Section 7.3

Problem 7.A: Do problem 7.10 of the text, which asks you to write down the equations for x, y, z in terms of ρ and ϕ. Continue to the next step by taking time derivatives needed to determine the kinetic energy $T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)$ in terms of ρ and ϕ. Also write down the potential energy, U, and hence the Lagrangian $\mathcal{L}=T-U$. Use the two Lagrangian equations (one for each variable ρ and ϕ), to show that the equations of motion are:

$$
\begin{aligned}
& \ddot{\rho}=g\left(\frac{\cos \alpha}{1+\cos ^{2} \alpha}\right) \\
& \dot{\phi}=\text { const. }
\end{aligned}
$$

Section 7.5

Problem 7.B: Do problem 7.16 of the text, to derive the equation of motion of the cylinder in terms of the generalized coordinate x measured along the incline. After solving that problem, now try the same problem choosing a different generalized variable, the angle ϕ of the contact point of the cylinder with the incline as it rolls without slipping. Derive the equation of motion in terms of ϕ and show that it is equivalent to that you got previously for x. [Hint: $x=R \phi$].

Section 7.5

Problem 7.C: Do problem 7.32 of the text, but use the following hints: Show that the CM coordinates are given by

$$
\begin{aligned}
& x=(r+b) \sin \theta-r \theta \cos \theta \\
& y=(r+b) \cos \theta+r \theta \sin \theta
\end{aligned}
$$

where the y equation is just the height derived in the original problem. Take the time derivatives and combine to show that $v^{2}=\dot{x}^{2}+\dot{y}^{2}=\left(b^{2}+r^{2} \theta^{2}\right) \dot{\theta}^{2}$. Write down the Lagrangian and make the small angle approximation (be careful to keep more than the leading term in the U part. You should be able to do the rest of the problem from here.

Problem 7.D: Do the following GRE exam sample question:
74. The Lagrangian for a mechanical system is

$$
L=a \dot{q}^{2}+b q^{4}
$$

where q is a generalized coordinate and a and b are constants. The equation of motion for this system is
(A) $\dot{q}=\sqrt{\frac{b}{a}} q^{2}$
(B) $\dot{q}=\frac{2 b}{a} q^{3}$
(C) $\ddot{q}=-\frac{2 b}{a} q^{3}$
(D) $\ddot{q}=+\frac{2 b}{a} q^{3}$
(E) $\ddot{q}=\frac{b}{a} q^{3}$

