
 Download Studio 3T from

https://studio3t.com/download/

Request a student license from the company.

Expect email with a license key from the company.

Start up Studio 3T.

In Studio 3T go to Help > License Manager > Import New License

Copy and paste the license key from the email into the window and click OK.

NOTE: You have to copy "the whole thing" not just the encrypted part. From --- to ---

 Register the Server

Wait for a user name and for password information from your professor. This is YET ANOTHER

password.

Click Connect

Click New Connection

Invent a name for your connection. How about mongo632?

Your server is mongodb.njit.edu (not localhost).

Then click on the Authentication tab.

Choose Authentication Mode:

Basic

Type in the user name and password above in red.

I think the authentication database is the same as your username. Not 100% sure. Still checking.

Click on Save (if there is a Save) and then click on Connect.

Now right click on your database. (Next to the picture of a disk stack.)

Click on Open Intellishell.

It should look something like this:

Now you are connected and can insert data or query data.

 Reconnect: If you already have a server registered, right click on the server connection

and click Refresh All. See below.

 Next we need to create a collection.

A collection (of documents) corresponds to a table in MongoDB.

There should be a database with your user name. For me it is geller.

Under it there should be Collections.

Right click on Collections.

Click on Add Collection

Type in a name. I used cafes.

Click on Create.

Right click on cafes.

Click on Open in Intellishell

Now it should look like this. It will look a little simpler for you, because I have some older tabs

already.

The first query is already in the query editor. It corresponds to a

select * from cafes

However, your database is still empty.

Click on the second blue arrow, and you will see no data is returned.

 Now we need to insert some data into this collection.

We start simple.

Type this

db.cafes.insert({"Name" : "Best Coffee Cafe"})

and hit the second blue arrow.

Now move the mouse over the find statement and click the second right arrow.

Note that the system added an object ID _id

Adding one at a time is tiring. Of course you can import from a file. But we get to that later. For

now we will do a multi-insert.

db.cafes.insertMany(

[{"Name" : "Dream Cafe"},

{"Name" : "My Favorite Cafe"},

{"Name" : "Cafe Europe"},

{"Name" : "French Flavor"}])

Click the second blue button.

Now move the mouse over the find statement and click the second right arrow.

You should see five simple documents.

Completing the CRUD operations: We will do a simple delete and two simple updates.

 Simple delete

Unfortunately the Cafe Europa closed and we have to delete it.

db.cafes.remove({"Name" : "Cafe Europa"})

Second blue arrow.

It says it removed "0". That is because I mistyped Europe.

Let's try this one more time. This time correctly.

db.cafes.remove({"Name" : "Cafe Europe"})

Sec. Blu. Arr.

Now 1 was removed.

Move cursor to the first row.

Second blue arrow.

Cafe Europe is gone.

Now click on Count Documents on the bottom of the Studio 3T.

It tells you that it found four documents.

Of course you can find this also with a command. We will do that later.

 Now we will do two simple updates.

First, the French Flavor cafe was taken over by the British.

db.cafes.update({"Name" : "French Flavor"}, {$set: {"Name" : "British Flavor"}})

As usual we check the whole database to make sure this really happened.

Now we will do a more sophisticated update. Remember there is no schema. So we can make

the structure more complicated by an update.

We are going to add a style key:value pair for the Dream Cafe.

db.cafes.update({"Name" : "Dream Cafe"}, {$set: {"Style" : "Bistro"}})

The result:

We can even do this with a nested document.

So let's give the Dream Cafe a basic address first.

db.cafes.update({"Name" : "Dream Cafe"},

{$set: {"Address" : {"City" : "New York", "State" : "New York"}}})

But we would like to have a street! So we need to do one more update.

db.cafes.update({"Name" : "Dream Cafe"}, {$set: {"Address" : {"Number" : "255", "Street": "Fifth

Ave.", "City" : "New York", "State" : "New York"}}})

With this we have covered the basic CRUD operations.

However… JSON/MongoDB also work with arrays. We need to do the CRUD operations now

for arrays.

 Array Insert.

A cafe offers different kinds of coffee.

For simplicity we create a new cafe.

db.cafes.insert({"Name" : "Morning Glory",

"Drinks" : ["Cappuccino", "Espresso", "Mocha"]})

Now we want to

 Find all the drinks offered at Cafe Morning Glory

For this we have to refine the find() command by providing a "projection" like in SQL.

db.cafes.find({"Name" : "Morning Glory"}, {"Drinks" : 1})

The "1" means TRUE. Return this.

Note that the _id is returned even though I did not ask for it.

I can suppress the _id:

db.cafes.find({"Name" : "Morning Glory"}, {"Drinks" : 1, "_id" : 0})

Not surprisingly, 0 means FALSE.

Something surprising happens if I set Drinks to 0.

I DID NOT ASK FOR Name !!!

Even more surprising is this error message:

db.cafes.find({"Name" : "Morning Glory"}, {"Drinks" : 0, "_id" : 1})

It appears that you cannot mix "0" and "1" in one single projection operation!!!

 Remove all the Drinks (and recreate the drink list for further use)

Next we want to remove the drink list completely.

Let's start with a warning:

db.cafes.remove({}) REMOVES ALL DATA FROM cafes

db.cafes.drop() REMOVES EVERYTHING

We don't want to do those things!!!

We want to remove one key/value pair only.

It does not have to be an array. It just happens to be an array.

db.cafes.update({"Name" : "Morning Glory"},

{$unset: {"Drinks" : 1}})

We need to recreate the previous structure now to continue with experimenting.

db.cafes.update({"Name" : "Morning Glory"},

{$set: {"Drinks" : ["Cappuccino", "Espresso", "Mocha"]}})

 Remove only one Drink (and recreate the drink list)

This is ambiguous. Do we want remove a specific drink? Or do we want to remove the first drink

in the list?

Remove a specific drink from a list:

db.cafes.update({"Name" : "Morning Glory"},

{$pull: {"Drinks" : {$in: ["Espresso"], }}})

While doing this another surprise: Some error messages appear in the result field.

Some pop out in their own window.

And some errors cause no error message at all.

And there was a wrong example in the documentation. There were no [] in the example.

 Remove the first drink from the list:

Now we remove the first drink from the list.

db.cafes.update({"Name" : "Morning Glory"},

{$pop : {"Drinks" : -1 }})

Note that Cappuccino is gone!

To $pop from the end of a list you need to do

: 1

instead of

: -1

 Add one more Drink to the end of the list.

I recreated the original list of Drinks. This is not shown here. I put "Flat White" at the end.

db.cafe.update({"Name" : "Morning Glory"},

{$push: {"Drinks" : "Flat White"}})

I typed cafe instead of cafes. NO ERROR MESSAGE. Now correct:

db.cafe.update({"Name" : "Morning Glory"},

{$push: {"Drinks" : "Flat White"}})

 Simplest aggregate.

How many documents are in the database?

db.cafes.find({}).count()

Previously we found this in the user interface.

 Sorting data.

For this we need some new data.

db.cafes.insertMany(

[{"Name" : "Dream Cafe 2", "Rank" : "4"},

{"Name" : "My Favorite Cafe 2", "Rank" : "2"},

{"Name" : "Cafe Europe 2", "Rank" : "1"},

{"Name" : "French Flavor 2", "Rank" : "3"}])

Just making sure that this worked:

Well, that showed us only one element.

Let's look for all of them:

db.cafes.find({"Rank" : {$in: ["1", "2", "3", "4"]}})

We are finally getting to the actual sorting.

db.cafes.find().sort({Rank : -1})

This command sorts in DESCENDING ORDER

db.cafes.find().sort({Rank : 1})

This command sorts in ASCENDING ORDER

I AM CHEATING on the above output.

There's one big problem: All the above sort even elements that have no Rank at all.

I just did not show the complete output!

So we need to say we want only things with Rank.

But for that we have to have pairs

Rank: SOMETHING

And that requires that we use regular expressions.

Remember regular expressions?

So this works!

db.cafes.find({"Rank" : {$regex : /[0-9]/}}).sort({Rank : 1})

This means: Find me anything that has a Rank, and I don't know what the Rank is, as long as it

is a number between 0 and 9. And after you find these, sort them in ascending order.

And this time I was not cheating.

ONLY these four elements were returned.

Note that this query did NOT work with [1, 2, 3, 4] because the numbers are given as strings!

So "1" is not 1.

Let's experiment with number data.

db.cafes.insertMany(

[{"Name" : "Dream Cafe 3", "Rank" : 4},

{"Name" : "My Favorite Cafe 3", "Rank" : 2},

{"Name" : "Cafe Europe 3", "Rank" : 1},

{"Name" : "French Flavor 3", "Rank" : 3}])

db.cafes.find({"Rank" : {$in: [1, 2, 3, 4]}})

 What if I want ALL documents that have a "Rank" and I don't care at all what the

value is?

db.cafes.find({"Rank" : {$exists : 1}})

or

db.cafes.find({"Rank" : {$exists : true}})

This will return the ranks as numbers and the ranks as strings.

The window is too small to copy all of them so I am doing a copy and paste of the content here:

{
 "_id" : ObjectId("5ab2b72b280bea0f5ca9690a"),
 "Name" : "Dream Cafe 2",
 "Rank" : "4"
}
{
 "_id" : ObjectId("5ab2b72b280bea0f5ca9690b"),
 "Name" : "My Favorite Cafe 2",
 "Rank" : "2"
}
{

 "_id" : ObjectId("5ab2b72b280bea0f5ca9690c"),
 "Name" : "Cafe Europe 2",
 "Rank" : "1"
}
{
 "_id" : ObjectId("5ab2b72b280bea0f5ca9690d"),
 "Name" : "French Flavor 2",
 "Rank" : "3"
}
{
 "_id" : ObjectId("5ab2ba07280bea0f5ca9690e"),
 "Name" : "Dream Cafe 3",
 "Rank" : 4.0
}
{
 "_id" : ObjectId("5ab2ba07280bea0f5ca9690f"),
 "Name" : "My Favorite Cafe 3",
 "Rank" : 2.0
}
{
 "_id" : ObjectId("5ab2ba07280bea0f5ca96910"),
 "Name" : "Cafe Europe 3",
 "Rank" : 1.0
}
{
 "_id" : ObjectId("5ab2ba07280bea0f5ca96911"),
 "Name" : "French Flavor 3",
 "Rank" : 3.0
}

 EXPERIMENT WITH MAPREDUCE

Mapreduce Figure for explanation:

The basis of the figure is from here, but I added missing details!

Really there are two steps here.

The MAP function that you write gives you

{A123, 500}

{A123, 350}

{B212, 200}

Then the system, transparently to you, creates

{A123, [500, 250]}

{B212, [200]}

Note: A123 is a VALUE

here.

Note: A123 is a KEY here.

Note: A123 is again a

VALUE here.

Map Reduce Example from

docs.mongodb.com/manual/tutorial/map-reduce-examples/

db.skudata.insertMany(

 [{cust_id: "abc123",

 status: 'A',

 price: 25,

 items: [{"sku" : "mmm", "qty" : 5 , "price" : 2.5 },

 {"sku" : "nnn", "qty" : 5, "price" : 2.5}]},

{cust_id: "def456",

 status: 'A',

 price: 30,

 items: [{"sku" : "mmm", "qty" : 6 , "price" : 4.5 },

 {"sku" : "nnn", "qty" : 7, "price" : 5.5}]},

{cust_id: "abc123",

 status: 'A',

 price: 40,

 items: [{"sku" : "mmm", "qty" : 15 , "price" : 6.5 },

 {"sku" : "nnn", "qty" : 20, "price" : 7.5}]}])

var mapFunction1 = function() {

 emit(this.cust_id, this.price);

 };

var reduceFunction1 = function(keyCustId, valuesPrices) {

 return Array.sum(valuesPrices);

};

db.skudata.mapReduce(mapFunction1, reduceFunction1, {out: "mapreduceexample" })

Now do a Refresh All on your connection.

You will see a new collection: mapreduceexample.

Customer abc123 had two orders with prices: 25 and 40, which correctly adds up to 65.

Customer def456 had one order with price: 30.

I made a mistake. The prices of items don't all add up to the prices of the order.

 Second example:

var mapFunction2 = function () {

 for (var idx = 0; idx < this.items.length; idx++) {

 var key = this.items[idx].sku;

 var value = {count: 1, qty: this.items[idx].qty };

 emit(key, value);

 }

 };

var reduceFunction2 = function(keySKU, countObjVals) {

 reduceVal = {count: 0, qty: 0};

 for (var idx = 0; idx < countObjVals.length; idx++){

 reduceVal.count += countObjVals[idx].count;

 reduceVal.qty += countObjVals[idx].qty;

 }

 return reduceVal;

 };

var finalizeFunction2 = function (key, reducedVal) {
 reducedVal.avg = reducedVal.qty/reducedVal.count;
 return reducedVal;
 };

db.skudata.mapReduce(mapFunction2,
 reduceFunction2,
 {
 out: { merge: "mapreduceexample2" },
 finalize: finalizeFunction2
 }
)

 Example 3: Global Maximum with MapReduce

Trying to implement my MAX example next.

db.numdata.insertMany(
[{personid : "person1", salary : 20000},
{personid : "person2", salary: 50000},
{personid : "person3", salary: 40000}])

MAP

{data : {personid : "person1", salary : 20000}}
{data : {personid : "person2", salary : 50000}}
{data : {personid : "person3", salary : 40000}}

var mapFunction3 = function() {
 emit("data", this);
 };

arrayOfPersons = [] // I should not need that. But I think it helped.

var reduceFunction3 = function(data, arrayOfPersons) {
 maxPair = {person: "none", max : 0};

 for (var idx = 0; idx < arrayOfPersons.length; idx++) {
 if (arrayOfPersons[idx].salary > maxPair.max)
 {maxPair.max = arrayOfPersons[idx].salary;
 maxPair.person = arrayOfPersons[idx].personid;}
 }
 return maxPair;
};

db.numdata.mapReduce(mapFunction3,
 reduceFunction3,
 {
 out: { merge: "findmax" },
 }
)

 NOW WE WANT TO WORK WITH A REAL, BIG DATA SET

Go to (below) to download the customers data set.

https://www.dropbox.com/s/f0crtay1kb7zhe1/Customers.json?dl=0

It will complain that it is too large to open, but eventually I was able to download it.

(You might need a free Dropbox account…. Not sure. I have one.)

Import the collection.

https://www.dropbox.com/s/f0crtay1kb7zhe1/Customers.json?dl=0

Import in JSON Format.

Click on +

Navigate to the place where you saved the download file. (Better to move it into a different

directory than Download.)

Click Next (as often as needed)

Click Start Import

Now do this:

db.Customers.find({})

This shows 3725 rows of data. Presumably the whole database.

db.Customers.find({}).limit(1)

This shows 1 (the first) element. 74 rows.

db.Customers.find({}).limit(2)

shows 2 elements as expected.

db.Customers.find({}).count()

returns 70000

db.Customers.find({“Name.Last Name” : “Johnston”},

{“Name.First Name” : NumberInt(1),

“Name.Last Name” : NumberInt(1)}

Returns first name and last name for all Johnstons.

The above shows the _id ALSO.

To get rid of this, write:

db.Customers.find({“Name.Last Name” : “Johnston”},

{“Name.First Name” : NumberInt(1),

“Name.Last Name” : NumberInt(1)

“_id” : NumberInt(0)})

Now we will sort all Johnston’s by first name.

db.Customers.find({“Name.Last Name” : “Johnston”},

{“Name.First Name” : NumberInt(1),

“Name.Last Name” : NumberInt(1)

“_id” : NumberInt(0})).sort({“Name.First Name” : NumberInt(1)})

