Physics 321
Astrophysics II:  Lecture #10
Prof. Dale E. Gary
NJIT

The Solar Interior

The Solar Interior

Observations of the Solar Interior
Computer models such as the standard model must fit the observable constraints that we have, e.g. the mass, radius, surface temperature, luminosity, and composition.  We have some other constraints such as the age of the solar system (4.5 billion years), but we would like to have other information to be sure that the model is correct.  Currently, we have two additional methods, both pioneered in the 1970's, that actually let us "see" inside the Sun.  These are One of these, helioseismology, agrees spectacularly with the standard model and can give us information about the interior rotation of the Sun.  The other, solar neutrino measurements, disagrees rather spectacularly!  Recall our reactions that make up the proton-proton chain:
 
PP I Chain (69%)
11H +  11H => 21H + e + ne
21H + 11H =>  32He + g
32He +  32He =>  42He + 2 11H

 
PP II Chain (31%)
32He +  42He => 74Be + g
74Be +  e- =>  73Li  + ne
73Li +  11H =>  2 42He 

 
PP III Chain (0.3%)
74Be +  11H => 85B + g + ne
85B =>  84Be + e+ + ne
  84Be =>  2 42He
The electron neutrinos in each reaction are highlighted.  Neutrinos are rather mysterious particles, nearly or completely massless and very unreactive.  They pass through the Sun as if it were not there, so while photons reach us from the core only after 1 million years of tortuous meandering, neutrinos come directly to us.  However, if traveling 350,000 km through a star cannot stop them, how can we detect them?  The neutrino in the yellow cell, above, can be captured by a Chlorine-37 nucleus in the following reaction:
 
Neutrino Capture (Homestake)
3717Cl 
+ ne
 => 
3718Ar + e-
In the Homestake Gold Mine in South Dakota, a tank of 100,000 gallons of cleaning fluid (C2Cl4) acts as a neutrino detector, in a pioneering experiment by Raymond Davis.  Every several months the tank is purged to detect the Ar atoms produced in the reaction.  From the standard solar model, it is expected that only slightly more than 1 atom per day will be produced among the 1030 Chlorine atoms in the tank!  In fact, Davis only finds less than 1 every two or three days.  Other experiments have been set up to detect neutrinos, including the far more numerous neutrinos produced in the PP-I chain (purple cell, above).  Results of all of the experiments indicate that the number of neutrinos detected is not consistent with the standard model.
Helioseismology is the study of "seismic" pressure and gravity waves inside the Sun.  Just as we can study earthquakes to learn about the Earth's interior, we can also study "sunquakes" to learn about the Sun's interior.  Sound waves are generated randomly, probably mostly from small-scale convective turbulence near the surface of the Sun.  They rattle around inside the Sun, but those modes that are at special wavelengths to match spherical harmonics of the Sun can live a long time and resonate inside the Sun.  The wavelength-frequency (k-w) relationship of these resonances tell us the structure of the inside of the Sun.  The results of helioseismology agree very well with the standard model.

So what can we say about the failure of the neutrino results?  Perhaps the problem is due to neutrino physics itself, which is poorly understood.  One possibility is that neutrinos oscillate between two forms, one of which we can detect and the other of which is not detectable.  The question is still unanswered at this time, but if the neutrino can be shown to have mass (it is known to be less than 7.2 eV so far) then oscillations can be calculated and compared with observations.