
The "Plankalkul" of
Konrad Zuse: A Fore-
runner of Today's
Programming
Languages

F.L, Bauer and H. W6ssner
Mathema, tisches Institut der
Technischen Universit/it Mtinchen

The very first attempt to devise an al-
gorithmic l a n g u a g e , . , but the proposal
never attained the consideration it de-
served.

Heinz Rutishauser (1967)

Plankalkiil was an attempt by Kor~rad Zuse in the
1940's to devise a notational and conceptual system for
writing what today is termed a program. Although this
early approach to a programming language did not
lead to practical use, the plan is described here because
it contains features that are standard in today's pro-
gramnling languages. The investigation is of historical
interest; also, it may provide insights that would lead
to advancements in the state of the art. Using modern
programming terminology, the Plankalkiil is presented
to the extent it has been possible to reconstruct it from
the published literature.

Key Words and Phrases: higher programming lan-
guages, programming, theory of programming, history
of programmin g

CR Categories: 1.2, 4.22, 5.29

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Authors' address: Mathematisches Institut der Technischen
Universit~it Mtinchen, 8000 Miinchen 2, Postfach 202420, Germany.

Preface

In M a y 1945, K o n r a d Zuse, Berl in-born inventor
and constructor , who had arrived with his relay com-
puter Z4 at the little village of Hinterstein in the Allgiiu
Alps, found himself immobil ized by the postwar situa-
t ion and prevented f rom pursuing his business. He thus
found time to resume his 1943 studies) on how to formu-
late data processing problems. Zuse unders tood and
used the G e r m a n word Rechnen, to compute , in the mos t
general sense when he wrote, "Rechnen heisst: Aus
gegebenen Angaben nach einer Forschrift neue Angaben
bilden. ''2

He used Angaben for data and Forschrift for algo-
ri thm. N o t having at his disposition the word Pro-
gramm, he called a p rogram Rechenplan. The nota t ional
and conceptual system of expressing a Rechenplan he
called Plankalk~l.

The Plankalkiil, as a remarkable first beginning on
the way to higher p rog ramming languages, deserves a
place in the history o f informatics. Al though this early
a t tempt to develop a p rog ramming language did not lead
to practical use, it is nevertheless surprising to what ex-
tent the Plankalk~l already contains s tandard features o f
today ' s p rog ramming languages.

We are led to an investigation o f Zuse 's Plankalkiil
not only because o f historical interest, but also because
the necessary critical reflection on the state o f the art
with its possible gaps and weaknesses may gain f rom

"Ansatze einer Theorie des allgemeinen Rechnens," a planned
Ph.D. dissertation. See [Z70, p. 112].

See [Z49].
3 In terminology and notation, we follow ALGOL 68. What-

ever position one may have with respect to ALGOL 68, the differ-
ence from other reputable terminologies and notations, such as
the one Hoare, Wirth and Dijkstra prefer, is not so great that it
would hinder communication.

4 In [Z49] a small o is used.
5 [Z49, p. 447]; see also Section 9.

678 Communications July 1972
of Volume 15
the ACM Number 7

such a study. In particular, the widespread ignorance
about the Plankalkal should be diminished.

Using as a basis modern terminology in program-
ming, ~ we will describe the Plankalkfd as far as it can
be reconstructed from the published literature.

1. Data Structure

The only primitive objects in the Plankalk~l are of
the mode bool (or bit), which is denoted by S0; 4 they
are called Ja-Nein-Werte. Composite objects are built
up recursively, in particular arrays of arbitrary dimen-
sions and records. For example, the array modes

[0 : n - 1]bool and [0 : m - 1, 0 : n - 1]bool

are denoted by

n X SO and m X n)< SO, respectively.

If a variable indication ~ (variables Strukturzeichen) a or
a constant indication $2 is used to denote the first of
these two modes, then the second can be denoted by

m X o- or m)< $2, respectively.

There is also the possibility of using the abbreviated
notation

S l . n or S1.8

instead of

n × SO or 8 × S 0 .

In this case we have a new mode bits of word length n
or 8, respectively; the array, however, can still be sub-
scripted.

A record of, say, two components, which are de-
noted by some variable or constant indications o,r or
A2, A3, is specified by

(cr,~-) or (A2, A3).

Here, too, subscripts will be used for the selection of
components; they always start with zero.

Zuse says Strukturen for structured values and their
corresponding modes; he says Art for the conglomerate
consisting of a Struktur together with its pragmatic
meaning (Typ) and a possible restriction (Beschriin-
kung), which says which of the elements of a certain
structure are meaningful. For example, objects of the
structure

S I . 4 (tetrades)
6 For a chess example such a restriction is defined in [Z59,

p. 72] by: "A3 is restricted to 13 possibilities: 12 kinds of chess-
men and 0 for unoccupied."

7 [Z59, p, 70]. From a remark in [Z70, p. 157], one can infer
that Zuse already during his Berlin period, that is before 1944,
used L and 0, which he called Sekundalziffern (see also [Z70,
p. 68] in his diary entry of June 20, 1937).

8 It should be noted that Zuse already used floating point
computation.

may have the pragmatic meaning "decimal digit" and
the restriction to the first 10 of the 16 lexicographic
possibilities.

A3 = (SB34)

expresses that S1.4 is subjected to the restriction B3f
Zuse calls objects Angaben, which pretty closely cor-
responds to "data".

Figure 1 shows an illustrative section from [Z59].

2. Standard Denotations

Standard denotations for Boolean objects (SO) are

L and 0

for bit sequences (for example S1 .4) 7

LL00, LOLL.

For integers and numerical-real objects, instead of bit
sequences, conventional figures can also be used. s

For the standard denotation of more general, com-
posite objects, a denotation is used which is now con-
ventional for input and output: The standard denota-
tions of the components of composite objects are listed
in the specified order, such that the additional mode
indication for the object allows one to form the decom-
position uniquely. For clearness only, a special separa-
tion mark (semicolons instead of commas) is used for
the separation of composite objects.

3. Free Choice of Denotation

For all objects, freely chosen identifiers (Bezeichnun-
gen) may be introduced; for example, a standard deno-
tation can be associated (zugeordnet) with an identifier
(see Section 6) such that both possess the same object
as their value (Wert).

In a Rechenplan 6', i.e. in a program or a subroutine
(see Section 9), an identifier is a letter followed by a
number. The letter is V, Z, R, or C, depending on
whether the object in question is used as an input
parameter (Variable), intermediate value (Zwischen-
wert), result parameter (Resultatwert), or as a constant
in 6 ~. The distinguishing number (Nummer) is attached
to the letter in the line below. The letter classifies the
objects.

Examples:

II, Z, Z, R

0 0 1 0

Finally, programs and subroutines have their own
identifiers like

P12, P3.7

the number following the letter P being a program

679 Communications July 1972
of Volume 15
the ACM Number 7

index (Programm-lndex), in the form of a component-
subscript (see Section 4). The second example denotes
"the program 7 of the program group 3." Thus, Zuse
has arrays of programs and a corresponding block struc-
ture. He derives from this a system to denote the results
of subroutines in external use; for example, the result

R
of a subroutine P17 is external to P17 characterized

0
by the program index 17, i.e. by

R17

0

which also involves a call of P17 (see Section 8).

4. Subseripting

The selection of a component is achieved with the
help of a component-subscript (Komponenten-Index),
that is the denotation of a number (simple subscript)
or a sequence of numbers (multiple subscript). The
component-subscript is written immediately under the
identifying number of the corresponding composite ob-

ject.

V denote an array of the mode Let, for example, 0

I X m X S l .n , then

V

0 (0 < i < /)

i

selects its ith component, a subarray of the structure
m X S l .n , while

V

0

i ' j

(0 _ < j < m)

V

selects the j th component of 0 , a list of the structure

i

S l .n , and finally

V

0 (0 < k < n)

i . j . k

V

selects the kth component of 0 , a single bit. In today's

i . j

notation, this corresponds to V0[i], VO[i,j], VO[i,j, k].

Fig. 1.

Ein Beispiel aus der Sehachtheorie

Als Beispiel sei kurz auf die Schachtheorie eingegangen.
Zun~ichst ist der Aufbau der auftretenden Angabenarten
interessant.

S 0 J a-Nein-Wert
$1 • n n-stellige Folge von J a-Nein-Werten

A1 $ 1 . 3
A2 2 × A1

?1;4)
A4 (A2, A3)

A5 64 x A3

A6 64 x A4

A7 12 X S 1 . 4

A9 (A5, SO, S1

= Koordinate
= Punkt
(z. B. : L00, 00L entspricht Punkt e2 in
(iblicher Darstellung)
= Besetzt-Angabe
(z. B. : 00L0, \Veil3er K6nig)
= ~unkt-besetzt-Ang .abe
(z. B.: L00, 00L; 00L0 ,,Punkt e2 mit
weil3ern K6nig besetzt")

= Feldbesetzung:
C 5 Anfangslage
(AufzAhlung der Besetzung der 64
Punkte in fester Reihenfolge)
= Feldbesetzung mit Punktangabe,
C6 Anfangslage
= Anzahlliste der Steine;
C 7 Anfangslage
(Gibt an, wieviel Steine yon jeder Sorte
auf dem Feld sind, z. B. fiir Bewertungs-
rechnungen wichtig).

• 4, A2)
= Spielsituation;
C9 Anfangssituation
(Feldbesetzung [.4 5] ; Angabe, ob Well3
oder Schwarz am Zuge [S0]; Angaben
fiber R ochade-M/Sglichkeiten [4 J a-Nein-
Werte]
Angabe der Punkte mit den M6glich-
keiten, ,,en passant" zu schlagen).

A10 (A6, SO, S1 .4 , A2)
= Spielsituation mit Punktangabe;
C 10 Anfangslage

A l l (A 2, A 2, SO) = Zugangabe
(zwei Punktangaben, gesetzt yon . . .
nach ... Ein Ja-Nein-Wert ,,Es wird
geschlagen").

Pages 69, 70, 71 from "Uber den Plankalktil" by Konrad Zuse,
in Vol. 1, 1959, of Elektronische Rechenanlagen, Verlag R. Olden-
bourg, Munich. Reprinted by permission of the publisher.

680 Communications July 1972
of Volume 15
the ACM Number 7

Fig. 2.
Neben der Hauptzeile, welche die Formel im wesentlichen
in der traditionellen Form enthalt, wird eine zweite Zeile
(V) fiir den Variablen-Index, eine dritte flit den Kompo-
nenten-Index (K) und eine vierte ffir den Struktur-Index
(S) eingeffibrt. Die letztere braucht, strenggenommen,
nicht immer ausgefiillt zu werden, dient aber wesentlich zur
Erleichterung des Verst/indnisses einer Formel. Die Zeilen
werden durch Vorsetzen der zugeordneten Buchstaben
(V, K, S) gekennzeichnet.

Beispiele :

V
V 3
K
S m × 2 × l . n

V
V 3
K i
S 2 × l . n

V
V 3
K ~ .0
S 1 - 0

V
V 3
K i . 0 . 7
S 0

Die Variable Vz ist eine Paarliste yon
m Paaren der Struktur 2 • 1 • n und
soll als Ganzes in die Rechnung ein-
gehen.

Von der Paarliste V 3 soll das i.Paar
genommen werden (Struktur 2.1"n).
(i kann dabei ein laufender Index
sein.)

Von dem i.Paar der Paarliste V 3 soll
das Vorderglied (erstes Eleihent des
Paares) genommen werden
(Struktur 1 • n).

Von dem Vorderglied des i.Paares
der Paarliste V 3 soil der Ja-Nein-
Wert Nr. 7 genommen werden
(Struktur SO = Ja-Nein-Wert).

Beim Beispiel des Stabwerkes bedeutet fiir i = 4:

V die gesamte Paarliste des Stabwerkes
3

V die Kennzeichnung des Stabes 2 ~ 4
3 (4. Paar der gegebenen Liste)
4

5. Zuse's Two-Dimensional Notation

The form of denota t ion with a "main line" and
"index lines" V and K for variable-number and com-
ponent-subscript , respectively, is supplemented by an
opt ional comment line S, in which the structure or mode
of the value in question can be noted. To this end, the
no ta t ion o f Section 1 is used; Zuse calls these indications
Struktur-lndizes.

Examples are given in Figure 2, an illustrative sec-
t ion f rom [Z59, p. 69].

The explicit mark ing of the lines by prefixed letters
V, K, and S, allows one to omit empty K-lines. Fur -
thermore, the prefix S in the mode denota t ion can be
dropped. Thus,

S[S l . n m >(S l . n SO $2 ~r

can be shortened to

S[1.n m X 1.n 0 2 a.

Moreover , Zuse allows the abbreviat ion o f

S[A1 A2 SO A3

by

A [1 2 0 3

(using A 0 synonym ously with S0)
Fur thermore , variable componen t subscripts can be

used [Z70, p. 123], for example by the help o f an inter-
mediate value in the fo rm

K V Z V 0 I
k

rn X 1.n 1.n

with the m e a n i n g of V0[Z1] in today ' s notat ion.
(Note that Z1 is o f structure S1 .n; that is, the integer
corresponding to the bit sequence Z I is used as sub-
script, and a componen t o f structure S1-n is selected

f rom VO.)

9 Originally, Zuse [Z49] introduced the ~ , shaped equality
sign. The arrow-like sign ==;, is used in IZ59], after Rutishauser
had helped to propagate it. In [R52], Rutishauser used in typesclipt
the sign#=. At the Zfirich ALGOL Conference 1958, the sign
:= was introduced under strong pressure from the American
participants. The European group wished to use Zuse's sign.

681

6. Assignment and Identity Declaration

The most impor tan t feature for the construct ion o f
p rograms is the assignment (Rechenplangleichung), ex-
pressed by means o f the Ergibtzeichen ~ . 9 Fo r ex-
ample, the assignment

1Zn + 1 ~ Z V 1
S 1 .n 1 .n

means to augment the integer intermediate value Z1 by

1, while

(z, v) ~ R
V 0 1 0
S ~ ~ 2~

Communications July 1972
of Volume 15
the ACM Number 7

means the composition of the values V0 and V~ to a
composite value, which is denoted by Ro.

The interpretation of the second example shows that
the assignment comprises the semantic meaning of an
(initialized) identity declaration for a variable: The
identifier R0 of the mode 2~ is used to denote the elab-
orated value on the left-hand side.

If in a program more than one assignment to the
same result or intermediate value variable occurs, then
the (dynamically) first assignment is to be interpreted
as an (initialized) identity declaration for a variable,
while all others are ordinary assignments. This would
give the genuine concept of a variable. On the other
hand, the initialization of an input parameter in con-
nection with a subroutine call,/° as well as the initializa-
tion of constants, can be interpreted to be an ordinary
identity declaration. However, these fine distinctions
are reflected neither in the notation nor in the explana-
tion of the semantics [Z59, p. 70]. Nevertheless, they
have strongly influenced Rutishauser's ideas, as seen
from ALGOL 58.

The usual arithmetic and Boolean operations are
provided for, and they allow one to form expressions
(Ausdr~cke) in connective formula notation, n Besides,
comparison operations like = , ~ , < , with Boolean
values as results, can be used. For arithmetic opera-
tions, objects of the mode bits (denoted by S l . n) are
interpreted as numbers in direct (lexicographic) coding.

Der Operator I~x hat grosse Vorteile bei
der systernatischen Untersuchung einer
sich evtl. in ihrem Urn fang laufend ~2nderr.-
den Liste au f Glieder einer bestimraten
Eigenschaft und Verarbeitung derselben.

7. Further Operational Features

Apart from the possibility of selecting record and
array components by (component) subscripts, certain
operations from the predicate calculus are used to test
components with respect to a specified property, with
the result of selecting them or of obtaining a Boolean
value. In this respect, the Plankalk~2l surpasses the
potentialities in today's programming languages, in-
cluding ALGOL 68.

Zuse uses both the "existence" and the "all" oper-
ator, and in particular the operator g:

gx(x ~ v A R(x))
0

means "The next component of V0, for which the
property R holds."

The property R, in the notation R(x), is expressed
by means of a computational rule which gives a Boolean
value (Ja-Nein-Wert), or of a result parameter of a
suitable subroutine (see Section 8).

It is clear, that procedures can be defined in, say,

682

ALGOL 68, which have the above effect. But it may be
worthwhile to see whether Zuse's constructions could
be introduced as original conce.pts in high level lan-
guages. See also [BG72].

8. Statements and Subroutine Calls

Statements are what Zuse calls Planteile. In partic-
ular, assignments are statements. Other statements,
which we shall discuss, are conditional statements and
repetitive statements. There is also a compound state-
ment, formed with the help of parentheses. In order to
separate statements, as well as the line marks (see Sec-
tion 5), a vertical bar is used.

Conditional statements are formed with the help of
the Bedingt-Zeichen -:-> (or .-~) in the following form

(B --~, (~,

where the condition (Bedingung) ~ is an expression with
Boolean value, and 0~ an arbitrary statement. The
elaboration of this conditional statement bedingter
Planteil) begins with ~ and ends with ~ or is continued
with a , depending on whether 6~ produces the value
0 = nein or L --- ja. An alternative for a in the first
case cannot be specified.

The following example of a repetitive statement, that
is initiated by the letter W, shows an application of the
g-operation of the preceding section:

[~ u x (; ' V A x ' V) ~ Z I (R A R I 7 (Z)) ~ !]
V 0 1 0 0 1 0
S m~ cr ~r 0 0

The elaboration of this Wiederholungsplan starts
with the first assignment. The left-hand side formula of
this assignment produces at each elaboration the next
component V0[i] which is different from V1, provided
it exists. In this case, the following statement is elabo-
rated and the process starts again. If, however, no com-
ponent is found then Z0 is unchanged and the elabora-
tion of the repetitive statement is finished.

In the second assignment of this example, where an
initialization of R0 is presupposed, R171(Z0) is the call
of a subroutine P17 (see Section 9), which is specified
to have one input parameter and a result parameter R1
(see Section 3). The elaboration of this call means the
identification of the actual parameter Z0 with the formal
input parameter, and following this, the elaboration of
Pl7. The value of the call is the value which is obtained
by R1.

a0 It cannot be excluded that Zuse considered the input parame-
ters to be genuine variables whose values can be changed during
the subroutine. This is indicated by an isolated occurrence of
(V, V) ==~ V in [Z59].
5 6 7

1~ [Z49, p. 447]: "The Ergibt-Zeichen~joins an expression
which is to be calculated (left) with a result (right)." According to
Zuse such expressions mean computational rules (Rechenvor-
sehr~ften.)

~ The example in [Z59, p. 71] ends, however, with an expression g
instead of ~; ~ R0 FIN, where R0 is the only result parameter.

Communications July 1972
of Volume 15
the ACM Number 7

I f it was initialized by L, R0 obtains thus, when the
repetitive statement is finished, the value of the con-
junction of all R171(x) where x is from the set of all
elements of V0 that are different from V1.

9. Programs

Both programs and subroutines in the Plankalkfd
are expressed in the form of procedures (Rechenpli~ne);
i.e. they are prefaced by a specification part (Rand-
auszug), which specifies the parameters as being input
parameters or result parameters together with their
modes. The computat ional rule proper is then described
in the body (Anweisungsteil), which consists of a se-
quence of statements. The end is marked by a symbol
FIN. TM

A call requires that the actual parameters have con-
sistent mode. The subroutine P17 that was called in the
preceding section may begin with the following specifi-
cation part

P I7 R (V) ~ (R, R)
V 0 0 1
S ~ ¢ 0

where Vo is an input and R0, RI are result parameters.
The body must contain assignments to Ro and RI. If
it contains intermcdiate values, then they are not read-
able directly from outsidc of P 17.

Mein 'Plankalkiil' war doch inzwischen
li~ngst veraltet.

K. Zuse (1970)

10. Algol 68 Translation of Some Plankalkiii Programs

It should not be forgotten that Zuse did not only
invent the Plankalkal, but that he used it to formulate
some nontrivial programs of the nonnumerical kind (he
called them logistisch-kombinativ) in order to demon-
strate the potentialities of computing. The programs
are by all means nontrivial for the year 1945 and more
ambitious than the first task steps von Neumann did
with his Gedanken machine (cf. [K70]). To illuminate
this, we give in the following ALGOL 68 transcriptions of
program examples from [Z49] and [Z59].

a. Syntax Checking for Boolean Expressions
A typical application of the Plankalk~l [Z49, p. 446]

contains a procedure for the syntax check of Boolean
expressions. Zuse starts from the observation:

Such expressions contain the following symbols: variable symbols,
negation symbol, operation symbols, parentheses symbols, and
space symbol that is needed for the separation of expressions. The
symbols in question are coded in bit sequences.

683

Fig. 3.

v noO

,I "! V o
0

V
K
8

8

v

I n

I (~Kla(1) "--" (~ + 1 ~ ~) ® Kt~(Z)I 7* (~ - - 1 = e)

l o ; °
>= o ® z

1 o

0 o

0 o

In the procedure (Figure 3), a denotes the structure
of these 8-bit sequences, and ma with arbitrary m _> 1
denotes the symbol sequences that are to be investi-
gated. A call of the procedure with a (coded) symbol
sequence x as its actual parameter means to test the
predicate

Sa(x) : <<x is a 'meaningful expression', i.e. a (syntactically correct)
Boolean expression>>.

This predicate is introduced recursively by:

(i) A variable symbol is a meaningful expression.
(ii) A meaningful expression, prefixed by a negation symbol, yields

a meaningful expression.
(iii) Two meaningful expressions, connected by an operation sym-

bol, yield a meaningful expression.
(iv) A meaningful expression, put in parentheses, yields a meaning-

ful expression.

To t ransform this definition into an algorithm, Zuse
defines, now for symbols x, the auxiliary predicates:

Va(x) : <<x is a variable symbol>>
Op(x) : <<x is operation symbol>>
Neg(x) : <<x is negation symbol>>
Kla(x) : <<x is opening parenthesis>>
Klz(x) : <<x is closing parenthesis>>

and furthermore the predicates:

Az(x) : Va(x) V Neg(x) V Kla(x)
Sz(x) : Va(x) ~/ Klz(x)
Sq(x,y) : (Sz(x) A -~az(y)) V (-~Sz(x) A Az(y))

Communications July 1972
of Volume 15
the ACM Number 7

Fig. 4.

, ,Der weiBe K6nig kann einen Zug rnachen, ohne dabei in
Sehach zu k o m m e n . "

P 148 I R (V) ~ R 1#8 (1)
V I 0 o
A 5 0

A t Ix V'Ax L0 I v 4 31 Z40
(Ex)

4

-(x EV) A R 1 7 (Z,x) ^ (x=0) v x
0 0

0 0 1 1.3
4 5 2 2 3 0

' 7 [(y E V) A y A R 1 2 8 (~ ' Y ' I)] 5 01"3 520

(2)

(3)

(4)

Die hierbei benu tz ten U n t e r p r o g r a m m e sind:

R17 (V, V)
V 0 1 ,,Die P u n k t e V o und V x sind benaehba r t . "
A 2 2

V
A

R128 (V, V, V) , , B e i der gegebenen Fe ldbese tzung V 0
0 1 2 ist der Zug von P u n k t V 1 nach P u n k t
5 2 2 V~ er laubt . "

Das P r o g r a m m R128 ist verh~ltnismal3ig komplizier t , da
un te rsucht werden mul3, welcher Stein auf P u n k t V a s teht ,
ferner ob der P u n k t V z zu V 1 in einer solchen geometr i schen
Rela t ion steht, dab der auf V x s tehende Stein dor th in
setzen kann, und schliel31ich mul3 un te r such t werden, ob
dazwischenliegende Punk te vo rhanden sind und ob diese
frei sind.

Erkl~trung der Formel P148 in Wor t en :

(1) ist der Randauszug, der besagt, dab fiber eine Feld-
besetzung (A 5) eine Aussage gemach t werden soll.

(2) Diejenige Punk t -Bese tz t -Angabe (x), welche in der
Liste der Spielbesetzung (Vo) en tha l t en ist, deren
Komponen te Nr. 1 = L0 ist (Zeichen ftir K6nig in der
Numer ie rung der Steintypen), ergibt den Zwischen-
wer t Z 0.

(3) Es gibt in der Liste der Spielbesetzung (V0) einen P u n k t
(x), der zu Z 0 (Punkt, auf dem der K6nig steht) benach-
bar t ist und der unbese tz t (= 0) oder mi t e inem
schwarzen Stein besetzt ist (xl.3) (das bedeu te t Ja -Nein-
Wer t Nr. 3 der Bese tz t -Angabe x 1 ; dieser charakter i s ie r t
schwarze Steine).

(4) Es gibt keinen wei teren Punkt , der mi t e inem schwarzen
Stein besetzt ist, welcher nach P u n k t x gesetzt werden
kann.

He then postulates:

1. The first symbol x has to fulfill Az(x)
2. Two symbols x, y following each other have to fulfill S~(x, y)
3. The last symbol x has to fulfill S::(x).

Moreover, he uses the two parentheses counts:

4. The number of opening parentheses has to be equal to the
number of closing parentheses.

5. For any segment of the symbol sequences, the number of open-
ing parentheses must not be small.er than the number of closing
parentheses.

The program (Figure 3) checks these conditions:
(~) serves for the special case of condition 1. (~) and
(~) are initializations for the repetitive statement which
checks condition 2 and the count 5. Condition 3 for the
final case is then checked in @ and the count 4 in
(~. The program, by the way, contains mistakes: for
example, a count corresponding to (~) is missing for
the first symbol. More seriously, the condition
x =~ V0[0] in (~) should be read as x = V0[i] /~ i • 0.

For a direct transliteration of Zuse's (corrected)
procedure, we assume first that suitable Boolean pro-
cedures Va(x), Op(x), etc., are declared. Using these
predicates, we obtain in ALGOL 68 (the encircled num-
bers refer to Figure 3) :

Q) proe Sa = ([0 : either] bits 110) bool : begin
(~), (~) bitsZ0 := V0[0]; bool R := Az(ZO);
~) int eps := 0; if Kla(ZO) then eps := 1 fi;
¢~) for i to upb V0 while R do begin

hitsZ1 := V0[i];
~) R := R A Sq(ZO, Z1);
O if KIa(Z1) then eps + : = 1 fi;
O~) if KIz(Z1) then eps - - : = 1 fi;
@ R : = R A e p s > O ;
@ ZO := Z1 end;
@, xaa@ R A Sz(ZO) /k eps = 0 end

(Of course, in ALGOL 68 there exist possibilities for a
more efficient formulation.)

b. Checking a Move of the White King
Figure 4 shows one of the auxiliary procedures for

a chess program formulated by Zuse in Plankalkal
notations [Z59, p. 71]. The modes that are found in the
program are seen from Figure 1 (note that A5 and A6
are to be interchanged). Zuse's procedure, directly
transliterated into ALGOL 68 (the numbers 1 to 4 cor-
respond to those in Figure 4) reads as follows:

mode A1 = int co coordinates 1 , . . . , 8 instead of
0 , . . . , 7 corresponding to [0:2] bool
eo~

A2 = [1:2] A1 co point co,
A3 = int co occupation by 1, . . . , 6 (9, . . . , 14)

for white (black) Q, K, R, B, S, P;
instead of O for unoccupied co,

A4 = struet (A2 point, A3 occ) co occupation of the
point co,

A5 = [1:64] A4 co occupation of the board co;
proe R17 co adjacent co = (A2 V0, V1) bool :

abs (/I011] -- VI[1]) < 1 /~ abs (V012] -- Vl[2]) < 1;
proe R128 co move permissible co = (AS V0, A2 V1, I"2)

bool :

684 Communications July 1972
of Volume 15
the ACM Number 7

2)

3)

4)

<<corresponding to the occupation occ of V0[i] that be-
longs to V1, where point of V0[i] = V1, the move from
V1 to V2 is geometrically permissible>> /~ <<inter-
mediate fields, i f any, are free>>;

proc R148 co move 2 (wK) permissible co =
(AS V0, ref A2 px) bool :
co additional result parameter px for reference to target co
begin bool c co i f already checked, px refers to permissible

target co := false;
int i := 1; while o c c of V0[i] ~ 2 do i + := 1; A4
Z0 = V0[i];
for j to 64 while -a e do
begin A4 x = V0[i]; px := point of x;

c := R17 (pointofZO, px) /~ o c c o f x > 8;
for k to 64 while c do
begin A4 y = V0[k];

if occ of y > 8 then c : - -~R128 (VO, point of
y, px) fi

end
end;
c

end

C o n c l u d i n g R e m a r k s

Trotzdem glaube ich, dass der . . Plan-
kalkiil noch einmal praktische Bedeutung
bekommen wird.

K. Zuse (1970)

Altogether the Planka lk f i l turns out to be a highly
developed p rogramming language with structured ob-
jects that are built f rom a single primitive mode of
ob jec t s - - the two Boolean values (J a - N e i n - W e r t e) O, L .

Conceptually, this is certainly advantageous, but the
existing plurality o f modes in some predominant pro-
gramming languages indicates the practical weakness
o f this approach. Apar t f rom this, the Planka lk i i l shows
many of the features o f the p rogramming languages o f
the sixties, sometimes obscured by an unor thodox nota-
tion, which disregarded some requirements o f mechan-
ical processing as well as some of the c o m m o n nota-
t ional habits. Some fea tures - - for example the
structuring o f ob jec t s - -have only recently come into
existing p rogramming languages; others have yet to
come. In particular, considerat ion o f the features men-
t ioned in Section 7 could be rewarding.

To assess the Planka lk i i l historically, one has to
compare it with the flow diagram symbolism that origi-
nated at about the same time in the Uni ted States.
Zuse 's pioneering achievement o f the forties should no t
be diminished by certain limitations, e.g. tha t the speci-
fication o f modes is meant only to be an informal help
for the correct use (in particular with respect to the

I~K. Zuse in [Z70, p. 128]: "Der Plankalktil h~itte noch 'com-
piler-gerecht' zugeschnitten werden mtissen."

"F . L. Bauer. Heinz Rutishauser, Nachruf. Computing 7
(1971), 129-130.

15 "By this token one can calculate addresses. Symbolically,
one can bring about this feature by a single wire. I had misgivings
to do this step." [Z70, p. 99.]

1~ The question was, by the way, violently discussed at the
Paris ALGOL Conference in January 1960. Proponent of "gener-
ated names" was Julian Green, who wanted ALGOL to have the
possibility of describing its own translator.

parameters) o f a procedure and no t an intrinsic part o f
the program, or that the explicit fo rmat ion o f all modes
f rom a single basic mode as well as the cor responding
notat ion, are clumsy, or that questions o f implementa-
t ion have no t been tackled. 13

It is also interesting to indicate the features that are
generally accepted today but which were not contained
in the Planka lk~ l . Here we should first ment ion the
reference concep t - - i t is not even obvious whether
means an identity declarat ion or an assignment. Names
or references as objects are also missing in ALCOL 60; in
this respect the relation between P l a n k a l k ~ l and Rutis-
hauser ' s influence 14 on ALGOL 60 is obvious. The essen-
tial restriction to numerical objects in AL6OL 60 was, as
one knows today, not critical; the intention was to make
the address calculation not accessible to the p rogram-
mer, and this was mot ivated by the desire for error-free
p rog ramming as well as by awareness o f the frequent
malfunct ion o f machines in those years. 15 Thus, at tha t
time, there was no t enough justification to open, in
ALCOL 60, the Pandora ' s box o f manipulable names-- i .e .
addresses. ~6 It was therefore left to Wir th to introduce
this later into higher p rog ramming languages, and it
can now be found in ALGOL 68 as well as in some
" lower level languages."

References

Z43.
Zuse, K. Ansiitze einer allgemeinen Theorie des Rechnens, 1943,

unpublished.
Z45.

Zuse, K. "Plankalktil", Theorie der angewandten Logistik. 1945,
unpublished.
Z49.

Zuse, K. ~ber den allgemeinen Plankalktil als Mittel zur
Formulierung schematisch-kombinativer Aufgaben. Archiv
Math. 1 (1948/49), 441-449. (Received Dec. 6, 1948.)
Z49a.

Zuse, K. Die mathematischen Voraussetzungen ftir die Entwicklung
logistisch-kombinativer Rechenmaschinen. Z A M M 29 (1949),
36--37. (Lecture, GAMM Conference Gfttingen, Sept. 1948.)
R52.

Rutishauser. H. Automatische Rechenplanfertigung bei
programmgesteuerten Rechenmaschinen. Mitteilungen aus dem
Institut fiir angewandte Mathematik der ETH Ztirich, No. 3.
Birkh~iuser, Basel, 1952.
7_,59.

Zuse, K. Uber den Plankalktil. Elektron. Rechenanl. 1 (1959), 68-71.
Z68.

Zuse. K. Gesichtspunkte zur sprachlichen Formulierung in
Vielfachzugriffssystemen unter Berticksichtigung des
"Plankalkiils". In: W. H~indler (Ed.), Teilnehmer-
Rechensysteme. Oldenbourg, Munich 1968.
Z70.

Zuse, K. Der Computer mein Lebenswerk. Verlag Moderne
Industrie, Munich, 1970.
KT0.

Knuth, D. E. Von Neumann's first computer program. Computing
Surveys 2 (1970), 247-260.
BG71.

Bauer, F. L., and Goos, G. lnformatik: Eine einfiihrende Ubersicht.
Springer, Berlin, 1971.
BG72.

Bauer, F. L., and Gnatz, R. Mengen in algorithmischen Sprachen
oder: Arten und Pr~idikate. Mathematisches Institut der
Technischen Universit~it Mtinchen, Bericht No. 7202, 1972.

685 Communications July 1972
of Volume 15
the ACM Number 7

