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Abstract
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1. Introduction

Controlled medical vocabularies (vocabularies for short) play an important
role in many medical enterprises that employ a large number of disparate
information systems (e.g. clinical databases). Often, each such system has its own
inherent ‘language’ or terminology. A number of such vocabularies have
appeared in the medical field [11,34,35]. Of note is the Medical Entities
Dictionary (MED) developed and in use at Columbia-Presbyterian Medical
Center (CPMC) [8,9]. Controlled vocabularies have been shown to greatly
facilitate the process of integrating medical information systems [10] using
different terminologies. They also help to standardize common information
handling tasks and reduce the overall cost of data processing.

While a controlled vocabulary offers tremendous benefits, these benefits do
come at a price. A vocabulary can be quite extensive and can contain an
overwhelming amount of structural and semantic complexity. For example, the
MED contains over 48000 concepts, over 61000 IS-A links and over 71000
other links. (We are referring to a particular version of the MED, dated 12/96,
throughout this paper.) Obviously, the job of comprehending such a vocabulary
can be an extremely difficult problem in itself.

In this paper, we are concerned with providing a tool to help users
comprehend vocabularies. In particular, we present a methodology to make large
and complex vocabularies easier to understand. Our approach is based on the
partitioning of a vocabulary into manageably-sized, meaningful units. The
partitioning assumes the existence of a vocabulary with an IS-A hierarchy and
centers around this IS-A (or concept subsumption) hierarchy.

To enhance comprehension of the MED vocabulary [14], we have mapped it
into an OODB schema representation based on partitioning the vocabulary into
sets of concepts with the same sets of properties. In [21], we reported on
implementing the InterMED (a partial revised version of the MED) [26,33] using
ONTOS, a commercial OODB system. We call the resultant OODB the
Object-Oriented Healthcare Vocabulary Repository (OOHVR). Among other
things, the OOHVR’s schema captures the complete structure of the vocabulary
in a compact form which aids in its comprehension. However, for the much
larger MED, each class in the corresponding OODB schema summarizes on
average 500 concepts. A vocabulary of 500 concepts is still hard to understand.
Thus, further partitioning efforts are needed to enhance comprehension.

The backbone of many controlled vocabularies is the IS-A hierarchy which
relates more specialized concepts (subconcepts) to more generalized concepts
(superconcepts) that subsume them. The IS-A hierarchy also serves as the basis
for property inheritance. In general, the IS-A hierarchy of a controlled
vocabulary will be a directed acyclic graph, permitting multiple superconcepts
and multiple inheritance. Our methodology is based on the following two
premises: (1) a vocabulary’s IS-A hierarchy taken alone is much more
comprehensible than the entire vocabulary itself; (2) a ‘forest’ IS-A hierarchy (i.e.
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a collection of trees in which every link is an IS-A link and where, by definition,
no concept has more than one superconcept) is easier to comprehend than a
directed acyclic graph containing the same number of concepts.

With these premises in mind, we develop a theoretical framework that reduces
an entire vocabulary (typically represented as a large semantic network) into a
forest hierarchy composed of small trees, each representing a logical unit whose
graphical representation can fit on a computer screen. This reduction in size
makes it easier for users and system designers alike to comprehend the contents
of the vocabulary in a modular fashion.

Our methodology relies on an interaction between a user (presumably the
vocabulary designer or administrator) and the computer. The process requires
that a user refines the vocabulary’s IS-A hierarchy according to some prescribed
principles so that it conforms to what we call the rules of disciplined modeling.
After the refinement, the computer can automatically reduce the vocabulary to a
forest structure. We formally prove that our approach always finds a forest
partition as long as the rules of disciplined modeling are adhered to. Let us note
that partitioning networks (graphs) according to various criteria has been shown
to be NP-complete, i.e. computationally intractable [12].

In previous work [28], we have employed a similar paradigm to reduce the
complexity of large object-oriented database (OODB) subclass hierarchies. In this
paper, we rework and adapt the approach to the IS-A hierarchy of an extensive,
complex vocabulary. Furthermore, we present an interactive methodology for
partitioning the vocabulary. To ground our discussion in a real-world applica-
tion, we will focus on the MED as our test-bed vocabulary. The methodology
developed herein will be applied to a complex subnetwork of the MED.

Our approach is closely related to the principle of orthogonal taxonomies’ as
implemented in the GALEN project [30,31]. There, a taxonomy is organized
from the start by requiring that all primitive entities have only one primitive
parent. In our methodology, an existing vocabulary is partitioned to achieve a
similar effect.

The rest of this paper is organized as follows. In Section 2, we describe the
notions of informational thinning and partitioning with respect to vocabularies.
Section 3 introduces the rules of disciplined modeling and proves that they make
it possible to obtain a meaningful forest hierarchy from a directed acyclic graph.
In Section 4, we describe our methodology for partitioning the vocabulary. In
Section 5, we apply the methodology to a very complex portion of the MED.
Section 6 contains our conclusions. A short, preliminary version of this paper
appeared in [15].

2. Informational thinning and partitioning

In this section, we describe two approaches which are used to enhance the
comprehension of large and complex vocabularies. If a vocabulary network,
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containing a vast amount of objects (representing concepts), relationships and
attributes, is displayed on a screen, then the user typically has difficulties compre-
hending and dealing with it. For such an overwhelming display of the InterMED,
see [27].

According to our experience, the difficulties of understanding a vocabulary stem
more from the number of relationships than from the number of concepts. We
define the complexity c of a network or vocabulary as the ratio of the number of
relationships between objects to the number of objects. As we mentioned, the MED
is an example of a large, complex vocabulary. The complexity of the MED is
c= (61000+71000)/48000!2.75. For two networks with the same number of
objects, the more complex network is more difficult to comprehend. Thus, there
exists a need to reduce the number of relationships in order to display a simplified
comprehensible subnetwork of the vocabulary with a lower complexity. Informa-
tional thinning is used to achieve this goal.

Definition 1: Informational thinning is a technique for eliminating partial informa-
tion from the display of a whole network. This is done by prioritizing various kinds
of properties of the objects in the network and displaying only kinds of properties
with high priority. !

In our graphical OODB schema editor OODINI [17], we support two levels of
informational thinning. One level removes all attributes and the other removes
attributes and non-hierarchical relationships leaving only the IS-A hierarchy dis-
played. The latter level of informational thinning will be used in the figures of this
paper. The hierarchy of IS-A relationships is the backbone of a vocabulary, which
helps users to comprehend it. The use of informational thinning (level 2) permits us
to concentrate on the IS-A hierarchy.

To test our theoretical paradigm and methodology we looked for a subnetwork
of the MED with a very complex hierarchy. Our reason is that for our techniques
to be applicable for the whole MED vocabulary, it is necessary, although not
sufficient, to be successfully applicable to such a subnetwork. We identified a
subnetwork with a very complex hierarchy in the MED as follows. From the 48000
concepts in the MED, the concept CPMC Drug: Cortisporin Opthalmic Ointment
has the most ancestors, 39. The subnetwork with a complex hierarchy, which we
call cortisporin subnetwork, includes the concept CPMC Drug: Cortisporin
Opthalmic Ointment and all its ancestors. It contains 821 attributes, 62 IS-A
relationships and 157 other relationships. Thus, the complexity of cortisporin
subnetwork is c= (62+157)/(39+1)!5.5. Such a complex network with so many
properties cannot be displayed on one screen.

In Fig. 1, we show the hierarchy of IS-A relationships of cortisporin subnetwork.
This hierarchy has the same number of concepts as the original network but fewer
relationships. The complexity of the IS-A hierarchy of cortisporin subnetwork is
c=62/40!1.55, a much lower complexity than that of cortisporin subnetwork
itself. For comparison, the complexity of the IS-A hierarchy of the whole MED is
c=54547/42744!1.27 which is lower than that of cortisporin subnetwork. To help
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in the forthcoming analysis, we added in Fig. 1 some concepts which are not the
ancestors of the concept CPMC: Cortisporin Opthalmic Ointment. The added
concepts are (33), (34), (39), (41), (43) and (45).

Obviously, the use of informational thinning makes it easier to understand a
vocabulary. But comprehending a large and complex IS-A hierarchy may still be
very difficult, although informational thinning was applied, due to multiple inheri-
tance and the large number of objects. Considering the limitations of human
comprehension capacity and the size of computer monitors (e.g. a network of less

Fig. 1. Cortisporin subhierarchy of the MED with topological sort order after informational thinning.
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than 20 objects can easily fit on one computer screen), we will provide a set of less
complicated and smaller subhierarchies of the original IS-A hierarchy to simplify
the comprehension process. To realize this target, another approach, partitioning, is
introduced.

Definition 2: partitioning means to divide a complex large semantic network into
disjoint smaller subnetworks which comprise logical units of the original network
and jointly constitute the original network. !

To partition a graph into logical units, it is necessary to comprehend it first.
Thus, the logical partitioning of a network seemingly results in a vicious cycle. Our
experience has been that partitioning into logical units tends to minimize the
number of relationships between different units. Unfortunately, the problem of
partitioning a network according to the above or similar criteria is NP-complete,
that is, no efficient algorithm is known for it, and it is conjectured that no such
algorithm exists [12]. A possible line of action is to combine informational thinning
and partitioning. After an IS-A hierarchy is obtained by applying informational
thinning to the original network, the partitioning technique is put to use by
partitioning the IS-A hierarchy and then imposing this partition on the original
network.

Due to multiple inheritance, the IS-A hierarchy forms a directed acyclic graph,
just like our cortisporin subhierarchy shown in Fig. 1. If the IS-A hierarchy is a
directed acyclic graph, its partitioning problem in general is still NP-complete. On
the other hand, if it is a tree, then there exist efficient algorithms for various
partitioning criteria, e.g. max–min or min–max [1,3–5,19,22,29]. In the next
section, to make the partitioning possible, we will present a new technique for
modeling called disciplined modeling. Based on the rules of disciplined modeling we
develop a theoretical paradigm and methodology to identify a meaningful forest
subhierarchy within the IS-A hierarchy. If the trees in the forest hierarchy are still
too large, the above mentioned efficient partitioning algorithm may be applied to
them, to yield smaller trees.

3. Theoretical paradigm using disciplined modeling

In order to identify a meaningful forest subhierarchy of an IS-A hierarchy, we
shall look into the nature of the specialization IS-A relationship. In previous
OODB research [13], we and others [25] have identified two different kinds of
SUBCLASS relationships between object classes, called category-of and role-of.
Both are specialization relationships. Category-of relates the specialized class to the
more general class where both are seen in the same application context. Role-of
relates the specialized class to the more general class where the two classes are in
different contexts of the application.

In [28] we presented a theoretical paradigm for partitioning of an OODB
hierarchy schema. However, modifying the theoretical paradigm from the class level
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[28] to the instance level requires careful examination. One issue is how to interpret
category-of and role-of at the instance level. Naturally, these relationships between
classes imply category-of and role-of relationships between objects which are
instances of the corresponding subclass and superclass. Similarly, they can be
defined between objects of a semantic network as follows.

Definition 1: category-of is a specialization relationship which relates the specialized
object to the more general object where both are seen in the same application
context. !

Definition 2: role-of is a specialization relationship which relates the specialized
object to the more general object where the two objects are in different contexts of
the application. !

For example, Aminoglycoside Preparations is category-of Antibiotic Preparations
and Neomycin preparations is category-of Aminoglycoside Preparations, because all
of them are in the same application context ‘Anti-Infective Agents.’ On the other
hand, Neomycin preparations is role-of Drug Enforcement Agency (DEA) Class
0-Drug Without Abuse Potential in the context of Drug Enforcement Agency (DEA)
Controlled Substance Category (Figs. 6 and 7).

A second issue is that in [28] we discussed a relation ‘represents the same
real-world object’ between instances of classes. However, in a semantic network-
based vocabulary, objects describe general concepts rather than concrete, real-world
objects. Therefore, we need to find an alternative for the relation ‘represents the
same real-world object’ to be employed in the necessary proof for the vocabulary
environment. The impact of this difference on the development of our theoretical
paradigm has to be inspected. An adapted proof technique is presented later in this
section.

The decision whether a given IS-A relationship in the hierarchy is either a
category-of or a role-of depends on whether the superobject and object are in the
same context or not. An intuitive understanding of the application is required to
help make this decision. However, this decision is not always so easy. In spite of
extensive research [6,7,16,18,23,24,32], there is still no widely accepted definition of
context. Building a gigantic knowledge base in the CYC project [20] was found
doomed to failure if contexts were not introduced as a structuring mechanism.
Following the research of [6,7], others have assumed that a context is a first-class
object used to parameterize axiom schemata [16,23]. However, no clarity about the
nature of contexts themselves is gained by this approach. As a workshop on context
in Natural Language Processing showed [18], researchers tend to agree that they
disagree on what contexts are. Our approach is that we are not trying to define the
notion of context. Rather we are making the pretheoretical (axiomatic) assumption
that contexts exist in human thinking, and we are requiring the designers and users
of an application to identify them explicitly.

In [28], we provided a theoretical paradigm for the existence of such assignments
of classes to contexts. This assignment results in a forest subhierarchy of a directed
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acyclic graph hierarchy, which supports increased comprehension of the OODB
schema. The theoretical paradigm is supported by three rules of disciplined
modeling which ensure that a forest subhierarchy can be identified. However, while
in [28], disciplined modeling was described for a schema of classes, we modify it
now for a hierarchy of objects. This modification will provide us with a theoretical
paradigm for partitioning a large complex hierarchy of objects into small parts,
each of which has a tree structure. For further explanations and motivations on
disciplined modeling beyond the material in this section, see [28].

Before we give the rules of disciplined modeling, we define the mathematical
relation equicontext, or ‘in the same context,’ between objects. A pair (a, b) of two
objects belongs to the equicontext relation if both objects a and b belong to the
same context.

Rule 1: The equicontext relation between objects is an equivalence relation satisfy-
ing three conditions of reflexivity, symmetry and transitivity. Thus it partitions all
objects of a network into disjoint contexts. !

Rule 1 forces the designer into explicit specification of the contexts in his
hierarchy and leads him to resolve some ambiguous situations. We do not claim to
have a unique way of assigning objects to contexts. As we are dealing with a
problem of data modeling, there are usually different ways to model the same
real-world environment. We further do not claim that contexts are naturally
disjoint. To the contrary, in many applications, initial contexts may overlap.
However, disciplined modeling forces the modeler to design disjoint contexts,
leading to the desired partitioning.

Rule 2: Two objects which are category-of specializations of a superobject cannot
have a common category-of descendant object, and one cannot be a category-of
descendant of the other. !

According to our definition, the category-of relationship is used for refinement in
the case where the superobject and the object are in the same context. Rule 2
guarantees that when we refine a concept represented by an object into several
subconcepts in the same context, we achieve a partition into mutually exclusive
concepts.

In the next section, we discuss techniques how to specify IS-A relationships as
category-of or role-of in different cases in a way which satisfies Rule 2. Examples
are provided in Section 5.

Rule 3: For each context there exists one object which is the major (or defining)
object for this context such that every object in this context is a descendant of this
object. !

This means that each context has only one object which is a ‘root’ for it, i.e. there
is a directed path of category-of relationships from each object in the context to this
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Fig. 2. Adding new object as the root of a context.

root object. Note that we use here the notion of a directed tree where all the
directions are towards the root. In graph theory terms, the root is a sink.

We note that sometimes in a semantic network the designer would like to group
a subnetwork which has several roots, rather than one, together into one context.
In such a case, the designer can add an extra object and make these original roots
children of the extra object. The new root will be named to reflect the ‘meaning’ of
its context. For example, there are many terms in the MED for procedures which
doctors order. Thus, these terms are grouped into one context ‘procedure.’ There
are also many terms in the MED for tests grouped into a context ‘tests.’ Tests are
typically ordered as components of procedures. However, in some cases, a compo-
nent can be ordered by itself and such a test therefore has the properties of a
procedure (e.g. an order code, a cost, etc.). Thus, all tests which cannot be ordered
separately will reside in the ‘test’ context. All other tests which can be ordered
separately will be grouped into another context ‘orderable test,’ because all of them
have properties of tests and procedures at the same time. The context ‘orderable
test’ has many roots. It has been helpful to introduce a new object, Orderable Tests,
as the root of this context to keep track of those tests. All those tests become
children of Orderable Tests (Fig. 2).
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In a previous paper [28], we already proved the following theorem: ‘Using
disciplined modeling, a class has at most one category-of superclass.’ Now, we need
to prove the corresponding theorem for the object level.

Theorem: Using disciplined modeling, an object has at most one category-of
superobject.

Proof: Assume to the contrary that there exists an object a which has two
category-of superobjects b and c (see Fig. 3). According to the definition of
category-of, a and b are in the same context. Similarly, a and c are in the same
context. By the transitivity of the equicontext relation (Rule 1), b and c are in the
same context.

By Rule 3, there is a major (root) object d for this context such that the objects
b and c are category-of descendants of d. This implies that there is a sequence of
category-of relationships from b (c) up to d. (Note that actually d may be one of the
objects b or c. This case does not cause a problem due to the second possibility in
Rule 2. However, we avoid referring to this option in the rest of the proof to avoid
complication of the presentation). If the paths of category-of relationships from b
to d and from c to d are not disjoint (i.e. the object d is not the first object which
appears in both paths), then denote now by d the first such joint object on these
two paths. Let e ( f ) be a subobject of the object d on a path of category-of
relationships from b (c) to d. Hence, object a is a category-of descendant of object
e ( f ). Thus, both the category-of subobjects e and f of the object d have a common
category-of descendant object a. But by Rule 2, such a situation is forbidden, a
contradiction. !

Due to this theorem, we can guarantee that the category-of hierarchy has a forest
structure which contains one or more trees. This forest structure serves as backbone
of the hierarchy and will be critical in the efforts to comprehend the hierarchy and
partition it into manageable subhierarchies.

Fig. 3. The hierarchies demonstrating our proof.
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4. A methodology for context partitioning of a hierarchy

We have described a conceptual framework which guarantees that for the price
of following the rules of disciplined modeling, there can be found a forest-structure
subhierarchy of the given directed acyclic graph hierarchy. This forest structure
serves as a skeleton supporting the comprehension of the hierarchy. Furthermore,
the trees of the forest represent contexts which are logical subhierarchies concen-
trating on a specific subject area, further supporting the comprehension of the
original hierarchy.

In this section, we will describe a methodology to transform an existing hierarchy
which was not designed according to the rules of disciplined modeling. By a
methodology we mean a process that involves human-machine cooperation. The
human domain expert is called upon to make some judgment decisions based on his
understanding of the application, while the computer supports the human by
providing results of algorithmic procedures for tasks which do not involve complex
intuitive decisions but might require many computational steps. By domain expert
judgment we refer to:
1. Identifying disjoint contexts in the hierarchy, which correspond to subtrees of

category-of relationships in the forest structure obtained.
2. Defining some IS-A relationships as role-of and others as category-of, so that

the rules of disciplined modeling are followed.
In the following description of the methodology, we will specify which parts are

performed by a computer and which are performed by a human expert. We will
differentiate between three kinds of role-of relationships. They are regular role-of,
role-of/intersection and role-of/category-of. However, for partitioning purposes,
they are all just role-of. The result of our methodology is a refinement of the IS-A
hierarchy. Every IS-A link becomes either a category-of or a role-of. For the
purpose of partitioning, the category-of links will form a forest.

Step 1: Topological sort (Computer).
Arrange the hierarchy in topological sort order.

Step 2: Identify roots of contexts. (Human)
Scan the hierarchy top-down according to the order from Step 1. In this

scanning, identify objects which should serve as defining objects (roots) for con-
texts. The choice should be made by the meaning and importance of the object in
the application compared to its superobjects’ meaning. These chosen objects start
new contexts rather than refining the contexts of their superobjects.

After these objects are identified, they are role-of their superobjects. This kind of
role-of relationship is a regular role-of, where the relationship models a switch of
context, that is, the relationship goes from an object in one context to an object in
another context.

Step 3: Multiple superobjects (Computer).
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List all objects with multiple superobjects in bottom-up order. In the discussion
following Step 4 and at the end of this section, we will explain why we are using
bottom-up processing at this point.

Step 4: Identify primary parent. (Human)
For each of the objects identified in Step 3, the expert needs to identify at most

one superobject which is in the same context as the object. The relationship to this
superobject will be defined as a category-of relationship while all other superobjects
should belong to different contexts from the ‘chosen’ superobject, and the relation-
ships to them are defined as role-of.

From our experience, for most of the objects with multiple superobjects an expert
can easily determine which of the superobjects is the defining one, i.e. which should
be in the same context and have a category-of relationship directed to it. There is
a minority of cases where the decision about a major or definitional superobject of
a given object is not easy. In such cases, we try to distinguish which of the several
superobjects, if any, should have a category-of relationship pointing to it, based on
the partial context information we have already accumulated in our bottom-up
processing.

We distinguish several cases.

Case 1: One of the superobjects is definitional while the others are functional. For
example, drugs can be classified by the chemicals that they contain (definitional)
and by their therapeutic uses (functional). Then we look at the context to which the
object and its descendants belong. (This is the reason for the bottom-up process-
ing). We try to determine whether the nature of the category-of relationships is
functional or definitional. If it is definitional, we will prefer the definitional
superobject. If it is functional, then we will prefer the functional superobject (or if
there are several functional superobjects, we will prefer the one which fits the
function appearing in the context of the object). If the object is the only object in
its context, we will choose the definitional superobject. In this case, one superobject
is chosen as primary superobject. The object is category-of this primary superobject
and role-of the other superobjects. This kind of role-of relationship is a regular
role-of since a switch of context from superobject to object has occurred.

Case 2: All superobjects are definitional with the same importance or indistinguish-
able importance as each of them contributes to the definition of the object in an
equal or indistinguishable way. In such a situation, the object with multiple
superobjects could belong to the context of any of its superobjects. However, by the
Rule 1 it cannot belong to more than one context. Also, we have no reason to
prefer one over the other. Each choice of context will disassociate the object from
the other contexts. This conflict is resolved by requiring that such an object start a
new context which represents the concept obtained as intersection of the concepts
of all its superobjects. Thus, this object is role-of all its superobjects. We call this
type of role-of ‘role-of/intersection ’ represented as r/i in the figures. By this term, we
emphasize that this is not an actual case of a switch of context but an artificial case
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Fig. 4. The diamond structure.

due to the requirement of the theorem to forbid two category-of superobjects.
Without the theorem, we could probably leave the intersection concept in the
context of its superobjects if all belong to one context.

Case 3: The concept of the object is a combination of the concepts of the multiple
superobjects in different contexts, but one of them contributes more to the meaning
than the others. Then the category-of relationship should point to the preferred
superobject, as those two should belong to the same context, while the other
relationships should be role-of relationships.

Step 5: Identify diamond structures (Computer).
Scan the hierarchy according to the topological order bottom-up to find all the

objects with more than one superobject. For each such object a and for each pair
of superobjects s1 and s2 of a, find a lowest common ancestor b of both s1 and s2.
For each pair of such objects a and b, output the diamond or extended diamond
structure (represented by "a, b# ) containing a, b and all the objects which are
descendants of b and ancestors of a. The object a is called the source of "a, b# ,
and the object b is called the sink of "a, b# .

Step 6: Diamond cutting (Human).
Each diamond or extended diamond structure must contain objects from more

than one context in order to fulfill Rule 2 of disciplined modeling. After executing
the first five steps we discussed above, all diamond structures already satisfy Rule 2.
But there is one case where we must artificially change the category-of relationships
to role-of relationships, to resolve a contradiction.

In this case, which we call contradictory diamond case, the source d of the
diamond structure "d, a# is a role-of/intersection of its superobjects. All other
objects in the diamond structure belong to one context (Fig. 4). Since the source d
is the intersection of two superobjects b and c, they cannot both belong to the same
context of their superobject a. Otherwise, because the intersection of a context with
itself will result in the original context, the intersection must belong to this common
context. Thus, the objects b and c are also defined as separate contexts. The
category-of relationships are changed, due to Rule 2, to role-of. However, we want
to maintain the distinction between this role-of and the two other kinds. Therefore,
we denote this kind of role-of as ‘role-of/category-of.’ It is represented by r/c in the
figures. This concludes the six steps of our methodology.
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Note that the methodology used both top-down processing and bottom-up
processing. The determination of the context of objects is performed top-down, as
every context root itself has a top-down nature, since the context of the root
concept defines the context of its descendants. When scanning the hierarchy
top-down, an expert can identify where an object defines a new context rather than
continuing a context of one of its superobjects which has been processed already.

On the other hand, when determining bottom-up to which context an object
belongs, choosing from among its superobjects, it is important to know the
descendants of the object which belong to the same context. This knowledge will
help to determine which of the contexts of the superobjects fits best to the already
constructed context.

5. Applying the methodology to a complex hierarchy

In order to test the effectiveness of our methodology, we applied it to the
previously mentioned cortisporin subnetwork of the MED. First, informational
thinning was used to obtain a directed acyclic graph hierarchy out of this subnet-
work (Fig. 1). Then we used the methodology introduced in the previous section to
partition the hierarchy into trees. Each tree produced by the partitioning is a logical
unit in the forest hierarchy. The root object of a tree defines the unifying context
for the objects in that tree.

Step 1, topological sort, is applied to the hierarchy of Fig. 1. Since there are degrees
of freedom in applying topological sort to a directed acyclic graph, the order we
used is from left to right and breadth first search [2]. The object numbering from 1
to 46 in Fig. 1 reflects this order.

In Step 2, following the topological sort ordering, the domain expert scans the
hierarchy top-down to find all objects which define new contexts. All IS-A
relationships from these objects to their superobjects are defined as role-of.

Note that by specifying IS-A relationships as category-of or role-of, the designer
is making modeling decisions, which may differ from one designer to another,
influencing the emerging contexts. Modeling decisions made by a pharmacist will
differ from those made by a surgeon. Thus, each of them can create his own local
partitioning of the vocabulary which represents his view of the vocabulary. In our
consideration in this section, we try to take the inclusive approach of a vocabulary
administrator (VA).

Because the concept Medical Entity (1) is the unique root for all other concepts
in the MED, it starts a new context and it does not have any category-of or role-of
superobjects.

Following topological sort order, we can see the concept Conceptual Entity (2),
which is a straightforward specialization of its superobject Medical Entity (1), in the
same context as (1). Thus, concept (2) is category-of its superobject (1). The
concepts Intellectual Product (3), Orderable Entity (4), Classification (5), Pharmacy
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Concepts (6), and American Hospital Formulary Service Class (7) are all straightfor-
ward specializations of their superobjects. In our intuitive judgment, they are also
similar in nature to their superobjects, and thus they are in the same context as their
superobjects. Thus, all of them are category-of their superobjects.

The concepts Drug Enforcement Agency (DEA) Controlled Substance Category
(8), Drug Allergy Class (9) and CPMC Formulary Drug Forms (10) have only one
superobject Pharmacy Concepts (6) which is a broad term that refers to various
ways of grouping drug concepts. But concept (8) defines drug concepts that are
controlled by the DEA, while concept (9) is a group of drug concepts that have
allergic or antiallergic effects, and concept (10) refers to the dispensation form
(tablet, injectable, etc.) of the drug. Thus, all of these objects represent drug
classifications according to various new dimensions and are considered to be
defining objects for new contexts. All of them are regular role-of children of their
superobjects.

The concept Pharmacy Items (11) has two superobjects. One is Pharmacy
Concepts (6) which was analyzed above; the other is Orderable Entity (4) which
describes a heterogeneous group of concepts that can be ordered and may be
pharmacy or non-pharmacy concepts. Thus, the concept (11) is defined as a root
object for a new context, as it is a classification according to a new dimension. It
is a regular role-of its two superobjects.

The concept Anti-Infective Agents (17) has two superobjects which are CPMC
Formulary Drug Item (16) and American Hospital Formulary Service Class (7). Both
superobjects define formulas of various pharmacological preparations and con-
tribute their own formulations (one from CPMC and the other from American
Hospital Formulary) to the concept. The concept (17) is neither in the same context
as (16) nor (7). It is role-of both superobjects and starts a new context. The
concepts Eye, Ear, Nose and Throat Preparation (18), Hormones and Synthetic
Substitutes (19), Anti-Inflammatory Agents (20) and Skin and Mucous Membrane
Agents (21) all require the same analysis as (17). All are role-of their superobjects
and are root objects for their contexts.

Consider the concept Glucocorticoid Agents (29); it has two superobjects, Adrenal
Agents (24) and Anti-Inflammatory Agents (20). Glucocorticoid Agents are secreted
by adrenal glands and therefore the superobject (24) indicates the physiological
source for the Glucocorticoid group of agents. Another child of the concept (24)
describes Mineralocorticoids (Aldosterone) (not shown in the figure) which are
functionally distinct from Glucocorticoids. (20) describes a heterogeneous set of
concepts that includes steroidal anti-inflammatory drugs like Glucocorticoids and
non-steroidal anti-inflammatory agents like Aspirin, Ibuprofen, Indomethacin and
Phenylbutazone Preparations. Therefore, (29) starts a new context and is role-of its
two superobjects.

Let us check the concept Polymyxin B Preparations (35) which has one superob-
ject Miscellaneous Antibiotics (27). The superobject (27) describes a heterogeneous
group of antibiotics that belong to chemical families that do not fall into the major
antibiotic families like Penicillins, Cephalosporins, Aminoglycosides, etc. Some of the
subobjects of (27) are Vancomycin (a glycopeptide), Bacitracin Preparations (a
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polypeptide), and Clindamycin (a lincosamide). The concept (35), which is a cyclic
polypeptide, is a child of the concept (27). It is in the same context as its
superobject (27). It does not start a new context and is therefore category-of the
superobject (27).

No other objects are determined to start a new context. As a result of this process
we have 11 defining objects and contexts. These objects, except for the root concept
Medical Entity of the whole vocabulary, are role-of their superobjects. See Fig. 5
for the state of the hierarchy at this step of the analysis. We use our graphical
notation [17] to display a category-of link by a solid arrow and a role-of link by a
dashed arrow.

Fig. 5. Cortisporin subhierarchy in Fig. 1 after executing methodology Step 2.
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In order to improve the clarity of the presentation and to eliminate complicated
medical terms, we will sometimes use only the topological sort numbers to represent
these medical terms in the balance of this section.

Step 3 of our methodology is to find all the objects which have more than one
superobject in bottom-up order (reversing the order of the topological sort in Fig.
1). These objects are (46), (44), (42), (40), (38), (37), (36), (32), (31), (30), (29), (28),
(26), (25), (23), (21), (20), (19), (18), (17), and (11).

Because the number of primary superobjects for each object with multiple
parents is at most one, the domain expert needs to identify at most one primary
parent for each object listed above, in Step 4 of the methodology. For example, the
concept CPMC Drug: Cortisporin Opthalmic Ointment (46) has three superobjects,
Bacitracin/Hydrocortisone/Neomycin/Polymyxin B Combination Preparations (44),
Drug Dispensed by Gram (15) and Eye, Ear, Nose and Throat Antibiotics (28). The
superobject (44) defines the chemicals that form the Cortisporin Opthalmic Oint-
ment. They uniquely define the structural components of the ointment, and there-
fore by Case 1 of Step 4, (44) is the primary superobject of (46). The superobject
(15) specifies the mode of dispensation and the superobject (28) specifies the site and
action, and therefore both do not define the context of the concept. Thus, according
to Case 1 of our methodology, (46) is category-of (44), role-of (15) and role-of (28).

Let us check another object which has more than one superobject. The concept
Bacitracin/Hydrocortisone/Neomycin/Polymyxin B Combination Preparations (44)
has two superobjects, Bacitracin/Neomycin/Polymyxin B Combination Preparations
(40) and Hydrocortisone/Neomycin/Polymyxin B Combination Preparations (42).
Both superobjects contribute two chemicals common to both concepts (Neomycin
and Polymyxin B) to the concept. In addition, (40) contributes Bacitracin and (42)
contributes Hydrocortisone. All these chemicals together define the concept (44).
According to Case 2 of Step 4, it is not possible to identify the primary superobject.
Hence it is role-of its superobjects. As we defined before, this kind of role-of is
role-of/intersection. In Fig. 6, we marked this role-of as ‘r/i’ to distinguish it from
a regular role-of. A similar analysis can be applied to all concepts that are roots of
drug combinations like (40), (42), (38) and (37).

Another example is the concept Bacitracin Preparations (31) which has two
superobjects, Miscellaneous Antibiotics (27) and Drug Enforcement Agency (DEA)
Class 0-Drug Without Abuse potential (12). We already analyzed the superobject
(27) in Step 2. (31), which is a polypeptide, is a child of (27). It is in the same
context with its superobject (27). The other superobject (12) simply indicates a
classification for the DEA according to a drug’s abuse potential and is not a
definitional superobject for the concept. Thus, (31) is category-of (27) and role-of
(12).

After Step 4 is completed, none of the objects with multiple superobjects in Fig.
6 has more than one primary parent. That means that each object is category-of at
most one superobject.

Now we need to identify the diamonds or extended diamonds structures in
bottom-up order. As discussed above, we use a pair "A, B# to denote a diamond
structure with A as source and B as sink. The (extended) diamond structures in Fig.
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Fig. 6. Cortisporin subhierarchy in Fig. 1 with category-of and role-of.

6 are " (46), (6)# , " (46), (22)# , " (44), (35)# , " (42), (7)# , " (42), (12)# ,
" (42), (16)# , " (40), (35)# , " (38), (22)# , " (37), (27)# , " (36), (20)# ,
" (32), (6)# , " (31), (6)# , " (30), (6)# , " (29), (7)# , " (29), (16)# , " (28),
(17)# , " (26), (6)# , " (25), (16)# , " (23), (16)# , " (21), (5)# , " (20), (5)# ,
" (19), (5)# , " (18), (5)# , " (17), (5)# , and " (11), (2)# .

After we identify all the (extended) diamond structures in Fig. 6, we need to
check whether any "A, B# is a contradictory diamond case as described in Step
6. If such cases exist, we need to change the appropriate category-of relationships
to role-of relationships.

One of the extended diamond structures is " (30), (6)# . It is already divided
into three contexts. It is not a contradictory diamond case, thus, we do not need to
do anything about it.
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Now, let us examine " (37), (27)# . As a result of Step 2 and Step 4, both
concepts (31) and (35) would be category-of concept (27). The source concept (37)
is role-of/intersection of two superobjects (31) and (35) according to the result of
Step 4. This diamond structure is a contradictory diamond case as described in Step
6. Thus, at least one of the superobjects (31) and (35) must be made role-of/cate-
gory-of the superobject (27). Since both concepts (31) and (35) are in the same
configuration that we encountered before, we cannot choose only one to be
role-of/category-of their superobject. Thus, both of them now are role-of/category-
of their superobject. In Fig. 6, the role-of/category-of relationship is represented as
r/c. This is the only diamond structure in Fig. 1, for which the contradictory
diamond case of Step 6 holds. In this way, we represent the knowledge that both
concepts (31) and (35) were separated from their parent’s context just to fulfill the
requirements of Rule 2. But for other purposes, they and their category-of descen-
dants may be considered part of the context to which the concept (27) belongs.

After all IS-A relationships in Fig. 1 have been changed to category-of or role-of,
the forest subhierarchy of the original subnetwork is obtained by removing all the
role-of relationships. Fig. 7 shows all contexts as trees in the forest. The relation-
ship between objects of different contexts (trees) is role-of.

The hierarchy in Fig. 1 is partitioned into 18 contexts, many of which are very
small and seem to be too detailed. But note that this is not a typical subnetwork of
the MED. By choosing a subnetwork with a very complex hierarchy we ended up
with a network with many interrelated subjects. Furthermore, even the contexts
shown in Fig. 7 are not complete since some terms which belong to these contexts
are not shown as they are not ancestors of (46). To demonstrate this, we added in
Fig. 7 some of those extra concepts A, B and C representing CPMC Drug:
Polysporin Opthalmic Ointment 3.5 Gm, CPMC Drug: Polysporin Topical Ointment
30 Gm, and CPMC Drug: UD Polysporin Ointment.

We applied our methodology to the InterMED (an offshoot of the MED)
containing about 3000 concepts. It was partitioned into 545 contexts, 394 of them
consisting of single concepts due to the InterMED’s incompleteness (i.e. if more
concepts of the MED would be added to the InterMED, then some of these
singleton concepts would get descendants and turn into actual contexts). Thus, the
InterMED is practically partitioned into 151 actual contexts with an average size of
16. This partition of the InterMED achieves our original goal of partitioning the
vocabulary into screen-sized, logical units reasonably comprehensible to a user.

6. Conclusions

Vocabularies promise to be important tools for many medical information
processing tasks. They can help overcome differences in terminology between
different databases and information systems and different categories of users.
Unfortunately, the job of understanding and maintaining the vocabulary itself is
difficult and time-consuming. A graphical representation can help in the process of
understanding most vocabularies. However, if the vocabulary is very large, the
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graphical representation rapidly loses its intuitive appeal. In this paper, we have
presented a methodology for partitioning a (graphical) vocabulary representation
into meaningful units.

Disciplined modeling assumes a vocabulary that is structured around a directed
acyclic graph of IS-A relationships. It defines three simple rules that, if followed,
guarantee that a forest, i.e. a collection of trees, can be identified, which partition
the vocabulary into meaningful units called contexts. Based on this formal result,
we presented a methodology for partitioning an existing vocabulary into contexts.
As computers cannot (yet) judge ‘meaning’ well, our methodology relies on the
close interaction between human and computer. The result of the partitioning
process can be used to study a single context at a time and the interaction between

Fig. 7. The forest subhierarchy of Fig. 1.
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pairs of contexts. This presents a major improvement over studying ‘the part of the
vocabulary that is just now displayed in the window.’

Two experiments with the methodology were presented. The first one used a very
complex subnetwork of the MED vocabulary, which poses a challenge due to its
complexity. The second one used the InterMED, a medium sized vocabulary. Both
experiments demonstrated the effectiveness of the methodology.

To date, we have only anecdotal evidence that the partitioned vocabulary is
easier to use than the original source vocabulary. We are planning a human-factors
evaluation of the results of our methodology using students in the Biomedical
Informatics program at the University of Medicine and Dentistry of New Jersey.
We expect that such a study will show that students with access to our partitioned
vocabulary will solve a given problem faster and more accurately than students in
a control group.
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