ALGORITHMS FOR STRUCTURAL SCHEMA INTEGRATION

James Geller, Ashish Mehta, Yehoshua Perl

CMS and Inst. for Integrated Sys.,
CIS Dept., NJIT,
Newark, NJ 07102,
geller@vienna.njit.edu

Abstract

Current view and schema integration methodologies
are driven by semantic considerations, and allow in-
tegration of objects only if that is valid from semantic
and structural viewpoints. We had introduced a new
integration technique called structural integration. It
permits integration of objects that have structural sim-
ilarities, even if they differ semantically. This lech-
nique uses the object-oriented Dual Model which sep-
arates the representation of siructure and semantics.

In this paper we introduce algorithms for structural
integration. We apply these algorithms to integrate
two views of a large university database schema which
had significant siructural similarities but differed se-
mantically.

1 Introduction

In the process of creating databases for a given
application in an enterprise, views are defined, pos-
sibly by different designers, that describe subsets of
the data. Once the different views have been created,
one needs to integrate them into a single schema that
describes all the data used by the application. This
is called view integration. The process of integrating
schemas from different (possibly existing) databases
is called schema integration. The techniques for inte-
grating views and schemas are similar [SL90).

Generalization is a useful technique for integrat-
ing views/schemas [DH84]. In the current method-
ologies integration by generalization can be used for
two classes that are similar in structure and semantics,
because the description of a class contains both struc-
tural and semantic information. While studying the
schemas of a large university database, it was observed
that several subschemas had the same or very simi-
lar structures, but different semantics. Unfortunately,
the generalization technique described above cannot

0-8186-2697-6/92 $03.00 © 1992 IEEE

Erich Neuhold Amit Sheth
GMD-IPSI, Bellcore,
Darmstadt, Piscataway

Germany, D-6100 NJ 08854

be applied, in spite of the structural similarities. The
structural similarities can be exploited for integration
if the model supports a clear distinction between struc-
ture and semantics, as the object-oriented Dual Model
[NPGT91,NGPT90,NPGT89] does. Thus, the Dual
Model can support multiple semantics for the same
structural specification. It refines the integration-by-
generalization technology by using two hierarchies —
structural and semantic. In addition, we introduce a
unique new method for integration, called structural
integration [GPN91a, GPCS91). Structural Integra-
tion does not replace integration by generalization but
supplements it wherever there is structural similar-
ity between semantically different objects. It works
by using a common object type which represents the
structural aspects of both classes. Two advantages of
structural integration are savings in the specification
of properties and especially methods, and easier com-
prehension of a complicated schema by a user. These
advantages are discussed in more detail in Sections 3
and 6.

In this paper we present several algorithms to in-
tegrate classes and subschemas with full structural
correspondence. We believe that it is important to
test these algorithms in complex real world situations.
Therefore, the integration is demonstrated using por-
tions of a large university database schema.

This paper is organized as follows. In Section 2
we briefly present the Dual Model for object-oriented
databases. In Section 3 we discuss structural inte-
gration possible in the Dual Model representation.
The representation of subschemas from our university
database is discussed in Section 4. Section 5 intro-
duces several algorithms for full structural integration.
Section 6 contains the conclusions.

2 The Object-Oriented Dual Model

In this section we briefly summarize necessary fea-
tures of the Dual Model for understanding struc-
tural integration. Additional details can be found in
[NGPT91].

A class can be regarded as a container for objects
that are similar in their structure and their seman-
tics in the application. A class description consists
of four types of properties: attributes, relationships,
methods, and generic relations.

1. Attributes specify printable values of a given
data type.

2. Relationships specify pointers to other classes.

3. Methods specify operations that can be applied to
instances of a given class.

4. Generic relations describe system-supported con-
nections between classes.

In many current systems the description of a class
contains both, structural aspects and semantic aspects
(e.g., [CM84, KNS88, F87, GR83, SR86]). In object-
oriented systems (e.g., Oz [LR88], ORION [KIM90],
GemStone [BOS91], ObjectStore [LLOW91]) the sub-
class hierarchy is used for two purposes: (1) to factor-
ize the common structure and behavior of classes, and
(2) to express additional semantic relationships be-
tween classes. This leads to a situation in which two
classes modeling semantically related objects could
only be dealt with if the objects in question are struc-
turally related as well, which results in inadequate
conceptual models. Therefore, the Dual Model sep-
arates those two aspects of the specification.

An aspect of a specification is considered structural
if either (1) it is composed of names, types, and logical
or arithmetic operations, or (2) it is decidable whether
this aspect is consistent with the mathematical repre-
sentation of the class(es) it connects to.

The structural aspects of a class can be organized
as an abstract data type, called the object type of
that class. Hence, we associate with each class an
object type. Different classes may have the same ob-
Ject type. An object type is determined by its prop-
erties: attributes, relationships, methods and (struc-
tural) generic relations. The same properties are used
in an object class. However, in an object type a re-
lationship refers to an object type, while in a class it
refers to a class. Similar differences apply to generic
relations and methods.

An aspect of a specification is considered semantic
if either (1) it refers to actual instances of objects in
the application or if (2) just based on the mathemat-
ical representation of the class(es) an aspect connects

605

to, it is not decidable whether the aspect describes
properly the connection between the corresponding
real world object(s) and their features. For further
discussion of these definitions and their implications
see [GPN91c).

Several models have suggested refinements of the
IS-A relation [AH87, DH84]. The Dual Model de-
fines two kinds of semantic generic relations between
classes, categoryof and roleof. Both the relations
relate the specialized class to the more general class
when both classes are in the same context and in the
different context, respectively.

The representation of a class may contain semantic
essentiality and dependency constraints. An instance
of a class can only exist if the values of its essential
properties are all different from nil. If the existence of
an object depends on the existence of another object,
we can model this with a dependent relationship.

Many researchers assume that object-oriented
databases are convenient for integration and code
reusability due to their generalization capabilities ex-
pressed by the subclass hierarchy [BM89, K89). The
Dual Model uses a structural hierarchy and a semantic
hierarchy [NGPT89)]. Furthermore, the Dual Model
permits the assignment of one object type to several
classes that are semantically different, but share the
same structure. This enables structural integration
[GPCS91, GPN91a, GPN91b).

3 Structural Integration

Every property can be viewed as a pair, consisting
of the name of the properly and the name of the type
(or class) of this property. The function “selector”
returns the first element of the pair.

If the pair describes a relationship defined in a class
(an objecttype), then the function “class” (“object-
type”)returns the second element of the pair. The
same conventions are used for the second element of a
pair describing a generic relation. We now discuss the
conditions that enable structural integration.

Consider two sets of classes of equal cardinality A
= {a1,82,...,an}, B = {b1,b2,...,bn}. Structural inte-
gration between the sets A and B is possible if there
exists a correspondence between A and B such that
for every two corresponding classes a € A, and b € B
one can construct a common object type. There are
two cases of correspondence, full structural correspon-
dence and partial structural correspondence. This pa-
per considers only algorithms for full structural corre-
spondence (defined later in this section). The case

of partial structural correspondence is discussed in
[GPN91a, GPN91bJ.

In order to construct a common object type for two
corresponding classes a and b there must exist a full
structural correspondence between these two classes,
i.e., between their sets of properties. Full correspon-
dence for attributes means that their data types must
be identical. Full correspondence for relationships
means that the referenced classes have to be of the
same object type. For attributes and relationships,
the selectors may be different. Fully corresponding
generic relations must be identical and point to classes
of the same object type.

Concerning methods, we note that there are two
types of methods, general purpose methods which are
program segments and path methods which are used
to traverse the database. (Actually a concatenation of
these two is possible, where a result found at the end of
a path can be used as an argument to a program seg-
ment.) In this paper we limit our treatment of integra-
tion to path methods which are, informally speaking,
compositions of relationships and generic relations. A
formal definition of path methods is complicated and
long and is given in [NGPT91]. The reason for the
restriction to path methods is that checking general
purpose methods for equivalence is a subject of other
areas of Computer Science, and is also the subject of
well known undecidability results. The relevant prob-
lem for object-oriented database research is to check
the correspondence of path methods.

Formally, let the class a (b) have a set {z;} ({w:})
of attributes, a set {r;} ({s;}) of relationships, a set
{m;} ({n:}) of path methods and a set {g;} ({h:}) of
generic relations to other classes. The classes a and b
stand in full structural correspondence iff:

1. There exists a one-to-one correspondence be-
tween the sets of attributes {z;} and {y;} such
that if z; corresponds to y;, then datatype(z;)=
datatype(s:).

2. There exists a one-to-one correspondence between
the sets of relationships {r;} and {s;} such that
either class(r;) = class(s;) or they both have the
same object type.

3. There exists a one-to-one correspondence between
the sets of path methods {m;} and {n;} such
that if m; is a method that defines a path going
through the sequence a;, a3, ... a, of classes, and
n; defines a similar path b;, b2, ... b; of classes
then the following conditions hold: (a) s = ¢ and
(b) either a; = b; or a; and b; have the same object
type.

4. There is a one-to-one correspondence between
the sets of generic relations {g;} and {h;} such
that (1) either selector(g;) = selector(h;) or one
is roleof and second is categoryof and (2) ei-
ther class(g;) = class(h;) or class(g;) and class(h;)
have the same object type.

Let us now discuss the advantages of structural in-
tegration. One advantage of structural integration is
the elimination of some repetition in the specification
of classes. This is the case for common attributes
and methods of two classes. Rather than specifying
a method for each class, it is given with the object
type and then parameterized in the classes according
to the specific details of this method. This advantage
can be compared to the advantage generally achieved
in programming by parameterization and comprises a

form of code reusability. It applies not only to the

path methods that were introduced earlier in this pa-
per for schema traversal, but to any form of general
purpose method, i.e., to any program segment. On the
other hand, only path methods are relevant for auto-
matic integrations, and therefore only they are treated
in our algorithms.

The other advantage of structural integration is a
cognitive one. When a user needs to understand a
large and complicated schema of many classes, it is
easier for him/her to study a comparatively smaller
schema of object types and then to apply that under-
standing to different subschemas of classes that are
corresponding to the subschema of object types.

This is similar to defining a macro by extracting
text that appears repeatedly in a program. After hav-
ing studied the macro once, the user understands it
at every place where it is invoked and does not have
to study it again, just to find out that he has already
seen a similar structure before. Just as each invocation
of a macro can occur in a different semantic context,
each invocation of type-related information occurs in
a different semantic context.

4 Representation of two Subschemas
of a University Database

A university database was developed and imple-
mented at NJIT [CTWA90]. The development of this
database dealt with different complex problems in-
volved in real world modeling. This database schema
has more than 300 classes. It contains informa-
tion about students, professors, courses, employees,
schools, colleges, departments, committees, admis-

[~

experience]

edw record I

I ref letters I

\

wCandidates

cur position

andidate

emp records

Education:

==

prev cd-c-(lnj

Figure 1: Graphical representation of ADMISSION
SUBSCHEMA (top) and HIRING SUBSCHEMA
(bottom)

sion, employment, finance, computers, publications,
etc.

While working on this database we found two struc-
turally similar subschemas, the ADMISSION SUB-
SCHEMA and the HIRING SUBSCHEMA, that can-
not be integrated because of different semantics. In
this section we will represent these two subschemas
to demonstrate structural integration. The ADMIS-
SION SUBSCHEMA contains information about all
the student applicants who apply to the university.
The most important class of this subschema is stu-
dent_applicant. The HIRING SUBSCHEMA contains
information about all the job_candidates who have ap-
plied for a job. The most important class of this sub-
schema is job_candidate. The student_applicant class
and the job_candidate class are given below, using
the VML (VML = VODAK Modeling Language) lan-
guage [FKRST89]. We rely on the intuition of the
reader concerning the easy to understand syntax. The
other classes for both subschemas are discussed in
[GMPNS91] and not shown here due to space limi-
tation.

In Figure 1 the details of the two subschemas are

explained using the graphical schema representation
language OOdini(=OODINI = Object-Oriented Dia-
grams at the New jersey Institute) [GHP92]. A rect-
angle represents a class, and a double line rectangle
represents a set class. A thick line arrow represents
generic relations such as roleof and categoryof, and a
thin arrow represents a relationship between classes.
A set class representation shares one corner with the
box that represents its member class.

HIRING

SUBSCHEMA

class job_candidate
memberof: candidates
roleof: person
attributes:
IdNumber: INTEGER
Citizenship: STRING
ApplicationDate: DATE
Salary: INTEGER
Position: STRING
essential: IdNumber
relationships:
Status: cur_position
Educations: prev_educations
References: refletters
Employments: emp_records
methods:
candidateCompany ():
Status —. cur_position
Company — STRING

ADMISSION

SUBSCHEMA

class student_applicant
memberof: applicants
roleof: person
attributes:
IdNumber: INTEGER
Citizenship: STRING
StartingDate: DATE
Funds: INTEGER
Program: STRING
essential: IdNumber
relationships:
Status: car_program
Educations: edu_records
Recommends: recletters
Experiences: experiences
methods:
applicantInstitute ():
Status — cur_program
School — STRING

The structural similarity between two subschemas
can be observed from the graphical representations
shown in Figure 1. These two subschemas, though
structurally similar, cannot be integrated by applying
the traditional generalization-based integration tech-
niques because of semantic differences. For example,
both classes student_applicant and job_candidate have
an attribute with the data type DATE. However, the
semantics of these two attributes are different. For
student_applicant the selector is StartingDate showing
the expected enrollment date. For job.candidate the
selector is ApplicationDate which is considering the
date of application rather than the enrollment. The
attribute Program is semantically different from Posi-
tion. Another example is Funds versus Salary. While
both consider amounts of money the first is to be re-
ceived by the university while the second is to be paid
by the university. Obviously, two classes that differ
in the semantics of some of their attributes are them-
selves different in their semantics.

Another reason why student_applicant and
job_candidate are semantically different can be seen

from the fact that, if accepted, one will become a stu-
dent whose function is to study while the second will
become an employee whose function is to work. To
point out another difference, a job_candidate requires
an interview while a student_applicant does not. Thus,
while both classes represent a person which submitted
an application in the university environment, the dif-
ferences in their roles as applicants and their future
roles exclude the existence of a common real world
class which includes only these two classes. There are
many more cases where a person submits an applica-
tion for some purpose in the university environment,
e.g., for a library card, a computer account, for a vis-
itor parking permission, etc.

5 Algorithms for Full Structural Cor-
respondence

To help a designer performing structural integra-
tion in a large database we supply a sequence of algo-
rithms for different tasks. The CORRESPONDENCE
procedure checks whether two given classes can have a
common object type. In the positive case the output of
this procedure is used in the next procedure STRUC-
TURAL_INTEGRATION to create a common object
type.

These procedures are repreatedly used by the pro-
cedure SCHEMA_INTEGRATE. To achieve better re-
sults, this procedure should be preceded by the pro-
cedure REORDER which reorders the classes within
the two schemas to be integrated. The procedure
SCHEMA_INTEGRATE cannot integrate cyclic sub-
schemas. For this case we introduce the more complex
procedure CYCLIC_SCHEMA_INTEGRATE.

We start with an algorithm to check whether two
given classes satisfy full structural correspondence.
Before presenting this algorithm some additional no-
tational conventions are introduced.

The function “typeof” returns the object type of
a class. The function typeof(X) is an abbreviation
for typeof(class(X)). The function “class-sequence”
returns the sequence of all classes that occur in a path
method defined in a class. Similarly, “type-sequence”
returns the sequence of all object types that occur in
a path method defined in an object type.

PROC CORRESPONDENCE (IN a, b: class;
OUT matcha, matchgr, matchr, matchm : ar-
ray)

[The correspondence between the matching kinds of
properties will be returned in the appropriate arrays-
matchafor attributes, matchgr for generic relations,

608

matchr for relationships, matchm for methods.]

1. IF the number of attributes in a and b is not
equal, THEN exit. [No full correspondence is possi-
ble for all exits in this algorithm. Every ezit prinis a
message with the two classes that caused the failure.]

IF the number of attributes of any given data type
in a and b is not equal, THEN exit.

ELSE insert correspondence between attributes
into array matcha.

[The correspondence in matcha is set according to
data types. If there are several attributes with the
same data type, any malching between the two sets
of the same data type will do for the full correspon-
dence. However, one can have an option of displaying
the sets of attributes to the user for proper matching
according to the selectors and other information.]

2. Consider the categoryof and roleof generic re-
lations of a and &.

IF their numbers are not equal THEN exit.

IF a and b both have one such relation to classes a;
and b, respectively

THEN [Single Inheritance]

IF a; # b; and a; and b; do not have
identical object types THEN exit,

3. ELSE [Multiple Inheritance]

a has many categoryof or roleof relations to
ay,as, ..., a4y, and b has many categoryof
and roleof relations to by, ba,...,bm.

[In this step we look for a one-to-one matching between
a1,82,...,8m ond by, b2, ..., 0m.]

FOR k := 1 to m DO
matchgr(k] := 0
[matchgr is used to record the correspondence.]
FOR i := 1 to m DO {
flag := ialse
[flag is used to indicate whether a; is matched.]
k:=1
WHILE k < m AND NOT flag DO {
IF matchgr[k] = 0 THEN
[b& is free for matching.]
IF (a; = bt) or a; and by have
a common object type THEN {
matchgr(k] := i
[So, by cannot match a second a;.]
flag := true
}
k:=k+1

IF NOT flag THEN exit
[No full correspondence possible |

output the array matchgr
[This is the case of full correspondence.]

4. Consider the setof relations of @ and b. (There
exists at most one.) The treatment is the same as
in step 2. This correspondence is inserted into array
matchgr.

5. Consider the memberof relations of a and b.
(There may be more than one.) The treatment is
the same as in steps 2 and 3. This correspondence
is inserted into array matchgr.

6. Consider the relationships of a and b. The treat-
ment is the same as in steps 2 and 3. This correspon-
dence is inserted into array matchr.

7. Consider the path methods in a and b.

IF their numbers are not equal THEN exit.

ELSE Let us assume that a has path methods
{may, may, ..., ma,} and b has
path methods {mb,, mbs, ..., mb,}.
FOR k :=1ton DO
matchmfk] := 0
[matchm is used to record the
correspondence between path methods.]
FOR i:=1ton DO {
flag := false
=1
WHILE k < n AND NOT flag DO {
IF matchm[k] = 0 THEN {
[mby is free for matching)
IF ma; and mb; have same number of
classes p in sequence THEN {
Let the class sequence of ma; be
< ma;,, mai,, ..., ma;, >
and the class sequence of ma; be
< mbk,, mbk,, ey mbk, >
num := 0
FOR j :=1top DO {
IF ma;; = mby; or ma;;
and mbg; have the same object type
THEN num := num + 1

}

IF num = p THEN {
matchmlk] := i
flag := true

1

k=k+1

IF NOT flag THEN exit [No full correspondence

is possible since ma; was not maiched).

output the array matchm [This is the case
of full correspondence.]

If no full correspondence was found the user
can now test for partial corresponding [GPN91b).
The complexity of the CORRESPONDENCE algo-
rithm is O(m? + n?L) where m is the maximum
of {#relationships, #categoryof+#troleof relations,
#memberof relations}, and L is the maximum length
of the n path-methods. We can use the algorithm
CORRESPONDENCE to find pairs of corresponding
classes from both given databases. If this algorithm
completes successfully then we can apply the algo-
rithm STRUCTURAL_INTEGRATION which creates
a common object type A for the fully corresponding
classes a and b.

PROC STRUCTURALINTEGRATION
(IN a, b: class; matcha, matchgr, matchr,
matchm: array; OUT A: object type)

1. For every two corresponding attributes
z;, ¥; (in array matcha)
IF selector(z;) = selector(y;) THEN
define in the object type A an attribute
(selector(z;), datatype(z;))
ELSE
define in A an attribute (z, datatype(z;))
with z = selector(z;),
or z = selector(y;), or z is a new selector,
freely chosen by the human integrator.
2. For every two corresponding relationships r;, s;
(in array matchr)
IF selector(r;) = selector(s;) THEN
define in A a relationships
(selector(r;), typeof(r:))
ELSE
define in A a relationship
(z, typeof(r;)) with z = selector(r;),
or z = selector(s;), or zis a
freely chosen new selector.
3. For two corresponding methods, m;, n;
(in array matchm)
with class-sequence(m;) = < ky, ko, ..., ks >,
define type-sequence(m) = <typeof(k;), typeof(ks),
.., typeof(k,)>,
IF selector(m;) = selector(n;) THEN
define in A a method m,
such that selector(m) = selector(m;).
ELSE
define in A a method m,
such that selector(m) = z

where z = selector(m;),
or z = selector(n;),
or z is a freely chosen new selector.
4. The generic relations are considered as follows:
For two corresponding memberof or setof
generic relations, g;, h;
define in A a generic relation
(selector(g:), typeof(g:))-
[Note that by the definition of full structural
correspondence it must be the case that
selector(g;) = selector(h;).]
For two corresponding categoryof or roleof generic
relations g;, h;
define in A a generic relation
(subtypeof, typeof(g:))-

The complexity of this algorithm is linear in the sum of
the number of properties of the classes and the sum of
the lengths of the path methods of these classes. We
first apply CORRESPONDENCE to the two classes
person (see [GMPNS91]). Since they have omly at-
tributes and there is a correspondence of the data
types (some of which are composite) the algorithm
succeeds and structural integration creates a common
object type PERSON. We apply algorithm CORRE-
SPONDENCE to two classes studeni_applicant and
job_candidate. As the numbers of attributes are equal
and the numbers of corresponding data types are the
same, the first step is successful. As both the classes
have one roleof generic relation to the class person,
the second step will also be successful. We will con-
sider the generic relation memberof later. Let us con-
sider the relationship CurrentProgram to the class cur-
rent_program and the relationship CurrentPosition to
the class current_position. The algorithm will fail in
step 2 because the classes current_program and cur-
rent_position are not the same and do not share the
same object type. On the other hand the algorithm
will succeed to integrate the classes current_program
and curreni_position themselves.

We observe that the order of processing the classes
may have an impact on whether it is possible to in-
tegrate two classes. Suppose, for example, that class
ay (b;) has a generic relation or a relationship to class
az (b2). Suppose further that none of these classes
have more connections to other classes and that the at-
tributes of a; and b, (a3 and by) exhibit full structural
correspondence. If we apply CORRESPONDENCE to
classes a; and b, first, the matching will fail due to the
generic relation or relationship to az (b2), since az #
b2 and az and b; do not yet have a common object
type (see step 2 in procedure CORRESPONDENCE).

610

On the other hand CORRESPONDENCE for classes
a3 and by will be successful and an object type Az will
be created for both. If we now apply CORRESPON-
DENCE for classes a; and b, it will also be successful.
This implies that if we consider the two classes cur-
reni_program and curreni_position first then the object
type STATUS will be created, and the application of
the algorithm to studeni_applicant and job_candidate
would not fail at that point.

If a; (az) and b; (b2) have cyclic connections, ie.,
there is a directed path from a; (a2) to by (b3) and vice
versa, then no order of processing will permit integra-
tion with this algorithm. That is, a; and a2 may po-
tentially have the same object type A;, and b, and b,
may potentially have the same object type Az, but due
to the cyclic nature of the connections of the classes it
is impossible to recognize this fact with the CORRE-
SPONDENCE procedure applied in any order. This
is, for example, the case for student_applicant and siu-
dent_applicants. This case will be considered later.

In order to process the classes of each database DB
which do not participate in cyclic subschemas and gain
the possible results from applying the CORRESPON-
DENCE algorithm we need to reorder the classes in
each database, using the array order. Let n be the
number of classes in DB.

PROC REORDER (IN DB : SCHEMA ; n :
INTEGER; OUT order : array)

1. Perform a topological sort for the classes that are
involved in the acyclic part of the schema.

2. The remaining classes, involved in the cyclic part
of the schema, are arbitrarily ordered.

The code is omitted because this is a well-known
technique [AHUS8T).

K we first apply the algorithm REORDER
to reorder all the classes in the database then
the classes current_program and curreni_position
will be integrated before student.applicant and
job_candidate. Now we can present an algorithm
SCHEMA_INTEGRATE for finding and creating
common object types for classes with full structural
correspondence of the acyclic parts of two databases
DA and DB. Let DA have m classes aj,a2,...,8m
and DB have n classes by, da,...,b,. Let DO be the
set of the explicitly defined object types O; for the
integrated database.

PROC SCHEMA _INTEGRATE
(IN DA, DB : SCHEMA, OUT DO : SCHEMA)

call REORDER(DA, m, order)
call REORDER(DB, n, order)
FOR i := 1 to m DO
FOR j := 1 ton DO {
CORRESPONDENCE (a;, b5,
matcha, matchgr, matchr, matchm)
IF CORRESPONDENCE is completed
successfully THEN
call STRUCTURAL_INTEGRATION (a;, b;,
matcha, matchgr, matchr, matchm, O;)

}

For the classes which were not matched, their ob-
ject types are still defined implicitly in the integrated
database as they were in DA and DB prior to the
structural integration. The complexity of this algo-
rithm is O(mn(r? + n?L)) where r is the maximum
number of connections of a given kind and L is the
maximum length of all the n path methods.

One major limitation of the previous algorithm is
that it does not work for any pair of schemas which
have cycles. For an object-oriented database schema
it is very common to be cyclic. We now present a
procedure which can integrate schemas with cycles.

This procedure accepts human advice to avoid
matching all permutations of two sets of properties
which would increase its time complexity drastically.
It uses the user’s intuition in picking two classes for
starting the matching process, rather than to run over
all possibilities.

Once the procedure finds two corresponding sub-
schemas it halts. This is the case when full struc-
tural correspondence between the two sets of classes is
achieved and there exist no classes in the subschemas
with a relationship or relation to a class outside of
its subschema. To continue searching for more cor-
responding subschemas the procedure needs another
pair of unmatched classes to start with.

The algorithm uses two queues, Q4 and Qp, and
two arrays, R4 and Rp, to process the classes of the
two desired corresponding subschemas, S4 and Sp.
Initially, Q4, @B, Ra, and Rp are all empty.

PROC CYCLIC_SCHEMA_INTEGRATE
(IN Dy, Dg: SCHEMA; ouT
R4, Rp: SCHEMA; MATCH_A, MATCH GR,
MATCH_R, MATCH_M: array);

[The four arrays MATCH_A,
MATCH GR, MATCH_R, and MATCH_M con-
tain as elements arrays. For example, MATCH_A at
- position i contains an instance of the array matcha.
This instance of matcha contains the correspondence
of atiributes of the classes a; and b;. The three other
arrays contain arrays describing the correspondences

EPARTMBENT

STUDENT

611

pplicants

APPLICANTS

APPLICANT J

\co--oldn
RBPF LETTERS

N

endidate

‘HIGOMIl

BDUCATIONS

Experlence

[EXPERIENCES
EXPERIENCE I

Figure 2: Graphical representation of the integrated
subschema for ADMISSION SUBSCHEMA and HIR-
ING SUBSCHEMA

EMPLOYEE

for generic relations, relationships, and methods.]

1. Initialization: The user picks two object classes
a; and b; which seem to be corresponding but
are not identical in their properties.

Insert a, into Q4 and b; into Qp.

2. WHILE the queues Q4 and Qp are not empty
DO {

Let a; (b;) be the class at the front of Q4 (@5).
Transfer a; (b;) from Q4 (@B) to Ra (RB).
3. IF the number of attributes in

a; and b; is not equal,

THEN exit(a;,b;).

[No full correspondence is possible.]

IF the number of attributes of any given

data type in a; and b; is not equal,

THEN exit(a;,).

[No full correspondence is possible.]

ELSE insert the correspondence into array

matcha, and insert matcha into to MATCH_A.
4. Consider the categoryof and roleof
relations of a; and b;.

IF their numbers are not equal THEN

exit(a;,b.-).

IF a; and b; both have one such

relation to object types a; and

b;, respectively THEN

IF a; and b; do not have identical

REPF LETTER

object types or
a; and b; do not appear as a pair
in the arrays R4 and Rp, or
they do not appear as a pair in the
queues Q4 and Qp THEN
insert a; into Q4 and
insert b; into @p.
[They are now candidates for comparison.
If they appeared in R4, Rp
they were compared already. If they
already waiting for processing.]
Insert the correspondence in array matchgr

and matchgr is inserted into MATCH .GR.

The treatment is the same as for
categoryof and roleof in step 4.
Store this correspondence in matchgr
and matchgr is inserted into MATCH-GR.
. Consider the memberof relations of
a; and b;. (There may exist more than one.)
The treatment is the same as for categoryof
and roleof in steps 4, 5 and 6.
Store this correspondence in matchgr
and matchgr is inserted into MATCH_GR.
. Consider the relationships of
a; and b;.
The treatment is the same as for categoryof

and roleof in steps 4, 5 and 6.
Store this correspondence in matchr
and matchr is inserted into MATCH_R.

5. [Multiple inkeritance:]
IF a; has many categoryof and roleof
relations to a;,,a;,,...,8j,.

and b; has many categoryof and roleof
relations to bj,,bj,,...,bj,, THEN
FOR i:=1 to m DO
FOR k :=1 to m DO

IF a;; and b;, have

a common object type or

are stored as a pair in the

array R4 and Rp or

are stored as a pair in the

queues Q4 and Qp

THEN delete aj; and

b, from the appropriate list

(ajl,a,-,, ey B,

or bj,, bjas ..y bjn)-
6. Set m to the number of remaining
object classes. Consider the two sets
of remaining object classes
QjyyBjgye ey Bjpy
and bj”bj,, .o ,bj".
Display these two sets to the user so
that he can suggest a one-to-one
correspondence between these two sets
and can rearrange the order of the
b, classes respectively, such
that aj, corresponds to
bj, k=1,...,m.
Insert aj,,...,a;5,
into Q4 and b;,,...,5;,
into Qp. Store this correspondence in
array matchgr and matchgr is inserted
in MATCH_GR.
[The only alternative for the described
user interaction will be to try all
permutations of these two sets of classes.]

7. Consider the setof relations of

a; and b; (There exists at most one.)

612

END [of WHILE (2)]

The treatment of methods, which is an extension of
the corresponding part in the first algorithm, is deleted
from this algorithm due to space limitation.

Let m; maximum(#relationships, #catego-
ryof+i#roleof relations, #memberof relations) then
the complexity of the algorithm (assuming human in-
teraction) is Y, m? with i covering all the classes.
Without human interaction the complexity will rise to
3=; mi'm; over all classes due to considering all per-
mutations.

The subschema S, consists of the classes in R4
and the subschema Sp consists of the classes in Rp,
where the correspondence is given by the order in
R4 and Rp. For our example initially we enter stu-
dent_applicant into Q4 and job_candidate (see Section
4) into the queue Qp. These two classes will immedi-
ately be transferred to R4 and Rp, respectively, and
the classes they refer to will be processed. The classes
student_applicants, person, curreni_program, educa-
tion_records, recommend_letters, and erperiences will
be inserted into Q4 and job_candidates, person, cur-
renl_position, previous_educations, reference_letiers,
and employ_records will be inserted into Qp. Then
each pair of classes will be checked for full_structural
correspondence while inserting in the process the rest
of the classes into the queues. Only the classes
student, employee, department, and unil are not
processed since they are not reachable from stu-
deni_applicant and job_candidate. As a matter of
fact these pairs of classes are not in full corre-
spondence and are not structurally integrated at
all. (Their details are omitted). The algorithm
will successfully find that these two subschemas show
full_structural correspondence. Then we apply the
algorithm STRUCTURAL_INTEGRATION to create

shared object types for each pair of classes. The ob-
ject type APPLICANT, shown below, will be shared
by the two classes student_applicant and job_candidate.

objecttype APPLICANT
memberof: APPLICANTS
subtypeof: PERSON
attributes:
IdNumber: INTEGER
Citizenship: STRING
Date: DATE
Funds: INTEGER
AppliedFor: STRING
relationships:
Status: STATUS
Educations: EDUCATIONS
Recommends: REFERENCES
Experiences: EXPERIENCES
methods:
ApplicantInstitute ():
Status — STATUS
Institute — STRING

In the Dual Model representation this object type
is followed by a specification of the classes stu-
dent_applicant and job_candidate containing the se-
mantic aspects such as roleof and essential, references
to actual classes wherever an object type is common
to more than one class, and the properties with differ-
ent selectors than in the object type. For lack of space
we omit the code of the classes as it can be deduced
from their format before integration (Section 4) and
the object type specification above.

The following Table 1 shows the correspondence be-
tween the object types and the pairs of classes that are
structurally integrated by these object types. Figure
2 graphically shows the schema of object types.

Admission Integrated Hiring
Subschema Subschema Subschema
student_applicant APPLICANT job_candidate
applicants APPLICANTS candidates
edu_record EDUCATION prev_education
edu_records EDUCATIONS | prev_educations
rec_letter REF_LETTER ref letter
rec_letters REF_LETTERS ref letters
emp_record EXPERIENCE experience
emp_records EXPERIENCES experiences
cur_program STATUS cur_position
person PERSON person

Table 1: object types(middle) and corresponding
classes(left and right)

613

6 Conclusions

We presented algorithms as tools for assisting the
designer of an OODB in performing structural integra-
tion. This technique is possible using the Dual Model.
This paper is limited to the case of full structural cor-
respondence. However, the results can be extended for
partial structural correspondence.

The recommended use of this given sequence of al-
go-
rithms is to integrate the acyclic parts of two schemas,
using the fully automatic SCHEMA_.INTEGRATE
algorithm, which calls the algorithms for integra-
tion of pairs of classes. Once the acyclic parts
of the schemas were structurally integrated, the
more complex CYCLIC_.SCHEMA_INTEGRATE pro-
cedure, which accepts human advice, is to be applied
to structurally integrate cyclic parts of the schema.

Throughout the paper the applicability of each al-
gorithm for structural integration has been demon-
strated by an example based on a university database
developed at NJIT. This example demonstrates the
applicability of structural integration in the field of
object-oriented database integration.

The advantages of structural integration can be
demonstrated with our example as follows. The at-
tribute IdNumber does not have to be repeated in the
two integrated classes. Because both classes are using
the same selector it is sufficient to specify this selector
in the object type. The method ApplicantInstitute
will not have to be repeated in the two class speci-
fications after it is included in the object type. The
classes will contain only a signature-like header that
contains the correct replacement classes for the object
types in the method.

The cognitive advantage can be demonstrated as
follows. Compare the classes described in Figure 1,
and the object types described in Figure 2. Clearly,
Figure 2 is simpler, and the user who has to under-
stand Figure 1 will find it easier to first study Figure
2 and then apply his understanding to parts of Figure
1 that reuse the structures in Figure 2. This is espe-
cially the case if Figure 1 appears as part of a much
larger schema, and if the corresponding structures of
two parts of the schema are not exposed by draw-
ing them with the same layout. Figure 2 expresses a
wide range of phenomena contained in Figure 1, and in
addition it uncovers the correspondence between the
subschemas contained in Figure 1.

REFERENCES

[AHB87] Abiteboul, S., and Hull, R., “IFO: A Formal
Semantic Database Model”, ACM Trans. on Database
Systems, 12, 1987, 525-565.

[AHUS87] Aho, A., Hopcroft J., and Ullman J., “Data
Structures and Algorithms”, Addition Wesley, 1987.
[BM89] Brodie, M. L., and Manola, F., Database
Management: A Survey. Readings in Artificial In-
telligence and Databases, J. Mylopoulos and M. L.
Brodie (Eds.), Morgan Kaufmann Publishers, San Ma-
teo, California, 1989.

[BOS91) Butterworth, P., Otis, A., and Stein, J.,
“The GemStone Object Database Management Sys-
tem”, CACM, Oct. 1991, pp. 64-77.

[CM84] Copeland G. and Maier, D., “Making
Smalltalk a Database System”, Proc. of the ACM
SIGMOD Conf. on Management of Data, June 1984.
[CTWA90] Chao, H., Teli, V., Wijaya, C., Ahmedi,
M., “Development of a University Database using the
OODB Dual Model ”, two Master’s theses, NJIT,
Newark, NJ, 1990.

[DH84] Dayal, U. and H. Hwang, “View Definition
and Generalization for Database Integration in a Mul-
tidatabase System. IEEE Trans. on Soft. Eng., SE-
10, 6, Nov. 1984, pp. 628-644. .

[EL89] Elmasri, R., S. Navathe,Fundamentals of
Database Systems,Benjamin/Cummings,CA,1989.
[F87] Fishman, D. et al.,“IRIS: An Object-Oriented
DBMS”, ACM Trans.on Office Info.Syst.,4(2),1987.
[FKRST89)] Fischer D., Klas, W., Rostek, L., Schiel,
U., Turau, V., “VML - The VODAK Data Modelling
Language”, GMD-IPSI, Technical Report, Dec. 1989.
[GHP92] Geller, J., Halper, M., and Perl, Y., “An
OODB Graphical Schema Representation”, NJIT TR,
CIS-92-1, submitted for publication.

[GMPNS91] Geller, J., Mehta, A, Perl, Y., Neuhold,
E. J., Sheth, A., “Algorithms for Structural Schema
Integration”, NJIT TR, CIS-91-31.

[GPCS91] Geller, J., Perl, Y., Cannata, P. and Sheth,
A., “Structural Integration using the Dual Model”,
Tech.Memorandum TM-STS017628/1,Bellcore,1991.
[GPN91a] Geller, J., Perl, Y., and Neuhold, E.
J., “Structural Schema Integration in Heterogeneous
Multi-Database Systems using the Dual Model”, Proc.
First International Workshop on Interoperability in
Multidatabase systems, Kyoto,Japan,1991,200-203.
[GPN91b] Geller, 1., Perl, Y., and Neuhold, E. J.,
“Structural Schema Integration with Full and Partial
Correspondence using the Dual Model”, NJIT, T.R.,
CIS-91-11, submitted for publication.

[GPN91¢] Geller, J., Perl, Y., and Neuhold, E.
J., “Structure and Semantics in OODB class Spec-

614

ifications”, Special Issue, Semantic Issues in Multi-
database Systems, SIGMOD record,1991,40-43.
(GR83] Goldberg, A. and Robson, D., Smalltalk-
80: The Language and its Implementation, Addison-
Wesley, Reading Massachusetts, 1983.

[K89] Kim, W., “Research Direction for Integrating
Heterogeneous Databases,” 1989 Workshop on Hei-
erogeneous Databases, Chicago, IL, December 1989.
[KIM90] Kim, W. “Introduction to Object-oriented
Databases”, The MIT Press, Readings, 1990.

[K90] Klas, W., “A Metaclass System for Open
Object-Oriented Data Models,” PAhD dissertation,
Technical University of Vienna, Austria, 1990.
[KNS88] Klas W., Neuhold, E. J., Schrefl, M., “On an
Object-oriented Data Model for a Knowledge Base,”
In Research into Networks and Distributed Applica-
tions - EUTECO 1988, R. Speth Ed., North-Holland.
[LLOW91] Lamb, C., Landis, G., Orenstein, J.,
Weinreb, D., “The Objectstore Database System”,
CACM, Oct. 1991, pp. 50-63.

[LR88] Lecluse, C. and Richard, P., “Modeling Inher-
itance and Genericity in Object-Oriented Databases”,
LNCS #3826, ICOT, Japan, 1988. pp. 223-237.
[NGPT91] Neuhold, E. J., Geller, J., Perl, Y,
Turau, V.. “The Dual Model for Object-Oriented
Databases”, NJIT, T.R. CIS-91-30.

[NGPT90] Neuhold, E. J., Geller, J., Perl, Y., Tu-
rau, V.. “A Theoretical Underlying Dual Model for
Knowledge-Based Systems”, Proc. of the first Intl.
Conf. on Systems Inlegration,NJ,1990,96-103.
[NPGT89] Neuhold, E. J., Perl, Y., Geller, J., Turau,
V., “Separating Structural and Semantic Elements in
Object-Oriented Knowledge Bases”, Proc. Advanced
Database System Symposium,Japan,1989,67-74.
[SL90] Sheth, A. and J. Larson, “Federated Database
Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases,” ACM Computing Sur-
veys, September 1990, pp. 183-236.

[SR86] Stonebraker M. and L.Rowe, “The Design of
POSTGRES”, Proc. of the ACM SIGMOD Conf. on
Management of Data, Washington, D.C., May 1986.

