COMPUTERS &
EDUCATION

PERGAMON Computers & Education 31 (1998) 89-103

A low-tech, hands-on approach to teaching sorting
algorithms to working students

J. Geller®*, R. Dios®

4Department of Computer and Information Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
bDepartment of Mathematics, New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract

This work focuses upon identifying the educational effects of “activity oriented” instructional
techniques. We seek to determine which instructional methods produce enhanced learning and
comprehension. Specifically we discuss the problem of learning sorting algorithms, a major topic in every
Computer Science curriculum. We present a “low-tech hands-on” teaching method for sorting
algorithms. We stress that there is no need to introduce the World-Wide Web or other high technology
tools into this scenario. Primary targets for our teaching approach are part-time students that have little
time for homework assignments, because they are supporting families and/or have full time jobs. In this
paper we also report the results of a statistical evaluation of our approach. The application of our
“hands-on” technique to teaching sorting algorithms produces a dramatic improvement of students’ test
scores. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the core subjects in introductory Data Structures and Algorithms classes is sorting.
The students are exposed to a battery of increasingly complicated sorting techniques. The
current state-of-the-art in teaching algorithms in general and sorting algorithms in particular
stresses the use of graphical and interactive methods (Maxim & Elenbogen, 1987; Scanlan, 1987,
Stone, 1989; Sachdev, Nagpal & Adu, 1990). In the HotJava browser (HOTJAVA, 1995) to the
World-Wide Web (WWW) three sorts (Quicksort, Bubble Sort, and Bi-directional Bubble Sort)
are actually built in as demonstrations, and students appear to like those very much. Still
“chalk and talk (Transformation of Learning, 1994) is the primary way of communicating this
kind of knowledge to students, except in distance education (Adams, Barker, Gal-Ezer,

* Corresponding author. Tel.: (973) 596-3383, e-mail: geller@homer.njit.edu.

0360-1315/98/$19.00 © 1998 Elsevier Science Ltd. All rights reserved.
PII: S0360-1315(98)00021-9

90 J. Geller, R. Dios | Computers & Education 31 (1998) 89-103

Lawhead, Maly et al., 1997). We are still a couple of years away from classrooms where every
student can run a Web browser during class to understand a sorting algorithm. Indeed, we are
even a couple of years away from every teacher having Web access in the classroom where he
is teaching.

Looking at results of Recker and Pirolli (1992) no clear picture emerges whether we even
want to offload teaching to the Web. As they report ‘...higher ability subjects using the
hypertext environment improved and made significantly less errors when programming new
concepts while lower ability subjects did not improve and made errors. Meanwhile, subjects
using the control environment did not show this ability-based difference (p. 382)”. In other
words, the Web approach to teaching seems to widen the gap between good and bad students.
As a consequence of such results we have turned to a decidedly low-tech approach towards
teaching sorting algorithms, based on the maxim of “learning by doing”.

The purpose of this article is to investigate the claim that low-tech approaches to teaching
computer science concepts can result in considerable improvements of students’ scores. This
challenges the current wisdom that high-tech tools such as the World-Wide Web might be
necessary to improve computer science education. A 100 level college course for computer
science majors is used as the basis for this investigation. We are specifically interested in
applying our techniques to courses in which a majority of the registered students also have
substantial work and family care commitments. These students need to make optimal use of
class time, since they have very little time for studying and homework assignments.

In Section 2 all the concepts of computer algorithms that are necessary for an understanding
of this paper are explained in detail. Section 3 shows in detail how we have implemented
Learning by Doing for Sorting Algorithms into a class room setting. In Section 4 we respond
to possible criticisms, e.g., that modern Web-based approaches are necessarily better than our
approach. Section 5 shows how the experimental data of students was statistically evaluated.
Section 6 contains brief conclusions.

2. Sorting algorithms and their complexity

As mentioned before, one of the core subjects in introductory Data Structures and
Algorithms (Carrano, 1995) is sorting. The students are exposed to increasingly complicated
sorting techniques. In the beginning comes usually Selection Sort, which is easy to understand,
but relatively slow. Then they advance to more complicated but faster sorts.

The speed of an algorithm is described by the “big-Oh notation™. It is assumed that an
algorithm A receives input of the size N. For a sort that would mean that there are N numbers
to be sorted. If we then say that algorithm A has the time complexity O(N), that means that
the runtime of A is limited by c*N, where ¢ is a constant. The big-Oh notation assumes the
“worst possible data” and does not exclude the possibility that the program might run faster
on some data. In addition, a finite number of exceptions may be allowed. A simple sort such
as Selection Sort has a complexity O(N?). That means that it takes less than ¢*N? run time for
all but finitely many N. Selection Sort has a complexity of O(N?) under all circumstances even
if the numbers are already sorted!

J. Geller, R. Dios { Computers & Education 31 (1998) 89-103 91

0 1 2 3 4

18 112 (22 |17 |11

Fig. 1. Initial unsorted array of numbers with position numbers.

Students then advance to better O(N?) algorithms, such as Bubble Sort and Insertion Sort.
These two algorithms have O(N) best case behavior, even though.they remain O(N?) in
the worst case. That means that Bubble Sort runs in O(N) time in the special case where
the data happens to be already sorted. In the worst case, however, Bubble Sort still needs
O(N?) time. Both Bubble Sort and Insertion Sort are more difficult to understand than
Selection Sort.

2.1. Bubble sort

To make this paper more concrete and self contained we will demonstrate the functioning of
Bubble Sort with an example. Assume that the following numbers are given:

18 12 22 17 11

These numbers are stored in a way so that they are directly accessible by position numbers.
Graphically, we express this as shown in Fig. 1. The number 18 is at position 0, the number 12
is at position 1, etc. In later following figures we will omit the position numbers.

This kind of structure is basic in computer science and is called array of integers. What we
would like to get as a result of running the Bubble Sort algorithm is shown in Fig. 2.

That is, we want the same array with the numbers sorted in increasing order. The basic idea
of Bubble Sort is that we compare two consecutive numbers. If they are already in correct
relative order, we leave them alone. If the second number is smaller than the first number then
we exchange those two numbers. In our case, 18 and 12 are in wrong relative order, so we
exchange them. We mark the two numbers that we are comparing by arrows, as shown in
Fig. 3.

This “compare and exchange step” is repeated once through the whole array. The numbers
18 and 22 are already in correct order. The numbers 17 and 22 are not in correct order, so we
swap them. Finally, 22 and 11 are not in correct order, so we swap them. These steps are all
shown in Fig. 4.

At this stage, we are guaranteed that the largest number in the array is at the last position.
Furthermore, that means that the largest number is at the absolutely correct position and never
needs to be moved again. We may therefore ignore it for the rest of this analysis. (For a proof
of these facts, the reader is referred to any of a large number of Data Structures and

11 12 |17 [18 |22

Fig. 2. Desired resuit: the sorted array.

92 J. Geller, R. Dios | Computers & Education 31 (1998) 89-103

i

18 {12 122 (17 |11

X

12 |18 (22 |17 |11

Fig. 3. Initial sorting step: 18 and 12 are “swapped”.

Algorithms text books.) Ignoring the last number means that we now repeat the same process
on the following subarray (Fig. 5).

There is one more twist to Bubble Sort. If it is possible to traverse through the array once,
without ever swapping any two numbers, then the array is obviously already sorted. Checking
for this is easy, and that makes Bubble Sort an O(N) sort in the best case. It should now also
be clear where the name Bubble Sort is coming from. If we draw the array vertically, the large
“heavy” numbers are sinking down to the bottom, the “light” small numbers are bubbling up
to the top.

Finally, after studying Selection Sort, Bubble Sort and Insertion Sort, students are
introduced to Merge Sort and Quicksort which are quite difficult to understand, but which
have a very good average complexity of O(N log N). Merge Sort even has a worst case
complexity of O(N log N). In the theory of algorithms this is considered to be the best possible
complexity for a sorting algorithm based on comparisons.

2.2. Quicksort

Even though Quicksort is algorithmically much more complex than most of the common
sorting algorithms, we have found it easy to extend our methodology to it. Quicksort consists

L
12 |18 |22 |17 |11

12 {18 |17 22 |11

12 |18 {17 11 22

Fig. 4. End of first run through the array.

J. Geller, R. Dios | Computers & Education 31 (1998) 89103 93

P
12 18 [17 11

Fig. 5. Beginning of the second run through the (sub)array.

of two parts (Carrano, 1995). One part is Quicksort proper which is very short and generally
considered to be simple, as it consists mostly of two recursive calls to Quicksort and one
additional call to a function named Partition. All the conceptual difficulties for students are
hidden in Partition.

Partition takes an array of numbers and rearranges it such that after processing every
number there will be three subarrays of numbers called S1, Pivot, and S2. Pivot contains a
single number. S1 consists of all the numbers of the original array that are smaller than Pivot.
S2 consists of all the numbers of the original array that are larger than Pivot. These three
subarrays are arranged in the order S1-Pivot—S2. Let us assume that the array in Fig. 6 shows
the initial data passed to Partition. It is a common assumption to make the first number in the
array (here 18) the Pivot (Carrano, 1995).

Fig. 7 shows the results of the partitioning process. S1 consists of the numbers 13 and 12. S2
consists of the numbers 24 and 22. The Pivot, 18, comes after S1 and before S2. The “trick™ of
Quicksort is that now the Pivot is at the correct position, that is, at the position where it will
be eventually in the sorted array (Carrano, 1995). Now S1 and S2 can be sorted by the two
recursive calls to Quicksort that were previously mentioned.

It is not our intention to teach Quicksort in this paper, and therefore we will not go through
every single step of how Partition transforms Fig. 6 into Fig. 7. However, it was necessary to
introduce the basics of Quicksort, so that it becomes clear that our methodology (described
below) applies equally to simple sorting algorithms and complex sorting algorithms.

3. Our approach to learning by doing

The claims made in this paper are (1) that learning by doing can be integrated into a
normal class room setting of teaching sorting; (2) that learning by doing results in enhanced
learning and comprehension; and (3) that high technology tools such as the World-Wide Web
are not necessary to improve class room performance. As this last point goes against the
currently accepted wisdom, we will devote Section 4 to refute possible criticisms of our
approach.

Claim (1) was proven by doing it. The students of a “normal” CIS 114 class at NJIT were
asked to bring small index cards to class. Then they had to draw an “array” of empty boxes
onto a sheet, and write numbers onto the index cards. The sorting algorithms were simulated

18 {12 22 (24 [13

Fig. 6. The initial array for Partition.

94 J. Geller, R. Dios | Computers & Education 31 (1998) 89-103

—S1-- PIV --S2--

13 {12 (18 [24 [22

Fig. 7. The result of applying Partintion to the array of Fig. 6.

by placing the unsorted numbers into the array of boxes, and then step by step performing the
sorting steps shown on the blackboard. We will now describe in more detail the setup that was
used.

3.1. Lecture situation

The teaching of sorting algorithms started immediately after the midterms had been graded.
All students were divided into two groups, A and B, based on their midterm grades. The
division was performed in such a way that every student belonged to one of the two groups,
that the group sizes were identical, and that the sums of midterm points of both groups were
nearly identical. (By coincidence, we came up with two groups that indeed had identical point
sums.) There were 13 students in each group, and the total number of points on the midterm
in each group was 762. The reason for this division was to create an unbiased distribution of
the students.

Over the course of two weeks, six sorts, Radix Sort and the five sorts mentioned above, were
taught as follows. All students recorded one example of each sort in their notebooks. However,
students of group A also hand-simulated Selection Sort, Insertion Sort, and Merge Sort with
their paper arrays. This exercise was interleaved with their recording of the sort examples in
their notebooks.

Students of group B would simulate Bubble Sort, Quicksort, and Radix Sort with their
paper arrays, again interleaved with recording corresponding examples in their notebooks. In
this way, both groups of students were exposed to the “lecture-only” learning situation for
three sorts, and to the “learning by doing situation” for three other sorts.

3.2. Exam

A week before the final exam, students were informed that sorting would be a major issue
on their finals. When the exams were designed, they consisted of nine questions. Six of them
were sorting questions, one for each sort. In every one of these questions students were given
an array of numbers and had to draw, step by step, how this array would change in the course
of the sorting algorithm, similar to Figs. 1-7. The other three questions were from other topics,
and they were identical for all students.

Both groups, A and B, were internally subdivided into four subgroups, Aa, Ab, Ac, Ad, and
Ba, Bb, Bc, Bd. Exams of Aa were identical to exams of Ba, Ab = Bb, etc. The only
distinction was a marking on the corner, stating that this was group Aa, Ab, etc.

The sorting questions of subgroups a, b, ¢, and d were also identical to each other, however,
they were counterbalanced in the order of presentation. In order to eliminate serial effects, the

[P 21

orders of sorts were counter balanced. Students of subgroup “a” would see the three sorts that

J. Geller, R. Dios | Computers & Education 31 (1998) 89-103 95

they learned by doing first, and the three other sorts afterwards. Students of subgroup b would
see the three sorts that they learned the classical way first, and the three other sorts afterwards.
Students of group ¢ had the sorts interleaved in one pattern, students of group d had them
interleaved in an opposing pattern.

At the exam all students of group A showed up. Unfortunately, two students of group B
had dropped the class. The exam was given ‘“closed book”. Every student received 9 xeroxed
pages, with one question on each page, and appropriate space to fill in the answers on the
same page.

As there was no questionnaire attached to the exam, and as variant exams are commonly
given to avoid cheating, the students were not informed about the nature of the experiment,
except that they would have to sit in a way that no two people of the same group would sit
next to each other.

3.3. Evaluation

Exams were graded by the instructor of the class, with no particular order of the exams.
First all Selection Sorts were graded. Then all Bubble Sorts were graded, etc. Penalties (in
points) and their reasons were recorded and referred to throughout the grading process,
independently for each sort.

The exams were graded by a second independent instructor who had taught the class in
question several times. This instructor was not given any specific instructions as how to grade
them. He was only given vague information about the purpose of the experiment, namely that
a new teaching technique was experimentally evaluated. He was asked to be ‘“uncommonly
careful and consistent about grading”. The results of the grading process are included in
Appendix A of this paper.

4. Alternatives to the hands-on approach
4.1. Why we don’t need high technology alternatives

In this section, we would like to address possible criticisms of our approach. It is very
obvious that we are “‘swimming against the stream”. At the current state of the art one could
use the World-Wide Web in at least two different ways to create programs to help students
learn sorting algorithms.! One possible way would be to graphically simulate the sorting
process and let students watch. The problem with this approach is that it is passive. After
starting the process, the student can watch, or he can get distracted and lose a step, in the end
deriving very little benefit out of the process.

! We are quite familiar with Web-based tools, as we are involved in a research project that connects databases to
the Web. We are also fully in favor of using the Web for distributing materials to teachers (Tucker, Rada, Roberts
& Wegner, 1997) and using the Web in classes where it is relevant to the content, such as multimedia (Heller, Fox,
Adams & Vides, 1997).

96 J. Geller, R. Dios | Computers & Education 31 (1998) 89-103

To overcome this passivity, an interactive extension of the above Web program may be used.
Here, the student has to move numbers around with a mouse, and he gets all the benefits of
our hands-on approach. This is actually a very good learning method. However, we still prefer
the index card approach. We will now explain why, and we hope that the field is “broad
enough” to accept our approach, too.

At the current state of networking there are few classrooms in few universities where every
student has access to his own computer. This kind of access is required for real hands-on
interactive manipulation. That means that the students will have to do this manipulation as
part of their homework assignments. But there are two reasons why we would not want
students to learn such important concepts in a homework situation, as opposed to a classroom
setting.

First of all, we don’t want to assign too much homework. Second of all, students are
underusing the classroom experience. We will now elaborate on these two points. We don’t
want to assign too much homework, because the primary targets for our approach are working
students which are typically part-time students with full-time jobs. Many of these students also
have to support families, both financially and with their time.

Now what do we mean by “the students are underusing the classroom experience?” Most of
the students that we know are trying to listen and to concentrate. However, often they fail,
which is especially understandable in night classes where they might have already worked a 9 h
workday before coming to class. As a result, many students go home, without acquiring the
important concepts in class, so they have to do it at home. But at home they have no time,
might be distracted by a crying baby, etc., which brings us back to our first point. Thus, we
would like the students to make maximum use of the classroom experience.

In our experiments we have found that manipulating index cards in class is an excellent way
of overcoming some of the problems mentioned above. The physical involvement of having to
manipulate the index cards helps them to focus their attention. It literally makes it harder for
the students to “drift away with their thoughts”. If the students manage to acquire the
important concepts in class then they don’t need to start a Web browser and work on those
concepts “on their own time”. Therefore, until there is a computer on every desk in every class
room, we suggest using index card manipulation to help students focus on the learning process.

4.2. Why the hands-on approach is better than a code walk-through

After we have argued against the high-tech solution to teaching sorting algorithms, one
wonders whether our hands-on approach is really necessary. Maybe a simple code walk-
through would be sufficient to teach sorting algorithms? In order to reject this notion, Section
5 shows experimental results that compare the normal teaching method with our hands-on
teaching method. The hands-on method was found to be superior.

But why is the hands-on approach better than a simple code walk-through? The answer
echoes some of the arguments of the previous subsection. In a normal lecture situation the
instructor does the walk-through, and it is up to the attention level of the student whether he
follows or not. In the hands-on approach a student is forced to maintain a minimum amount
of attention, otherwise he cannot advance from array configuration to array configuration.

J. Geller, R. Dios | Computers & Education 31 (1998) 89-103 97

4.3. Other issues

There are two more issues that we would like to address:

1. Does this approach also work for complex sorting algorithms such as Quicksort? The
answer to this question is that in our experience it does work. Even though we did not
describe all details of Quicksort, it should be clear that nothing more complicated than two
indices (arrows) and the same exchange (swap) operation that we previously used in Bubble
Sort are necessary. Students can simulate the two indices by pointing with two pencils to the
appropriate index cards. Swaps are performed by exchanging index cards. In summary, our
methodology is (was!) easily applied to Quicksort and other complex sorts.

2. Does this approach slow down the teacher and cut down the amount of material that can
be covered in class? The answer to this question is an unequivocal yes. However, whether
this is unacceptable is a question of teaching philosophy. We feel that the classroom should
be used to truly acquire concepts. We are willing to accept a small loss in quantity if we can
improve the quality of the classroom learning process. Professors that disagree with this
philosophy will not find our method useful.

5. Hypotheses and statistical evaluation

Our basic hypothesis is that students from group A would score better on Selection Sort,
Insertion Sort and Merge Sort than students from group B. On the other hand, student from
group B would score better on the three other sorts which they had experienced in a hands-on
fashion.

This claim was evaluated by tabulating the individual points of each sort for each group
three times: for grader I, for grader 11, and for an average computed from grader I and grader
I1. In addition, we used the points given on the non-sorting exam questions (7, 8, 9) for the
purpose of normalizing the data in an additional evaluation phase. The basic assumption of
this phase is that the total score on questions 7-9 should be the same in both groups, as both
groups had identical midterm grades. Assume, however, that for unknowable reasons students
of group A prepared better than students of group B for the final. We then determined a scale
factor that would reduce the total score of group A on questions 7-9 to the same value as the
total score of group B on questions 7-9. By applying the same scale factor to the points on
questions 1-6 of group A, we could exercise some control over such a shift in preparation.
With this normalized data we now repeated the three evaluation steps described above, i.e., for
each teacher and for an average of both teachers.

5.1. Statistical discussion of the students’ grade scores
A Two-Way Analysis of Variance (ANOVA) was performed on the two separate data sets

provided by the two graders. In both cases, there was a strong significant difference in grades
for the two distinct modes of instruction (see Tables 1 and 2: P = 0.00082, P = 0.00083).

98 J. Geller, R. Dios | Computers & Education 31 (1998) 89-103

Table 1
Analysis of variance table for Grader |

Source of Variation Degrees of Freedom Sum of Squares Mean Square F Ratio Prob(F) (P-value)

Replications 10 1721 172 4.8 0.000056
Factor A 1 437 437 12.1 0.00082
Factor B 8 3540 442 12.3 0.00005
Interaction AB 8 127 16 0.44 0.895
Error 170 6129 36

Total 197 12,000

In addition, there was also a very strong significant difference on exam performance by the
students in both groups from one sorting procedure to the next (see Tables 1 and 2:
P = 0.00005, P = 0.000061). The level of interaction was very high for both experimental
variables: “mode of instruction” versus “sorting procedure”. The first grader had the
highest level of interaction for the variables (see Table 1: P = 0.895) indicating that his
methodology for assigning grades was highly dependent upon the sorting procedure
being tested. The data from the second grader also indicated significant interaction (see
Table 2: P = 0.484). The data on the students’ grades further indicate that the first grader was
somewhat more versatile in assigning grades, hence showing diversity in his evaluation of
the variety of solution techniques/approaches which are possible within the two modes of
instruction being tested for statistical differences. Otherwise, the graders produced highly
similar results. The values of the correlation coefficient linking sorting procedure to mode of
instruction are 54.3% and 39.4%, respectively. There was also a strong significant difference
between one student’s performance to the next within their own class. This is true for
both graders. The following tables provide the statistical information for the ANOVA, as well
as descriptive estimates of the central tendency and dispersion parameters of both data
sets. We see as an example that the average grade over all tests is much higher for the first
mode of instruction (‘“hands-on”) than for mode 2 (see Tables 3 and 4). Additionally, we can
see by perusing the mean values of the test scores that the most difficult problems to master
are those numbered 7, 9 and 8 (see Tables 5 and 6). We also observe that there is far more
variation between grades for the ‘“‘easier” sorting procedures which possess the largest mean
test scores.

Table 2
Analysis of variance table for Grader 2

Source of Variation Degrees of Freedom Sum of Squares Mean Square F Ratio Prob(F) (P-value)

Replications 10 2126 213 33 0.00063
Factor A 1 768 768 12.1 0.00083
Factor B 8 2642 331 5.2 0.000061
Interaction AB 8 479 60 0.9 0.484
Error 170 11,000 64

Total 197 17,000

J. Geller, R. Dios | Computers & Education 31 (1998) 89-103 99
Table 3
Summary of the population statistics for Factor A (mode of instruction)
Factor A Count Mean Standard Deviation Minimum Maximum
Mode 1 99 15.848 1.927 0 25
Mode 2 99 12.879 1.708 0 25
Table 4
Grader 2. Summary of population statistics for Factor A (mode of instruction)
Factor A Count Mean Standard Deviation Minimum Maximum
Mode 1 99 16.263 0.881 0 25
Mode 2 99 12.323 0.938 0 25
Table 5
Grader 1. Summary of the population statistics for Factor B (sorting procedure)
Factor B Count - Mean Standard Deviation Minimum Maximum
1 22 19.182 4,692 5 25
2 22 20.545 4.883 10 25
3 22 13.773 3.581 5 25
4 22 18.500 4.501 7 25
5 22 12.409 3.328 0 25
6 22 16.136 4.657 0 25
7 22 7.591 2.458 0 15
8 22 11.000 2.952 0 20
9 22 10.136 2.457 2 15
Table 6
Grader 2. Summary of population statistics for Factor B (sorting procedure
Factor B Count Mean Standard Deviation Minimum Maximum
1 22 14.955 2.624 0 25
2 22 19.773 1.903 0 25
3 22 16.591 1.872 0 25
4 22 18.227 1.685 0 25
5 22 15.000 1.918 0 25
6 22 15.227 2.579 0 25
7 22 8.500 1.237 0 15
8 22 10.455 1.182 0 20
9 22 9.909 0.775 4 15

100 J. Geller, R. Dios | Computers & Education 31 (1998) 89-103

5.2. Final comments

During the experimental situation and evaluation of the exams it became clear that there is
at least one problem with our hypothesis. We are assuming that students either learn the
mechanics of a sort, or they fail to learn it. In reality, even though we achieved quite good
results in our statistical evaluation, students might fail because they attach a wrong label to a
mechanism.

For instance, in some cases students produced a perfect example of a Bubble Sort, but they
did it in the question that required a Selection Sort. Those students might or might not have
acquired the mechanics of Selection Sort, but they were missing the correct link between the
name and the mechanism. Our ““learning by doing” approach does not help in creating this
link. Given this problem we were actually surprised by the excellent results of our statistical
analysis. One aspect of future work in this area is to try to separate out failure due to
mislabeling the mechanism and failure due to misunderstanding the mechanism.

6. Conclusions

In this paper we have argued that not all solutions to improved learning have to be high-
tech. We have shown an approach to the teaching of sorting algorithms that is hands-on but
requires only normal writing materials. Our approach is primarily targeted at students that
have to minimize the time they can spend on homework assignments because they have full
time jobs and often also family care obligations.

The statistical analysis of the data verifies our contention that the mode of instruction
utilized to teach a variety of sorting procedures can have a vastly different and powerful effect
upon the level of learning for a given student. The six different sorting procedures are clearly
very different both systematically and from a cognitive viewpoint. The “hands-on™ method of
instruction produces higher test scores indicating improved comprehension and a greater depth
of understanding. This is true for all sorting methods.

Even though we are pleased with the results described in this paper, it is obvious to us that
it defines the beginning of a research program, and not the end. We hope to give impetus to
other studies that perform a rigorous three-way comparison between “talk and chalk” teach-
ing, Web-based teaching, and hands-on teaching as defined in this paper. Great care has to be
taken to eliminate the personal biases of the instructors from such studies. Statistical evalu-
ations of exam data need to be performed, to decide whether differences between grade results are
statistically significant, or not. We hope that our study leads the way in this respect. Com-
parisons between night-class sections and sections of full-time students with the same instructor
need to be designed in a way that student performance is measured, eliminating the influence
of the 9 h workday the instructor has “survived” when he starts teaching the night class.

Down the line, it would be desirable for instructors to record their grades for every exam
problem in a computerized database. Error codes for commonly occurring student mistakes
should be assigned to wrong answers and stored in the same database. This would make it
possible to perform longitudinal studies and to reevaluate previous results with other statistical
tools. We are looking forward to responses from other researchers in the field.

J. Geller, R. Dios | Computers & Education 31 (1998) 89-103 101

Appendix A. Test Data
Key:
S Selection Sort
B = Bubble Sort
I = Insertion Sort
M = Merge Sort
Q = Quick Sort
R = Radix Sort
= Student Number

Grader 1: Group A:
Table 7
S B 1 M Q R 7 8 9
2 25 25 10 23 17 20 15 15 15
3 25 25 25 23 25 25 15 15 15
4 25 25 10 25 13 25 2 10 6
5 15 25 10 10 5 5 4 10 11
6 25 25 25 10 21 25 6 15 12
7 25 25 20 13 13 25 15 5 12
10 25 17 25 25 25 25 10 10 12
13 15 25 10 10 5 25 0 15 9
16 10 10 10 23 13 0 0 10 11
18 25 10 10 19 13 25 11 15 9
19 25 25 10 25 13 5 13 15 15
21 13 17 10 16 25 25 5 [0 12
22 25 25 20 25 13 25 9 5 12

Group B:
Table 8
S B I M Q R 7 8 9
I 17 25 10 21 13 20 0 5 9
8 15 25 10 19 13 5 2 12 12
9 13 10 10 7 5 5 10 0 9
11 25 10 10 23 13 25 0 15 6
12 7 17 10 25 13 25 8 20 6
14 25 25 20 23 5 5 15 15 12
15 25 25 25 25 17 25 15 15 15
17 25 25 18 10 13 25 15 15 9
20 10 18 10 25 13 5 7 0 11
23 15 10 10 10 5 5 4 10 5
24 5 25 5 13 0 5 0 0 2

102 J. Geller, R. Dios | Computers & Education 31 (1998) 89-103

Grader 2:

Please note that two problems were accidentally not graded. These are marked with ““?”.

Group A:
Table 9
S B I M Q R 7 8 9
2 25 25 10 25 15 25 15 15 15
3 25 25 25 23 25 25 15 15 15
4 25 20 15 25 20 25 3 10 4
5 0 25 0 0 0 0 4 10 7
6 25 25 25 22 25 25 11 15 12
7 25 20 25 10 20 25 15 5 12
10 25 25 25 23 25 25 15 5 12
13 0 20 20 10 5 ? 2 15 8
16 0 0 15 25 0 0 4 10 11
18 25 25 10 23 20 25 12 15 9
19 25 25 15 10 20 5 14 15 15
21 0 25 10 ? 25 25 2 10 12
22 25 25 25 25 20 25 2 0 12

Group B:
Table 10
S B I M Q R 7 8 9
1 5 15 5 20 15 25 1 5 12
8 0 25 20 20 20 5 1 10 10
9 0 20 0 5 0 0 10 5 9
11 25 0 10 10 10 25 2 15 6
12 0 25 15 25 20 25 7 20 8
14 24 0 20 25 0 0 15 15 12
15 25 25 25 25 20 25 15 15 15
17 25 25 25 10 15 25 15 15 6
20 0 10 5 25 20 0 6 5 7
23 0 25 25 10 20 0 5 10 5
24 0 25 25 15 0 0 0 0 4
References

Adams, E. S., Barker, K., Gal-Ezer, J., Lawhead, P., Maly, K., Miller, J. E., & Thomas, P. (1997). Distance education: promise and
reality. In Proceedings of the Twenty-eighth SIGCSE Technical Symposium on Computer Science Education (pp. 369-370). San Jose,
CA.

Carrano, F. M. (1995). Data Abstraction and Problem Solving with C + + . Walls and Mirrors. Redwood City, CA: The Benjamin/
Cummings Publishing Company.

J. Geller, R. Dios | Computers & Education 31 (1998) 89-103 103

Heller, R., Fox, E., Adams, W. J., & Vides, G. M. (1997). Defining multimedia courses within a computer science education. In
Proceedings of the Twenty-eighth SIGCSE Technical Symposium on Computer Science Education (pp. 379-380). San Jose, CA.

The HOTJAVA browser: a white paper. [http://java.sun.com/java.sun.com/1.0alpha3/doc/overview/hotjava/index.html], 1995.

Maxim, B. R., & Elenbogen, B. 8. (1987). Teaching programming algorithms aided by computer graphics. ACM SIGCSE Bulletin,
19(4), 297-301.

Recker, M. M., & Pirolli, P. (1992). Student strategies for learning programming from a computational environment. In Intefligent
Tutoring Systems: Second International Conference (pp. 382—-394). Berlin: Springer Verlag.

Sachdev, M. S., Nagpal, M., & Adu, T. (1990). Interactive software for evaluating and teaching digital relaying algorithms. /JEEE
Transactions on Power Systems, 5, 346-352.

Scanlan, D. (1987). Data-structures students may prefer to learn algorithms using graphical methods. ACM SIGCSE Bulletin, 19, 302~
307.

Stone, D. C.(1989). Using cumulative graphics traces in the visualization of sorting algorithms. ACM SIGCSE Bulletin, 21(4), 37-42.

A transformation of learning: use of the NII for education and lifelong learning. [http://iitfcat.nist.gov:94/doc/Education.html], 1994.

Tucker, A. B., Rada, R., Roberts, E., & Wegner, P. (1997). Strategic directions in computer science education. In Proceedings of the
Twenty-eighth SIGCSE Technical Symposium on Computer Science Education (pp. 371-372). San Jose, CA.

