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ABSTRACT

Spectral Kurtosis (SK; defined by Nita et al. 2007) is a statistical approach

for detecting and removing radio frequency interference (RFI) in radio astronomy

data. In this paper, the statistical properties of the SK estimator are investigated

and all moments of its probability density function are analytically determined.

These moments provide a means to determine the tail probabilities of the esti-

mator that are essential to defining the thresholds for RFI discrimination. It is

shown that, for a number of accumulated spectra M ≥ 24, the first SK standard

moments satisfy the conditions required by a Pearson Type IV (Pearson 1985)

probability distribution function (PDF), which is shown to accurately reproduce

the observed distributions. The cumulative function (CF) of the Pearson Type

IV, in both analytical and numerical form, is then found suitable for accurate

estimation of the tail probabilities of the SK estimator. This same framework

is also shown to be applicable to the related Time Domain Kurtosis (TDK) es-

timator (Ruf, Gross, & Misra 2006), whose PDF corresponds to Pearson Type

IV when the number of time-domain samples is M ≥ 46. The PDF and CF are

determined for this case also.

Subject headings: SK- Spectral Kurtosis, TDK- Time Domain Kurtosis, RFI-

Radio Frequency Interference

1. Introduction

Given the expansion of radio astronomy instrumentation to ever broader bandwidths,

and the simultaneous increase in usage of the radio spectrum for wireless communication,

radio frequency interference (RFI) has become a limiting factor in the design of a new

generation of radio telescopes. In an effort to find reliable solutions to RFI mitigation,

Nita et al. (2007, hereafter, Paper I) proposed the use of a statistical tool, the Spectral

Kurtosis (SK) estimator. Based on theoretical expectations and initial hardware testing,
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the SK estimator was found to be an efficient tool for automatic excision of certain types of

RFI, and due to its conceptual simplicity we suggested that it should become a standard,

built-in component of any modern radio spectrograph or FX correlator that is based on field

programable gate array (FPGA) architecture. Since then, the world’s first SK spectrometer,

the Korean Solar Radio Burst Locator (KSRBL Dou et al. 2009), has become operational,

and the effectiveness of the SK algorithm for RFI excision has been demonstrated (?).

As described in Paper I, an SK spectrometer accumulates both a set of M instantaneous

power spectral density (PSD) estimates, denoted S1, and the squared spectral power denoted

S2. These sums, which have an implicit dependence on frequency channel fk, (k = 0..N/2),

are used to compute the averaged power spectrum S1/M , as well as an SK estimator V̂ 2
k ,

originally defined as

V̂ 2
k =

M

M − 1

(MS2

S2
1

− 1
)
, (1)

which is a cumulant-based estimator of the spectral variability. The “hat” is used to distin-

guish the estimator from the parent population associated with each frequency channel,

V 2
k =

σ2
k

µ2
k

, (2)

where µk and σ2
k are the frequency-dependent PSD population means and variances, respec-

tively.

In Paper I we studied the statistical properties of the PSD estimates of a normally

distributed time domain signal obtained from its complex Discrete Fourier Transform (DFT)

coefficients, and showed that, in the most general case, at all but the DC (k = 0) and Nyquist

(k = N/2) frequency channels, the real and imaginary parts, Ak and Bk respectively, are

correlated zero-mean gaussian random variables whose variances and correlation coefficients

are completely determined by the parent population’s PSD mean µk and the particular shape

of the time domain windowing function. Under these general conditions, it has been shown

that the population spectral variability of the PSD estimates defined by equation (2) is given

by

V 2
k = 1 + |W2k|2, (3)

where

W2k =
1∑
w2

n

N−1∑
n=0

w2
ne

−4πikn/N , (4)

ranging from 0 to 1, is the normalized DFT of the squared time domain window evaluated

at the even-indexed discrete frequencies f2k. A separate treatment of the PSD estimates
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for the DC and Nyquist frequency bins is needed, since those obey different statistics, and

we showed that they form a χ2 distribution with one degree of freedom, identical to the

case of time-domain kurtosis (TDK; Ruf, Gross, & Misra 2006). We further showed that

the expression given by equation (3) remains valid for these bins, with |W0|2 = |WN |2 = 1

exactly, so that the theory encompasses the case of TDK.

Paper I also showed that, in the most common case of a symmetrical time domain

window, i.e. an even function which has only real DFT coefficients, the DFT coefficients Ak

and Bk, used to compute the PSD estimate P̂k = A2
k + B2

k, become uncorrelated zero-mean

gaussian random variables with variances σ2
Ak

= (1 +W2k)
µk

2
and σ2

Bk
= (1 −W2k)

µk

2
, and

their joint distribution function is a χ2 distribution with two degrees of freedom. Moreover,

we showed that choosing any even windowing function, such as the standard Hanning or

Hamming windows, results in W2k values that are practically zero at all but a few frequency

bins in the vicinity of the DC and Nyquist channels. In this common case, the variances of

the DFT coefficients Ak and Bk become equal, and the probability distribution function of

the PSD estimate P̂k simplifies to an exponential distribution

p(x) =
1

µ
e−

x
µ , (5)

where x stands for the PSD random variate, and µ should be understood as having a fre-

quency bin dependence.

In the limit of sufficiently large number, M , of accumulations, Paper I provided a first

order approximation of the variance of the SK estimator defined by equation (1), which

under the conditions leading to the probability distribution function given by equation (5),

reduces to the simple expression

σ2
V 2
k
=

{
24
M

+O( 1
M2 ), k = 0, N

2
4
M

+O( 1
M2 ), k = 1, . . . , (N

2
− 1)

, (6)

which was used to defining standard, symmetrical RFI detection thresholds of ±3σV 2
k
around

1 + |W2k|2 corresponding to the spectral variability of a normally distributed time domain

signal. If the estimator were itself normally distributed, these thresholds would yield a false

alarm rate of 0.135% at both the high and low thresholds.

However, later tests performed with data from the KSRBL instrument in RFI-free ob-

servational bands (?) have since revealed that the statistical distribution of the estimator

is noticeably skewed, even with a fairly large number of accumulated spectra, M = 6104.

Subsequent Monte Carlo simulations performed for large numbers of SK random deviates,

generated for different accumulation numbers ranging from 2 to 20000, showed that, while

the variance of the SK estimator asymptotically behaves as predicted by equation (6), and its
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kurtosis excess approaches a zero value as 1/M , the skewness of the SK estimator vanishes

only as fast as 10/
√
M , which is too slow a rate for assuring normal behavior of the SK

estimator in the range of interest for practical applications. Moreover, the same simulations

suggested that the SK estimator defined by equation (1) has a statistical bias of 1/M , which

in principle may be corrected by a redefinition based on the true statistical nature of the

ratio MS2/S
2
1 that drives its statistical behavior.

Motivated by these practical concerns for RFI detection, we searched the literature

and found that the statistical distribution of the ratio MS2/S
2
1 for a general exponential

population has apparently not been fully addressed by any previous work. Given its wide

application in many fields, as well as its central role in our application, we present here a

detailed analysis of the statistical properties of the ratio of the sums S2 and S2
1 with the final

goal of deriving a reliable analytical expression for computing the false alarm probabilities

associated with any choice of upper and lower RFI detection thresholds. Along the way,

we amend our earlier expression equation (1) to obtain an unbiased estimator of the PSD

spectral variability, and formally prove the key property that the SK estimator is indeed

independent of the radio frequency (RF) power, S1.

2. Statistics of exponentially distributed random variables

2.1. Linear correlation coefficient of the mean of squares and the square of

mean

To derive a first order approximation of the variance of the SK estimator, we first notice

that the ratio MS2/S
2
1 is the same as m′

2/m
′2
1 , where m′

1 = S1/M and m′
2 = S2/M denote

the first and second moments of the PSD estimate about the origin. Therefore, our problem

reduces to the problem of finding the statistical properties of this ratio for an exponential

distribution. Although the general problem of determining the probability distribution func-

tion of a ratio of two random variables has a well established framework addressed by most

of the classical textbooks, (e.g. Kendall & Stuart 1958, p. 265), the practical applications

of this framework usually deal with ratios of independent (uncorrelated) random variables,

while the more general case of two correlated random variables has been almost entirely lim-

ited to the case of two normally distributed random variables (Fieller 1932; Hinkley 1969),

for which the joint probability distribution function is exactly known (e.g. Kendall & Stuart

1958, p. 283). To investigate the nature of the joint distribution of the random deviates

m′2
1 and m′

2, we first show in Figure 1 a contour plot of the Monte-Carlo-generated joint

distribution of pairs of random variables representing the squared mean, m′2
1 = (S1/M)2

and mean of squares m′
2 = S2/M obtained from sets of M random deviates extracted from
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an exponential distribution of mean µ = 1. The inset of the figure gives the sample means

and standard deviations, ⟨m′2
1 ⟩ = 1.00 ± 0.03 and ⟨m′

2⟩ = 2.00 ± 0.06, as well as the linear

correlation coefficient r = 0.8946 defined by

r =
⟨(m′2

1 − ⟨m′2
1 ⟩)(m′

2 − ⟨m′
2⟩)⟩√

⟨(m′2
1 − ⟨m′2

1 ⟩)2⟩⟨(m′
2 − ⟨m′

2⟩)2⟩
. (7)

This illustrates that the squared mean and the mean of the squares are strongly cor-

related random variables, which is not surprising given that they are constructed from a

common set of M exponentially distributed independent random variables.

Without knowing yet their joint statistical distribution, one may still estimate the linear

correlation coefficient ρ of their joint statistical population defined as

ρ(m′2
1 ,m

′
2) =

Cov(m′2
1 ,m

′
2)√

Var(m′2
1 )Var(m

′
2)
, (8)

from the exact formula for the covariance and variance (covariance with itself) for the sample

moments about the origin of any distribution in terms of the corresponding population

moments (Kendall & Stuart 1958, p. 229),

Cov(m′
q,m

′
r) =

1

M
(µ′

q+r − µ′
qµ

′
r), (9)

as well as the first order approximations (Kendall & Stuart 1958, p. 232) for the variance

and covariance of any pair of functions of random variables given by

Cov(f, g) =
2∑

q=1

2∑
r=1

∂f

∂m′
q

∂g

∂m′
r

Cov(m′
q,m

′
r), (10)

where the partial derivatives in respect to the sample moments have to be evaluated in

m′
1 = µ′

1 and m′
2 = µ′

2, respectively. Since in our case we have {f(m′
1) = m′2

1 ; g(m
′
2) = m′

2},
these two formulae lead to

Var(m′2
1 ) = Cov(m′2

1 ,m
′2
1 ) =

4

M
µ′2
1 (µ

′
2 − µ′2

1 ), (11)

Var(m′
2) = Cov(m′

2,m
′
2) =

1

M
(µ′

4 − µ′2
2 ), (12)

Cov(m′2
1 ,m

′
2) =

2

M
µ′
1(µ

′
3 − µ′

1µ
′
2), (13)
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which are results that hold for any distribution. For an exponential distribution characterized

by µ′
n = n!µn, these general results become

Var(m′2
1 ) =

4

M
µ4, (14)

Var(m′
2) =

20

M
µ4, (15)

Cov(m′2
1 ,m

′
2) =

8

M
µ4, (16)

which, when entered in equation (8), leads to the exact result

ρ(m′2
1 ,m

′
2) =

2√
5
≃ 0.8944. (17)

Thus, we find near perfect agreement with the observed correlation coefficient r ≃ 0.8946

obtained from the numerical simulations presented in Figure 1.

2.2. Central Limit Theorem Approximation

In Figure 1, the quasi-elliptical contours of the numerically simulated joint distribution

of the random variables m′2
1 and m′

2 look like those characteristic of the joint distribution of

a pair of correlated normal variables, for which the probability density function (PDF) and

cumulative function (CF) have been previously obtained in closed analytical form (Fieller

1932; Hinkley 1969) suitable for accurate estimation of the tail probabilities we eventually

are interested in. This approach seems to be justified by the fact that the random variable

m′
2 exactly satisfies the conditions of the Central Limit Theorem (CLT) (Kendall & Stuart

1958, p. 193), which states that the sample mean of any statistical population characterized

by a population mean µ′ and variance σ′2 tends toward a normal distribution as the number

of samples M used to compute the mean increases. The same theorem assures that the

distribution of the mean m′
1 would approach normality in the same manner as m′

2, though

it remains to be proved whether the two distributions approach normality at the same pace.

Moreover, a generalization of the Central Limit Theorem presented by Kendall & Stuart

(1958, p.195) states that the means of any two random variables drawn from populations

having defined variances tend toward joint bivariate normality as the number of samples

increases. However, once an asymptotic distribution is obtained under such conditions, it

remains to be proven whether it is valid for a finite number M of accumulated samples.

We will show later that the means and variances of the parent populations of the random

variables m′2
1 and m′

2 may be exactly computed for any M . However, to obtain a CLT-based

approximation of the m′
2/m

′2
1 ratio distribution, we need only the first order estimates of
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the variances given by equation (14) and equation (15), which have the required asymptotic

behavior 1/M , and the means µ2 and 2µ2 respectively, which are at least asymptotically valid

as shown by the numerical results presented in Figure 1. The parameters θ1 = µ2, θ2 = 2µ2,

σ2
1 = 4µ4/M , σ2

2 = 20µ4/M , and ρ = 2/
√
5 may be directly entered in the expression given

by Hinkley (1969) for the probability distribution function of the ratio of two correlated

random variables, to obtain the CLT approximation for the probability density function of

the ratio v = m′
2/m

′2
1 as

f(v) =
1

(v2 − 4v + 5)

[ 1
π
e−M/8 +

1

2
√
2π

Erf
( √

M/2

2
√
v2 − 4v + 5

)
e
− M(v−2)2

8(v2−4v+5)

]
, (18)

where Erf(z) = (2/
√
π)

∫ z

−∞ Exp(−t2)dt is the well known standard error function.

Although not explicitly shown here, we find that while this expression does yield non-

symmetric behavior (i.e. non-zero skew), the skew of this asymptotic expression vanishes

more rapidly than the value 10/
√
M obtained from simulations, which rules out the use of

this approximation for finite M .

2.3. Statistical moments of the ratio between the mean of squares and the

square of mean

Although the challenge of finding the true joint distribution of mean of squares and the

square of means of a set ofM exponentially distributed independent random variables is itself

a problem of theoretical interest, we will show in this section that finding the distribution of

their ratio may attacked from a different perspective, immediately leading to the result we

are looking for.

The more mathematically convenient solution we wish to develop is suggested by the

property of the population spectral variability (equation [2]), whose value σ2/µ2 ≡ 1 is by

definition uncorrelated with the square of the population mean, µ2. Consequently, the same

property is expected to hold for the ratiom′
2/m

′2
1 based on samples of the parent population—

a property implicitly assumed by the whole concept of the SK estimator. Figure 2 displays

contour levels of the joint distribution of m′
2/m

′2
1 and m′2

1 built using the same Monte Carlo

data set as in Figure 1. In contrast to the previous figure, the circular shape of these contours,

as well as the practically null linear correlation coefficient, suggest that these two parameters

are, indeed, uncorrelated.

To analytically prove this essential property, we employ the general formulae given by

equations (9)-(13), as well as the identity µ′
n = n!µn, to compute the covariance of the



– 8 –

functions f(m′
2,m

′
1) = m′

2/m
′2
1 and g(m′

1) = m′2
1 as

Cov(f, g) =
∂f

∂m′
2

∂g

∂m′
1

Cov(m′
1,m

′
2) +

∂f

∂m′
1

∂g

∂m′
1

Cov(m′
1,m

′
1) (19)

=
1

M

[ 2

µ′
1

(µ′
3 − µ′

1µ
′
2)−

4µ′
2

µ′2
1

(µ′
2 − µ′2

1 )
]

=
1

M
(8µ2 − 8µ2) = 0.

An alternative way to write the covariance in terms of the statistical expectations of two

random variables leads to a useful result in the case of zero covariance, i.e.

Cov(x, y) = E(xy)− E(x)E(y). (20)

Here, we use the expectation value of two random variables x and y defined as

E(x) =

∫ +∞

−∞
xpx(x)dx (21)

E(y) =

∫ +∞

−∞
ypy(y)dy,

where

px(x) =

∫ +∞

−∞
p(x, y)dy (22)

py(y) =

∫ +∞

−∞
p(x, y)dx

are the marginal PDFs of x and y distributed according to the joint distribution p(x, y).

Thus, the covariance of m′
2/m

′2
1 and m′2

1 is

Cov(
m′

2

m′2
1

,m′2
1 ) = E(m′

2)− E(
m′

2

m′2
1

)E(m′2
1 ) = 0, (23)

which immediately leads to the non trivial result

E(
m′

2

m′2
1

) =
E(m′

2)

E(m′2
1 )

, (24)

expressing the fact that the statistical expectation of the ratio between the mean of squares

and the squares of the mean of M independent random variables exponentially distributed is

given by the ratio of the statistical expectations of quotients computed from their marginal

probability density functions.
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Moreover, since equation (10) gives for any integer power of n,

Cov(fn, gn) = n2fn−1gn−1Cov(f, g) = 0, (25)

similar steps with those used to derive equation (24) lead to the more general result

E
[(m′

2

m′2
1

)n]
=

E(m′n
2 )

E(m′2n
1 )

, (26)

which states that the same relationship holds for any moment of the distribution.

Since it may be shown that, under certain conditions that we will address later (Kendall

& Stuart 1958, p.111), the complete set of the moments of a probability distribution function

uniquely determines that distribution function, the more complex problem of finding the

probability density function of the ratio (m′
2/m

′2
1 ) from the joint distribution function of the

quotients may be reduced, at least from the perspective of deriving the analytical expressions

of all of its moments, to the more simple problem of deriving the moments of the quotients

from their marginal distribution functions, which we derive in the following sections.

2.4. The Generalized Gamma Distribution

The expectations E(m′2n
1 ) may be straightforwardly derived by a simple change of vari-

able performed on the known probability density function of the sum of M independent

random deviates, (x = S1), drawn from an exponential population, which is a Gamma dis-

tribution of integer shape parameter k = M and scale parameter λ = 1/µ originally derived

by Erlang (1917):

p(x) =
xM−1e−

x
µ

µM(M − 1)!
. (27)

However, we provide in this section an alternative derivation of these moments that will help

us establish a common framework that we will later use to derive the expectations E(m′n
2 ).

Stacy (1962) gives a detailed analysis of the properties of the Generalized Gamma

Distribution (GGD) defined as

f(x, a, d, p) =
pxd−1e−(x

a
)p

adΓ(d/p)
, (28)

where Γ(z) =
∫∞
0

tz−1e−tdt is the well known Euler’s Gamma function, which reduces to

(n− 1)! for integer arguments n. The GGD defined by equation (28) reduces to the classical
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Gamma distribution, for p = 1, and to Erlang’s distribution for integer shape parameters

d = M . Although beyond the scope of this study, it is worth mentioning that, for various

combination of parameters, GGD reduces to other classical distributions such as Weibull,

Maxwell, and Rayleigh distributions (Lienhard & Meyer 1967). The exponential distribution,

which plays the central role in this study, is also a GGD given by f(x, µ, 1, 1).

One of the main results provided by Stacy (1962) is the moment generating function of

GGD, M(t, a, d, p), which is given in terms of an infinite analytical series as

M(t, a, d, p) =
1

Γ(d/p)

∞∑
r=0

(at)r

r!
Γ(

d+ r

p
). (29)

This provides the population moments about the origin as

µ′
n =

∂nM(t, a, d, p)

∂tn

∣∣∣
t=0

=
Γ(d+n

p
)

Γ(d/p)
an, (30)

which reduces to the known result µ′
n = n!µn for the exponential distribution f(x, µ, 1, 1).

Since, generally, the moment generating function of the sum of independent variables

is the product of their individual moment generating functions, equation (29) provides the

direct means to compute the moments about the origin of the mean of M independent

random variables GGD distributed by using the formula

µ′
n =

∂n[M(t, a
M
, d, p)]M

∂tn

∣∣∣
t=0

, (31)

which results from the change of variable

f(x, a, d, p)dx = f(
x

M
,
a

M
, d, p)d(

x

M
) = f(y,

a

M
, d, p)dy, (32)

and the identity 1
M
(
∑M

i=1 xi) =
∑M

i=1 yi.

Taking into account that only the cross terms resulting in the nth power of t may

contribute to the moment µn, equation (31) may be reduced to

µ′
n =

1

[Γ(d/p)]M
∂n

∂tn

[ n∑
r=0

1

r!
Γ(

d+ r

p
)
( at

M

)r]M ∣∣∣
t=0

, (33)

which, after the convenient scaling t → (a/M)t of the differential operator, becomes

µ′
n =

(a/M)n

[Γ(d/p)]M
∂n

∂tn

[ n∑
r=0

1

r!
Γ(

d+ r

p
)tr

]M ∣∣∣
t=0

. (34)
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However, in the particular case p = 1, it may be shown that the PDF of the mean of

M independent random variables, m′
1 = (1/M)

∑M
i=1 xi) = S1/M , individually distributed

according to the GGD function f(x, a, d, 1), is also a GGD given by

p(m′
1) = f(m′

1, a/M,Md, 1), (35)

which allows writing equation (34) directly in the closed form provided by equation (30).

To prove equation (35), we have to compute the convolution of the individual PDFs

of the variables yi = xi/M , which we do by first computing the Fourier Transform of the

distribution given by equation (32), (which is its probability generating function; Kendall &

Stuart 1958),

Φ(t) =

∫ ∞

0

f
(
y,

a

M
, d, 1

)
eitydy =

(
1− i

at

M

)−d

, (36)

followed by the inverse transformation of the product of M such probability distribution

functions,

p(m′
1) =

1

2π

∫ ∞

−∞

(
1− i

at

M

)−Md

e−im′
1tdt = f(m′

1, a/M,Md, 1). (37)

This result may be further used to derive the distribution of the squared mean of M

independent random deviates drawn from a p = 1 GGD, by making the change of variable

y = m′2
1

f(m′
1, a/M,Md, 1)d(m′

1) = f(
√
y, a/M,Md, 1)d(

√
y) = f

[
y,
( a

M

)2

,
Md

2
,
1

2

]
dy, (38)

which leads to the distribution

p(m′2
1 ) = f

[
m′2

1 ,
( a

M

)2

,
Md

2
,
1

2

]
, (39)

and, through equation (30), to the expectations

E(m′2n
1 ) =

Γ(Md+ 2n)

Γ(Md)

( a

M

)2n

. (40)

If we consider now a random variable x distributed by f(x, a, d, 1), and we perform the

change of variable

f(x, a, d, 1)dx = f(
√
y, a, d, 1)d(

√
y) = f(y, a2, d/2, 1/2)dy, (41)
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we obtain the probability density function of the square of a p = 1 GGD distributed random

variable, y = x2,

p(y) = f(y, a2, d/2, 1/2), (42)

which is a GGD function of non-integer p = 1/2, for which the particular results derived from

equation (35) no longer apply. However, since m′
2 =

1
M

∑M
i=1 x

2
i =

1
M

∑M
i=1 yi is the mean of

M random variables distributed according to the GGD function given by equation (42), we

may use equation (34) to express the statistical expectations for any power of the random

variable m′
2 as

E(m′n
2 ) =

(a/
√
M)2n

[Γ(d)]M
∂n

∂tn

[ n∑
r=0

1

r!
Γ(2r + d)tr

]M ∣∣∣
t=0

. (43)

2.5. Standard moments of the ratio MS2/S
2
1

Since the exponential distribution is the GGD function p(x) = f(x, µ, 1, 1), i.e p = 1,

d = 1 and a = µ, Eqns. 40 and 43 give

E(m′2n
1 ) =

(M − 1 + 2n)!

(M − 1)!

( µ

M

)2n

(44)

E(m′n
2 ) =

( µ√
M

)2n ∂n

∂tn

[ n∑
r=0

(2r)!

r!
tr
]M ∣∣∣

t=0
.

Substituting these results into equation (26), and recalling that m′
2/m

′2
1 = MS2/S

2
1 ,we get

E
[(MS2

S2
1

)n]
=

Mn(M − 1)!

(M − 1 + 2n)!

∂n

∂tn

[ n∑
r=0

(2r)!

r!
tr
]M ∣∣∣

t=0
, (45)

which completely determines the statistical properties of the ratio MS2/S
2
1 in terms of its

infinite set of moments about the origin if (Kendall & Stuart 1958, p. 111) the upper limit

of the expression

1

2n

{
E
[(MS2

S2
1

)2n]}1/2n

(46)

is finite.

Since a simple numerical evaluation of equation (46) shows that it is monotonously de-

creasing while being positively defined, we may conclude that its limit is finite and, therefore,
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that the probability distribution function of the ratio MS2/S
2
1 is uniquely determined by its

complete set of moments provided by equation (45).

For n = 1, equation (45) provides the expectation for the ratio MS2/S
2
1

E
(MS2

S2
1

)
=

2M

M + 1
, (47)

and, using the general conversion formula (Kendall & Stuart 1958, p. 56) that relates the

central moments to the raw moments of any distribution, we get

E
{[MS2

S2
1

− E
(MS2

S2
1

)]n}
=

n∑
k=0

{
(−1)k

(
n

k

)( 2M

M + 1

)k

E
[(MS2

S2
1

)n−k]}
. (48)

3. An unbiased SK estimator and its statistical moments

The result expressed by equation (47) may be used to evaluate the expectation of the

SK estimator defined by equation (1)

E(V̂ 2
k ) = E

[ M

M − 1

(MS2

S2
1

− 1
)]

=
M

M − 1

( 2M

M + 1
− 1

)
=

M

M + 1
, (49)

which shows that the SK estimator defined in Paper I is, indeed, a biased estimator.

Therefore, we conveniently rescale the estimator originally defined in Paper I to define

a new estimator

ŜK =
M + 1

M − 1

(MS2

S2
1

− 1
)
, (50)

which, for a set of data samples drawn from an exponential distribution, has unit expectation

µ′
1 ≡ E(ŜK) = 1, (51)

the same as the population parameter it is intended to estimate.

To completely determine the statistical properties of the unbiased estimator ŜK, we

derive the formula providing the moments relative to its mean,

µn ≡ E
[(

ŜK − 1
)n]

=
(M + 1

M − 1

)n

E
{[MS2

S2
1

− E
(MS2

S2
1

)]n}
, (52)

which shows that the central moments of the SK estimator may be written in terms of the

corresponding central moments of the MS2/S
2
1 ratio. Taking into consideration the scaling
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factor [(M + 1)/(M − 1)]n present in equation (52), it is evident that except for a different

mean and variance, which represent the scale parameters of the probability distribution

function of the estimator ŜK, the normalized higher moments µn/µ
n/2
2 are identical for the

ŜK and MS2/S
2
1 distributions, indicating that their shapes are identical. Note however,

that in both cases, the scale and shape parameters of the distributions are determined by

the unique parameter M , which is the only variable that enters all equations related to the

statistical properties of the SK estimator.

Considering now only the standard statistical parameters that may be derived from the

first four moments, Eqns. 51 and 52 provide

µ′
1 = 1 (53)

µ2 =
4M2

(M − 1)(M + 2)(M + 3)

β1 =
4(M + 2)(M + 3)(5M − 7)2

(M − 1)(M + 4)2(M + 5)2

β2 =
3(M + 2)(M + 3)(M3 + 98M2 − 185M + 78)

(M − 1)(M + 4)(M + 5)(M + 6)(M + 7)

where β1 = µ2
3/µ

3
2 and β2 = µ4/µ

2
2 are directly related to the more commonly used skewness,

γ1 =
√
β1 and kurtosis excess, γ2 = β2 − 3. The first order approximation in 1/M of the

above results give

µ2 ≃ 4

M
+O

( 1

M2

)
(54)

γ1 ≃ 10√
M

+O
( 1

M3/2

)
γ2 ≃ 246

M
+O

( 1

M2

)
,

which are in full agreement with the first order approximation for variance of the SK esti-

mator derived in Paper I, as well as with its asymptotic behavior estimated from numerical

simulations. However, the expressions given by equation (53) are exact for any value of M

as illustrated in Figure 3, which shows a perfect match between them and the corresponding

parameters derived from simulations for 2 ≤ M ≤ 8196.

4. Moment-based approximation of the SK PDF and CF

Deriving the exact expressions of the SK statistical moments is just the first step to-

ward the final goal of determining the cumulative probability function needed to compute
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the tail probabilities we are interested in. Although, as mentioned before, knowing its exact

moments of any order is theoretically equivalent with knowing the probability distribution

function itself, to obtain the latter may involve challenging analytical difficulties without any

guarantee of obtaining a closed form solution. Although this approach may be worth inves-

tigating in a separate study, here we limit ourselves to approximating the SK distribution

to sufficient accuracy that we may derive its tail probabilities for practical applications.

4.1. Pearson’s Probability Curves

In his classic work, Pearson (1985) provided a standard approach to the problem of

finding accurate analytical approximations to the true distribution functions based on its

first four moments derived from observations. Pearson’s approach may be straightforwardly

applied to the problem of finding an approximation to the ŜK distribution, for which we

have the advantage of knowing not only its exact four moments, but also any higher moment

that may be subsequently compared with moments of the approximating distribution as a

consistency check. We start with Pearson’s criterion defined as (Kendall & Stuart 1958, p.

151):

κ =
β1(β2 + 3)2

4(4β2 − 3β1)(2β2 − 3β1 − 6)
, (55)

where, in our case, the exact values of the parameters β1 and β2 are provided by equation (53).

Pearson’s criterion, which in the case of the ŜK distribution turns out to be a ratio between

two polynomials of order 8, is plotted in Figure 4. Three distinct regions, corresponding to

M ∈ [2, 5], M ∈ [6, 23], and M ≥ 24, are discriminated according to Pearson’s classification

as Type I, Type VI, and Type IV, respectively. Since it may be shown that, for M → ∞,

k asymptotically approaches from above the limit k∞ = 25/64, these are the only types

applicable to this problem. Although the cases corresponding to M ≤ 23 are of little interest

in RFI detection due to the large variances of the estimator, we do not rule out the possibility

that this region may be of interest for other applications. For completeness, therefore, we

just mention here that Pearson Types I and VI PDFs correspond to the standard Beta

distributions of first and second kinds, respectively, and refer the reader to the original

comprehensive study of Pearson (1985), which details how the parameters defining these

distributions can be related to the observed moments.



– 16 –

4.2. Pearson Type IV Probability Distribution Function

The most general analytical form of the Pearson Type IV PDF originally introduced by

Pearson (1985), including its non-trivial normalization factor, was given by Nagahara (1999)

as

p(x) =
1

a
√
π

Γ(m+ iν
2
)Γ(m− iν

2
)

Γ(m− 1
2
)Γ(m)

[
1 +

(x− λ

a

)2]−m

Exp
[
− νArcTan(

x− λ

a
)
]
, (56)

where the four parameters m, µ, a, and λ may be expressed in terms of the central moments

of the distribution as (Heinrich 2004):

r =
6(β2 − β1 − 1)

2β2 − 3β1 − 6
(57)

m =
r + 2

2

ν = − r(r − 2)
√
β1√

16(r − 1)− β1(r − 2)2

a =
1

4

√
µ2(6(r − 1)− β1(r − 2)2)

λ = µ− 1

4
(r − 2)

√
µ2β1.

It may be shown by simple derivation that the PDF described by equation (56), which is

defined on the entire real axis, is unimodal and reaches its maximum at

xmode = λ− aν

2m
. (58)

Figure 5 displays the Pearson IV approximations for M = 32, 1024, 4096 and 8192. By

visual inspection , we may conclude that the Pearson IV approximations accurately reproduce

the shapes of the numerically simulated histograms for different orders of magnitude of the

accumulation length. However, to allow a quantitative evaluation of the accuracy of our

approximation, we have evaluated the errors of the fifth central moment of the Pearson IV

curves, computed according the recursive formula (Heinrich 2004)

µ0 ≡ 0; µ1 = 0 (59)

µn =
a(n− 1)

r2[r − (n− 1)]
[−2νrµn−1 + a(r2 + ν2)µn−2],

relative to the exact values provided by equation (52). It was found that the Pearson IV

curves, which are based on the exact first four moments of the ŜK distribution, reproduce

the fifth moment of the true distribution with a relative error not larger than 5% for any
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accumulation length 24 ≤ M ≤ 1000 and approaches zero as M increases beyond this

interval.

To compute the tail probabilities of the Pearson Type IV PDF, one has to compute

the cumulative function P (x),(CF), and the complementary cumulative function, 1− P (x),

(CCF), given by

P (x) =

∫ x

−∞
p(x)dx, (60)

1− P (x) =

∫ ∞

x

p(x)dx,

for which Heinrich (2004) provided the following closed form

P (x) =


P1(m, ν, a, λ, x) = 1 + P0(m, ν, a, λ, x), x < λ− a

√
3

P2(m, ν, a, λ, x) |x− λ| < a
√
3

P3(m, ν, a, λ, x) = 1− P0(m,−ν, a,−λ,−x), x > λ+ a
√
3,

(61)

where

P0(m, ν, a, λ, x) =
a

2m− 1

(
i− x− λ

a

)
F
(
1,m+ i

ν

2
, 2m,

2

1− ix−λ
a

)
p(x)

P2(m, ν, a, λ, x) =
1

1− e−(ν+i2m)π
− ia

iν − 2m+ 2

[
1 +

(x− λ

a

)2]
×

F
(
1, 2− 2m, 2−m+ i

ν

2
,
1 + ix−λ

a

2

)
p(x),

and

F (α, β, δ, z) = 1 +
αβ

1!δ
z +

α(α+ 1)β(β + 1)

2!δ(δ + 1)
z2 + ... =

∞∑
k=0

α(k)β(k)

k!δ(k)
zk

is the Gauss hypergeometric series.

The theoretical convergence of equation (61) is assured by the condition |z| < 1, (Erde-

lyi et al. 1953; Abramowitz & Stegun 1965), though its numerical convergence may be a

delicate matter for a certain combination of the parameters involved (e.g. Michel & Stoitsov

2008), especially for the parameters m and ν shown in Figure 5, whose absolute values are

much larger than unity. However, due to the particularities of the hypergeometric series,

which allows many equivalent representations (Erdelyi et al. 1953), the representation of the

Pearson Type IV CF given equation (61) is not unique, which leaves open the possibility of

finding a more computationally efficient representation tailored for a specific combination of

parameters. For example, more recently, Willink (2008), apparently unaware of the previous
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result provided by Heinrich (2004), found a different representation for the Pearson Type IV

CF, which is

P (m, ν, a, λ, x) =
e−[λ−i(2−2m)]ΦR− 1

e−[λ−i(2−2m)]π − 1
, (62)

where

Φ =
π

2
+ arctan

(x− λ

a

)
,

u = 1−m− i

2
ν,

R =
F (2− 2m,u, u+ 1, eiΦ)

F (2− 2m,u, u+ 1, 1)
.

Although not explicitly addressed by Willink (2008), the representation given by equa-

tion (62) is expressed in terms of the ratio of two hypergeometric series that both have

to be computed on the complex unity circle, |z| = 1, where the hypergeometric series is

convergent if, and only if, the condition

ℜ(δ − α− β) > 0 (63)

is strictly satisfied (Erdelyi et al. 1953; Abramowitz & Stegun 1965). Fortunately, this is

satisfied for any value of M > 6 in our case, since δ − α− β = 2m− 1.

Moreover, since the denominator of the ratio R is a hypergeometric series of argu-

ment unity, and the condition given by equation (63) is satisfied, it immediately follows

(Abramowitz & Stegun 1965, 15.1.20) that

F (2− 2m,u, u+ 1, 1) =
Γ(2m− 1)Γ(u+ 1)

Γ(2m+ u− 1)
, (64)

which simplifies the computation. Furthermore, since for the numerator of R the difference

δ − β = u + 1 − 1 = 1 is a positive integer, the corresponding hypergeometric series is

theoretically assured to terminate after a finite number of terms (Abramowitz & Stegun

1965; Erdelyi et al. 1953), which, disregarding the computational effort involved, should

make it possible, at least in principle, to obtain an exact result.

However, if one wants to avoid the numerical difficulties related to the evaluation of the

hypergeometric series, one may choose alternatively to perform a direct numerical integra-

tion (equation [60]) of equation (56), which may achieve reasonable accuracy with far less

computational effort, especially if tailored integration methods, (e.g. Nagahara 1999), are

employed.



– 19 –

Figure 6 displays the numerical results for M = 6104, computed according to equa-

tion (61), (triangular symbols), equation (62), (square symbols), and by direct integration

of equations (60), (solid line). The hypergeometric series where computed using the hyper-

geom function in Maple 11 (MapleSoft), and the numerical integration was performed using

the int tabulated function in IDL 6.4 (ITT). The plots display both CF (rising) and CCF

(descending) needed to evaluate the RFI thresholds equivalent to normal distribution’s ±3σ

level (probability 0.13499%, horizontal solid line). It may be concluded that, in the region

of interest, all three methods provide similar numerical results. However, it was found that,

for SK values well before the distribution peak, the numerical accuracy of equation (62) is

better than that of equation (61), while the direct numerical integration of CF gives similar

results as equation (62). After the peak of the ŜK distribution, the numerical accuracy of

equation (61) is better than that of equation (62), while the numerical integration of CCF

gives similar results as equation (61). Therefore we conclude that the numerical evaluation

of equation (62) gives a more accurate estimation of the CF and the numerical evaluation

of equation (61) gives a more accurate estimation of the CCF, while the direct numerical

integration of equations (60) gives comparable accurate results at both sides of the ŜK dis-

tribution. The lower and higher thresholds displayed by the two vertical lines have been

estimated as the intersection points of the horizontal and spline interpolation lines. Their

values of 1− 0.073 = 1− 5.6799/
√
6104 and 1+ 0.081 = 1+ 6.3596/

√
6104, respectively, are

compared with the symmetric thresholds of 1 ± 6/
√
6104 (vertical dotted lines) originally

proposed in Paper I. Although this correction seems small in absolute value for the large-M

case, e.g. M = 6104 illustrated in Figure 6, we calculate that, compared with the symmet-

ric thresholds, the new thresholds account for 67% less rejection of valid data as false RFI

occurrences at the upper bound of the distribution, and provide better rejection of true RFI

signals of low signal to noise ratio at the lower bound. In combination, the result is an overall

better performance of the ŜK–based RFI rejection algorithm. The correction becomes more

important for lower M .

5. The connection with time domain Kurtosis

As shown in Paper I, the DC and Nyquist frequency bins obey statistics identical to

the case of a pure time domain signal. The PDF at these particular frequencies is a χ2

distribution with one degree of freedom, given by

p(x) =
1

√
πµ

x− 1
2 e−

x
µ , (65)

for which the expected value of the spectral variability defined by equation (2) is 2. This

is the direct consequence of the purely real nature of the DFT coefficients at these fre-
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quency bins. Thus, radio spectrograph designs based on FIR filters produce data that, while

amenable to a kurtosis-based RFI algorithm, require similar considerations to optimize the

thresholds for rejection. The use of a time domain Kurtosis (TDK) estimator for the purpose

of RFI mitigation has been previously proposed in several studies (Ruf, Gross, & Misra 2006;

Johnson & Potter 2009), where the well known variance of the estimator (∼ 24/M ; Kendall

& Stuart 1958), was employed to derive the detection thresholds needed to discriminate the

RFI contamination against a Gaussian background. However, apparently no efforts have

been made to investigate the statistical nature of the TDK estimator. We now investigate

this as a necessary step toward improving the performance of the time domain Kurtosis

estimator.

The derivation of the statistical properties of an SK estimator based on the MS2/S
2
1

ratio in the case of a FIR filter channelization may be straightforwardly obtained using the

same framework employed in the previous section for the DFT based channelization, starting

from the observation that the PDF given by equation (65) is also a GGD,

p(x) = f(x, µ, 1/2, 1). (66)

The first three raw moments of this distribution, µ′
1 = µ/2, µ′

2 = 3µ2/4, and 15µ3/8, may

be entered in equation (19) to directly prove that the ratio MS2/S
2
1 and S2

1 are linearly

uncorrelated. This result, however, should have been expected in this case as a direct

consequence of the linear independence of any two moments of a gaussian distribution, which

is a fundamental statistical property (Kendall & Stuart 1958) defining such a distribution.

Therefore, the moments of the ratio MS2/S
2
1 may be computed using equation (26), once the

moments of the (S1/M)2 and S2/M are derived for the particular case of the f(x, µ, 1/2, 1)

GGD.

Since the distribution given by equation (66) is a GGD with p = 1, d = 1/2 and a = µ,

Eqns. 40 and 43 provide

E
[(S1

M

)2]
=

Γ(M
2
+ 2n)

Γ(M
2
)

( µ

M

)2n

(67)

E
(S2

M

)
=

(µ2/M)n

(
√
π)M

∂n

∂tn

[ n∑
r=0

Γ(
1

2
+ 2r)

tr

r!

]M ∣∣∣
t=0

,

which entered into equation (26), give

E
[(MS2

S2
1

)n]
=

MnΓ(M
2
)

(
√
π)MΓ(M

2
+ 2n)

∂n

∂tn

[ n∑
r=0

Γ(
1

2
+ 2r)

tr

r!

]M ∣∣∣
t=0

. (68)

Therefore,

E
(MS2

S2
1

)
=

3M

M + 2
, (69)
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which, asymptotically tends to 3, as expected, since, for a set of time domain samples obeying

a zero-mean normal distribution, the MS2/S
2
1 ratio is a biased estimator of the distribution

Kurtosis.

Equation 69 may be used to define an unbiased SK, estimator for the DC and Nyquist

frequencies of a DFT–based spectrograph, or for any frequency bin of a FIR-filter-based

spectrograph as

K̂ =
M + 2

M − 1

(MS2

S2
1

− 1
)
, (70)

which has an expectation of 2 for an RFI-free time domain input.

The general formula providing the central moments of this estimator,

µn ≡ E
[(

K̂ − 2
)n]

=
(M + 2

M − 1

)n

E
{[MS2

S2
1

− E
(MS2

S2
1

)]n}
, (71)

may be now used to write down the first four standard moments of its distribution in terms

of the accumulation length M as

µ′
1 = 2 (72)

µ2 =
24M2

(M − 1)(M + 4)(M + 6)

β1 =
216(M − 2)2(M + 4)(M + 6)

(M − 1)(M + 8)2(M + 10)2

β2 =
3(M + 4)(M + 6)(M3 + 213M2 − 474M + 368)

(M − 1)(M + 8)(M + 10)(M + 12)(M + 14))
,

with first order approximations in 1/M given by

µ2 ≃ 24

M
+O

( 1

M2

)
(73)

γ1 ≃ 6
√
6√

M
+O

( 1

M3/2

)
γ2 ≃ 540

M
+O

( 1

M2

)
.

The Pearson’s criterion (equation [55]) shows in this case that the K̂ distribution may

be approximated by a Pearson Type IV curve for any M ≥ 46, and, therefore the parameters

given by equation (72) may be entered in equation (57) to obtain its probability distribution

function and compute the appropriate RFI detection thresholds. Figure 7 displays the PDF

of the estimator K̂ corresponding to an accumulation length of M = 12208, chosen to
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match the same frequency and time resolution of a DFT-based spectrograph (see Paper

I for a more detailed motivation of this choice). One may notice that, despite its large

accumulation length, the estimator K̂ still has a noticeable skewness, which needs to be

properly considered in order to obtain the false alarm probability levels equivalent to ±3σ

for a normal distribution. Compared with the symmetric thresholds of 2± 3
√

24/12208, the

new thresholds would reject 71% less valid data at the higher end of the distribution, while

the shifted lower threshold would improve the sensitivity of RFI detection at the lower end

of the distribution.

6. Conclusion

In this paper, we have investigated the statistical properties of the SK estimator and de-

termined analytical expressions for its PDF and CF with the goal of improving the selection

of thresholds for RFI discrimination. An important result is that we have proved (equa-

tion [19]) that the covariance of m′
2/m

′2
1 with m′2

1 is zero, which assures the key property of

the SK estimator, i.e. that ŜK is independent of RF power level (S1). We also improved

the definition of ŜK (equation [50]) relative to its original definition (equation [1]) to form

an unbiased estimator, and introduced a TDK unbiased estimator (equation [70]) to be used

for RFI detection at the DC and Nyquist frequency bins of a DFT-based spectrograph, or

at any frequency bin of a FIR–based spectrograph. We have derived closed form analytical

expressions for the complete set of the central moments of the SK and TDK estimators (equa-

tions [52] and [71]), and established a common framework that allows accurate estimation

of the RFI thresholds based on the first four standard moments of their probabilities distri-

butions (equations [53] and [72]), which, for any accumulation length M ≥ 24 and M ≥ 46,

respectively, are used to compute the four parameters (equation [57]) that completely deter-

mine the Pearson IV approximations (equation [56]) of their true PDFs. Based on these four

parameters, which depend only on the accumulation lengthM , the CF and CCF of the SK or

TDK estimators may be computed by using either the closed forms expressions provided by

equations (62) and (61), respectively, or by direct numerical estimation of the integrals given

by equation (60). Compared to the symmetrical thresholds originally suggested in Paper

I, the procedure described in this study properly takes into account the intrinsic skewness

of the probability density functions of the SK and TDK estimators, which provides overall

better RFI detection performance for either small or large accumulation lengths.
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Fig. 1.— Contour plot of the Monte Carlo generated joint distribution of N = 327, 520 pairs

of random variables representing the squared mean, (S1/M)2 and mean of squares S2/M

for sets of M = 6104 random deviates extracted from an exponential distribution of mean

µ = 1. The contour levels are 10% apart, and the observed means ⟨(S1/M)2⟩ and ⟨S2/M⟩,
as well as the observed linear correlation coefficient r are indicated on respective means as

coordinates.
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Fig. 2.— Contour plot of the Monte Carlo generated joint distribution of N = 327, 520 pairs

of random variables representing the squared mean, (S1/M)2 and the ratio of the square

of mean and the squared mean MS2/S
2
1 for sets of M = 6104 random deviates extracted

from an exponential distribution of mean µ = 1. The contour levels are 10% apart, and the

observed means ⟨MS2/S
2
1⟩ and ⟨S2/M⟩, as well as the observed linear correlation coefficient

r are indicated.
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Fig. 3.— Comparison between the standard moments, (mean–crosses; variance–diamonds;

skewness–triangles, kurtosis excess–squares), of the numerically simulated SK distributions

and their theoretical expectations (solid lines), for different accumulation lengths (M =

2, 4 . . . 8196). Each individual SK distribution corresponding to a particular value of M has

been built out of 1, 000, 000 sums S1 and S2. For any value of M , the match of the theoretical

expectations and observed random deviates is evident. Note that for M = 2 the sample and

theoretical kurtosis excess do not appear on the plot due to their negative values,(−0.87 and

−0.86 respectively).
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Fig. 4.— Pearson’s criterion for M ∈ [2, 50]. The two horizontal lines at κ = 0 and κ = 1

are used to discriminate three distinct regions k < 0, k > 1 and 0 < k < 1, corresponding

to the types I, VI, and IV, respectively, which are separated by the two vertical lines lying

between M = 5 and M = 6 and between M = 23 and M = 24.
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Fig. 5.— Comparison between the SK distributions (black lines) obtained by numerical

simulation for different accumulation lengths M and their corresponding Pearson Type IV

approximations (red lines). The four Pearson Type IV parameters computed according to

equation (57), m, ν, λ, and a are displayed on each plot.
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Fig. 6.— Numerical results for M = 6104, computed according to equation (61), (trian-

gles), equation (62), (squares), and by direct integration of equations (60), (solid line). The

plot displays both the integral probabilities P (x) (CF-rising curves) and complementary

probabilities 1− P (x) (CCF-descending curves) needed to evaluate the RFI thresholds cor-

responding to a symmetric standard false alarm probability level of 0.13499% (horizontal

solid line). The lower and upper thresholds displayed by the two vertical lines have been

estimated as the intersection points of the horizontal and numerical integration lines. Their

values of 1 − 0.073 = 1 − 5.6799/
√
6104 and 1 + 0.081 = 1 + 6.3596/

√
6104, respectively,

have to be compared with the symmetric thresholds of 1 ± 6/
√
6104 (vertical dotted lines)

originally proposed by Nita et al. (2007).
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Fig. 7.— The K estimator probability distribution function for a FIR filter spectrograph

having an accumulation length of M = 12208 spectra. The two solid vertical lines, having

the ordinates 2− 0.125 and 2+ 0.143, represent the RFI detection thresholds corresponding

to a symmetric standard false alarm probability level of 0.13499%, computed using the same

method as in Figure 6. These thresholds have to be compared with with the less accurate

symmetric thresholds of 2± 3
√
24/12208 = 2± 0.133 (vertical dotted lines).


