The First International Conference on Systems Integration
April 23-26, 1990 Headquarters Plaza Hotel, Morristown, New Jersey, USA

Edited by

Peter A. Ng -
New Jersey Institute of Technology

C.V. Ramamoorthy
University of California, Berkeley

Laurence C, Seifert
AT&T Beil Laboratories, Inc.

Raymond T. Yeh
Syscorp Intemational, Inc.

Sponsored by
Institute for Integrated Systems Research
Department of Computer & Information Science
New Jersey Institte of Technology (NJIT)

In cooperation with
IEEE Computer Society
ACM (Association for Computing Machinery)
AT&T
Bell Communications Research (Beflcore)
Gesellschaft Fuer Mathematik und Datenverarbeitung (GMD)

This conference focuses on the problems, issues and solutions of integrated system design, implementation and performance. Integration techno-
logies will be emphasized with a focus on computer-aided software engineering, collaborative and distributed systems, and computer integrated
manufecturing systems. The conference will provide an intemational and interdisciplinary forum in which researchers and practitioners can share
novel research, engineering development and strategic management experiences.

At the core of the program are 85 selected papers which present recent advances on many aspects of systems integration technologies. The pro-
gram will be highlighted by three plenary session speakers, a banquet speaker, and four panels addressing emerging issues of widespread interest
and bringing a variety of experiences and opinions to the conference. In addition, there is a one-day program of five wtorials which presents a

4 @
>

IEEE Computer Society Press
Los Alamitos, CA

Washington ® Brussels -] Tokyo

A Theoretical Underlying Dual Model for

Erich Neuhold+

Knowledge-Based Systems

James Geller* Yehoshua Perl*

Volker Turau+

+GMD-IPSI Integrated Publication and Information Systems Institute
Dolivestz. 15, D-6100 Darmgiadt, FRG
*Institute for Integrated Systems, Department of Computer Science

Rew Jersey Institute of Technol

, Newark, New Jersey 07102

Abstract

Cbject-oriented knowledge based approaches have proved 1o
be very powerful vehicles when developing, respeciively integrat.
ing, complex systeras. Their abatzaction and inkeritance capa-
bilities anconrage broper modularisstion as well as sapport the
encapsalation and incorporation of Previously existing sysiem
components that have not heen developed Tollowing the object
oriented paradigm.

Unfortunately, many different definitions of the term
knowledge-based exist, and in mest of them some terms are
only “defined” by example or by implementation, In this paper
we show how & thearets underlying model for object-criented
knowledgebased systerns can enh the precise underat ding
of its modeling power and consequently simplify the sharing of
system components by the developers of the systems. Thinis one
of the major problems encountered in todays lazge knowledge-
based systems that has led to loss of modulrrity and extendibil-
ity, the prime motivators to move to object-oriented approaches,
Since a formal medsl for all approaches ix impossible, we cop-
cenirate on the typed, extensible object-oriented data-model de.
veloped at GMI)-IPSL

them in well defined,

In this peper we concentrate on defining and cleanly sepa-
rating the structural and semantic parts of object-oriented def
initions. Here sfruciural refers to the organication of the data
snd the operations on the date whereas semantic refess to the
connections of these cancepts to the real world,

1 Introduction

The Iarge complex systems that are currently under development ugu-
ally suffer from the incompatibility of the many interfaces that have
to be bandled. Unforiunately we are usually not free to redesign those
interfaces if we waot to import preexisting sysiem functions - a must in
moat gystems under development today, Usually we have to deal with
many different kinds of information, many different types of represen-
tations of this information and many different operations that may be
used to manipulate the data.

The object ariented paradigm which combines more traditional ap-
proaches like abstract data types, mheritance structures and seman-
tic data modeling principles has been used ag a powerful mechanism
to rapidly develop and integrate interfares of subaystem components.
The clase comstruct of the object oriented paradigm allows for easy
categorisation of objects via structural and semantic similarity, Inher-
itance provides for reusability and information hiding for modulariza-
tion. TUsually, however, these concepts are not connected to features
like persistency, sharability, and consiatexncy, properties that in tradi-
tional systems are handled by data base management aystems,

We have described an object oriented data model [NPGTS%a,
NPGT88b, FKRSTBY) - and an accompanying knewledge base man-
agement aystem is currently being built - that will be the bagis for

TH0309-5/90/0000/0096$01.00 @ 1990 IEEE

&. the integration of the data and data operations required for the
multitude of applications appearing in cemplex systems [NS88};

b. interconnecting the object-oriented paredigms of the Programming
and artificial intelligence world with object oriented data models

(NKsg];

¢. integrating preexisting applications and data bases with new
knowledge-baged componeats into a eingle objeci-oriented
knowledge-based system [SNB8a, SNBEH).

In this paper we want to provide a formal basiz for an object ori-
ented data model, since we feel that only on a precisely defined basis
can we build a reliable technology for integrating the multitude of data
manipulation needs of the applications found in the complex syatems
of today and {he future,

In order to store and reirieve the information for an application
froin & certain enterprise’s database, a suitable representation of the
application's environment is required. Such a representation is called
a conceptual model. It is an abstract representation that contnins the
properties of the environment relevant to the application, In the past
yezrs mumnercus models with the abm of representing semantic atruc-
tures beyond the capabilities of the firat-normal-form relational model
were presented [PMES). The representation mechaniams ate all based
on & collection of abatraction techniques. The most significant gech-
nique is to collect the objects of the domain of interest into classes,
The class concept has been introduced in Simula {DKN66] and reimple-
mented by Smalltalk {GRS3).

A class can be regarded as a container for cbjects which are airg-
ilar in their structure and their semantics in the enterprise. Further-
more, the objects have a similar behavior from the user’s point of view.
Therefore, a clans ean be regarded as a description of the structure and
behavior of objects.

There siill exists confusion regarding the meaning of some terms
used in different object orisnted eystems. Different systems use differ-
ent terminology and lack exact definitions for the terms used. Some
terms ate vaguely described using other undefined terms and the de-
scription is then supported only by examples whick demonstrate the
meaning of the terms. This situstion causes difficulties both in un-
derstanding and implementing these aystems. Furthermore these is-
sues make the communication between people using different systems
mor¢ difficult. To overcome these difficulties we present mathemati-
cal definitione for the terms used in our object oriented database sys-
tem [FKRST80]. Such definitions exist already for some basic terms
[DKT88] but etill are needed for the mote complicated terms. In other
words we are trying to establish a theoretical underlying model for
object oriented knowledge-based systems,

In such a theoretical underlying mode! there should be & math-
ematically defined structure corresponding to each term used in the
system. This will help in overcoriing the above mentioned confusion
encountered in the implementation and the integration of such systems
and in the human conununication abont differeat systems using simi-
lar but not identicat terminology. With formal definitions, for exam-
ple, the identity of different terms could be judged according to their
corresponding mathematical structures. For example, what are the
mathematical structures corresponding to method chains and trans-

e

former chains (defined Iater in the paper), or atatements as “class A is
a subclass of clase 8”, “clans A is a category of class B*, “class A is
dependent on class B” or “class A is a member of class B"7

But, let us explore now another source of confusion in object ori-
ented knowledge and databass systems. Following [WB8T], the charac-
teristic concepts of object-oriented languages are the notions of objects,
classes of objects, and inheritance of properties between objects. The
desgeription of an object class contains both structural parts and parts
that describe the semantics the classes have in the application. In many
syetemms, e.g. [CM84, KNSB8, F87, GRB3, SRE6], the structural and se-
mantic parts are mingled together. This causes some difficuities when
it is necessary to distinguish whether a part is structural ot contains
semantic information.

An example for such a difficulty is the question whether an opera- .

tion on the elements of & clase (2 method) is & structural or semantic
element of & class. Simnilarly, do the following statements contain struc-
{utal or semantic information: “class A is dependent on class B”, “class
A is role of class B®, “class A is a set of class B"7

In order to approach these problema we will first present our view
of the basic elements of ohject oriented data and knowledge base sys-
tem. To provide reussbility, clagses are organized in a class hierarchy.
Sublcasaes inherit the properties of their auper classes. In many sys-
tems as 02 [LR88] and Vbase [AMB7] the subclass hierarchy is uaed
for two purposes a} the same time:

a) to factorize common struzcture and behavior of classes and
b) to express additional semantic relationships between classes.

This leads to a situation that two classes modeling semantically related
objecta could only be dealt with, if the objects in question are strue-
turaily related as well. The use of a single hierarchy for two concep-
tually distinct connections among specifications resulted in inadequate
concepitnal models. Therefore, it will be advantageous to aeparate those
two paris of the specification.

In [NPGT892, NPGT80b] we recently introduced the so called Dual
Mode! where we sepatate in the definition of the object class the struc-
tural parte from those parts describing the semantics of the class in
the real world. In order to express that all instances of a class have a
common structure and behavior we consider them to be of the same
abstract dats type. This type in called the object type of that class.

Hence, we aascciate with each object class an ohject type. Regard-
lesa of their corresponding object type, object classes can be related
actording to their semantic connections in the application, which can
be formulated independently of the object types.

For example it may be desirable to represent the same object in
different contexts of the application, or to deal with an object in differ-
ent levels of detail. All the semantic constraints are now expressible in
the model, regardless of the structural relations between the relevant
classes.

Some object-oriented programming languages use the concept of
ehatract clasees {GRB3,MSOPSBE], which ate classes which cannot be
instantiated. Their only purpose is to define useful attributes, relation-
ships, and methods that can be inherited by concrete subclasses. We
achieve the same result by defining object {ypes which include these at-
tzibutes, relationships, and methods and then utilise type inheritance.
In this way the anomslous concept of abstzact classes is avoided.

Thus, our specification allows two hierarchies, on the one side we
have a structural hierarchy {an acyclic directed graph) of object types,
and on the other a network of classes. In meking this distinction we
hope to achieve a better abatraction mechanism, giving a more accurate
representation of the application.

In this paper we want to combine the precise mathematical de-
scription of database concepts with the Dual Model of structurc and
semantica as presented in [NPGTB0a, NPGTBQb] Since both these
dencriptive methodelogies are intended to incresse the clasity of our
database model, we axpect the combination to resclve the confusion
existing with regards to the precise meaning of certain technical terms
and in identifying whether & statement is discussing structural or se-
mantic infermation.

97

The separation of structural and semantic elements in the Dual
Model lzads initially to more dificulties in finding mathematically pre-
cige definitions for technical terms. However, after overcoming these
difficulties, a clear and precise model emerges.

We will use this paper also to discuss our reasoning in determmmg
whether an element in the description of an object ciass is structural or
contains semantic information. This ressoning waa partially omitted
in [NPGT8%a, NPQTBIb] due to space limitations, but it is important
to properly understand the details of the Dual Model.

In Section 2 we review the idea of “object type™ as previously pre-
sented in [NP('T8%a, NPG'TBIb]. The basic properties of object classes
are considered in Section 3. The difference between these two descrip-
tions is that in object types we consider only the structural elements
of the class description, while the semantic elements are considered in
the description of the object class.

In Section 4 we consider structural connections between object
types showing them to be implicit relations. In Section § we con-
sider semantic cornections between objeci clasaes, showing them also
to be implicit relations. The distinctions between structural and se-
mantic implicit relations is discussed. Finally, an example in Section 6
demonstrates the different elementis of the Dual Model.

2 Basic Properties of Object Types

In oxder to etructure the set of objects in the domain of our inierest
we collect ohjects into classes, An ohject class can he regarded as
a container for objects which are similar in their structure and their
semantics in the real world, They have similar behavior from the user’s
point of view.

An object is said to belong to the class or be an instance of the
clase. The actual set of objects which belong to a given class is called
the extension of the class, The get of all pousible objects of this class
(possibly an infinite set) in called the domain of the class.

Data types are a major organising principle for programming lan-
guages [DT88)]. They deseribe the common properties of objecta. A
type describes & (possibly infinite) set of values and a set of opera-
tiona applicable to these values. Moreover, a variable of that type is
constrained to assume values of that type.

Since all objects of & claas have 5 common structure, they will huve
common representation. Therefore, they will be considered as instances
of the same objeci type. ‘This type ia called the object type of that
class. However, the objects of two different classes may be of the same
object type, even though the two classes model objects having different
gemantics in the real world. Thus the description of the object type
of a clage does not reflect the semantics which the objects carry in the
real world, it is purely a structural description of ¢he representation for
the instances and can be separated from the class deseription to form
an object type apecification.

The separation of the object type description from the description
of the cbject clnas, i. e. what we call the “Dual model”, will help to
get a clear distinction between the structural and semantic peris in the
definition of an object class. The semantics of the objects is described in
the definition of the object classes by relating them to the object types
and by determining their (semantic) connections with other classes,
Hence, the object types only serve as a platform for specification of the
ssmentics, but do not contain the semantics themselves.

As usual we allow three different kinds of propertics to be defined

for & class:
1. Attributes, with values of some type,
2. Relationships, with references to another object class,
3. Methods, to be used on the instances of the object class.

We will now distinguish which of these three kinds of properties are
structural and which contain semantic information. Attribute defini-
tions which describe the type of a data element are clearly structural.
Relationships contain pemantic information as they refer to another
class which has semantic iuformation in the context of the application.

The determination of the status of methods is more involved. Trans-
former chains are structural, while method chains {both defined later
in this Section} refer to object classes which contain semantic informa-
tion sud thua also seem to contain semantic information. As defined
later, s method can be cither of the above two, or a compuosition of two
such chaing, Thus it is not clear whether a2 method is structural oris a
semantic part in the definition of a class. {We suggest that the reader
review this discussion after reading section 2.3 abeut methods),

When we define an object type we should include only structural
clements of the definition of a clasa in it. Thus we have to resolve the
difficulty regapding methods. Furthermore we need to find a structural
way to represent relationships, since there is no sense in defining object
types if they do not contain relationships. (Without relationships we
would only have the definition of a (complex) absiract data type as
known from programeming languages.)

Fortunately, thess difficulties are resolved easily once we permit the
object type to contain the structural elements of the object class. In an
object type a relationship in defined as referring not to an object class,
but to an object type and thus ia structural and as auch can be included
in the object type. Furtharmore, a method chain in an object type
zefers only to object types and thus is alao structural, &3 is & teansformer
chain. For both, relationships and methods, the reference to the actual
object classes is contained in a class definition which corresponds to the
object type definition and has meaning in the context of the application
at hand. (See the examples for methods in Section 8).

This means that structural relationships and methods are defined
in object types and refer to object types, while the corresponding se-
mantic relationships and methods are described in the object class,
subatituting each object type in the relationship or method by the cor-
responding object class. We call our model the “Dual Model” due to
the separation of the class description into two layers, the structural
Iayer and the semantic layer.

As 2 matter of fact, the separation of the definition of methods into
two layers, the structuzal and the semantic layer resolves the difficulty
of determining whether & method is atructural or semantic in nature,
which we have raised eatlier. We see $his resolution as one of the main
advantages of our separation.

Thus we are ready for the formal description of an object type. An
object type is determined by a list of properties. There are three differ-
ent kinds of properties and they correspond to the already introduced
class properties:

1. Attribuies, with values of some type,
2. Relationships, with references to other object types,

3. Methode, {0 be used on the instances of the object type.
2.1 Attributes

An sttribute property is represented by a name and a data type, The
name ir & selector for this property. The type specifies a domain of
values from which a value for this attribute can be chosen. Note that
& type can be defined a9 a composite type of sets, enumeration types,
tuples, and disjoint unions, as described in [NPGT80a, NPGTS8b].
The mathematical structure underlying an attribute ia & variable. This
conforms with the behavior of an attribute to refer to one value of 2
data type at one time.

2.2 Relationships

A relationship property is represented by a name and an object type.
The name is again a selector for the property. The object type refer-
anced must be defined elsewhere. In a relationship we allow not only
single object type but also a composite structure of object types using
the same set, tuple, and disjoint union constructors that we used in
defining composite dats types [NPGT89a, NPGT80b). In this way we
can refer to a #et or tuple of object types in a relationship.

Usually in object oriented programming models the underlying
mathematical structure for a relationship from object class A to ob-
ject class B is a mathematical relation between the extensions (i.e. the
acts of instances) of the classes A and B. Now, when we need to define
the underlying mathematical struciure for the structural relationship
of an object type we encounter some difficulty, since an object type, by
‘definition, does not have an extension. However, an object type has &
domain which is a #et of instances, namely all possible instances, and

we use the domain to provide the underlying mathematical structure 9

as follows.

Let R be a relationship from an object type A to an object type
B. Let 1X(A) and D{B) be the domains of the chject types A and B
respectively. The relationship R is a relation from the set D{A) to the
set D(B}, referring here to the mathematical notation of relation as a
subset of the Cartesian product
D(4)x D(B) = { (s, b) / a € D(4), b& DB)}.

Hence, the relationship is & set of erdered pairs of ohjects.

In this definition we used the fact that the domain of an object type
is a structural eatity, while the extension of the corresponding object
class represents semantic information. The definition of the domain of
an object type ie given in Section 2.4,

2.3 Methods

the following we use the Smalltalk [GRS3] terminology for meth-
ods but have redefined some of its meaning, A method is a program
segment with one required parameter of gome object fype, and any
number of optional parameters, We will asaume that every method
also returns a value of an object type or data type. The methed name
together with these optional parameters is called the “message” whick
is sent to the object identified by the required parameter.

If a program segment is nesded that takes values of & data type as
arguments then it must be defined as an operation of this data type
rather than & method, and it will also return a value of a data type.

The signature of a method or of an operation defines the types of
its input parameters and the type of the return value. The definition
of an object type contains a signature for every method that is defined
for that object type as its required parameter.

In the following we will formalise methods that do not perform any
side effects in persistent memory, i.e. methods that parform only local
computstions and that influence their environment only by their return
value. We wili give a recureive definition of such & method.

A computational method in a program segnent with one required
paremeter of some ohject type that makes use of the functionality of
the underlying programming langusge (e.g. C++) but does not modify
any stored values outside of its own local memory ausd returns a value
of an object type.

A primitive method is either a relationship or a computational
method.

A method chain is cither a primitive method or & primitive method
composed with & method chain.

A transformer is a program segment that takes as a required ar-
gument & value of an object type and returns a value of a data type.
Other than that it behaves like a computational method.

A primilive transformer is either a transformer or an aticibute.

An operation chain is either an cperation or an operation com-
posed with an eperation chain. (Operations are defined for “ordinary™
abstract data types).

A transformer chain is either a primitive transformer or a primitive
transformer composed with an operation chain.

With all these terms in place we can now define » method formally.
A method ia either a method chain or a transformer chain or a compo-
sition of the two, narnely 2 method chain compozed with a transformer
chain,

According to our definition relationships and attributes are just
special cases of methods. Nevertheless, they are conceptually impor-
iant specisl cases which warrant our three way distinction between
atiributes, relationships, and methods,

We will refez to the set of all possible argument valuea of one pa-
rameter as the domain of this parameter. The domain of a method is
the cross product of the domains of all ite parsmeters. We define the
range of o meihod ag the sct of all resulta that this method can generate
given all possible vales of its domain as inputa.

With the above assumptions one can view a method with ro side
effects 26 a relation. This relation will be from the domain of the
method to its range.

R: Domain — Range

In tase that the domain is a cross product this relation takes the fol-
lowing form. Let Dom; be the domain of the i-th argument of the
method.

R: Domain(Object type) x Dom; x Doms x Dom,, — Range

Thia basic idea can be carried over essily to all elements that have been

8 used in the formal definition of a method. For an operation we get

R: Data type x Doy x Domy x Dom,, ~+ Data type.

Fer & trapsformer we get

R: Domain{Object type) x Domy x Domy ..., x Dom,
-= Data type

and for a computational method

R: Domain(Object type) x Domy x Dom; x Dom,
—+ Range == Domain(Object type).

Our definition of & method permits the chaining of the above defined
entities in the following pairs. {1) For method chains: computational
methed - computational method, relationahip - relationship, relation-
ship - computational method, computational method - relationship.
{2) For transformer chains: operation - operation, attribute - opera-
tion, transformer - operation. (3) Chaining method chains with trans-
former chaina creates the following additional possible pairs: computa-
tional method - operation, computational method - transformer, com-
putational method - attribute, relationship - operation, relationship -
transformer, and relationship - attribute.

It is obvious that with our restrictions all the mentioned composi-
tional pairs can be represented as the compositions of relations.
Eg HR: A—Bisarclationfrom AtoBand R: B - Cina
:elé‘.'ion from B to C then we can define the composite relation Ra: A
~+C as

Ra=RyokRa
such that “o” defines relation composition in the usual sense:
RioRy = {(=, y)| =Bz & zRyy}

Clearly our recursive definition covers compesition chains of any length,
¢.g. if a method R is defined by chaining relationships R;, Ra, K3 toan
aitribute Ay, then R = ({(&; ¢ R3) o Ra} o 4;). Therefore, a method
chain, an operation chain, a transformer chain, and thus a method can
each be represented as a composition of relations, For examples of
object iypes ez Section 6.

2.4 The Domain of an VObject Type

We need to define the domain of an object type. This domain should
reflect the atiributer, relationships, and methods of the object type. To
facilitate the definition we define a selactor Cortesion product which is
a variation of the regular Cartesian product.

A Coartesian product Ay x A4z X ...A4n i8 the set of all n tuples
(21,63, 4490y ., @n) such that & € A; for 1 € £ € n. That is,
an element of the Cartesian product is a mapping 3 from the tuple
(1,2,...,n) to an n-tuple such that M(i} = a;, where oy € 4; for
1<i<n

In an cbject type the properties are identified by their selector,
rather than by a serial number. Thus we define a seiector Cartesian
preduct ApRoPERTY1 X APROPERTY3X ... X APROPERTYn 88 & MBP-
ping M from the tuple of the properties of the object type to the
Cartesian product of n sets as follows:

M :{(PROPERTY1, PROPERTY?2, ... ,PROPERTY!I)
— Aproperry1 XApRoPBRTY2 % -+ X APROPERTYn.

An clernent of the selector Cartesian product iz a mapping

{PROPERTY1, PROPERTY?, ... s PROPERTY r)
~ {apROPBRTYL, OPROPEETIY - -+ 2 CPROPERTYn)r

where

apropERTY: € ApRoperryifor 1 <ign
#

‘We still bave to define the Apgorgrryi. If PROPERTY % s an
attribute then Aprarsary: is the type defined for this atiribute in
ihe definition of the object type. If PROPERTY i is & relationship
to another objecttype OT, then we define ApropErTY: to be the set
of all possible classes whose object type is OT. If PROPERTYi s a
method M then we define Apropzrry: to be the method M itself,

Thus the domain of the cbject type QRDER in Section 6 is the map-
ping (Orderdate, Quantity, Orderingcustomer, Customername) —
(DATEx INTEGERx {ocfoc iz a closs with the object
type CUSTOMER} x the method Customername) :

To justify our choice of AproparrY: Where PROPERTYi is a re-
lationship R from an object type A to an object type B let us connider
ap alternative. The natural alternative is that AsropsrrY: = D(B),
where D{B) is the domain of B. But B is an object type which may
have & relationship S to the object type A. In this case we obtain a
cycle in the definition and the domain of the object type A is not well
defined. Thus we have chosen the above alternative.

3 Basic Properties of Object Classes

So far we have concentrated on the specification of the object types.
Classes were only used as an explanatory tool to derive the definitions of
the propertica of object types. Now we will deal with details of classes.
An object clags specifies the semantica of an object in the real world by
identifying relationships to other object ¢lasses, the conntraints on the
relationships and the way the methods specified with the cbject type
have to be applied to the objects in the environment of the existing
object classes, In the definition of the object type the relationships
only relate different object types. In the semantic description we must
asy which object classes of this object type we actually want to relate.
This is necessary if more than one object class has the same object
type, otherwise this information is implicitly contained in the object
type definition. The same must be dane for the object types i the
signatures of the methods.

We now need to preaent the underlying mathematical structures for
the properties of chject classes. Actually, these mathematical defini-
tions are common knowledge in object oriented programming and ere
briefly repeated here for reasons of completeness.

Suppose an object class A is introduced as being of object type A’
for which a (structural) relationship R' to object type B’ is defined.
Let B be the object class correnponding to the object type B’. Then,
by stating that object class A is of object type A' it in implied that it
hes & semantic relationship R to the object class B, The mathematical
undetlying structure of this relationehip is a relation from the extension
E{A) of A to the extension Z(H) of B, referring here to the mathe-
matical notation of “relation” as a subset of the cartesian product of
the two extensione.

E(A) x B(B) = {(a,b}/a € E(A),bc B(B)}

Hence the relationship is & set of ordersd pairs of instances of A and
A.

As can be seen, thiz definition is analog to the definition of the
structural relationship just replacing the structural set of the domain
by the semantic set of the extension. This definition is, as stated before,
common knowledge. The contribution of cur research is the structural
definition, but, because an object class iz defined as being of & given
object type, the clasa definition is presented second in our description.

The same applies with regards to the definition of the semantic
methods, We just need to replace the structural relationships in the
definition of the atructural methods by the corresponding semantic
relaiionships to obtain the mathematical underlying structure for a
semantic meithod. We omit repeating the detalls of this definition.

Now we can define additional semantic constraints. The first con-
straint is that of essential properties. The existence of an object is
conditioned on the existence of ite emsential properties. An instance
of a claes can only exist if the values of its essential properties are all
different from nil.

The second conatraint is that of » dependent relationship. If the ex-
istence of an object depends on the existence of another object, we can
mode] this with a dependent relationship. Suppose an object has sav-
eral dependent relationshipa (meaning that several objects are depen-
dent on the existence of the former). Then the deletion of this object
has the consequence, that the dependent objecta arve also deleted.

4 Connections between Object Types

In addition to the hasic properties of object types and object classes
their descriptions may contain statements about their connections to
other cbject types or object classes. Examples of such statements are:
“clasn A is & subclass of class B, “object type A is a subtype of object
" type B, “class A is a category of class B®, “class A is a role of class BY,
“class A ia a member of class B", “class A is a set of class B”. These
statements are the ones which we referred to in our introduction as
being not well defined for some systems. For each of these statements
we need to identify whether the connection described is structural or
contains semantic information according to the peparation expressed
by our Dual Model. Furthermore we need io define the underlying
mathematical structure corresponding to each such atatement.

Note that we already defined in Section 3 that the statements “Class
A is dependent on class B”, “atiribute X is essential®, and “relationship
Y is esscntial® are semantic constraints on properiies. Thus we do
not need to treat these kinds of statements here. In the following we
continue to denote by A’ the object type of the class A.

Structura) information i contained in the following statements.

1. Object type A’ is a subtype of object type B
2. Object type A’ is a membaer of object type B,
3. Object tyre A’ is a aet of object type B'.

Because these statements are structural they will be contained in
the description of an object type. By introducing the notion of abject
type we do not need any “subclass statements” since the information
communicated by such a statement is structural and is now given by
the subtype statement in the deacziption of the object type.

We shall show that each one of these statements can be described aa
a relation. As we mentioned before, the relationship is also a relation.
However, we ohall show that there is a difference between the relations
which describe relationships and these relations.

There are two ways in which one can represent the pairs belonging
to a relation R from & set B to a set A. One way is to list all the pairs
explicitly. The second way is by specifying a rule which determines alt
the pairs of a relation without listing them. Thas is, for each pair (4, a)
b€ B, e € Aitis possible to determine if it belongs to K. Examples
of the second way are the relations DIVIDE and GREATER from IN-
TEGER to INTEGER. We call such a repzesentation of a relation an
implicit representation, since the pairs are not listed explicitly, Actu-
ally every infinite relation must have an implicit representation aince
it ie impossible to list explicitly an infinite sequence of pairs. Note
that there is no difference between relations which are represented by
one way or another. The only difference is in their representation, For
convenience we refer to a relation represented implicitly as an implicit
relation.

We shall show that each of the above statements expresses an im-
plicit relation.

4.1 The Subtype Relation

We now introduce subtypes of object types [KNS588, FKRSTS8]. If
several object types share common characteristics, then ove cag factor
out the commonality to produce a more general object type. One could
then include the definition of this general object type into the definition
of the other object types. The general object type iz called supertype
of the given types, which are called its subtypes. A subtype describes

an object type that is tnore specific thau the supertype. Whether
the gubtype is regarded as a epecialisation of the supertype or the
supertype is regarded as a generalization of the subtype depends on the
point of view and is not relevant to our discussiop. This mechanism
of organizing object type descriptions on several levels can gensrate
a hierarchy of object types. The supertype relation is transitive. To
distinguish the case where the relstion is given rather than composed
we use the term immedizte superiype. ‘The primary motivation for
the use of subtypes is that it provides tocls for both structuring and

100

reusing epecifications. To find the commonality between object types
is a crucial task in developing an application.

Structural inheritance is the mechanism which uses the common-
ality specified in the subtype hierarchy of object types. The subtype
inherits all the properties (i.c. atiributes, relationships and methods)
which are defined for ite supertypes. In particular the methods defined
with the supertype are alac applicable to elements of the domain of the
subtype. Inheritance is achieved by using a special kind of coercion. A
coercion is a projection, that i» a mapping from & tuple into a subset of
the elementa of this tuple [DKTB8]. Note that this is a mathematical
definition of coercion rather than the programming language meaning
of coercion. As we saw in the definition of the domain of an chject
type (Section 2.4) the elements of the tuple are identified by selector
names rather than indices. Thus we need to define a selsctor coezcion
similar to the selector cartesian product as a mepping

(PROPERTY,, PROPERTY;, ..., PROPERTY,) —
(PROPERTYS;, PROPERTY 43, ..., PROPERTY ;)

where {i1,43, ...,%} is a subset of {1,2,...,n}. In our cese the
selecior coercion is a mapping from the demain of an object type
(AprorERTY 1, APROPRRTY2: - .- APROPERTYS) t6 the domain of its
supertype {ArgopgrTYils APROPERTY 2, -+, APROPERTYIR). Now
the methods actnally available for an element of the domain of a paz-
ticular object type are not only those methods defined in the element’s
object type bus alss those of all its supertypes in the cbject type hier-
archy. .

Thus the subtype connection is a set of pairs of elements, the first
is an instance of the domain of the objeci type A’ and the second is
an instance of the supertype object type B'. Thus the subtype con-
nection is actually & relation from the domain of A’ to the domain of
B'. However, the pairs of the relation do not need to be listed as they
are described implicitly by the coercion. Hence subtype is an implicit
relation. Note that as for the structural relationships and methods the
relation is defined between the domains of the object types and not the
extensions of the corresponding classes.

Further discuesions of the structural subtype hierarchy and the
structural inheritance can be found in [NPGTERa, NPGT89b].

4.2 The Set Of and Member Of Relations

Consider two object types A’ and B’ such that the connection between
them is described by the siatement “A’ is a set of B’ ”. That is, the
instance of the domain of the object type A’ ia actually a set of instances
of the domain of the object type B, For example, when B’ describes
a member of an organisation and A’ describes a committee of this
crganisation which contsins a set of members,

This is the description of the connection from the point of view of
A’ From the point of view of B' the same connection is desczribed by
the statement B’ is & member of A' ™. These two statements contain
structural information since a wet is a ruathematical structure without
semantic information.

The mathematical structure which describes the connection “pet
of* between the cbject types A' and B’ is a relation from the domain
of A’ to the domein of B’. Note that the domain of A’ is the power
set of the domain of B'. The relation contains a set of pairs (a, b) such
that ¢ ia an instance of the domain of A, or in other words, a is &
finite subset of the domain of B', and b ia an element of the set 2, using
the mathematical notion of set and element, This is also an implicit
relation since the pairs of the relation are not listed, they are described
implicitly by the mathemsatical concept of membership of an element
in a set.

The same discussion, just with the order of the pairs reversed applies
to the “member of” connection. Thes “member of” is also an implicit
relation. For examples of structural relations see Section 6.

&

5 Connections between Object Classes

We shall show now that both semantic connections between classes,
“role of” and “category of™ are alao implicit zelations. Bowever, there
iz a difference from the previously discussed implisit relations in that
these are defined between the extensions of the related object classes
rather than between the domaing of the related object types as for
subtype, set of, and member of,

So far we have assumed that any two object classes model different
objects of the real world. But if we want to model the same real world
object in two different contexts, in which the objects have different re-
alizations, we must introduce two different object classes. Each object
clasa has a different object type. ‘To capture the semantic connection

between the two clasaes we introduced the role of concept, It is used
to express the fact, that two (or more) object clasges model the same
real world object in different contexts (or equivalently the objecis are
represenied in different roles). This concept has consequences regard-
ing message passing, because if a method is gent to an object and the
method is not contained in the interface of that object, then it may
be forwarded to one of ita roles. Mors details are given in [NPGT88a,
NPGTB&9b]. The object types of the classes 4 snd B do not have to be
sub- or supertype of each other. The role of concept reflects purely a
gemantic connection, which is not reflected by a relation between the
corresponding object typea.

The second modeling device for relating object classes is called cat-
sgory of. In some way it is dual to the role of construct. It is used io
model the same real world object with additional knowledge, but stifl
in the same context. Thus it is a refinement of the description with
reapect to one aspect of ita former description. Whereas in the case
of role of the additional information was about the object in a differ-
ent context. If more specialised information about the instances of an
obhject class is available, we can categorise the instances into different
object classes and relate these classes via the category of concept with
the original class.

Note that by the definition of “A is category of B” the object class
A represents the same real world objecta represented by the object class
B in the same context but with some exira information describing the
refinement. In such a case the object type A’ must contain all the
properties of the ohject type B’ and some additional ones to reflect the
more refined information known in the object class 4. This is the case
if the object type A’ is a subtype of the object type B'. Henece, if the
chject claga A is a category of an object claas B, then the correaponding
object type A’ must be 2 subtype of the object type B’.

HBowever, if the object class A is categary of object class B, then the
instances of the class A model the same real world objects as the class
B. This has to be seen in contrast to two object clazses in which the
correspending object types are in a sub-/supertype relation, There the
two object classes model objects which are structurally ¢losely related,
but they may correspond to different real world ohjects from dissimilar
aress,

The set of object classes forms with respect to the role of and cate-
gory of specifications a network [NPGT89a, NPGTSE9b]. This network
is defined independently from the hierarchy of the object types. Thus,
the object types of two object classes modeling the same real world
objects need no longer be in & sub-supertype relation. In previous data
models such a relation alwaye implied a structural similarity of the
instances. This is the case in the situation of category of apecializa-
tion, but certainly not in the case of role of specialization. There, the
same real world object can have totally different structures in differ-
ent roles. By separsting the semantic specification from the definition
of the object types, our model is closer to the real world. For the
discussion of inheritance between sermnantically connected classes see
[NPGTE0a,NPGTBIL]. ’

Finally we want to show that both, role of and category of are
implicit relations. If class A is role of class B, then both clagaes describe
the same real world object, but in two different contexts. Thus the role
of connection from A to B can be desctibed as a relation contzining
pairs {a,5) such that a is an instance of A, b is an instance of B and
a and b describe the same real world object. This relation is implicit

since the pairs do not need to be listed, but are determined by the
mathematical identity relation. This identity relation is obtained by
transitivity from the identity relation from an instance of A to the
corresponding real world object and the identity relation from this real
world cbject to the corresponding instance of B.

If class A is category of class B then both classes deacribe the same
resl world object in the same context, but 4 describes it with additional
knowledge. As for the role of relation this implies that category of is
an implicit relation where the mathematical identity relation, obtained
as for the role of relation, is used {o determine the pairs of the relation.

6 Example

We describe an example from a manufacturing environment to demon-
strate the use of the different elements in our model. The example is
basically self explanatory. We just highlight some important points.

In the following the names of the object classes are spelled with
small letters, object types with capital letters, and keywords are in
bold face. The two columns describe the corresponding object types
(left) and classes (right).

We omit relationships and methods from the class deacriptions
whenever there exists only ons class for a given object type, even though
it is in principle necessary to specify them. Thus we write the classes
for relationshipa and methods only for object {ypea which have multiple
clasgea,

class person
objectiype: PERSON
essential: Name, Address

objectitype PERSON
attributes:
Name: STRING
Address: STRING

clags customer
objecttypes

objectiype CUSTOMER

subtypeof: PERSON CUSTOMER

attributes: roleof: PERSON
Creditline; INTEGER essential: Creditline
relationships:

Reaidentin: REGION

class formercustomer
objecttype: CUSTOMER
roleof: perscn

class saiesperson

objectiype: SALESPERSON
roleof: person

essential: SocialSscNo

objecttype SALESPERSON
subtypeoft PERSON
attributes:
SocialSecNo: INTEGER
Salary: INTEGER
relationships:
Regioncovered: REGION

class region
ehjecttype: REGION
essential: Name

objecttype REGION
attributes:
Name: STRING
Geographicarea: STRING
relationships:
Responaiblesalesperson:
SALESPERSON

elass product
objecttype: PRODUCT
essential: Productao

chjecttype PRODUCT
attributes:
Productno: INTEGER
Manufacturer: STRING
Price: REAL
relationships:
Orderby: ORDERS

methods:
Orderingcustomernarnes:():
Orderby — ORDERS:
setof — {ORDER}:
Customername — {STRING}
Totalquantity: ()
Orderby — ORDERS:
setof — {ORDER}:
Quantity — {INTEGER}:

Sum ~ INTEGER
objecttype class componndproduct
COMPOUNDPRODUCT eategoryof: product
subtypeofi PRODUCT
attributes:

Noparis: INTEGER

Assemblytime: INTEGER

Agaemblycost: REAL
relationships:

Parts: PRODUCTS

objecitype PRODUCTS
setoft PRODUCT
attributes:
Noproducts: INTEGER

clags products
objecttypet PRODUCTS

clags orders
objecttype: ORDERS
dependon: product

objecttype ORDERS
setoft ORDER
attributes:
Noorders: INTEGER

objeettype ORDER class crder
membercf: ORDERS okjecttype: ORDER
atiributes: dependon: orders
Orderdate: DATE relationships:

Quentity: INTEGER Orderingeustomer: customer

reletionships:
Orderingeustomer:
CUSTOMER

methods:
Customername: {}:
Orderingecustomer —
CUSTOMER:
Name — STRING

methods:
Customername: ():
Orderingcustomer —+ customer:

Name — STRING

Note that the object type CUSTCMER is used by two classes,
customer and formercustomer. They differ in that only in customer
the attribute “creditline” is essential. Custorner, formercustomer and
salesperson are role of person. Note that a salesperson can also be a
cuatomer.

We define an object type and class compoundproduct for describ-
ing a complex product which ia assembled from simple products as a
subtype of PRODUCT and category of product.

The set of all ordere of & given product is described in ORDERS
which is defined as a set of ORDER representing a single order. Orders
are dependent on product and order in turn is dependent on orders (for
which it s a member of) and thus indirectly dependent on product
because dependency is tramsitive. Clearly, no order is possible for a
product which doet not exist,

The pair of parentheses following the name of a method stands for
the object type in which the method is defined. The method chain
is deseribed in triples of property — object type: meaning that the
property applied to the object type at the end of the previous triple
yields the object type of the current triple. The colon is used to separate
two triples. In the triples of the transformer chain the object type is
replaced by a data type.

102

The method Customername in ORDER finds the name of a cus-
tomer of a given order by using a relationship Orderingcustomer fo
CUSTOMER for which the attribute Name is defined. In the class
description we apecify that CUSTOMER refers to class customer and
not class formercustomer for both the relationship Orderingeustomer
and the method Customername.

Similarly two methods are defined for product. Totalquantity finds
how many copies of a given product are ordered; it consista of a method
chain composed with a transformer chain. The method chain starts
with the relationship Orderby defined for product, giving ORDERS.
Applying the setofof relation gives a set of ORDER, i.e. {ORDER}.
At this point the trapsformer chain starts. Applying the atizibute
Quantity gives a set of integers whose sum is the required result. The
opuration Sum takes a st of integers as argument and is defined in the
underlying programming language. The method Orderingcustomer-
name is similar, only the final resuli is not one element but a set of
names.

T Conclusions

This paper was motivated by our underatanding that in order to have
effective integration of different systems the elements of those syatema
should be well defined. If one attempts to integraie nystems which aze
not well defined or not well anderstood, problems tend to muitiply and
causc mistakes, incficiencies, and misunderstandings.

In this paper we thus undertake a twofold task. Firet we present
the Dual Model which determines for each part in the definition of an
object clasa whether it is structural or contains semantic information.
Secondly, we provide theoretical definitions for the elements of the Dual
Model. Such & model will support simpler, easier and more effective
integration of aystems.

Thus we have introduced a new distinction in ths specification of
types for object-oriented data and knowledge bases. We have divided
the traditional data representation based on class hierarchies into two
different hierarchies, a structural hierarchy of object types and a net-
work of object classen. Our reason has been that traditionally two
clrsgen that are intimately connected by s semantic relationship must
also look structurally simitar. This condition seems practically too I
iting and theoretically not justified. We have termed the model created
by this vew distinction between structuzal and semantic elements the
“Dual Model” for Object-Oriented Knowledge Bases.

An object type may contain attributes, relationships, and methods.
Object types can be related to each other by user defined relationships
2 well a8 the opecial structural relations subtype of, member of, and set
of. Object classes are Binked to their corresponding object types, and
one object type may function a8 a structural template for several un-
related object clazses. Object classes in turn may be connected by the
above mentioned uzer defined relationships as well as the epecial seman-
tic relations category of and role of. Relationships may be matked as
essential, and classes may be made dependent on other classes. These
two specifications almo express semantic constraints and are therefore
specified with an object class rather than itz corresponding object type.

The classes for relationships and methods need to be specified indi-
vidually for every given object type, however if there is only one object
class for & given object type the obvione default assumption will be
mede.

The existence of two kinds of hierarchies each of which cousists of
different kinds of structures leads to interesting issues of inheritance
which have been discussed in this paper [NPGT89a, NPGT89b].

Furthermore for each element in the definition of & class in the
Dual Modei, namely attributes, relationships, and methods, we have
identified a proper mathematical undezlying structure. In particular
we show that the structural connections subtype of, member of, and
aet of, 88 well as the semantic connections role of and category of are
all mathematical relations of a kind which we call implicit relations.

Thus, all parts of our Dual Model are well defined, both from the
aapect of their structural or semantic nature and from the mathemati-
cal aspect. Therefore, the Dusl Model will function as a good basis for
the integration of different systems.

REFERENCES

[AM87] Andrews, T. and Morris, C., “Combining Language and
Database Advances in s Object-Oriented Development Environment”,
Procesdings of the OOPSLA Conference, 1987,

[CMB4] Copeland G. and Maier, D., “Making Smalltalk a Database
System®, ACM SIGMOD, June 1984.

[DKT88] Duchene H., Kaul, M., Turay, V., *Vodak Kernel Data
Model”, in K. R.Dittrich (Edt.), Advauces in Object-Oriented Database
Systems, Lecture Notes in Computer Science, No. 334, 1988.

[DNg6] Dahl, 0.J. and Nygasard K., “Simula - an ALGOL based
sipmnlation language”, Communications of the ACM, No. 9, 1966.

[DT88] Danforth 5., Tomlinson, C., “Type Theories and Object-
Oriented Programming”, ACM Computing Surveys, Vol 20, No. 1,
1988, pp. 20 - 72.

{F87) Fishman, D. et al., SIR1S: An Object-Oriented DBMS™, ACM
Tramsactions on Office Information Systems, 4(2), April 1987,

[FKRST89)] Fischer D., Klas, W Rootek, 1., Schiel, U., Turau, V.,
«¥ML - The VODAK Data Modelling Languege”, GMD-IPS1, Tech-
nical Report, Dec. 1988,

{GRE3] Goldberg, A. and Robson, D., “Smallialk-80: The Language
and its Implementation”, Addison-Wesley, Reading Massachusetts,
1983.

[KNS88] Klas W, Neuhold, E. J., Schrefl, M., “On an Object-
oriented Data Model for a Knowledge Base”, in: R.Speth (Edt.}, Re-
scarch into Networks and Distributed Applications - EUTECO 88,
North-Holiland, 1988.

[LRES] Lecluse, C. and Richard, P., "Modeling Inheritance and
Genericity in Object-Oriented Databases”, LNCS $326, ICOT 1988,
p. 223-237.

[MSOP#6] D.Maier, J Stein, A.Qtis, A.Purdy, “Developrment of an
Object-Orienred DBMS", Proc. of lat Int. Conf. on QOPSLA, Port-
land {Oregon), October 1086.

[NK89] Neuhold, E. J., Kracker, M., “Extending Knowledge Craft
with & Persistont Stoxe by using the VODAK database system”, GMD-
IPSI Technical Report, 1989, submitted for publication.

{NPGT39a] Neuhold, E. 1., Perl, Y., Geller, J., Turau, V., “Separat-
ing Structural and Sernantic Elements in Object-Oriented Knowledge
Bagses”, Advanced Database Systemn Symposium, Kyoto, Japan, 1989.

[NPGTE9D] E. Neuhoid, Y. Perl, 1. Geller, V. Turan, “The Dual
Mode! for Object Oriented Knowledge Bases™, New Jersey Institute of
Technology, Tech Report CIS-88-23, submitted for publication.

[PM88] Peckham J., Maryanski, F., “Semantic Data Models”, ACM
Computing Surveys, Vol 20, No. 3, 1988, pp. 153 - 190.

[N588] Neuhold, E.J and Schrefl, M., “Dynamic derivation of per-
conalised views", Proccedings of the 14th International Confercnce on
Very Large Data Bases, Long Beach, CA, 1988

[SN88a] Schreft, M., Neuhold, E. J., “Object Class Definition by
Generalisation Using Upward Inheritance”®, Proceedings of the 4th In-
ternational Conference on Data Engineering, Los Augeles, CA, 1988,

D 4-13.

[SN§8b) Schrefl, M., Neuhold, E. 3., °A Knowledge-Based Approach
o Overcome Structural Differences in Object-Oriented Data Base Inte-
gration”, Proceedings of the TFIP Conference o The Role of Artificial
Intelligence in Data Bases and Information Systems, Canton, China;
North Holland Publishing Company, 1988.

[SR26] Stonebraker M., Tows, L., “The Design of POSTGRES”, in
Proc. of ACM SIGMOD Conference on Management of Data, Wash-
ington, D.C., May 1986

[586] Stroustrup, B, spq Overview of C++", SIGPLAN Notices,
Vol 21, No. 10, October 1986, pp. 7-18.

[W87] Wegner, P., “The Object Oriented Classification Paradigm”,
Research Directions in Object Oriented Programming, ed. Scbiver'and
Wegner, MIT Press 1987.

103

