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 Transformers Revolutionized AI. What Will Replace Them? 

 If modern artificial intelligence has a founding document, a sacred text, it is Google’s 2017 research paper “Attention Is 
 All You Need.” 

 This paper introduced a new deep learning architecture known as the transformer, which has gone on to revolutionize 
 the field of AI over the past half-decade. 

 The generative AI mania currently taking the world by storm can be traced directly to the invention of the transformer. 
 Every major AI model and product in the headlines today—ChatGPT, GPT-4, Midjourney, Stable Diffusion, GitHub 
 Copilot, and so on—is built using transformers. 

 Transformers are remarkably general-purpose: while they were initially developed for language translation specifically, 
 they are now advancing the state of the art in domains ranging from computer vision to robotics to computational 
 biology. 

 In short, transformers represent the undisputed gold standard for AI technology today. 

 But no technology remains dominant forever. 

 It may seem surprising or strange, with transformers at the height of their influence, to contemplate what will come 
 next. But in the fast-moving world of AI, it is both fascinating and advantageous to seek to “see around corners” and 
 glimpse what the future holds before it becomes obvious. 

 Transformers 101 

 In order to explore this question, we must first understand transformers more deeply. 

 The now-iconic transformer paper was co-authored by eight researchers working together at Google over the course 
 of 2017: Aidan Gomez, Llion Jones, Lukasz Kaiser, Niki Parmar, Illia Polosukhin, Noam Shazeer, Jakob Uszkoreit and 
 Ashish Vaswani. 

 An often-overlooked fact about the paper is that all eight authors are listed as equal contributors; the order in which 
 the authors’ names appear on the paper was randomly determined and has no significance. With that said, it is 
 generally recognized that Uszkoreit provided the initial intellectual impetus for the transformer concept, while Vaswani 
 and Shazeer were the two authors most deeply involved in every aspect of the work from beginning to end. 

 All eight authors have become luminaries in the world of AI thanks to their work on the paper. None of them still work 
 at Google. Collectively, the group has gone on to found many of today’s most important AI startups, including Cohere, 
 Character.ai, Adept, Inceptive, Essential AI and Sakana AI. 

 Why, exactly, was the transformer such a massive breakthrough? 

 Before the “Attention Is All You Need” paper was published, the state of the art in language AI was a deep learning 
 architecture known as recurrent neural networks (RNNs). 

 By definition, RNNs process data sequentially—that is, one word at a time, in the order in which the words appear. 



 But important relationships often exist between words even if they do not appear next to each other in a sequence. In 
 order to better enable RNNs to account for these long-distance dependencies between words, a mechanism known as 
 attention had recently become popular. (The invention of the attention mechanism is generally attributed to a 2014 
 paper from deep learning pioneer Yoshua Bengio.) 

 Attention enables a model to consider the relationships between words regardless of how far apart they are and to 
 determine which words and phrases in a passage are most important to “pay attention to.” 

 Before the transformer paper, researchers had only used attention as an add-on to the RNN architecture. The Google 
 team’s big leap was to do away with RNNs altogether and rely entirely on attention for language modeling. Hence the 
 paper’s title: Attention Is All You Need. 

 (A charming, little-known fact about the paper: according to co-author Llion Jones, its title is a nod to the Beatles song 
 “All You Need Is Love.”) 

 Transformers’ fundamental innovation, made possible by the attention mechanism, is to make language processing 
 parallelized, meaning that all the words in a given body of text are analyzed at the same time rather than in sequence. 

 As an interesting analogy, co-author Illia Polosukhin has compared the transformer architecture to the fictional alien 
 language in the 2016 science fiction movie Arrival. Rather than generating strings of characters sequentially to form 
 words and sentences (the way that humans do), the aliens in the film produce one complex symbol at a time, all at 
 once, which conveys detailed meaning that the humans must interpret as a whole. 

 Transformers’ parallelization gives them a more global and thus more accurate understanding of the texts that they 
 read and write. It also makes them more computationally efficient and more scalable than RNNs. Transformers can be 
 trained on much larger datasets and built with many more parameters than previous architectures, making them more 
 powerful and generalizable. Indeed, a hallmark of today’s leading transformer-based models is their scale. 

 In one of those mutually beneficial, mutually reinforcing historical co-occurrences, the transformer’s parallel 
 architecture dovetailed with the rise of GPU hardware. GPUs are a type of computer chip that are themselves 
 massively parallelized and thus ideally suited to support transformer-based computing workloads. (Nvidia, the world’s 
 leading producer of GPUs, has been perhaps the single biggest beneficiary of today’s AI boom, recently surpassing a 
 $1 trillion market capitalization amid staggering demand for its chips.) 

 The rest, as they say, is history. Thanks to these tremendous advantages, transformers have taken the world by storm 
 in the six years since their invention, ushering in the era of generative AI. 

 Every popular “chatbot” today—OpenAI’s ChatGPT, Google’s Bard, Microsoft’s Bing Chat, Anthropic’s Claude, 
 Inflection’s Pi—is transformer-based. So is every AI tool that generates images or videos, from Midjourney to Stable 
 Diffusion to Runway. (Text-to-image and text-to-video technology is powered by diffusion models; diffusion models 
 make use of transformers.) 

 Transformers’ influence reaches well beyond text and images. The most advanced robotics research today relies on 
 transformers. Indeed, Google’s most recent robotics work is actually named RT-2, where the T stands for 
 “transformer.” Similarly, one of the most promising new avenues of research in the field of autonomous vehicles is the 
 use of vision transformers. Transformer-based models have unlocked breathtaking new possibilities in biology, 
 including the ability to design customized proteins and nucleic acids that have never before existed in nature. 

 Transformer co-inventor Ashish Vaswani summed it up well: “The transformer is a way to capture interaction very 
 quickly all at once between different parts of any input. It’s a general method that captures interactions between pieces 
 in a sentence, or the notes in music, or pixels in an image, or parts of a protein. It can be purposed for any task.” 



 All Good Things Must End? 

 Yet despite its incredible strengths, the transformer is not without shortcomings. These shortcomings open the door for 
 the possible emergence of new and improved architectures. 

 Chief among the transformer’s shortcomings is its staggering computational cost. 

 As anyone familiar with the world of AI knows, one of the defining characteristics of today’s AI models is their 
 insatiable computing needs. Training a cutting-edge large language model today entails running thousands of GPUs 
 around the clock for months at a time. The reason that OpenAI raised an eye-popping $10 billion earlier this year, for 
 instance, was in order to foot the bill for the vast computing resources needed to build advanced AI models. As 
 another example, eighteen-month-old startup Inflection recently raised over $1 billion in venture funding in order to 
 build a massive GPU cluster to train its language models. 

 Transformer-based models are so compute-hungry, in fact, that the current AI boom has triggered a global supply 
 shortage, with hardware manufacturers unable to produce AI chips fast enough to keep up with demand. 

 Why are transformers so computationally demanding? 

 One basic answer is that transformers’ great strength also becomes a weakness: because they scale so much more 
 effectively than previous architectures, transformers make it possible—and irresistible—to build models that are orders 
 of magnitude larger than have previously existed. Such massive models require correspondingly massive compute. 

 But there is a more specific reason for transformers’ computational cost: the transformer architecture scales 
 quadratically with sequence length. Put simply, this means that as the length of a sequence processed by a 
 transformer (say, the number of words in a passage or the size of an image) increases by a given amount, the 
 compute required increases by that amount squared, quickly growing enormous. 

 There is an intuitive reason for this quadratic scaling, and it is inherent to the transformer’s design. 

 Recall that attention makes it possible to understand relationships between words regardless of how far apart they are 
 in a sequence. How does it do this? By comparing every single word in a sequence to every other word in that 
 sequence. The consequence of this pairwise comparison is that as sequence length increases, the number of required 
 computational steps grows quadratically rather than linearly. To give a concrete example, doubling sequence length 
 from 32 tokens to 64 tokens does not merely double the computational cost for a transformer but rather quadruples it. 

 This quadratic scaling leads to a related drawback: transformers have a hard time handling very long sequences. 

 As sequences grow in length, feeding them into transformers eventually becomes intractable because memory and 
 compute needs explode quadratically. Consider, for example, processing entire textbooks (with millions of tokens) or 
 entire genomes (with billions of tokens). 

 Increasing the maximum sequence length that a model can be fed at one time, known as the model’s “context 
 window,” is an active area of research for large language models today. The context window for the base GPT-4 model 
 is 8,000 tokens. A few months ago, OpenAI released a souped-up version of GPT-4 with a 32,000-token context 
 window. OpenAI competitor Anthropic then upped the ante, recently announcing a new model with a 100,000-token 
 context window. 

 This arms race will no doubt continue. Yet there are limits to how big OpenAI, Anthropic or any other company can 
 make its models’ context windows if they stick with the transformer architecture. 



 Various attempts have been made to build modified versions of transformers that still use attention but are better 
 equipped to handle long sequences. Yet these modified transformer architectures—with names like Longformer, 
 Reformer, Performer, Linformer and Big Bird—generally sacrifice on performance and so have failed to gain adoption. 

 Challengers to the Throne 

 This leads us to perhaps the most fertile area of research today in the effort to create a replacement for transformers. 
 The guiding principle for this school of research is to replace attention with a new function that scales 
 sub-quadratically. Sub-quadratic scaling would unlock AI models that are (1) less computationally intensive and (2) 
 better able to process long sequences compared to transformers. The challenge, of course, is to do this while still 
 matching transformers’ overall capabilities. 

 A 2021 research effort named S4 out of Chris Ré’s lab at Stanford laid the foundations for this avenue of research. A 
 handful of promising subquadratic architectures based on S4 have followed. 

 One of the most intriguing new architectures in the S4 family is Hyena, published a few months ago by a powerhouse 
 team that includes Ré and Yoshua Bengio. 

 In place of attention, Hyena uses two other operations: long convolutions and element-wise multiplication. 

 Convolutions are one of the oldest existing methods in machine learning, first conceived of by Yann LeCun back in the 
 1980s. Hyena’s fresh take on this venerable architecture is to stretch and vary the size of the convolution filter based 
 on the sequence length in order to boost computational efficiency. 

 Hyena’s initial results are promising. The model achieves new state-of-the-art performance for a non-attention-based 
 language model. It matches transformers’ performance in certain settings while using significantly less compute. 
 Importantly, Hyena’s efficiency gains relative to transformers become more dramatic as sequence length increases, 
 underscoring their advantages for very long inputs: at an 8,000-token sequence length, Hyena operators are twice as 
 fast as attention, whereas at a 64,000-token length they are one hundred times faster. 

 As the Hyena authors put it: “Breaking the quadratic barrier is a key step towards new possibilities for deep learning, 
 such as using entire textbooks as context, generating long-form music or processing gigapixel scale images.” 

 With at least a hint of snark, the authors add: "Our promising results at the sub-billion parameter scale suggest that 
 attention may not be all we need.” 

 One compelling early application of the Hyena architecture is HyenaDNA, a new foundation model for genomics out of 
 Stanford. Capitalizing on Hyena’s superior ability to handle long sequences, HyenaDNA has a whopping 
 1-million-token context window. The human genome is one of the longest (not to mention one of the most important) 
 datasets in existence: each human’s DNA contains 3.2 billion nucleotides. This makes it an ideal use case for a model 
 architecture like Hyena that excels at capturing long-range dependencies. 

 The HyenaDNA authors offer a tantalizing hint of what this technology might unlock in the future: “Imagine being able 
 to prompt ChatGPT with an entire human genome - wouldn’t it be neat to ask questions about likely diseases, predict 
 drug reactions, or guide treatment options based on your specific genetic code?” 

 An important caveat here is that the initial Hyena work was carried out at relatively small scales. The largest Hyena 
 model has 1.3 billion parameters, compared to GPT-3’s 175 billion parameters and GPT-4’s (rumored) 1.8 trillion 
 parameters. A key test for the Hyena architecture will be whether it continues to demonstrate strong performance and 
 efficiency gains as it is scaled up to the size of today’s transformer models. 



 Other novel deep learning architectures in this family include Monarch Mixer (also from Chris Ré’s lab at Stanford), 
 BiGS (from Cornell and DeepMind) and MEGA (from Meta). 

 Like Hyena, all of these models feature subquadratic scaling, meaning that they are more computationally efficient and 
 better equipped to handle long sequences than are transformers. And like Hyena, they are all promising but unproven: 
 it remains to be seen whether any of them can maintain strong performance at the scales at which today’s transformer 
 models operate. 

 Stepping back, computational efficiency and long-range dependencies are not the only two weaknesses of 
 transformers that new architectures aim to improve on. 

 An additional limitation of transformer models is their inability to learn continuously. Today’s transformer models have 
 static parameters. When a model is trained, its weights (the strength of the connections between its neurons) are set; 
 these weights do not update based on new information that the model encounters as it is deployed in the world. 

 Another commonly referenced limitation is transformers’ lack of explainability. Transformer-based models are “black 
 boxes”: their internal workings are too complex and opaque for humans to understand exactly why they behave the 
 way they do. This can be a real problem for safety-critical or highly regulated applications, for instance in healthcare. 

 Liquid neural networks, another buzzy new AI architecture seeking to challenge the transformer, claims to tackle both 
 of these shortcomings. 

 Created at MIT by a research team led by Ramin Hasani and Daniela Rus, liquid neural networks are inspired by 
 biology: in particular, by how the C. elegans worm’s brain works. The “liquid” in the name refers to the fact that the 
 model’s weights are probabilistic rather than constant, allowing them to vary fluidly depending on the inputs the model 
 is exposed to. 

 Liquid neural networks are also much smaller than today’s transformer models. In one recent proof of concept, the 
 MIT team built an autonomous vehicle system that was able to successfully drive on public roads with a mere 19 
 neurons and 253 parameters. 

 “Everyone talks about scaling up their network,” said Hasani. “We want to scale down, to have fewer but richer nodes.” 

 In addition to computational efficiency, this smaller architecture means that liquid neural networks are more 
 transparent and human-readable than transformers. After all, it is more practicable for a human observer to interpret 
 what is happening in a network with 253 connections than in one with 175 billion connections. 

 Rus is one of the world’s leading roboticists, and liquid neural networks appear to be particularly well-suited for 
 robotics applications, including autonomous vehicles and drones. They only work with time-series data (i.e., data with 
 a time dimension to it), meaning that they cannot be applied to images or other static data modalities. 

 One final effort to build “what comes after the transformer” is worth mentioning. Llion Jones—one of the eight 
 “Attention Is All You Need” co-authors—recently left Google to launch a new startup named Sakana AI alongside 
 former Stability AI head of research David Ha. 

 Sakana’s mission is to improve upon transformers with a nature-inspired approach to intelligence grounded in 
 evolutionary principles. Key to the team’s vision is the notion of collective or swarm intelligence, with a system of many 
 small models acting collaboratively rather than one monolithic model. 

 “Learning always wins,” said Jones. “The history of AI reflects the reality that it always works better to have a model 
 learn something for itself rather than have a human hand-engineer it. The deep learning revolution itself was an 
 example of this, as we went from building feature detectors by hand to letting neural networks learn their own features. 



 This is going to be a core philosophy for us at Sakana AI, and we will draw on ideas from nature including evolution to 
 explore this space.” 

 Distant Horizons 

 The transformer is an exceptionally powerful AI architecture. 

 Transformers have become the foundation of modern artificial intelligence. Virtually every advanced AI system is 
 based on transformers; every AI researcher is accustomed to working with them. Transformers have been optimized 
 by thousands of researchers building on one another’s work over the past several years. 

 This gives them a powerful incumbency advantage that will make them formidable to dislodge. 

 Yet, outside the limelight, away from the echo chambers of AI hype, promising work is underway to develop 
 next-generation AI architectures that are superior to transformers in different ways. 

 This work is still early and unproven. It remains far from certain whether these new architectures will succeed in 
 replacing the transformer. But if they do, the implications for the world of AI will be enormous. 

 Before the transformer era, different AI architectures were predominant for different use cases: recurrent neural 
 networks were used for language, convolutional neural networks were used for computer vision, reinforcement 
 learning was used for game-playing, and so on. 

 It has been remarkable to witness the progressive unification of AI methodology in recent years as transformers have 
 proven themselves state-of-the-art in one domain after the other, from language to vision to robotics to biology. 

 Yet it is not preordained that this trend toward unification—toward “one AI architecture to rule them all”—will continue 
 indefinitely. 

 It is conceivable that a different version of the future will play out: that as the frontiers of AI research advance in the 
 years ahead, new architectures are developed that prove themselves better suited for particular domains. Perhaps, for 
 instance, transformers continue to dominate the field of language processing for years to come, while a novel 
 architecture soon displaces transformers as state-of-the-art in robotics. 

 Or perhaps a new AI approach is developed that outperforms and rapidly replaces transformers across the board. 

 One thing is certain: the field of artificial intelligence is today so fast-moving and dynamic that we should expect 
 change to come uncomfortably quickly, we should take nothing for granted, and we should prepare to be surprised by 
 what the future holds. 


