2.1 Position, velocity and speed.

For now, we are only interested in translational motion, so model all objects as a point object. All mass of object is at the point.

Consider allowing object to move, and then recording position of object as a function of time.

Show Active Figure 2.1

The recorded data is a position vs time plot.

Note: coordinate system and origin are defined by you the observer.

From position vs time ($x(t)$) plot, one can define displacement

$$\Delta x = x_f - x_i$$

"change in" x from initial position to final position.

- for displacement, actual path of particle not important — only initial and final position
- displacement can be positive or negative \Rightarrow eg. object moves "left" or "right" but this is relative to defined coordinate system.

Define Average Velocity

$$V_{av} = \frac{\Delta x}{\Delta t}$$

Example: as car in Fig. 2.1 moves from P1 to P2

$$\Delta x = 52 - 30 = 22 \text{ m}$$

$$\Delta x = 277 - 19 = 258 \text{ m}$$
\[\Delta t = t_b - t_c \]

\[\Delta t = 4 - 1 = 3 \]

\[V_{\text{avg}} = \frac{22}{6} = 3.67 \text{ m/s} \]

\[\frac{\Delta x}{\Delta t} = \frac{255}{3} = 85 \text{ m/s} \]

If we want to know the instantaneous velocity at each moment in time (as opposed to an average), we need to use a calculus definition:

\[V_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \text{tangent slope to the } x(t) \text{ curve.} \]

Speed and velocity are not the same.

Speed is the magnitude of the velocity.

For constant velocity motion, how are \(V_x, x, t \) related?

\[V_x = V_{\text{avg}} = \frac{\Delta x}{\Delta t} = \text{slope of } x(t) \text{ plot} \]

For constant velocity motion, the graph is a straight line.

\[\text{Slope} = \frac{\Delta x}{\Delta t} = V_x \]
\[V_x = \frac{\Delta x}{\Delta t} \implies V_x = \frac{x_f - x_i}{t_f - t_i} \]

\[x_f = x_i + V_x \Delta t \quad \text{if} \quad V_x \text{ constant} \]

What if \(V_x \) not constant so \(V_x(t) \) varies in time?

Define acceleration as slope to \(V(t) \) plot

\[a_{avg} = \frac{\Delta V_x}{\Delta t} = \frac{V_{x_f} - V_{x_i}}{t_f - t_i} \quad \text{in average} \]

Instantaneously \(\implies \)

\[a_x = \lim_{\Delta t \to 0} \frac{\Delta V_x}{\Delta t} = \frac{dV_x}{dt} \]

\[a_x = \frac{dV_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2} \quad \text{c - 2nd derivative} \]

Example: \(x(t) = Ae^{-t} + Bt \)

what is \(V(t) \)?

\[V(t) = \frac{dx(t)}{dt} = -Ae^{-t} + B \]

what is \(a(t) \)?

\[a(t) = \frac{dV(t)}{dt} = Ae^{-t} \]
Note from the iclicker example, \(V(t=1) > 0 \) but \(a(t=1) < 0 \). How are they related?

2.5.1 Motion diagrams

- The lengths of \(\vec{V} \) and \(\vec{a} \) indicated their relative magnitude.
- Note that vector direction of \(\vec{V} \) and \(\vec{a} \) determine if object is slowing down or speeding up.

2.6.1 Constant acceleration formulas.

Let’s restrict ourselves to \(\vec{a} = \text{constant} \)

\[
A_x = \frac{V_f - V_i}{t - 0} = \frac{\Delta V}{\Delta t}
\]

(Eq. 1) \[V_f(t) = V_i + a \cdot t \] \(\text{(constant } a_x) \)

\(t_i = 0 \)

for constant \(a \) \[V_{avg} = \frac{V_i + V_f}{2} \]

why?

\[V_f(t) = V_i + a_x \cdot t \]

but \(V_{avg} = \frac{x_f - x_i}{t - 0} \)
Combine equation

\[x_6 = x_i + v_i t + \frac{a_x t^2}{2} \]

(Eq 2)

\[V_6(t) = V_i + a_x t \]

\[Q u a d r a t i c \ e q u a t i o n \]

\[a_x \] constant

Now combine (Eq 1) and (Eq 2) to eliminate \(t \).

\[x_6 - x_i = V_i t + \frac{a_x t^2}{2} \]

\[x_6 - x_i = V_i \left(\frac{V_i - V_i}{a_x} \right) + \frac{a_x (V_6 - V_i)^2}{2} \]

\[a_x (V_6 - V_i) = V_i \sqrt{V_i} - V_i + \frac{V_6 + V_i}{2} - 2 \sqrt{V_i} \]

\[\Rightarrow V_6^2 = V_i^2 + 2a_x (x_6 - x_i) \]

Show PPT with equation Summary

Example Problem

Note: page 23 of textbook gives a general problem solving strategy. To become proficient, practice, practice, practice.

A car is travelling at 45 m/s. The driver steps on the brakes. a) What acceleration (magnitude and direction) are required for the car to come to a stop in 10 sec? b) How far does the car travel after applying the brakes?
Step 1: draw a diagram.
\[v_i = 45 \text{ m/s} \]
\[v_f = ? \]

- define a coordinate system.
- define origin.

Step 2: From the problem, identify the type of physics problem.
\[\Rightarrow \text{1-D motion, constant acceleration.} \]

Step 3: Identify the appropriate equations/concepts which apply.
\[v_f = v_i + at \]
why +45 and not -45?

Step 4: solve equations.
\[0 = 45 + a \cdot 10 \]
\[a = \frac{0 - 45}{10} \]
\[a = -4.5 \text{ m/s}^2 \]

\[\Rightarrow \text{velocity in positive defined direction} \]

what does this mean?

opposite to direction defined as positive

how far does car travel?

1. can use
\[x_f = x_i + v_i \cdot t + \frac{1}{2} a t^2 \]
2. \[v_f^2 = v_i^2 + 2a(x_f - x_i) \]
 \[\Rightarrow \text{now known.} \]
 \[0 = 45^2 + 2(-4.5)(x_f - x_i) \]
 \[x_f - x_i = \frac{45^2}{9} = 225 \text{ m.} \]
2.7) free falling objects

Objects fall due to gravity \(|a| = 9.8 \text{ m/s}^2 \equiv g \)

Sign of \(a \) depends on orientation of coordinate system.

Note: all masses fall to ground at same acceleration.

If released together, a snow flake and rock will fall together to earth, if we neglect friction.

\[
\text{Standard problem}
\]

\(v_0 = 4 \text{ m/s} \)

How long does it take for ball thrown upward to reach ground?

\(\Rightarrow \) By convention, we define "up" as positive \(y \) direction.

\(\Rightarrow \) Origin \((0,0)\) of coordinate system is arbitrary. Can choose top of building or ground level.

\(\ast \) Once you choose a coordinate system, be consistent throughout problem.

For this example, I choose \(y \) direction to be up, and origin of coordinates to be at roof.

\[x_0 - x_i = v_0 y + \frac{1}{2} a_y y^2 \]

\(a_y = -g \quad \Rightarrow \text{why?} \)

\(x_0 - x_i = -h \quad \Rightarrow \text{why} \)
\[V_c = V_o \quad \text{why?} \]

so in terms of symbols

\[\Rightarrow -h = V_o t - \frac{1}{2} gt^2 \]

\[\Rightarrow \frac{1}{2} gt^2 - V_o t - h = 0 \]

solve for \(t \) \(\Rightarrow \) Quadratic equation

\[t = \frac{-(-V_o) \pm \sqrt{(V_o)^2 - 4\left(\frac{1}{2}g\right)(-h)}}{2\left(\frac{1}{2}g\right)} \]

\[t = \frac{V_o \pm \sqrt{V_o^2 + 2gh}}{g} \]

Note solve symbolically and stick in numbers at end.

\[t = \frac{4 \pm \sqrt{4^2 + 2 \cdot 9.8 \cdot 10}}{9.8} \]

\[t = 1.95 \text{ or } -1.15 \]

mathematically 2 roots, but only one is physically correct. \(t = 1.95 \) since we set up problem so that ball hits ground after \(t = 0 \)

2.8 derivation of constant acceleration equations from

integral calculus

Show PPT Fig 2.45 x 2
Distance travelled in one time interval is
\[\Delta x = v_x \Delta t \]

Total distance travelled
\[\Delta x = \sum_{n} v_{x,n} \Delta t_n \]
\[\rightarrow \text{ sum over all time intervals.} \]

Graphically, it is area under curve of \(V(t) \)
\[\Delta x = \lim_{\Delta t_n \rightarrow 0} \int_{t_i}^{t_f} v_x(t) \, dt \]

The integral of \(V(t) \) gives \(x(t) \).
Likewise, integral of \(a(t) \) gives \(V(t) \).

Formally:
\[a_x = \frac{dv_x}{dt} \]
\[dv_x = a_x \, dt \]
\[\int_{v_i}^{v_f} dv_x = \int_{0}^{t_f} a_x \, dt \]
\[v_f - v_i = a_x \, t_f^2 \]
\[v_f = V(t) = v_i + a_x t^2 \]
\[V(t) = \frac{dx}{dt} = v_i + a_x t \]
\[\int_{x_i}^{x_f} dx = \int_{0}^{t_f} (v_i + a_x t) \, dt \]
\[x_f - x_i = v_i \cdot t + \frac{1}{2} a_x t^2 \]