS . (TAPE)6 C
10 .3 .O 13 MAN@SCHED'Ult NG PROGRAM FOR 1 620 I BM (CARD)

1185 10.3.016 KWIC (CRD)ll D
1185 10.3.017 STUDENT SCHEDULING (CR0)12 C

11 .0.001 THE CHINESE BARPRING PUZZLE (CARO)l C
11.0.002 1620 SIMULATION OF A ON.E-ARMED BANDIT (TAPE)l C
11 .O .003 CH INES E BAR ANO RI NG PUZZLE (TAPE) 1 C
11 .0.004 THE EXECUTIVE GAME (TAPE)l D
11.0,006 BLACKJ.ACK DEMONSTRATION (CARD)l C.

1185 11 .0.007 BBC-VIC BASEBALL DEMONSTRATOR (CARO)l C
11 .0.006 BBC-VIC BASEBALL.DEMONSTRATOR (TAPE)l C
11 .O .009 RANDOM WALK (TAPE) J. 0
11 .0.010 SELF DEMONSTRATdR (TAPE)l C
11.0.012 TIC-TAC-TOE-DEMONSTRATION. • (CAR0)2 0
11 .O .o 13 TIC-TAC-TOE-A LEARN I NG PROGRAM (CARD) 3 0
11 .0.014 TIC TAC TOE~3 DIMENSIONAL (CAR0)4 C
11.0,015 TIC TAC TOE-3 .DIMENSlONAL (TAPE)4 C
1.1 .0.016·RQNDOM WALK DEMO' (TAPE)5 C
11.0,017 RANDOM WALK DEMO (CARD)5 C

1185-11 .3.030 PERFECT NUMB DEMONS PROG (CRD)
1185 12,3.001 UNIVERSAL OUTPUT SUBROUTINE (CRD)lO D
1185-12.4,001 1710 APP.TO STEAM GEN UNIT-SYSTEM DEMO.(CAR0)6 C

13.0.001 PLOT SUBROUTfNE • (CAR0)4 D
13,0.b02 LlNK SUBROUTINE •

1185-13.0.003 NORTHEASTERN UNIV. TEST SCORING PROGRAM(CARD)8 D

120

VII PUNCHED..CARD EQUIPMENT

VII.l Card punch (Model 026)

Three card (or key) punches are available at the Center. During
operation of the 1620 Model II, the card punch next to the computer is
reserved for short corrections. A fourth card punch is available at
Tiernan Hall, 240 High Street.

Single-card punch:ing

·The ON - OFF switch is a toggle switch on the card stacker on
the upper left-hand corner of the punch.

Slide the blank card in the punching station (the right-hand station)
and press the key on the keyboard marked REG (register). The card should
engage; if it does not, tr~e sure the right edge of card is under hook.

With the card engaged you can punch any combination of numbers,
letters, or special characters present on the keyboard. The keyboard works
much as does a typewriter keyboard: the punch is normally in alphabetic
shift; to punch numbers, or characters on the upper level of the keys, press
the numeric shift, a key marked 11NUM"• This must be held down while you
are punching the numbers or characters. To punch more than one number or
sign, in the same column hold down MULP PCH while punching. When you have
finished the card, press REL to release the card. Then push REG, HEL, RRG
to get the card through the reading station (the left-hand station) and up
into the card stacker.

Single-Card duplicating and correction

Slide the card to be duplicated and/or corrected into the left-hand
(reading station), and a blank card into the right-hand (pun~hing station),
and push REG. For duplication push DUP, and note that a po:~nter in the
window at the center of the punch indicates which column of the CErd is
passing by the stations. To insert corrections, stop duplicating at the
appropriate column and type in the corrections. Duplication of the rest of
the card can then be done.

Multiple-card punching

Put your blnnk deck of cards in the feed hopper on top of the
punch at the right between the spring.-loe.ded .follower and the front
of the punch. With the AUTO FEED tc•ggle above the keyboard off, you
must push FEED and REG to get a card to the pun;:;hing station. With
the AUTO FEED toggle on, pushing REL will accomplish the same thing.
(You must start the process by pushing REL twice)

Note (-) The minus signs on the card pu~ch is the one on the right
(on the key which says SKIP). It gives nn 11eleven" punch in
either mode. The dash on the= key gives and 11811 and 11411 punch.

Note (0) Be careful not to use the letter O (alphabetic mode) for the
number (zero), o, (numeric mode).

121

VII.I

Control cards

When you are punching a deck of cards it often saves time to set
up a control card to control the piu1ching in the various columns of the
card. The control can set the ptlI'ch in the alphabet,fo mode or the numeric
mode, determine which fields are to be duplicat~d, skipped, etc.

The control unit visible through a small window in the cover, con
sists of a cylfrtder a!'ound wt:.ich a ,::ard is wrapped. The cover swings back
to permit accesso once the r:~l V-switch loc.sted below the cove-r· window
is turned off (down to the r:ight),. The crlindor can be rem(wed from the
spindle an.d the card changed. To put a cc.•ntrol card on tqe cylindo:r, hold
the cylinder w::;sh the verM.cal chrnme st:::-lp towe.:cds you and 'l:,he "lmrer at
the topo Turn the lever to the extreme 10ft. Slip the right ... hand end of
the control card unde-r the left-ha.nd side of the chrcme st~~:i.p and push the
bottom of the card dovm aga:i.nst tbe ledge at .the bot-'.:,om of the cy;i ;nder ..
Check that the card is stra:i .. ~;ht by looking at the two small holes in the
chrome strip. The C;tli".'lder should. not sh~•w nt the e~ge of the card through
these holes. To clamp this 0nd ol the ca.rd, mo'1e the 1ocld.rlg lever at the
top around to its center pos1.tion9 ·Then wrap the co,1t,:tCll c:;;;;.ncl aroJt:.:.'"ld the
cylinder f.nd slip the free end und".lr the iJthe:r 1Jide of tbe ohrorn!') strj.p, 9

making sure the c;ard :i_s wrap~oed sr~ugly arot 1.nd the cylinder. Loc1-:: the card
in place by moving the top lever to the di;ht., GentJ.y repl.,::ice the cylL:,der,
being sure the bottom pin i0 seated, and close the cc;rer. T1.1rn ths V-switch
to the left., turn on the AW.O FEED.., AUTO SKIP, Turn the v ... :::witch to the
left., turn on the AUTO FEED, AUTO SKIP, AUTO DUP, and PRINT switches, and
the punch is ready to operate.

A control card may be remov~d fr.9m the control cylinder by reversing
the sequence·given above.

The format for a cylinder control card ·consists of variations of
4 punches,

+ continues whatever operation was done in the previous column

- causes the punch to skip that column

0 casues automatic duplication (numeric) of the same

1 activates the alphabetic shift·;

blank activates the numeric shift

An example of a control card is the following:

column
123 ••.....•

122.

::lU'H'fJ'J~
·__:,Lii:J ... ,

~t.rf.t/:!'';~
,(;,;.

80

u •

123

which causes an automatic skip to column 6, then a shift to alphabetic
mode (an "A" is a combination of a 11+11 and a 11111 punch) and continues
the shift. The reason for the 1 in columns 12 and 16 is to break the
field definition so that pushing the 11SKIP1' key will advance the card
to the next field from wherever it was positioned in the previous field.
Columns 75 and 76 will cause automatically duplication from the card at
the reading station into the card at the punching station. The last
.four columns (column 77 is b for a blank, i.e., no punch) permit numeric
card number:ing to be punched.

VII.2 Printer (IBM 407 Accounting Machine)

Control Panels

The format of the printing or "listing" from cards is controlled by the
control panel and switches on the right-hand end of the machine. The control
panel is held in a drawer that tilts outward from the printer so that the panel
can be slid in or out. Never try to run the machine unles~ a control panel
is securely in the holder and the drawer is closed.

Ordinarily the "Reproduce 80 - 8011 control panel is used to print
cards exa.ctly as they are punched. Other control panels can be wired to
distribute the information on the cards across a printed line in various
formats. Wiring diagrams are included in the h07 manual.

Operation

Turn on the ON-OFF switch on the left-hand side of the machine.
Put the cards 9-edge leading, face do-wn, into the card hopper to the left.
Hol.d down the START button for three cycles to start the cards feeding
through the machine; hold it down again to get the last cards through and
out.

If the CARD FEED STOP light comes on, the bottom card of the feed
deck is probably bent. Duplicate this card and replace it, press the
STOP then START to continue the listing. If one of your cards is missing,
you will have to get help from a staff member in extricating it from the
machine.

VII,3 Reproducer (Model 519)

The reproducer's major use is in duplicating decks and in punching
regular punched cards from mark sensed cards (See Below VII.J). It can
also compare two decks, rearrange the columns of a card, and punch sequence
identification numbers.

There are two card feeds on the top of the reproducer. The left
hand one is for the deck to be read and the right-hand one is for the
deck to be punched. The control panel holder is below the card feeds.

Reproducing

Use the panel marked 1180 .. 80 REPRODUCING". Put the deck to 'be

VII.2

VII.3

reproduced in the read feed (left-hand hopper) face down, 12 or top
edge to the right, and put blank cards in the punch feed in the same
relative position. Turn on the switch on the right side of the machine.
Hold the START button down for three cycles, and then the machine should
go by itself. Hold the START button down again to get the last card to
go through. The old deck will come out in the left stacker; the new
duplicate deck will come out in the right stacker.

Error stops on reproducer

If the machine stops with the red light labeled "COMP" an error
in the duplicating process has been detected. In the window low down
on the front of the machine metal pointers indicate the columns containing
errors.

. Remove the cards not yet processed from the hoppers, and run the
cards in the machine out by holding down the "START" button. Talce the
top three cards off both piles. Put the three from the old deck back
in the left hopper. Throw out the three frorp. the new deck. Put the
remaining unprocessed cards back in their respective hoppers.

PUll up on the lever beside the compare light until the light goes
off. Press START as in the beginning. •

Save the portion of the new deck already punched -- it is valid.
When the machine has finished processing, combine the parts of the new
deck.

Sequence numbering of cards

To punch sequence numbers into columns 76-80 of a deck of cards
use the control panel labeled "SEQUENCE NUMBERING". Put a card containing
zeros in columns 76-80 on top of the deck to be numbered and place the
deck face down, top edge to the right, in the right-hand hopper. Certain
adjustments can be made inside the machine to permit the se_que_nce numbers
to be printed on the cards. See a member of the staff for more details,

Partial reproducing and gang punching

It is possible to wire a control panel to reproduce only certain
columns on the card (possibly rearranging them), or to :insert the same
information in the same columns of several cards. (The latter is called
11gang-punching 11.) Consult a member of the Comput:illg Center Staff if you
want help.

Mark Senaing

Mark sensing is based on the principle that a special pencil mark
with a high graphite,content can conduct electricity. The mark-sensing
device on the reproducer reads the pencil marks on the cards and punches
corresponding holes. Each mark-sensing column covers three punching
columns so that up to 27 columns of data can be marked on a card. For
our purposes the first mark-sensing column will be converted to the first
punched column, etc., so that the 27 columns spanning the marked card
become holes in the first 27 columns of the punched card.

124

('

We plan to try to lighten the load on the card punches and also
make card preparation more convenient for our users by providing the
special cards for mark sensing and the device on the reproducer to convert
them to punched oards. The special pencils required can be purchased at
the bookstore. The allowance of 27 columns should be adequate for almost
any Fortran statement, (Also see Appendix "Use of Mark Sense Cards")

Marked to punched~card conversion

Place the deck of marked cards in the right hopper of the reproducer.
Use the "Mark Sensing" board, The marked cards will be punched.,

VII.4 Sorter (Model 082)

Place the cards carefully (this is a fussy device) in the hopper at
the right end of the machine with 9 (bottom) edge toward the machine, face
down.

Set the column on which you wish to sort by moving the crank until the
pointer rests on the right number. You can move it longer distances without
cranking by pushing down on the round release button on the side of the
pointer. The "ON" switch is a round series of suppression switches used
mainly in alphabetic sorting. Consult the manual if you wish to use this
option. When sorting, always sort on the least significant digit first or,
in a field, start on the right-hand column.

VII.5 Character Coding on Cards

Punched or marked cards have one character per column. The rows
of the column are called, from top to bottom:

12 (or +)
11 (or-)

0
1
2
3
4
5
6
7
8
9

Thus, the number 3 has a punch in row 3 and so on. Letters and
special characters have more than one punch per column. A 11J 11 for example
has an 11 and a 1 punch. The complete set of character codes are:

Alphameric Character

(Blank)
. (Period)
)

Card

(Blank)
12, 3, 8
12, 4, 8

12.5

VII.,4

Alphameric Character

+
$

* ... (Minus)
I
((Comma.)

..
- (Dash, not a minus)

A -
B
C
D
E
F
G
H
II
J
K
L
M
N
0
p
Q
R
s
T
u
V
w
X
y
z

Numbers o, 1, ••• , 9

Card -
12
ll., .3, 8
u, 4, 8
11
01 l
o, 3, 8
o, 4, 8
3, 8
4, 8
12., l
12., 2
12., ,3
12, 4
12, 5
12., 6
12, 7
12., 8
12,/9
11, 1
11., 2
n., .3
11., 4
11, 5
11., 6.
11., 7
11, ·a
11, 9
o., 2
o, 3
o., 4
o, 5
o, 6
o, 7
o, 8
o., 9

l
12~a

VII.5

o, 1, ••• , 9 respectively

126

APPENDIX

A. NOTES ON THE STORAGE OF INTEGER AND REAL NUMBERS

A real number may be expressed as a decimal times a power of 10.
All real nwnbers are stored in computer memory as decimals; the
appropriate power of 10 is stored with the decimal as follows:

Where:

~xxxxxxxy
, _______ l,.___,

,xx_.,
•.,......_ ..

MANTISSA E.XPO~NT

The mantissa is the decimal portion of the number.
The first digit of the mantissa (after the decimal point)
is always non-zero.

The mantissa consists of eight digits. (IBMFII-D does per
mit the user to specify an alternate mantissa length. See
Section V,.l "Varying the word length.")

The exponent is a two digit integer. The mantissa multiplied
by ten to the exponent is equal to the real number as expressed
in the source program or data. The range of the exponent is
discussed in Section II.2a. 11Real Constants." Note that the
exponent is sometimes referred to as a characteristic.

Example:

$00.22 is stored as OJ .50022
Exponent Mantissa

.ooS is stored as -02 .5
Exponent Mantissa

-2
.5 ~,.. 10 === .005

4. is stored as 01 .4
Exponent Mantissa

Integer(fixed point)nwnbers are stored in digit form as follows:

xx.xx
xxxxx

L. & G.
K F II

127

Arithmetic operations may be directly performed on integer numbers.
If the result is more digits than permitted by the compiler the high
or~er digits are truncated.

Example:
I= 9986 + 24

I is stored as 0010 when the statement is processed
using the Load and Go processor.

When performing arithmetic operations on real numbers the computer
must be instructed to handle the mantissa and exponent parts of the
number. The 1620 Model II has built in components capable of carrying
out real (floating point) arithmetic. The 1620 Model I does not
have this capability and the processor must include subroutines
which carry out the real (floating point) arithmetic•. (For a dis
cussion of floating-point arithmetic see Kuo, S. Shan, "Numerical
Methods and Computers," pp 28-29.) Note that when arithmetic
operations develop a mantissa with more than 8 digits the low order
digits are truncated.

B. NOTES ON THE USE OF MARK SENSE CARDS

Use of Fortran Mark Sense cards will enable programmers to prepare
their source decks without losing time waiting for a free key punch
machine. The mark sense cards and the IBM graphite pencil may be
purchased at the bookstore. Instructions for marking the cards are
listed on pages 124, 125 of the Handbook. A Computing Center staff
member will process mark sensed decks on the IBM 519 reproducer
during the hours listed on the Computing Center bulletin board.
The decks should be placed in the box marked IN on the 519. A
punched deck and 407 print-out of the deck will·be returned to the
OUT box. To assure the return of the proper deck to the proper
programmer the prograrrnner is required to place the following two
cards at the top of the mark sensed deck.

Card cols. 12 ••............• 20 ••.•..................•..• 80

Card 1: Z

Card 2: P110BLEM NUMBER

Where: The first card is blank except for a Zin column 80.

NAME is the name of the user.

PROBLEM NUMBER is the problem number assigned to the user.
Mark the face of Card 1 with the name of the user and the initials
11F.C. 11 (Use a magic marker type pencil) Mark the back of the last
card of the source deck with the initials 111.C. 11

(

(

128

The Zin column 80 punched on the first card signals the IBM 407
to .. :.1k,rt printi'ng tho fallowing sour'cc dock on n new page. Switch
~ (on the- 407) must be sot to the ON position when batch processing
print-outs of mark sensed decks.

The above two cards can be key punched at the beginning of the
semester and re-used for each mark sensed dee~.

C. NOTES ON MODEL II-BATCH PROCESSING

1. Computing Center batch processing schedule

2.

A Computing Center staff member will process Fortran source
decks prepared for batch processing on the Model II during the
hours listed on the Computing Center bulletin board. Source
decks should be left in the IN box next to the Model II. Printed
Output and the source deck will be placed in the OUT box. Please
note that all output should be printed. All decks must include
correctly punched control cards~ Mark the first card with your
name and the last card 111.c.11

Listing of required control cards - KFII

The following cards should be punched at the beginning of the
semester and can then be used throughout the semester for each
Kingston Fortran deck submitted for batch processing:

Card columns: 123456789 •..••.....• 20 ••••·••···•·•·••·••••••50

Card 1.

Card 2.

Card 3.

Card 4.

Card 5.

Card 6.

##JOB

##llQ KF2

$

JOBNAME OF PROGRAMMER

EOJ

##XEQ RUN

OPTIONAL USER IDENTIFICATION

Where: The #'s (record marks) are multiple punch 028
NAME OF PROGRAM1'1ER is punched in columns 10-43.
Any additional user identification may be punched in card
columns 45-80.

129

See Section IV. JJ) "Operating instnuctions, control cards" for ins
tructions on placing the control cards in the source deck.

It is suggested that the user use the Kingston Fortran processor
for speed in compiling and executing a Fortran program. However
programs written in Fortran II-D may be batch processed with Kingston
programs if the correct control cards are included with the source
deck.

3. Listing of required control cards·- IBM FII-D

Card columns: 1~3456789 •• .•. 32 60.62 80

Card 1.

Car.d 2,

##JOB

##FORX

NAME OF PROGRA111'1ER OPrIONAL USER
IDENTIFICATION

Wheret The # 1s (record marks) are multiple punch 028,. ..
NAME OF PROGRAHMER is punched in card columns 32-60. . .

Any additional user identification may be punched in
card columns 62-80.

4. Listing of required control cards - disk stored programs.

Card columns: 1234567H9 .•....•.. ,32 •..........•..•.•• 62•. 80

Card 1.

Card 2.

##JOB NAME OF PROGRAMMER OPrIONAL USER
IDENTIFICATION

##XE.Q Niu'1E OF PROGRAH.

Where: The #'s (record marks) are multiple punch 02& NAME OF PROGRAMMER
is punc~ed in columns 32-60, card columns 62-80 may be punched
with any optional user identification,NAME OF PROGRAM is the
name of the program currently stored on the disk. (See Section
VI.4a for a listing of programs available for disk storage)
The program name is punched starting in Card column 7,

130

INDEX TO ACCEPTABLE FORTRAN STATEMENTS

..

Statement General Form L. & G. KFII FII

ACCEPT 19, 20

ACCEPT TAPE 19, 20

ARITHMETIC IF 16

ARITHJl!IETIC Statement Function KF ·(See NOTE

ASSIGN KF

CALL name KF

CALL EXIT 19

CALL PLOT KF

CALL RAND KF

CALL RESOLV KF

CALL ROUND :a-:u

NOTE:

G same as general form

FII permitted in IBM FII-D, See FII

KF permitted in KFII, See KFII

below)

LG permitted in L. and G., See L. and G.

28 53

N. P. (See 53
NOTE)

G G

N.P. 70

N. p. 49

N.P. 75

N.P. 52

N.P. 77

N.P. 78

N.P. 79

N.P. N.P.

MS See 1620 Monitor I System Reference Manual, Fortran II-D

N.P. Not permitted

MS (See NOTE
below)

MS

MS

MS

N.P

MS

MS

N.P.

N,P.

N .P ..

104

131

CALL SKIP KF(See NOTE p.1) N • p. 53 N.P.

CALL SOLVE KF N.P. 78 N.P.

CALL SORT KF N.P. 78 N.P.

COMMON KF N.P. 66,69 MS

COr1PUTED GO TO 15 25 50 MS

CONTINUE 19 G G MS

DATA KF N.P. 67 N .P.

DIMENSiON 21 G G,69 MS

DO 16 26 51 MS

END 19 27 53 MS

EQUIVALENCE KF N.P. 66, 69 MS

FORMAT 20 27 56 MS

FETCH FII N.P. N.P. 106

FIND FII N.P. N.P. 107

FUNCTION name KF N.P. 71 MS

IF(SENSE SWITCH) 16 25 51 MS

PAUSE 19 G 52 MS

PRINT LG 27,28 55,65 MS

PUNCH 20 28 55 MS

PUNCH TAPE KF N.P. 55 MS

READ 19,20 28 53 MS

RECORD FII N.P. N.P. 106

REREAD KF N.P. 53 N.P.

RETURN KF N.P. 75 MS

STOP 19 27 52 MS

SUBROUTINE name KF N.P. 74 MS

TYPE 20 27 55 MS

Unconditional GO TO 15 G G MS

