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Preface 

In  M a y  1945, K o n r a d  Zuse, Berl in-born inventor  
and constructor ,  who had arrived with his relay com-  
puter Z4 at the little village of  Hinterstein in the Allgiiu 
Alps, found  himself immobil ized by the postwar  situa- 
t ion and prevented f rom pursuing his business. He  thus 
found  time to resume his 1943 studies)  on how to formu-  
late data  processing problems.  Zuse unders tood  and 
used the G e r m a n  word  Rechnen, to  compute ,  in the mos t  
general sense when he wrote, "Rechnen heisst: Aus 
gegebenen Angaben nach einer Forschrift neue Angaben 
bilden. ''2 

He used Angaben for data  and Forschrift for algo- 
ri thm. N o t  having at his disposition the word  Pro- 
gramm, he called a p rogram Rechenplan. The nota t ional  
and conceptual  system of  expressing a Rechenplan he 
called Plankalk~l. 

The Plankalkiil, as a remarkable  first beginning on  
the way to higher p rog ramming  languages, deserves a 
place in the history o f  informatics.  Al though  this early 
a t tempt  to develop a p rog ramming  language did not  lead 
to practical use, it is nevertheless surprising to  what  ex- 
tent  the Plankalk~l already contains  s tandard  features o f  
today ' s  p rog ramming  languages. 

We are led to an investigation o f  Zuse 's  Plankalkiil 
not  only because o f  historical interest, but  also because 
the necessary critical reflection on the state o f  the art  
with its possible gaps and weaknesses may  gain f rom 

"Ansatze einer Theorie des allgemeinen Rechnens," a planned 
Ph.D. dissertation. See [Z70, p. 112]. 

See [Z49]. 
3 In terminology and notation, we follow ALGOL 68. What- 

ever position one may have with respect to ALGOL 68, the differ- 
ence from other reputable terminologies and notations, such as 
the one Hoare, Wirth and Dijkstra prefer, is not so great that it 
would hinder communication. 

4 In [Z49] a small o is used. 
5 [Z49, p. 447]; see also Section 9. 
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such a study. In particular, the widespread ignorance 
about the Plankalkal should be diminished. 

Using as a basis modern terminology in program- 
ming, ~ we will describe the Plankalkfd as far as it can 
be reconstructed from the published literature. 

1. Data Structure 

The only primitive objects in the Plankalk~l are of 
the mode bool (or bit), which is denoted by S0; 4 they 
are called Ja-Nein-Werte. Composite objects are built 
up recursively, in particular arrays of arbitrary dimen- 
sions and records. For example, the array modes 

[ 0 : n -  1]bool and [ 0 : m -  1, 0 : n -  1]bool 

are denoted by 

n X SO and m X n )< SO, respectively. 

If  a variable indication ~ (variables Strukturzeichen) a or 
a constant indication $2 is used to denote the first of 
these two modes, then the second can be denoted by 

m X o- or m )< $2, respectively. 

There is also the possibility of using the abbreviated 
notation 

S l . n  or S1.8 

instead of 

n × SO or 8 × S 0 .  

In this case we have a new mode bits of  word length n 
or 8, respectively; the array, however, can still be sub- 
scripted. 

A record of, say, two components, which are de- 
noted by some variable or constant indications o,r or 
A2, A3, is specified by 

(cr,~-) or (A2, A3). 

Here, too, subscripts will be used for the selection of 
components; they always start with zero. 

Zuse says Strukturen for structured values and their 
corresponding modes; he says Art for the conglomerate 
consisting of a Struktur together with its pragmatic 
meaning (Typ) and a possible restriction (Beschriin- 
kung), which says which of the elements of a certain 
structure are meaningful. For  example, objects of the 
structure 

S I . 4  (tetrades) 
6 For a chess example such a restriction is defined in [Z59, 

p. 72] by: "A3 is restricted to 13 possibilities: 12 kinds of chess- 
men and 0 for unoccupied." 

7 [Z59, p, 70]. From a remark in [Z70, p. 157], one can infer 
that Zuse already during his Berlin period, that is before 1944, 
used L and 0, which he called Sekundalziffern (see also [Z70, 
p. 68] in his diary entry of June 20, 1937). 

8 It should be noted that Zuse already used floating point 
computation. 

may have the pragmatic meaning "decimal digit" and 
the restriction to the first 10 of the 16 lexicographic 
possibilities. 

A3 = (SB34 ) 

expresses that S1.4 is subjected to the restriction B3f  
Zuse calls objects Angaben, which pretty closely cor- 
responds to "data".  

Figure 1 shows an illustrative section from [Z59]. 

2. Standard Denotations 

Standard denotations for Boolean objects (SO) are 

L and 0 

for bit sequences (for example S1 .4)  7 

LL00, LOLL. 

For  integers and numerical-real objects, instead of bit 
sequences, conventional figures can also be used. s 

For  the standard denotation of  more general, com- 
posite objects, a denotation is used which is now con- 
ventional for input and output: The standard denota- 
tions of  the components of composite objects are listed 
in the specified order, such that the additional mode 
indication for the object allows one to form the decom- 
position uniquely. For  clearness only, a special separa- 
tion mark (semicolons instead of commas) is used for 
the separation of composite objects. 

3. Free Choice of Denotation 

For  all objects, freely chosen identifiers (Bezeichnun- 
gen) may be introduced; for example, a standard deno- 
tation can be associated (zugeordnet) with an identifier 
(see Section 6) such that both possess the same object 
as their value (Wert). 

In a Rechenplan 6', i.e. in a program or a subroutine 
(see Section 9), an identifier is a letter followed by a 
number. The letter is V, Z, R, or C, depending on 
whether the object in question is used as an input 
parameter (Variable), intermediate value (Zwischen- 
wert), result parameter (Resultatwert), or as a constant 
in 6 ~. The distinguishing number (Nummer) is attached 
to the letter in the line below. The letter classifies the 
objects. 

Examples: 

II, Z, Z, R 

0 0 1 0 

Finally, programs and subroutines have their own 
identifiers like 

P12, P3.7  

the number following the letter P being a program 
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index (Programm-lndex), in the form of a component- 
subscript (see Section 4). The second example denotes 
"the program 7 of the program group 3." Thus, Zuse 
has arrays of  programs and a corresponding block struc- 
ture. He derives from this a system to denote the results 
of subroutines in external use; for example, the result 

R 
of a subroutine P17 is external to P17 characterized 

0 
by the program index 17, i.e. by 

R17 

0 

which also involves a call of P17 (see Section 8). 

4. Subseripting 

The selection of a component is achieved with the 
help of a component-subscript (Komponenten-Index), 
that is the denotation of a number (simple subscript) 
or a sequence of numbers (multiple subscript). The 
component-subscript is written immediately under the 
identifying number of the corresponding composite ob- 

ject. 

V denote an array of the mode Let, for example, 0 

I X m X S l .n ,  then 

V 

0 ( 0 <  i < / )  

i 

selects its ith component, a subarray of the structure 
m X S l .n ,  while 

V 

0 

i ' j  

( 0 _ < j <  m) 

V 

selects the j th  component of 0 ,  a list of the structure 

i 

S l .n ,  and finally 

V 

0 ( 0 <  k < n )  

i . j . k  

V 

selects the kth component of 0 ,  a single bit. In today's  

i . j  

notation, this corresponds to V0[i], VO[i,j], VO[i,j, k]. 

Fig. 1. 

Ein Beispiel aus der Sehachtheorie 

Als Beispiel sei kurz auf die Schachtheorie eingegangen. 
Zun~ichst ist der Aufbau der auftretenden Angabenarten 
interessant. 

S 0 J a-Nein-Wert 
$1 • n n-stellige Folge von J a-Nein-Werten 

A1 $ 1 . 3  
A2 2 × A1 

?1;4) 
A4 (A2, A3) 

A5 64 x A3 

A6 64 x A4 

A7 12 X S 1 . 4  

A9 (A5, SO, S1 

= Koordinate 
= Punkt 
(z. B. : L00, 00L entspricht Punkt e2 in 
(iblicher Darstellung) 
= Besetzt-Angabe 
(z. B. : 00L0, \Veil3er K6nig) 
= ~unkt-besetzt-Ang .abe 
(z. B.: L00, 00L; 00L0 ,,Punkt e2 mit 
weil3ern K6nig besetzt") 

= Feldbesetzung: 
C 5 Anfangslage 
(AufzAhlung der Besetzung der 64 
Punkte in fester Reihenfolge) 
= Feldbesetzung mit Punktangabe, 
C6 Anfangslage 
= Anzahlliste der Steine; 
C 7 Anfangslage 
(Gibt an, wieviel Steine yon jeder Sorte 
auf dem Feld sind, z. B. fiir Bewertungs- 
rechnungen wichtig). 

• 4, A2) 
= Spielsituation; 
C9 Anfangssituation 
(Feldbesetzung [.4 5] ; Angabe, ob Well3 
oder Schwarz am Zuge [S0]; Angaben 
fiber R ochade-M/Sglichkeiten [4 J a-Nein- 
Werte] 
Angabe der Punkte mit den M6glich- 
keiten, ,,en passant" zu schlagen). 

A10 (A6, SO, S1 .4 ,  A2) 
= Spielsituation mit Punktangabe; 
C 10 Anfangslage 

A l l  (A 2, A 2, SO) = Zugangabe 
(zwei Punktangaben, gesetzt yon . . .  
nach ... Ein Ja-Nein-Wert ,,Es wird 
geschlagen"). 

Pages 69, 70, 71 from "Uber den Plankalktil" by Konrad Zuse, 
in Vol. 1, 1959, of Elektronische Rechenanlagen, Verlag R. Olden- 
bourg, Munich. Reprinted by permission of the publisher. 
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Fig. 2. 
Neben der Hauptzeile, welche die Formel im wesentlichen 
in der traditionellen Form enthalt, wird eine zweite Zeile 
(V) fiir den Variablen-Index, eine dritte flit den Kompo- 
nenten-Index (K) und eine vierte ffir den Struktur-Index 
(S) eingeffibrt. Die letztere braucht, strenggenommen, 
nicht immer ausgefiillt zu werden, dient aber wesentlich zur 
Erleichterung des Verst/indnisses einer Formel. Die Zeilen 
werden durch Vorsetzen der zugeordneten Buchstaben 
(V, K, S) gekennzeichnet. 

Beispiele : 

V 
V 3 
K 
S m × 2 × l . n  

V 
V 3 
K i 
S 2 × l . n  

V 
V 3 
K ~ .0  
S 1 - 0  

V 
V 3 
K i . 0 . 7  
S 0 

Die Variable Vz ist eine Paarliste yon 
m Paaren der Struktur 2 • 1 • n und 
soll als Ganzes in die Rechnung ein- 
gehen. 

Von der Paarliste V 3 soll das i.Paar 
genommen werden (Struktur 2.1"n). 
(i kann dabei ein laufender Index 
sein.) 

Von dem i.Paar der Paarliste V 3 soll 
das Vorderglied (erstes Eleihent des 
Paares) genommen werden 
(Struktur 1 • n). 

Von dem Vorderglied des i.Paares 
der Paarliste V 3 soil der Ja-Nein- 
Wert Nr. 7 genommen werden 
(Struktur SO = Ja-Nein-Wert). 

Beim Beispiel des Stabwerkes bedeutet fiir i = 4: 

V die gesamte Paarliste des Stabwerkes 
3 

V die Kennzeichnung des Stabes 2 ~ 4  
3 (4. Paar der gegebenen Liste) 
4 

5. Zuse's Two-Dimensional Notation 

The form of  denota t ion with a "main  line" and 
"index lines" V and K for variable-number and com-  
ponent-subscript ,  respectively, is supplemented by an 
opt ional  comment  line S, in which the structure or  mode  
of  the value in question can be noted.  To this end, the 
no ta t ion  o f  Section 1 is used; Zuse calls these indications 
Struktur-lndizes. 

Examples  are given in Figure 2, an illustrative sec- 
t ion f rom [Z59, p. 69]. 

The explicit mark ing  of  the lines by prefixed letters 
V, K, and S, allows one to omit empty  K-lines. Fur -  
thermore,  the prefix S in the mode  denota t ion can be 
dropped.  Thus,  

S[ S l . n  m >( S l . n  SO $2 ~r 

can be shortened to  

S[ 1.n m X  1.n 0 2 a. 

Moreover ,  Zuse allows the abbreviat ion o f  

S[ A1 A2 SO A3 

by 

A [  1 2 0 3 

(using A 0 synonym ously with S0) 
Fur thermore ,  variable componen t  subscripts can be 

used [Z70, p. 123], for example by the help o f  an inter- 
mediate value in the fo rm 

K V Z V 0 I 
k 

rn X 1.n 1.n 

with the m e a n i n g  of  V0[Z1] in today ' s  notat ion.  
(Note  that  Z1 is o f  structure S1 .n; that  is, the integer 
corresponding to the bit sequence Z I  is used as sub- 
script, and a componen t  o f  structure S1-n  is selected 

f rom VO.) 

9 Originally, Zuse [Z49] introduced the ~ ,  shaped equality 
sign. The arrow-like sign ==;, is used in IZ59], after Rutishauser 
had helped to propagate it. In [R52], Rutishauser used in typesclipt 
the sign#=. At the Zfirich ALGOL Conference 1958, the sign 
:= was introduced under strong pressure from the American 
participants. The European group wished to use Zuse's sign. 
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6. Assignment and Identity Declaration 

The most  impor tan t  feature for the construct ion o f  
p rograms  is the assignment (Rechenplangleichung), ex- 
pressed by means o f  the Ergibtzeichen ~ . 9  Fo r  ex- 
ample,  the assignment 

1Zn + 1 ~ Z  V 1 
S 1 .n 1 .n 

means  to augment  the integer intermediate value Z1 by 

1, while 

(z, v ) ~ R  
V 0 1 0 
S ~ ~ 2~ 
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means the composition of the values V0 and V~ to a 
composite value, which is denoted by Ro. 

The interpretation of the second example shows that 
the assignment comprises the semantic meaning of an 
(initialized) identity declaration for a variable: The 
identifier R0 of the mode 2~ is used to denote the elab- 
orated value on the left-hand side. 

If  in a program more than one assignment to the 
same result or intermediate value variable occurs, then 
the (dynamically) first assignment is to be interpreted 
as an (initialized) identity declaration for a variable, 
while all others are ordinary assignments. This would 
give the genuine concept of a variable. On the other 
hand, the initialization of an input parameter in con- 
nection with a subroutine call,/° as well as the initializa- 
tion of constants, can be interpreted to be an ordinary 
identity declaration. However, these fine distinctions 
are reflected neither in the notation nor in the explana- 
tion of  the semantics [Z59, p. 70]. Nevertheless, they 
have strongly influenced Rutishauser's ideas, as seen 
from ALGOL 58. 

The usual arithmetic and Boolean operations are 
provided for, and they allow one to form expressions 
(Ausdr~cke) in connective formula notation, n Besides, 
comparison operations like = ,  ~ ,  < ,  with Boolean 
values as results, can be used. For  arithmetic opera- 
tions, objects of the mode bits (denoted by S l . n )  are 
interpreted as numbers in direct (lexicographic) coding. 

Der Operator I~x hat grosse Vorteile bei 
der systernatischen Untersuchung einer 
sich evtl. in ihrem Urn fang laufend ~2nderr.- 
den Liste au f  Glieder einer bestimraten 
Eigenschaft und Verarbeitung derselben. 

7. Further Operational Features 

Apart from the possibility of  selecting record and 
array components by (component) subscripts, certain 
operations from the predicate calculus are used to test 
components with respect to a specified property, with 
the result of selecting them or of obtaining a Boolean 
value. In this respect, the Plankalk~2l surpasses the 
potentialities in today's programming languages, in- 
cluding ALGOL 68. 

Zuse uses both the "existence" and the "all"  oper- 
ator, and in particular the operator g: 

gx(x ~ v A R(x)) 
0 

means "The next component of V0, for which the 
property R holds." 

The property R, in the notation R(x),  is expressed 
by means of a computational rule which gives a Boolean 
value (Ja-Nein-Wert), or of a result parameter of a 
suitable subroutine (see Section 8). 

It is clear, that procedures can be defined in, say, 
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ALGOL 68, which have the above effect. But it may be 
worthwhile to see whether Zuse's constructions could 
be introduced as original conce.pts in high level lan- 
guages. See also [BG72]. 

8. Statements and Subroutine Calls 

Statements are what Zuse calls Planteile. In partic- 
ular, assignments are statements. Other statements, 
which we shall discuss, are conditional statements and 
repetitive statements. There is also a compound state- 
ment, formed with the help of parentheses. In order to 
separate statements, as well as the line marks (see Sec- 
tion 5), a vertical bar is used. 

Conditional statements are formed with the help of 
the Bedingt-Zeichen -:-> (or .-~) in the following form 

(B --~, (~, 

where the condition (Bedingung) ~ is an expression with 
Boolean value, and 0~ an arbitrary statement. The 
elaboration of this conditional statement bedingter 
Planteil) begins with ~ and ends with ~ or is continued 
with a ,  depending on whether 6~ produces the value 
0 = nein or L --- ja. An alternative for a in the first 
case cannot be specified. 

The following example of a repetitive statement, that 
is initiated by the letter W, shows an application of the 
g-operation of the preceding section: 

[ ~ u x ( ; '  V A x ' V ) ~ Z I  ( R A R I 7 ( Z ) ) ~ ! ]  
V 0 1 0 0 1 0 
S m~ cr ~r 0 0 

The elaboration of this Wiederholungsplan starts 
with the first assignment. The left-hand side formula of 
this assignment produces at each elaboration the next 
component V0[i] which is different from V1, provided 
it exists. In this case, the following statement is elabo- 
rated and the process starts again. If, however, no com- 
ponent is found then Z0 is unchanged and the elabora- 
tion of the repetitive statement is finished. 

In the second assignment of this example, where an 
initialization of R0 is presupposed, R171(Z0) is the call 
of  a subroutine P17 (see Section 9), which is specified 
to have one input parameter and a result parameter R1 
(see Section 3). The elaboration of this call means the 
identification of the actual parameter Z0 with the formal 
input parameter, and following this, the elaboration of 
Pl7.  The value of the call is the value which is obtained 
by R1. 

a0 It cannot be excluded that Zuse considered the input parame- 
ters to be genuine variables whose values can be changed during 
the subroutine. This is indicated by an isolated occurrence of 
(V, V) ==~ V in [Z59]. 
5 6 7 

1~ [Z49, p. 447]: "The Ergibt-Zeichen~joins an expression 
which is to be calculated (left) with a result (right)." According to 
Zuse such expressions mean computational rules (Rechenvor- 
sehr~ften. ) 

~ The example in [Z59, p. 71] ends, however, with an expression g 
instead of ~; ~ R0 FIN, where R0 is the only result parameter. 
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I f  it was initialized by L, R0 obtains thus, when the 
repetitive statement is finished, the value of the con- 
junction of all R171(x) where x is from the set of  all 
elements of  V0 that are different from V1. 

9. Programs 

Both programs and subroutines in the Plankalkfd 
are expressed in the form of procedures (Rechenpli~ne); 
i.e. they are prefaced by a specification part  (Rand- 
auszug), which specifies the parameters as being input 
parameters  or result parameters together with their 
modes. The computat ional  rule proper is then described 
in the body (Anweisungsteil), which consists of a se- 
quence of statements. The end is marked by a symbol 
FIN.  TM 

A call requires that the actual parameters  have con- 
sistent mode. The subroutine P17 that was called in the 
preceding section may begin with the following specifi- 
cation part  

P I7  R ( V )  ~ (R, R)  
V 0 0 1 
S ~ ¢ 0 

where Vo is an input and R0, RI are result parameters. 
The body must contain assignments to Ro and RI. If 
it contains intermcdiate values, then they are not read- 
able directly from outsidc of P 17. 

Mein 'Plankalkiil' war doch inzwischen 
li~ngst veraltet. 

K. Zuse (1970) 

10. Algol 68 Translation of Some Plankalkiii Programs 

It should not be forgotten that Zuse did not only 
invent the Plankalkal, but that he used it to formulate 
some nontrivial programs of the nonnumerical  kind (he 
called them logistisch-kombinativ) in order to demon- 
strate the potentialities of  computing. The programs 
are by all means nontrivial for the year 1945 and more 
ambitious than the first task steps von Neumann did 
with his Gedanken machine (cf. [K70]). To illuminate 
this, we give in the following ALGOL 68 transcriptions of 
program examples from [Z49] and [Z59]. 

a. Syntax Checking for Boolean Expressions 
A typical application of the Plankalk~l [Z49, p. 446] 

contains a procedure for the syntax check of Boolean 
expressions. Zuse starts from the observation: 

Such expressions contain the following symbols: variable symbols, 
negation symbol, operation symbols, parentheses symbols, and 
space symbol that is needed for the separation of expressions. The 
symbols in question are coded in bit sequences. 

683 

Fig. 3. 

v noO 

,I "! V o 
0 

V 
K 
8 

8 

v 

I n  

I (~Kla(1) "--" (~ + 1 ~ ~) ® Kt~(Z)I 7* (~ - -  1 = e) 

l o ; ° 
>= o ® z  

1 o 

0 o 

0 o 

In the procedure (Figure 3), a denotes the structure 
of  these 8-bit sequences, and ma with arbitrary m _> 1 
denotes the symbol sequences that are to be investi- 
gated. A call of  the procedure with a (coded) symbol 
sequence x as its actual parameter  means to test the 
predicate 

Sa(x) : <<x is a 'meaningful expression', i.e. a (syntactically correct) 
Boolean expression>>. 

This predicate is introduced recursively by: 

(i) A variable symbol is a meaningful expression. 
(ii) A meaningful expression, prefixed by a negation symbol, yields 

a meaningful expression. 
(iii) Two meaningful expressions, connected by an operation sym- 

bol, yield a meaningful expression. 
(iv) A meaningful expression, put in parentheses, yields a meaning- 

ful expression. 

To t ransform this definition into an algorithm, Zuse 
defines, now for symbols x, the auxiliary predicates: 

Va(x) : <<x is a variable symbol>> 
Op(x) : <<x is operation symbol>> 
Neg(x) : <<x is negation symbol>> 
Kla(x) : <<x is opening parenthesis>> 
Klz(x) : <<x is closing parenthesis>> 

and furthermore the predicates: 

Az(x) : Va(x) V Neg(x) V Kla(x) 
Sz(x) : Va(x) ~/ Klz(x) 
Sq(x,y) : (Sz(x) A -~az(y)) V (-~Sz(x) A Az(y)) 
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Fig. 4. 

, ,Der weiBe K6nig  kann  einen Zug rnachen, ohne dabei  in 
Sehach zu k o m m e n . "  

P 148 I R (V) ~ R 1#8 (1) 
V I 0 o 
A 5 0 

A t Ix V'Ax L0 I v  4 31  Z40 
(Ex) 

4 

-(x EV) A R 1 7  (Z,x) ^ (x=0)  v x  
0 0 

0 0 1 1.3 
4 5 2 2 3 0 

' 7 [ ( y E V )  A y A R 1 2 8 ( ~ ' Y ' I ) ] 5  01"3 520 

(2) 

(3) 

(4) 

Die hierbei  benu tz ten  U n t e r p r o g r a m m e  sind: 

R17 (V, V) 
V 0 1 ,,Die P u n k t e  V o und V x sind benaehba r t . "  
A 2 2 

V 
A 

R128 (V, V, V ) , , B e i  der  gegebenen Fe ldbese tzung  V 0 
0 1 2 ist  der  Zug von  P u n k t  V 1 nach P u n k t  
5 2 2 V~ er laubt . "  

Das P r o g r a m m  R128 ist  verh~ltnismal3ig komplizier t ,  da  
un te rsucht  werden mul3, welcher  Stein auf P u n k t  V a s teht ,  
ferner ob der  P u n k t  V z zu V 1 in einer solchen geometr i schen 
Rela t ion  steht,  dab der  auf V x s tehende  Stein dor th in  
setzen kann,  und schliel31ich mul3 un te r such t  werden, ob 
dazwischenliegende Punk te  vo rhanden  sind und ob diese 
frei sind. 

Erkl~trung der  Formel  P148 in Wor t en :  

(1) ist  der Randauszug,  der besagt,  dab  fiber eine Feld-  
besetzung (A 5) eine Aussage gemach t  werden soll. 

(2) Diejenige Punk t -Bese tz t -Angabe  (x), welche in der  
Liste der  Spielbesetzung (Vo) en tha l t en  ist, deren 
Komponen te  Nr. 1 = L0 ist  (Zeichen ftir K6nig  in der 
Numer ie rung  der Steintypen),  ergibt  den Zwischen- 
wer t  Z 0. 

(3) Es  gibt  in der Liste der Spielbesetzung (V0) einen P u n k t  
(x), der zu Z 0 (Punkt,  auf dem der K6nig steht) benach- 
bar t  ist und der unbese tz t  ( =  0) oder  mi t  e inem 
schwarzen Stein besetzt  ist (xl.3) (das bedeu te t  Ja -Nein-  
Wer t  Nr. 3 der Bese tz t -Angabe  x 1 ; dieser charakter i s ie r t  
schwarze Steine). 

(4) Es  gibt  keinen wei teren Punkt ,  der  mi t  e inem schwarzen 
Stein besetzt  ist, welcher nach P u n k t  x gesetzt  werden 
kann. 

He then postulates: 

1. The first symbol x has to fulfill Az(x) 
2. Two symbols x, y following each other have to fulfill S~(x, y) 
3. The last symbol x has to fulfill S::(x). 

Moreover, he uses the two parentheses counts: 

4. The number of opening parentheses has to be equal to the 
number of closing parentheses. 

5. For any segment of the symbol sequences, the number of open- 
ing parentheses must not be small.er than the number of closing 
parentheses. 

The program (Figure 3) checks these conditions: 
(~) serves for the special case of condition 1. (~) and 
(~) are initializations for the repetitive statement which 
checks condition 2 and the count 5. Condition 3 for the 
final case is then checked in @ and the count 4 in 
(~. The program, by the way, contains mistakes: for 
example, a count corresponding to (~) is missing for 
the first symbol. More  seriously, the condition 
x =~ V0[0] in (~) should be read as x = V0[i] /~ i • 0. 

For  a direct transliteration of Zuse's (corrected) 
procedure, we assume first that suitable Boolean pro- 
cedures Va(x), Op(x), etc., are declared. Using these 
predicates, we obtain in ALGOL 68 (the encircled num- 
bers refer to Figure 3) : 

Q) proe Sa = ([0 : either] bits 110) bool : begin 
(~), (~) bitsZ0 :=  V0[0]; bool R := Az(ZO); 
~) int eps :=  0; if Kla(ZO) then eps :=  1 fi; 
¢~) for i to upb V0 while R do begin 

hitsZ1 :=  V0[i]; 
~) R := R A Sq(ZO, Z1); 
O if KIa(Z1) then eps + : =  1 fi; 
O~) if KIz(Z1) then eps - - : =  1 fi; 
@ R : =  R A e p s > O ;  
@ ZO := Z1 end; 
@, xaa@ R A Sz(ZO) /k eps = 0 end 

(Of  course, in ALGOL 68 there exist possibilities for a 
more efficient formulation.) 

b. Checking a Move of the White King 
Figure 4 shows one of  the auxiliary procedures for 

a chess program formulated by Zuse in Plankalkal 
notations [Z59, p. 71]. The modes that are found in the 
program are seen from Figure 1 (note that A5 and A6 
are to be interchanged). Zuse's procedure, directly 
transliterated into ALGOL 68 (the numbers 1 to 4 cor- 
respond to those in Figure 4) reads as follows: 

mode A1 = int co coordinates 1 , . . . ,  8 instead of  
0 , . . . ,  7 corresponding to [0:2] bool 
eo~ 

A2 = [1:2] A1 co point co, 
A3 = int co occupation by 1, . . .  , 6 (9, . . .  , 14) 

for white (black) Q, K, R, B, S, P; 
instead of O for unoccupied co, 

A4 = struet (A2 point, A3 occ) co occupation of  the 
point co, 

A5 = [1:64] A4 co occupation of the board co; 
proe R17 co adjacent co = (A2 V0, V1) bool : 

abs (/I011] -- VI[1]) < 1 /~ abs (V012] --  Vl[2]) < 1; 
proe R128 co move permissible co = (AS V0, A2 V1, I"2) 

bool : 
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2) 

3) 

4) 

<<corresponding to the occupation occ of V0[i] that be- 
longs to V1, where point of V0[i] = V1, the move from 
V1 to V2 is geometrically permissible>> /~ <<inter- 
mediate fields, i f  any, are free>>; 

proc R148 co move 2 (wK) permissible co = 
(AS V0, ref A2 px) bool : 
co additional result parameter px for reference to target co 
begin bool c co i f  already checked, px refers to permissible 

target co := false; 
int i := 1; while o c c  of V0[i] ~ 2 do i + :=  1; A4 
Z0 = V0[i]; 
for j to 64 while -a e do 
begin A4 x = V0[i]; px := point of x; 

c := R17 (pointofZO, px) /~ o c c o f x  > 8; 
for k to 64 while c do 
begin A4  y = V0[k]; 

if occ of y > 8 then c : -  -~R128 (VO, point of 
y, px) fi 

end 
end; 
c 

end 

C o n c l u d i n g  R e m a r k s  

Trotzdem glaube ich, dass der . .  Plan- 
kalkiil noch einmal praktische Bedeutung 
bekommen wird. 

K. Zuse (1970) 

Altogether  the Planka lk f i l  turns out to be a highly 
developed p rogramming  language with structured ob- 
jects that  are built f rom a single primitive mode  of  
ob jec t s - - the  two Boolean values ( J a - N e i n - W e r t e )  O, L .  

Conceptually,  this is certainly advantageous,  but  the 
existing plurality o f  modes  in some predominant  pro-  
gramming languages indicates the practical weakness 
o f  this approach.  Apar t  f rom this, the Planka lk i i l  shows 
many  of  the features o f  the p rogramming  languages o f  
the sixties, sometimes obscured by an unor thodox  nota-  
tion, which disregarded some requirements o f  mechan-  
ical processing as well as some of  the c o m m o n  nota-  
t ional habits. Some fea tures - - for  example the 
structuring o f  ob jec t s - -have  only recently come into 
existing p rogramming  languages;  others have yet  to 
come. In  particular, considerat ion o f  the features men- 
t ioned in Section 7 could be rewarding. 

To  assess the Planka lk i i l  historically, one has to 
compare  it with the flow diagram symbolism that  origi- 
nated at about  the same time in the Uni ted  States. 
Zuse 's  pioneering achievement o f  the forties should no t  
be diminished by certain limitations, e.g. tha t  the speci- 
fication o f  modes  is meant  only to be an informal  help 
for the correct  use (in particular with respect to the 

I~K. Zuse in [Z70, p. 128]: "Der Plankalktil h~itte noch 'com- 
piler-gerecht' zugeschnitten werden mtissen." 

"F .  L. Bauer. Heinz Rutishauser, Nachruf. Computing 7 
(1971), 129-130. 

15 "By this token one can calculate addresses. Symbolically, 
one can bring about this feature by a single wire. I had misgivings 
to do this step." [Z70, p. 99.] 

1~ The question was, by the way, violently discussed at the 
Paris ALGOL Conference in January 1960. Proponent of "gener- 
ated names" was Julian Green, who wanted ALGOL to have the 
possibility of describing its own translator. 

parameters)  o f  a procedure  and no t  an intrinsic part  o f  
the program,  or that  the explicit fo rmat ion  o f  all modes  
f rom a single basic mode  as well as the cor responding  
notat ion,  are clumsy, or that  questions o f  implementa-  
t ion have no t  been tackled. 13 

It is also interesting to indicate the features that  are 
generally accepted today  but which were not  contained 
in the Planka lk~ l .  Here we should first ment ion the 
reference concep t - - i t  is not  even obvious whether 
means an identity declarat ion or an assignment. Names  
or references as objects are also missing in ALCOL 60; in 
this respect the relation between P l a n k a l k ~ l  and Rutis-  
hauser ' s  influence 14 on ALGOL 60 is obvious. The essen- 
tial restriction to numerical  objects in AL6OL 60 was, as 
one knows today,  not  critical; the intention was to make  
the address calculation not  accessible to the p rogram-  
mer, and this was mot ivated by the desire for error-free 
p rog ramming  as well as by awareness o f  the frequent 
malfunct ion o f  machines in those years. 15 Thus,  at tha t  
time, there was no t  enough justification to open,  in 
ALCOL 60, the Pandora ' s  box o f  manipulable names-- i .e .  
addresses. ~6 It  was therefore left to  Wir th  to introduce 
this later into higher p rog ramming  languages, and it 
can now be found in ALGOL 68 as well as in some 
" lower  level languages."  
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