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Abstract 

The notion of a part-whole relationship plays an important role when modeling data in many advanced application 
domains. It is therefore important that Object-Oriented Database (OODB) systems include support for this modeling 
primitive. We present a comprehensive part model for OODB systems. The model's foundation is a part-whole relationship 
that captures a variety of real-world, part-whole semantics, partitioned into four characteristic dimensions: exclusiveness, 
multiplicity, dependency and inheritance. These impose constraints on any 'part' transactions (like 'add-part') to ensure that 
the state of the database remains consistent with the prescribed part-whole semantics. They also provide functionality like 
deletion dependency and several kinds of inheritance, both from the part to the whole and vice versa. The part relationship 
gives flexibility to an application developer who simply declares the desired semantics and then lets the OODB system 
automatically enforce it. We also introduce a graphical notation that can be used to express the enhanced semantics in the 
development of OODB part-whole schemata. Our part model has been integrated into the VODAK Model Language (VML), 
an OODB system, with the use of its extensible metaclass mechanism. © 1998 Elsevier Science B.V. 

Keywords: Part-Whole relationship; Part relationship; Part semantics: Part-Whole inheritance: Derived attribute: Object- 
Oriented database; Graphical schema representation; Metaclass 

1. Introduction 

The part-whole relationship (part relationship, for short) plays an important role in many data 
modeling tasks in diverse application domains such as manufacturing [31], Computer Aided Design 
(CAD) [5,8], document processing [29,54], and medical informatics [9,13,20,39]. If the modeling is to 
be carried out correctly and precisely, then it is insufficient to rely on a construct such as an ordinary 
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relationship (class-to-class connection) that has been given the name 'part-of' or 'has' [61]. What is 
needed instead is a modeling primitive that captures real-world, part-whole semantics by imposing 
limitations on the transactions and interactions between the individuals (objects) in a database and by 
providing those objects with additional functionality befitting parts and wholes. As stated in a recent 
overview paper in this journal [4], the part relationship's 'specific ontological nature needs to be 
studied, understood, and integrated within knowledge and data modeling formalisms and methodolo- 
gies, without leaving the burden to the user.' In this paper, we are addressing precisely that need by 
introducing a comprehensive part-whole model for object-oriented database (OODB) systems [35,62]. 
Our part model has as its basis a part relationship that serves as a built-in modeling primitive of an 
OODB system. This relationship encompasses many of the aspects and 'vertical relationships' 
outlined in [4]. Specifically, it features the following: 

• Constraints that impose appropriate 'part-whole' restrictions on the state of the database and the 
various part transactions (like 'add-part' and 'remove-part'). 

• Dependency between part objects and whole objects. 
• Inheritance and propagation of properties, both from part to whole and vice versa. 
We organize the above into four characteristic dimensions: (a) exclusiveness, (b) multiplicity, (c) 

dependency, and (d) inheritance. (Cf. the description of part-whole in terms of basic relational 
elements in [30,60]. See also [3,16].) Each dimension can take on different values, giving flexibility to 
an application or schema designer, who declares the desired semantics by choosing the appropriate 
values. The OODB system then automatically ensures that the chosen semantics is always obeyed. 
The designer is thus alleviated of the burden of having to 'hand code' the part semantics into the 
methods of the participating classes. Part-whole semantics, in fact, is one of the areas where an 
OODB system can offer more than an object-oriented programming language like C+ + in capturing 
the real needs of an application at no additional cost. Instead of programming the part semantics with 
C + +  code for each application, the part model in conjunction with the database system provides a 
reusable, built-in solution. Our implementation demonstrates the feasibility of such an enhancement 
for an OODB system without hurting its performance. 

Our part model also includes a graphical schema notation for the part relationship. Such graphical 
representations of database schemata have become standard fixtures of most data models 
[1,10,12,41,50]. In [28], we presented a graphical notation for the data-definition language of an 
OODB system; here, we enhance that notation with a variety of part relationship symbols that express 
the different semantics prescribed by the four characteristic dimensions. 

As our implementation vehicle, we have chosen the metaclass mechanism of an OODB system 
called the VODAK Model Language (VML) [36,37]. We have constructed a metaclass that integrates 
our part relationship into the underlying VML object model. Via this metaclass, database objects are 
provided with functionality that makes them 'parts' and 'wholes.' They are given the capability to 
establish and dissolve, on demand, part-whole connections between each other; the prescribed 
part-whole semantics is enforced automatically. The objects can then be queried, allowing for the 
retrieval of related parts and wholes to any depth in the part hierarchy. 

In the next section, we discuss previous work on part relationships. In Section 3, we formally define 
our part relationship and introduce its graphical notation. The definition of generalized derived 
attributes based on redundant part-whole inheritance is found in Section 4. A description of the 
implementation of our part model in VML appears in Section 5. Conclusions follow in Section 6. 
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2. Survey of previous work 

The notion of part relationship is so intuitive and widespread in ordinary human discourse that it 
has been given serious attention in a wide range of areas such as solid geometry, topology, set theory, 
linguistics, cognitive science, and knowledge representation. In fact, the part relationship's inclusion 
and the extent of its treatment have been proposed as important criteria in a framework for evaluating 
and comparing existing ontologies [47]. It is noted in [47] that the part relationship was 

"represented very differently in the [existing] ontologies and was often not adequately dealt 
with . . . .  Most of the ontologies do not directly address .the issue of part-whole relation and the 
distinction between subset-of, part-of, member-of, and so on." [p. 71] 

We believe that the work presented in this paper is a step toward closing this gap. 
A number of formal theories, often called mereologies,  have been proposed for the description of 

the intuitive concepts of part and whole. (Surveys can be found in [4,22,51].) The use of logic-based 
formalisms for part-whole analysis is an active area as witnessed by two recent papers in this journal. 
In [52], a new mereotopology, a formal theory comprising mereology along with elements of 
topology, is presented. The relationship between 'whole-oriented' topology and 'part-oriented' 
mereology is examined in a formal light in [57]. Both papers utilize logical part relationships that 
satisfy basic 'part' axioms, but they do not make it clear how their theories could contribute to 
implemented systems. 

In cognitive science and linguistics, much work has focused on the part relationship's transitivity 
(or lack thereof) and 'part' reasoning. In one of the most widely cited papers, Winston, Chaffin and 
Herrmann [60] propose six different kinds of part relationships to account for various usages. (See 
[4,22] for additional references.) Attempts have been made to incorporate such distinctions into 
knowledge representation and reasoning systems. For example, in a recent paper in this journal [l 8], 
an alternate six-way distinction to that of [60] is proposed as a means for modeling physical 
assemblies of parts. The prototype presented in [18] employs a diagrammatic CAD interface to objects 
under consideration. Using a network of concepts along with rules and attached procedures, the 
prototype can provide a user with varied 'part views' of an object based on its alternate part 
descriptions. The six part relationships of [60] have also been included in a 'Semantic Relationship 
Analyzer' that aids a database designer in the creation of a schema using the relational model [55]. In 
[43], four of the six part relationships are identified as 'core' relationships, and it is shown that one 
can intermix these and yet maintain the validity of transitive inferences. A strict differentiation 
between the relationships component-of, part-of, and member-of is advocated in [44], where it is 
noted that syllogisms combining the latter two tend to be invalid. 

In our work, we do not directly incorporate any fixed collection of partitive relationships such as 
[18,60]. Instead, we allow the schema designer to declaratively construct all sorts of different part 
relationships from a set of underlying characteristic dimensions (i.e., semantic options), which 
themselves have been gleaned from ordinary part-whole discourse. Alternative decompositions of 
wholes can exist side-by-side within our framework. 

As pointed out in [9] in an earlier issue of this journal, current knowledge representation 
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formalisms are not well adapted to part reasoning, especially in complex domains such as medicine. It 
is also noted there that coding schemes tend to interfere with proper part-whole modeling, and 
subsumption and partitive links are often confused. Our OODB approach to part modeling is 
concerned with the semantically correct maintenance of part data. Our extensive research using 
OODBs for medical terminologies [20,39] leads us to concur with [9] on the importance of medical 
part modeling. Indeed, our OOHVR (Object-Oriented Healthcare Vocabulary Repository) vocabulary 
implementation contains 6412 part relationships in a vocabulary of about 46000 terms. 

The most widely known work on parts in OODBs is that of ORION [6,34]. In [34], an account of 
the part relationship's semantics is presented but is limited to the two dimensions that we call 
exclusiveness and dependency. There appears in [34] an extended treatment of many system issues 
concerning parts like query capabilities, which we provide with our VML implementation. We do not 
duplicate ORION's use of parts as units of locking, versioning and authorization. In [43], it is shown 
how the ORION part relationships can be implemented in the Telos knowledge formalism [45]. 

The ORION exclusiveness dimension divides part relationships into two kinds: exclusive and 
shared. An exclusive part can be attached to at most one whole; a shared part, to any number of 
wholes. Therefore, the exclusiveness constraint imposes a restriction on the entire database. We have 
found that this is often too constraining, and, in this paper, we refine it by allowing exclusiveness to 
be imposed on a single class and relaxed otherwise. This leads to two types of exclusiveness, global 
exclusiveness and class exclusiveness. Our class exclusiveness does not exist in [34]. 

The dependency dimension of ORION allows a part to be made dependent on its whole: If the 
whole is deleted, then the part is deleted automatically. This is useful in alleviating the burden of 
manually searching out and deleting parts. A whole, however, is sometimes barely more substantial 
than one of its defining parts, as in the case of a bicycle and its frame. In such cases, it may be 
desirable to define the whole as dependent on its part. Therefore, our model permits the specification 
of dependency in both directions. ORION's dependency can only be from the part to the whole. 

The Object Modeling Technique (OMT) [48] provides a part (aggregation) relationship which can 
exhibit all the characteristics of ordinary associations (such as cardinality constraints). In fact, the part 
relationship is viewed as a special form of association which can have additional semantic 
connotations in certain circumstances. However, the model does not ascribe additional characteristics 
to capture the semantics of parts and does not incorporate exclusiveness and dependency. Nor does it 
deal with the inheritance of properties among classes participating in part relationships. OMT does 
provide the ability to define 'link attributes' for part relationships, something not covered by our 
model. The OMT notation includes a symbol for the propagation of operations across associations, 
and specifically across aggregations between wholes and their parts. Our model incorporates the 
propagation of data values rather than the propagation of operations. Let us note that our 
enhancements of ORION's exclusiveness and dependency dimensions have recently been utilized by 
Motschnig and Kaasboll in a proposed extension to OMT [42]. 

Property inheritance along part relationships has been dealt with in [7,46] where, e.g., the color of a 
car can be defined as the color of its body. Both models, though, limit the inheritance to what we call 
the upward, invariant case. We identify three kinds of part-whole inheritance called invariant, 
transformational, and cumulative, each of which is permitted upward and downward. 

Our inheritance has both schema-level and instance-level ramifications. At the schema-level, one 
class obtains the definition of a property based on the definition of the same property at another ('part' 
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or 'whole' related) class, similar to an IS-A hierarchy. At the instance level, instances of parts 
(wholes) receive their values for the inherited property from related wholes (parts). We refer to 
properties inherited via part relationships as derived attributes. However, this should not be confused 
with the notion of a generic derived attribute which can be defined in terms of some general 
computation or query [7,40,48]. We are concerned with identifying the underlying semantics of 
part-whole inheritance and providing this in a declarative fashion to the data modeler. While our part 
model does not offer generic derived attributes, we rely on any OODB system into which it is 
integrated to accommodate this capability. 

In addition to the inheritance of a property across a part relationship, our model supports the 
definition of an inherited property in terms of simultaneous inheritances across many part relation- 
ships. Such properties are a powerful component of part-whole modeling, permitting the declarative 
specification of such commonplaces as: 'The weight of a car is the sum of the weights of its parts.' 

We realize that some previous systems have offered limited part capabilities. Our view is that there 
is a need for a comprehensive framework that provides overarching coverage of the various semantic 
issues involved in part-whole modeling. In this way, the needs of disparate users will be addressed by 
one model. Such a model should be implemented in an existing OODB system via some process of 
integration in order to allow current users to exploit its features. It is impractical to build a new 
separate 'part' OODB system and expect people to adopt it. With this in mind, we chose to integrate 
the part model into VML which was built to handle this sort of extension. 

We have previously presented some elements of the part model [23,25]. A treatment of the 
semantics of parts and a preliminary version of our graphical schema notation for parts appeared in 
[23]. The issue of value propagation across part relationships was discussed in [25]. In this paper, we 
extend and unify those two treatments into one comprehensive, formal framework. The principal 
extension comes in the recasting of value propagation as a true form of property inheritance. The 
inheritance dimension of the part relationship is now divided into three aspects: (1) the 'upSet' which 
defines upwardly inherited properties, (2) the 'downSet' which defines downwardly inherited 
properties, and (3) a function which determines the kind of value propagation underlying the 
inheritance of each of the properties in (1) and (2). 

In comparison with [25], cumulative inheritance has been refined into two kinds to support sets and 
bags of values. The dependency dimension of [23] has also been revised in a new formalism so as to 
exhibit multivalued dependency behavior. In [24], we presented a detailed implementation strategy for 
part relationships based on their representation as object classes in their own right. That was 
supplanted by a metaclass implementation which was introduced in [27]. 

In summary, this paper presents a more comprehensive and in-depth exploration of part-whole 
modeling. Overall, the main contributions of this work are: 

(1) The extension of existing semantics for the part relationship in the context of data modeling 
and OODB systems. 

(2) The unification of the extended semantics with existing semantics in a formal framework. The 
formalization divides the part relationship into a number of semantic aspects (called charac- 
teristic dimensions). (Cf. [33].) 

(3) An extensive graphical notation for the part relationship and its various semantics useful for the 
construction and dissemination of OODB schemata. 

(4) An efficient implementation of the part model in the context of VML. 
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3. The OODB part relationship 

In this section, we formally define the part relationshi p for OODB systems. We will be using our 
OOdini graphical notation [28] to represent OODB schemata. A class is drawn as a rectangle, while 
an attribute is represented by an ellipse attached to a class via a line (Fig. 2). The IS-A relationship is 
a thick arrow directed from the subclass to the  superclass (Fig. 4). Following [48], an instance of a 
class is drawn as a rectangle with rounded corners and the parenthesized class name inside (Fig. 3). 

A class whose instances are the parts in a given part relationship is called the part class in that 
relationship. The other class whose instances are the wholes is called the whole class. For example, if 
classes Chapter and Book are in a part relationship, then Chapter is the part class and Book is the 
whole class with respect to that relationship. Because a class may play the role of both part and whole 
(in different part relationships), we will often refer to such a class as a PartWhole (PW) class. 

3.1. Definition of part relationship 

For a class C, let E(C) denote the extension of C (i.e., the set of all its instances). Also, let II(C) 
denote the set of all properties of C. 

The part relationship between a part class B and a whole class A (written PB,A) is defined as the 
following quintuple: 

PB,A = (~(8,A~; X, K, 6, (Y,, A, @)) 

where ~(s,a) is a relation from E(B) to E(A). The pair (b, a) E ~(H,A~ indicates that the instance b of 
class B is part of the instance a of class A. The next four elements are the characteristic dimensions 
referred to respectively as: (a) exclusiveness, (b) multiplicity, (c) dependency, and (d) inheritance. 
Their domains will be discussed in detail in the following subsections. 

The characteristic dimensions serve to declaratively specify the semantics or characteristics of the 
part relationship. In a database, users will manipulate parts and wholes through a set of standard 
transactions like adding a part to a whole, removing a part, or replacing a part. If proper part-whole 
semantics are to be maintained, then there are circumstances under which certain transactions must be 
forbidden. The characteristic dimensions help to monitor and enforce the legality of the various 
transactions. Beside this 'constraint-satisfaction' aspect, they are also used to control the dependency 
among parts and wholes and to define inheritance behavior. 

In the subsequent sections, we will need the following definitions. Assume a part relationship PB,A" 

Definition 1. Va E E(A), let M~(B,A) (a) = {bib E E(B) Ix (b, a) E ~(,,a)}" M~B.A)(a) is called the part 
set of a with respect to PB,A" It is the set of instances of B which are parts of a. 

Definition 2. Vb ~ E(B), let H ~ B , A ( b ) =  {ala ~ E(A)/x (b, a)E <~(B,A)}" H~,~,A~(b) is called the whole 
set of b with respect to PB,A" It is the set of instances of A of which b is a part. 

To complement our formal part model, we will introduce a graphical notation that will allow us to 
express the various semantics of part-whole modeling. The symbol for the part relationship (without 
characteristic dimensions) is a bold, dashed line. A diamond head at one end of the line marks the 
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I 
I 
l 

Fig. 1. Part relationship P~. 

whole class. ~ We chose a bold symbol to highlight the part hierarchy within the overall database 
schema. The dashes were chosen as mnemonic symbols as they are parts of the line (Fig. 1). 

We shall be referring to a running example describing the editorial page of a newspaper (Fig. 2) in 
the remainder of this paper. (The model was gleaned from The New York Times. The ellipsis indicates 
that the other parts of Newspaper  have been omitted.) This schema demonstrates the hierarchical 
nature of the part relationship. 

P 
I 

Newspaper 

I 
I 
| 

Editorial_page 

? 
I $ 

I I $ 
I I I 

j i   ,ton l_ ol  i I 
P P ? 

I I I 15 
t • I 15 

m • • • 

~ Editorial [ Business_masthead I I Letter ] ] Illustration 

Fig. 2. Part schema for an editorial page from a newspaper. 

An occurrence of a part relationship (i.e., an instance-level connection) will be drawn using a curved version of this symbol 
(see Fig. 3). 
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3.2. Exclusiveness dimension 

The exclusiveness dimension of the part relationship PB,A regulates the way that parts may be 
distributed among different wholes. In particular, each value from its domain 

{global-exclusive, class-exclusive, shared} 

imposes a different set of constraints on the cardinalities of the whole sets of the instances of B. 
Before formally defining these constraints, let us consider the ways we might want to distribute parts 
among wholes; this will motivate our three-way distinction. 

Assume that we have two classes Engine and Boat and a part relationship between them. If an 
engine is part of some boat, then it cannot be part of another boat. In other words, two boats, 
naturally, cannot share one engine. Such a constraint is referred to as exclusiveness. It is perhaps the 
most intuitive constraint which may be imposed on a part-whole relationship as it is a fundamental 
characteristic of physical assemblies such as boats, bridges, and buildings--things that one can 'go 
out and kick' [14]. 

Beyond the fact that two boats cannot share an engine, it is also the case that a boat and a car 
cannot share one, either. Hence, in a database (Fig. 3), the exclusiveness constraint of the part 
relationship between Engine and Boat must also constrain the part relationship between Engine and 
Car. In fact, it must constrain any part relationship that Engine participates in as the part class. 
Therefore, to be more precise, our original observation must be refined: If an engine e is part of a boat 
b, then it cannot be part of any other object o, regardless of that object's class. 

The exclusiveness just described is often contrasted with sharing, which allows a part to be shared 
by any number of wholes [34,46]. Such sharing is common among 'logical' part relationships [34]. 
For example, scientific articles may appear in books that are collections of reprinted articles. Such 
books may freely share articles as parts. 

While exclusiveness is valid for physical assemblies, there are situations where it is too rigid. 
Consider a document database for all the publications of an organization which sponsors technical 
conferences. A partial schema for such a database is shown in Fig. 4 where there appear six classes 
and various part relationships between them. We see that a proceedings has articles as parts, and an 
article, in turn, has an abstract. It is obvious that two articles cannot share the same abstract, so 
exclusiveness should be imposed there. However, a conference program might contain the abstracts of 

S 

! ', sS s s . . . - - . .  ,' (Car) 

(Engine)  " ~ ,  - - -  "" ~" . .  . ~ . . ~  

. . . . . . . . . .  These  2 occurrences  
are not permitted 

Fig. 3. A global-exclusive engine of a boat. 
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A 
I I  ompi'  on I 

$ # 
• s 

~ Article I 
I i 

$ I 
$ s 

$ # 

I Conference_program I 

Fig. 4. A document database schema. 

the articles appearing in the proceedings. Therefore, while an abstract cannot be shared among 
articles, it can be part of both an article and a conference program. 

A similar situation exists in the case of articles and their relationships to proceedings and 
compilations. As noted, conference articles may be reprinted in compilations. Even though a given 
article may only appear in a single proceedings, it can also be part of some compilations. Therefore, 
the exclusiveness constraint is again inappropriate. What is required is the imposition of exclusiveness 
on a single part relationship (that between Article and Proceedings)  and its relaxation with respect to 
others. For this reason, we distinguish between two types of exclusiveness: 

• Global exclusiveness: Enforces the exclusive reference constraint on the entire database. 
• Class exclusiveness: Enforces the exclusive reference constraint within a single class, and relaxes 

it otherwise. 
Assume that there exist n part relationships PB,AI , PR.a2 . . . . .  PR,A,,' as in Fig. 5, with constituent 
relations @ ~,A , ~' ~ (8.A 2~ . . . . .  @ ~e.a,,~, respectively. 

Definition 3. For a part relationship P B A ,  X = global-exclusive implies that Vb E E(B), if 3a E 
E(Ai)  such that (b, a) E ~(~  A , then HA' ' (b)[ = 1 and Vj # i, In~ (b) = 0. PB A is said to be a 

global-exclusive part relationship. 

$ I "'" • 

Fig. 5. CLass B in n part relationships. 
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As we see, a global-exclusive part relationship PB,Ai not only places constraints on the whole sets 
defined with respect to itself, but on all whole sets defined with respect to the class B. The existence 
of PR,A imposes the following limits on 'part' references to instances of B: If an instance b E E(B) 
has a whole a E E(Ai), then a is b 's  only whole in the entire database. 

Definition 4. For a part relationship PB,A'  /I( = class-exclusive implies that Vb E E(B), IHo,~,A(b)I <~ 
1. PI~,A is said to be a class-exclusive part relationship. 

In other words, the part relationship between a class B and a class A is class-exclusive if ~ , a ~  is a 
partial function from E(B) to E(A). It should be noted that global and class exclusiveness are 
equivalent if the part class participates in only a single part relationship. 

Definition 5. For the part relationship PB,A, X -- shared implies that Vb E E(B), Pn,A does not impose 
any constraints on IHo~e.A(b)I. PR,A is said to be a shared part relationship. 

Graphically, we add an 'X' to the part relationship symbol to indicate that it is global-eXclusive 
(Fig. 6). An 'X' inscribed in a rectangle adorns the symbol in the case of I c l - ~  eXclusiveness. 
Sharing is indicated by the lack of these two embellishments (Fig. 7). 

3.3. Multiplicity dimension 

The next characteristic dimension of the part relationship determines how parts from a part class 
can be grouped together in the formation of wholes. In particular, it imposes cardinality restrictions on 
the sets of such parts in accordance with the specified value from its domain: 2 

{(l, u)ll E {0, 1, 2 . . . .  }, u E {1, 2, 3 . . . .  } U {o~}, 1 ~< u} 

As an example, an editorial column (Fig. 2) can be defined as always having between three and 
four editorials (as The New York Times does). Or a letters-column can be required to have at least one 
letter and, at all times, a single business masthead. 

Fig. 6. Global exclusive part relationships. 

2 We have also developed part relationships which permit ordering among the parts. See [22,23] for further details. 
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A 
I I ] 

# 
# 

$ • 

Article I Conference_program I 

P 
# 

# 
! 

Fig. 7. Revised document schema with class exclusiveness and sharing. 

Definition 6. For a part relationship PB,A ,  K ~- (1, U) implies that Va E E(A), l <~ IM+,,A(a)l <~ u. The 
condition u = oc means that the upper bound does not apply. 

To summarize, x defines a constraint on the number of  parts of  a type B that any whole of  type A 
can have. This constraint is enforced throughout the entire lifetime of the 'whole '  object, from the 
moment  it is created to the moment  it is destroyed. 

Pictorially, the multiplicity is shown in a number of  different ways. In general, if l > 1 or u > 1 
(meaning that wholes can have more than one part of  the given type), then the dashed line of  the part 
relationship is doubled up to convey multiplicity. The value of x is placed alongside (Fig. 8). 

We employ graphical symbols instead of  the number pairs for certain multiplicities. Single-valued 
part relationship: If 1 = 0 and u = 1, K is omitted and the basic single-lined symbol is used (Fig. 9). 
With l = 0 and u = oc (multi-valued part relationship), K is again omitted, but the dual-line is retained 
(Fig. 10). A part relationship for which l = u = 1 is called essential and is represented by the 
single-lined part relationship symbol with a circle (Fig. 11). Finally, if / = 1 and u = oc (multi-valued 

Edi to r i a l_co lumn  ] 

II 
II (3, 4) 
II 
I I  

Editor ia l  

Fig. 8. Editorial_column schema. 



70 M. Halper et al. / Data & Knowledge Engineering 27 (1998) 59-95 

Newspaper 

'i' 
| 
| 
| 

]Editorial__page] 

Fig. 9. A single-valued part relationship. 

Proceedings I 

I I  
I I  
I I  
l l  

Article ] 

Fig. 10. A multivalued part relationship. 

Letters_column ] 

| 
| 

[ Business_masthead I 

Fig. 11. Letters-column with essential business masthead. 

essential part relationship), then PB,A is represented by the dual-line with a circle. In Fig. 12, each 
letters-column has at least one letter but no maximum. 

3.4. Dependency dimension 

Dependency semantics is often desired when modeling with parts [34], especially when the wholes 
comprise numerous parts. For example, having the parts of a large CAD drawing deleted 

Letterscolumn [ 

II 
| |  

I  otter I 
Fig. 12. Letters-column with at least one letter. 
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automatically when the drawing itself is deleted alleviates tedious manipulation. For this reason, we 
include part-to-whole dependency in our part model. 

There are part-whole configurations where a part acts as a defining element, without whose 
existence the whole becomes insubstantial. Consider, for example, that without its frame, a bicycle 
may be seen as nothing more than a collection of 'spare' parts. Therefore, it makes sense to propagate 
the deletion of a frame into the deletion of its bicycle. We call this whole-to-part dependency. The 
domain of the dependency dimension includes three values: 

{part-to-whole, whole-to-part, nil}. 

The value nil indicates no dependency. The other two values are defined below, where the notation 
del(x) is used to denote the application of an operator that deletes the instance x from the database 
[34,37]. Actually, del is taken to be a predicate that returns TRUE if the deletion is successful and 
FALSE otherwise. The deletion of the object takes place as a side-effect. 

Definition 7. For the part relationship PB,A'  (~ = part-to-whole implies that 

Va E E(A), Vb E E(B )[[(b, a) E ~(u,a)/x HO,B.,, (b) = {a}] ~ [del(a) ~ del(b)]] 

PB,a is called a part-to-whole dependent part relationship. 3 In words: If a is the only whole of b, and a 
is deleted, then b must be deleted for a part-to-whole dependent relationship. 

Definition 8. For the part relationship PB,A'  (~ = whole-to-part implies that 

Va E E(A), Vb E E(B )[[(b, a) E ~8,a~ /x m~,B.., (a ) = {b}] ~ [del(b) ~ del(a)]] 

P~,A is called a whole-to-part dependent part relationship. 

In both definitions, the condition requiring that the deleted object (for example, a in the case of 
part-to-whole dependency) be the only existing referent implies a 'multivalued' deletion semantics. In 
other words, the deletion is not propagated until the set of referents on which a given object depends 
becomes empty. (Cf. [34].) 

To express the dependency graphically, an arrowhead facing in the direction of the dependency 
(i.e., against the direction of the deletion propagation) is placed behind the diamond. Fig. 13 shows 
the dependency of the table of contents on its book; when a book is deleted, its table of contents is 
discarded automatically. Fig. 14 shows the converse dependency of bicycle on its frame. 

3.5. Inheritance dimension and derived attributes 

Inheritance (of properties) plays a major role in OODB schemata, where it promotes more 
comprehensible conceptual models and the reuse of specifications. By the term inheritance we mean 
the attainment of (the definition of) a property by one class from another class by virtue of the fact 
that the two classes are connected via some hierarchical semantic relationship. Let us note that 
inheritance can be either automatic or selective. With respect to the IS-A relationship, which is the 

3 Strictly speaking, the antecedent must be temporally before the consequent. 
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Book [ 

| 
| 

I Table of contents I 

Fig. 13. Table of contents dependent on its book. 

primary instrument of property inheritance in an OODB schema, inheritance is always automatic. For 
example, the class Graduate_student exhibits the property ID # because the class Student defines that 
property and Graduate_student IS-A Student. For the part relationship, the inheritance is selective, 
meaning that the designer needs to choose which properties will be inherited. 

The usefulness of IS-A inheritance stems from the fact that it comes directly from ordinary human 
usage: A subcategory of objects (e.g., dog) has all the properties of its supercategory (e.g., mammal). 
For the same reason, it is also important to endow the part relationship with certain inheritance 
capabilities. Consider that the age of an airplane is the age of its airframe [46]. Furthermore, an 
airplane gets its color from its fuselage, or, alternatively, it may be regarded as multi-colored and get 
the colors from its fuselage, wings, and tail. 

The above are all examples of upward inheritance from the part class to the whole class. Our 
editorial page schema (Fig. 2) contains some examples of downward inheritance from the whole class 
to the part class. The date of an editorial page is just the date of the newspaper where it appears. 
Furthermore, the date of each editorial is that of its editorial page. It may also be the case that a font 
family is defined as a property of the newspaper overall and inherited by the various parts (like the 
editorial page) in order to maintain a consistent look (cf. [38]). 

Inheritance for the part relationship differs in a number of ways from IS-A inheritance. First, the 
inheritance of IS-A is, at bottom, just a template sharing mechanism [19] which transmits the 
definitions of all properties from one class (the superclass) to another (the subclass). The assignment 

Bicycle I 

| 

Frame [ 

Fig. 14. Bicycle dependent on its part frame. 
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of values to these properties for instances of the subclass is not a function of this process. 4 In contrast, 
part-whole inheritance, as defined below, provides the receiving class with appropriate definitions for 
the inherited properties, and propagates values for those properties to the instances. Definitionally, a 
car has the color of its body, and, more specifically, some Ford Mustang (an instance) is blue because 
it has a blue body. Therefore, we refer to a property inherited via a part relationship as a derived 

property or derived attribute. Thus, while IS-A inheritance is strictly a schema-level mechanism, 
part-whole inheritance is both a schema-level mechanism and an instance-level mechanism. The latter 
promotes more concise representations at the instance level of a database because data is stored in one 
location (e.g., at a car's body) and propagated on demand to another location (e.g., to the car); 
property values are not replicated, which alleviates the burden of explicit integrity maintenance 
associated with redundant data storage [15]. 

The second distinction is that IS-A implies inheritance of all properties, whereas the part 
relationship requires selective inheritance. This again has its root in our everyday usage of parts, 
where the inheritance of all properties is rarely needed and may in fact be semantically incorrect. For 
example, the drive-train of a car has a serial number which is not the serial number of the car. It is up 
to the schema designer to determine which properties are appropriate for inheritance. 

The last distinction is that inheritance across IS-A, in its ordinary OODB system usage, is 
downward, but part-whole inheritance can be either upward or downward. A notion of upward 
inheritance for IS-A has been proposed for integrating pre-existing classes [49]. In knowledge 
representation, such a notion has been used to derive default values for properties [11 ]. 

Let us note that the inheritance mechanism of the part relationship is not meant to be a general 
computational facility. That is, it will not directly permit a designer to define a derived attribute whose 
value is computed via some arbitrarily complex procedure. We have sought to separate such general 
computation from the propagation and combination of data values that humans would associate with 
inheritance. We have identified three such kinds of inheritance--namely, invariant, transformational, 

and cumula t ive - -which  we have made available to the modeler in a declarative way. Declarative 
representations are widely assumed to be superior to procedural representations [59], fostering 
understandability, reusability and maintainability. 

To be sure, it is possible in an OODB system to program methods that carry out the desired 
inheritance behavior. However, this puts an unnecessary burden on a programmer who would be 
forced to write code involving potentially complicated path expressions. The correctness and the 
maintenance of such code would also fall on the programmer's shoulders. 

Let us also emphasize that our model does not forbid a schema designer from specifying a derived 
attribute of arbitrary complexity with respect to part relationships. We just do not support a declarative 
means of doing so. The schema designer would have to manually program some method to define 
such a property. Part-whole inheritance will help in this task. 

The three important kinds of part inheritance that we have identified are distinguished by the 
manner in which the values of inherited properties (derived attributes) are computed. As was alluded 
to in our examples above, the value of a derived attribute is often identical to the value of its source 
property. Here, only a simple invariant propagation of the data value must be performed. It is obvious 

4 In framed-based knowledge representation [58], 'value inheritance' across IS-A links is sometimes used to give instance 
frames default values. 
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that the part or whole which provides the value must be unique (i.e., it must be the only part or 
whole); otherwise, the value for the derived attribute will be ambiguous. 

In part-whole modeling, defining the value of a derived attribute as a combination of values from 
multiple source objects is also viable. For example, the word-count of an editorial column is the sum 
of the word-counts of its editorials. Also, the color of a car's body can be modeled as the union of the 
colors of its panels. In the first example, the multiple values of word-count are combined by adding 
them. In the second, the colors are gathered into a set (cf. union inheritance [58]). 

In our part model, the three different kinds of derived attributes are: 
(1) lnvariant: The inherited value is obtained without modification from a unique source. 
(2) Transformational: The inherited value is computed by combining (potentially) many source 

values into a single value of the source property's data type via a single symmetric 5 operator. 
(3) Cumulative: The inherited value is computed by accumulating (potentially) many source values 

into a set or bag, with the derived attribute becoming multivalued with respect to the source 
property's data type. 

When a schema designer defines a transformational derived attribute, he or she must specify a 
symmetric operator that takes a variable number of arguments of some data type and returns a single 
value of that same data type. We will call such an operator generic. The need to accommodate a 
variable number of arguments is dictated by the fact that the number of part instances for a given 
whole instance (or vice versa), in general, is not known at schema definition time and can vary during 
the lifetime of the database. In the example of the property word-count being inherited by the class 
Editorial-column from the class Editorial, the generic operator is E z, integer summation, where 
summation over a single integer is defined as the identity (i.e., Ez(X)= x). 

The reason for symmetric operators is that there is no ordering among the parts (Section 3.3). This 
requirement is not overly restrictive because the most useful generic operators for inheritance are 
iterative applications of a common binary operation like addition, minimum, etc. 

Again, let us note that an extra layer of computation can be easily done on top of the symmetric 
inheritance operators. This would permit the definition of derived attributes of any degree of 
complexity. However, such properties would not be declaratively specified, but would require the 

writing of method code. 
Formally, the inheritance dimension of the part relationship is a triple: 

(Y, ~x, ~ ) .  

The first component Y C_ 1-I(B) is called the 'upSet' of the part relationship. It contains those 
properties of B that are inherited by A. The second component A C_ II(A) is the 'downSet.' It contains 
those properties of A inherited by B. It is required that Y n A = 0 in order to ensure that no inherited 
property is defined circularly. 6 The last component, @, is a function which maps the elements of Y and 
A (i.e., all the inherited properties) into operators that determine the kinds of derived attributes they 
induce. For an invariant derived attribute, the operator will be the identity operator. In the case of a 
transformational derived attribute, it will be any generic operator that handles values of the 

'Symmetric' is analogous to 'commutative' [17]. The term is usually applied to operators with three or more parameters. 
6 For the same reason, it is forbidden to have a directed cycle where the same attribute is inherited along all part relationships 
of the cycle. It is the responsibility of the schema designer to avoid this situation. It is a simple matter to write a procedure to 
detect such occurrences. 
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appropriate type. For a cumulative derived attribute, it will be either the set-accumulation operator or 
the bag-accumulation operator (defined below) of the source's type. 

To define (Y, A, qb), we follow [62] by viewing attributes, relationships, and (readable) methods as 
functions which map the extension of a class into some given data type. For example, the attribute 
height of class Person maps persons into (a subset of) R, the real numbers. That is, height: 
E(Person)---> R. A property may be undefined for certain elements of its domain. 

For data types, we will be using the following notations. P(T) denotes the power set of the data type 
7, i.e., that data type which comprises sets of values of T. •(z) is the data type comprising bags of 
values of ~-. The n-way Cartesian product over 7 is written as r n. I~ is the identity operator for 7. To 
define cumulative derived attributes, we also need the following: 

Definition 9. (Accumulation operators) For the data type 7, U~ denotes the set-accumulation operator 
which is defined as follows: 

tt 

<(x,, x2 . . . . .  xo) = [ , .J  {xi} 
i = l  

where x 1, x 2 . . . . .  x E r. As we see, U~ is the composition of n canonical injections [2] and ordinary 
set union. G~ denotes the bag-accumulation operator defined as: 

G.r (X  1 , X 2 . . . . .  Xn) ~-- < X l ,  X 2 . . . . .  X n )  

where x~, x 2 . . . . .  x )  is the bag containing the n values xj, x 2 . . . . .  x, E ~-. 

We can now formally define the three aspects of the inheritance dimension of the part relationship. 

Definition 10. (Function qb) For a part relationship PB,A' (I) is a function which maps each element of 
Y and A into an operator that is used in the computation of the value of its corresponding derived 
attribute. The value of qb for a property 7r E (Y k)A) with data type % is as follows: 

[ /~, . Case h Invariant, 

T ,  Case 2: Transformational, 
¢'(7r) 

= U~, Case 3a: Cumulative (set), 

G~, Case 3b: Cumulative (bag), 

where T denotes a generic operator (as introduced above) whose arguments and return value are of 
data type %. 

Note that the value of the function qO for any inherited property is specified solely by the schema 
designer depending on the desired inheritance behavior. If an invariant derived attribute is desired, 
then the operator chosen is the identity for the data type of the source property. For a cumulative 
derived attribute (Cases 3a and 3b), the operator is either the set-accumulation operator or the 
bag-accumulation operator of the appropriate data type. With a transformational derived attribute, the 
schema designer is required to choose some generic operator to transform the many source values into 
a single value of the same type. In the editorial column example where we defined wordCount to be 
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transformational, we would have qb(wordCount) = £z,  that is, integer summation. Let us note that it is 
a straightforward matter to incorporate standard type-casting operations used in programming 
languages into the different cases; however,  we have omitted this in order to simplify the presentation. 
Indeed, this option was discussed in [22]. Its inclusion, for example, would permit the result of  an 
integer summation to be a real number. It would also make it possible for the propagated value to be 
the average of  some integer values, assuming that a 'count'  function were available. 

Definition 11. (UpSet  Y) For a part relationship PB,A' 7"1"B ~ Y implies the existence of  a new property 
% E II(A) (called a derived attribute) whose value for an instance a E E(A) is computed in terms of 
the partial function D~, R which is defined with respect to qb(%) as follows. Let 7- be the data type of  

7rt~, and a s s u m e  M~B .A  (a ) = {b I, b 2 . . . . .  bq}. 

• Case  1. (Invariant) qb(Tr R) = I r. [D : E(A) ~ 7-. 

:~'Ir(~'B(bl)) = ~rR(b,), q = 1/~ ~-R(b,) is def ined,  

~ ,~(a)  [undef ined ,  q = O, 

• Case 2. (Transformational) qb(~-~) = T r" 13 : E(A) ~ r. 

T (rrB(bl) . . . . .  7lB(bq)), q # O A V i "  1 <~ i <~ q, 7r#(b~) is def ined,  

D=8(a) = [undef ined ,  otherwise,  

• Case 3a. [Cumulative (set)] @(rrs) = U r. D,~ H : E(A) ~ P(7-). 

=~'Ur(Trs(b~) . . . . .  "ffB(bq)), q # 0 A V i  " 1 ~< i ~ q ,  7rB(bi) is def ined,  

D=R(a) [undef ined ,  otherwise,  

• Case  3b. [Cumulative (bag)] qb(Tr~) = G r. D ~ :  E(A) ~ ~(r) .  

= ~Gr(~B(b t ) . . . . .  7"1"R(bq)), q # 0 A Vi  " 1 <~ i <~ q, rrs(bi) is def ined,  

D~H(a) (undef ined ,  otherwise.  

Definition 11 states that a new property is defined at class A for each property in Y. This new property 
• • 7 

(called a derived attribute) is said to be inherited by A upwardly from B via PS,A" It is called mvarlant, 
transformational or cumulative (set or bag) depending, respectively, on whether the schema designer 
has chosen Case (1), (2), (3a) or (3b). 

Downward  inheritance and the corresponding downSet  are defined analogously to the above: 

Definition 12. (DownSet  A) For a part relationship PS,A, 7ra E A implies the existence of  a new 
property 7r a E II(B) (called a derived attribute whose value for an instance b @ E(B)  is computed in 

7 It should be noted that Case (1) does not handle the situation where some a ~ E(A) has two or more part instances from 
class B; only the identity operator is applicable. Our part model deems any schema where such an occurrence is possible as 
ill-defined and, in order to guard against it, imposes the following 'cross-dimensional '  constraint on the part relationship: If 
there is an upwardly inherited, invariant derived attribute, then the upper bound of the part relationship's multiplicity 
dimension must be 1 (i.e., the source part must be unique, if it exists). 
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terms of  the partial function D.A which is defined with respect to @(Trz) as follows. Let r be the data 

type of  r A, and assume HO~B.a (b) = {a l, a 2 . . . . .  a,,}. 
• Case  1. (Invariant) ~(TrA) =I~. D~:  E(B)---->~'. 

=~/~(TrA(al)) = 7rz(a,), m = 1AT"ra(aj) is def ined,  
D (b) [undef ined ,  m = 0 ,  

• Case  2. (Transformational) @(rrA) = T,. D A: E(B) --~ r. 

=~T,(Tra(a j) . . . . .  7TA(aq)), m ¢ 0 A V i "  1 ~<i ~<m, ~ ( a i )  is def ined,  

D~,,(b) (undef ined ,  otherwise,  

• Case 3a. [Cumulative (set)] qb(Tra)= U T. D~A : E(B)- -~Pb"  ). 

~U,(N(al)  . . . . .  7rz(a,n)), m ¢ O A V i "  1 <~i<~m, 7rA(ai) is def ined,  
D ~ (b) = [undef ined ,  otherwise,  

• Case  3b. [Cumulative (bag)] qO(TrA) = G,. D : E(B) ---> 13(r). 

=~'G,(TrA(a ~) . . . . .  7rz(a,,,)), m ~ 0 A V i  ' 1 ~< i ~< m, 7ra(a~) is def ined,  
[D (b) (undef ined ,  otherwise.  

Definition 12 states that a new property is defined at B for each property included in the downSet  
A. This new property (called a derived attribute) is said to be inherited by B downwardly from A via 
PB.A" AS before, the derived attribute is invariant, 8 transformational or cumulative. 

Let us look at the formal definitions of  some of the examples cited above. The class Editorial_page 
has the invariant derived attribute date which it inherits downwardly from Newspaper. Therefore, 
~(date) = laa,eTvp~, where dateType is date's data type at Newspaper, and date at Editorial_page is 
defined in terms of  Dj,,~ which is defined as follows: 

_~date(p) ,  if 3p @ H~,E.N,(g ) , 

D d " ' ~ ( g ) - [ u n d e f i n e d ,  ]Ho,,~.,~. (g) ] = O. 

where g is an editorial page, and p, if it exists, is its only newspaper. In the above, E is short for 
Editorial_page, and N denotes Newspaper. The derived attribute wordCount, inherited upwardly by 
class Editorial_column from class Editorial, is defined according to the following: 

D ...... dC ...... , ( C ) = t ' ~  w°rdC°unt(e~)' n ¢ O A V i ' l < ~ i < ~ n ' w ° r d C ° u n t ( e i )  i s d e f i n e d = =  

I. Undefined, otherwise,  

where e I . . . . .  e,, are the editorials contained in the editorial column c. 

Here, as with an upwardly inherited, invariant derived attribute, the uniqueness of the source property must be ensured if 
the schema is to be well defined. This is done by imposing the following additional constraint on the part relationship: If 
there is a downwardly inherited, invariant derived attribute, then the part relationship must be either global-exclusive or 
class-exclusive (i.e., the source whole must be unique). 
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Newspaper 

? 
| 

| $(date) 
| 
| 
| 

Editorial_page p ~'date "~ 

Fig. 15. Inheritance of date. 

For the example of class Body inheriting the cumulative derived attribute color upwardly from class 
Panel, we have @(color) = U.,+,,7:,p,., where colorType is the data type of color, and: 

D l,,,(y) = = color(pi)},  

(undef ined ,  

n ~ 0 A Vi " 1 <~ i <~ n, color(p~) is defined, 

otherwise, 

where y is a car body and the pi 's are its panels. Note that the data type of color at class Body is 
P(colorType), i.e., the one comprising sets of colors. 

Inheritance via a part relationship is represented graphically by two aspects. First, the derived 
attribute is drawn as a dashed ellipse at the class that inherits it. The dashed appearance reminds one 
of the part relationship line itself. Second, a propagation label is written alongside the part 
relationship line. It begins with an arrow indicating the direction of inheritance: upward (i.e., part to 
whole) is denoted by an up-arrow; downward, by a down-arrow. Depending on the kind of derived 
attribute, one of the following comes after the arrow. 

• Invariant: The name of the property in parentheses (Fig. 15). 
• Transformational: A pair of parentheses containing a symbol denoting the value of @ for the 

given property and the property's name in square brackets. For a common operator like 
summation ' + '  would be used tbr @'s value (Fig. 16). If no such symbol exists, then a generic 
one (like 'G ' )  is employed and an annotation is placed in a schema legend. 

Editorial_column wordCou~t') 

9 
| |  
I| l"(+[wordCount]) 
|1 
| |  
| |  

I Editorial ~ 

Fig. 16. Inheritance of wordCount. 
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i 
Body [---( ( color I .  

| |  

II 1' {color} 
|1 
| | 
|1 

Panel ~ 

Fig. 17. Inheritance of co~or. 

• Cumulative: Set: The name of the property in curly brackets (Fig. 17). Bag: The name in angled 
brackets. Note also that because the derived attribute is multivalued in this case, it is drawn with 
a double-rimmed ellipse (Fig. 17). 

4. Generalized derived attributes 

In this section, we turn our attention to the 'redundant inheritance of a given property' problem, an 
example of which is depicted in Fig. 18 where we see the class A inheriting the property 7r upwardly 
from each of the classes B 1, B 2 . . . . .  B m. According to our discussion so far, this schema must be 
viewed as ill-defined because the definition of ~ is ambiguous. Which of the ~-'s at the m part classes 
should be used to determine the value of rr (for some instance) at A? 

In an IS-A hierarchy that permits multiple inheritance (i.e., a DAG structure), there is the possibility 
of inheriting competing definitions for the same property. This competition or redundancy can be 
resolved by applying a precedence mechanism [32,53]. In a part hierarchy, redundant inheritance of a 
given property does not necessarily signify competing definitions. Since it is natural for a whole to 
consist of several parts of different kinds, there is a conceptually meaningful alternative and that is to 
combine the data values provided via the different part  relationships into one value using a specified 

~ , "  ~" ~ 

i ~ _ . _ ~  • " . . . 1  

m • 
u • 

m m • 
m m • 

Fig. 18. Redundant upward inheritance. 
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transformation or accumulation. In fact, in many modeling situations it is sensible to define a property 
of a whole class in terms of the same property at a number of its part classes. 9 Examples abound: a 
plane gets its color from its fuselage, wings, and tail; the weight of a car is the sum of the weights of 
its parts; etc. 

As we see, the seeming redundant inheritance problem is, in part hierarchies, actually a desired 
modeling scheme that generalizes ordinary part-whole inheritance. We call a property defined in this 
manner a general i zed  der ived  attribute because its definition supersedes those of the derived attributes 
that would have been induced by the individual inheritances in isolation. 

Let us now formally define the notion of a generalized derived attribute. 

Definition 13. The existence of part relationships PBI,A , PB2,A . . . . .  PBm,A such that 7r is in the upSet Y 
of each ~° (Fig. 18) implies the existence of a new property zr ~ II(A) (called a generalized derived 
attribute). The value of 7r for an instance a E E(A) is computed in terms of the partial function D 
which is defined with respect to the partial functions D (~. , [I) ~2~. , . . . ,  D~ m~ (associated, respectively, 
with PR~,A P82,A . . . . .  PSm,A by Definition 11) and the operator ~b as follows. 

f . l .rD(1)¢a~ [D (2)~ , D , , ( a ) - ~ q ' t  ~ ~ ), ,~ ~a) . . . . .  ~ ) ( a ) ] ,  V i ' I  ~<i~  < m ,  ~ ) ( a )  is defined, 
- [.undefined, otherwise, 

under 
(1) 

(2) 

(3) 

the assumption that the following three restrictions are met: 
The property 7r at each of the part classes is either a single-valued or multivalued property of 
the same underlying data type r. That is, each 7r has data type z, P(z), or B(z). 
The functions ~(1~ [~(2) [D(,n. m) all have the same range which is either r, P(z), or B(T). 
Note that according to Definition 11 it is not possible for the range of a D (i~ to be z if its 
domain is P(z) or B(z). 
The operator ~b has a range of either z, P(z), or B(z). (The same is true of fl)=.) If any of the 
arguments to ~ is a set (bag), then its return value must be a set (bag) as well. 

Note that in (1)-(3),  z itself may be a set type of another basic data type. In such a case, Uz(z) (B(z)) 
would comprise sets of sets (bags of bags). Depending on the height of the hierarchy, more deeply 
nested structures might be created. Restrictions (1) and (2) ensure compatibility between the data 
types of the zr's (the source properties) and that of the generalized derived attribute. Restriction (1) 
says that the source properties must all be of the same base type. The schema designer is responsible 
for ensuring 'semantic compatibility.' As in the previous section, we note that type-casting among 
compatible data types, as it is used in languages like C + + ,  can easily be introduced in order to 
transparently relax the restrictions and give the designer more flexibility. In this way, for example, the 
property zr at one class could be of type integer, while at another it could be of type real. Such a 
situation does not impede the definition of the generalized derived attribute. 

Restriction (2) states that the values delivered to the operator ~ via the D ~ ' s  must all be of the 

In this section, we will limit our discussion to upward inheritance for the sake of brevity. 
"' In such a situation, we further assume that there does not exist any part relationship PA.e via which class A inherits ~" 
downwardly. Allowing such a scenario could lead to a contradiction in the definition. Besides, from a modeling standpoint, it 
is arguably meaningless for a class to inherit the same property upwardly and downwardly simultaneously. 
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same data type, namely, ~-, P(r), or [B(r). If there are any discrepancies among the data types of the 
rr's (e.g., some are ~- while others are P(T)), then these must be resolved by the D (i)'" before the 7r S 

values are combined by 0 to produce the value of the generalized derived attribute. Type-casting, as 
mentioned above, could be employed in the D(~'s. 

Restriction (3) states that the data type of the generalized derived attribute must be single-valued or 
multivalued with respect to the same type as its source properties. If any of the 7r's are multivalued 
(i.e., have the type P(r) or B(T)), then 4': [P(T)] m --~ P(T) or 0: [~(T)]'" ---> B(r). In other words, 0 in 
that case must be an operation such as set or bag union. 

What (2) and (3) seek to avoid is the deep nesting of sets within sets between two adjacent levels 
of the hierarchy, something for which we have not found any use. To reiterate, though, such deeply 
nested sets are available for multi-level hierarchies. 

As an example, the definition of the property wordCount at the class Editorial_page is as follows: 

= ~ wordCount(c) + wordCount(l) , wordCount(c), wordCount(l) defined, 
Dw""dc ...... '(P) [undefined,  otherwise, 

where p is an editorial page, and c and 1 are its editorial column and letters-column, respectively. 
Here, the operator 0 is summation. As shown in the previous section, the property wordCount at the 
class Editorial_column is itself a transformational derived attribute defined via an upward inheritance. 
(The same is true of wordCount at Letters_column.) Thus, we see that derived attributes can be used 
in the same manner as other 'ordinary' properties of a class. 

The graphical symbol Ibr a generalized derived attribute is the same as that for a derived attribute 
with the addition of the operator ~b which is placed in front of the derived attribute's name, now 
appearing in brackets. In Fig. 19, we show the property wordCount being inherited by class 
Editorial_page, and also show that wordCount is a transformational derived attribute defined in terms 
of summation at both Editorial_column and Letters_column. Furthermore, wordCount is an inherent 
property of Editorial and Letter, both of which are two levels below Editorial_page. 

As another example, Fig. 20 shows how a car's weight can be written as the sum of the weights of 

Editoria age wordCoun x 
J 

q 
I 

ffl"(wordCount) 
I 

& 

( wordeom~t " A  Editorial_column 
~ ~ ' l  

'['(+[wordCount]) II II 
II 
II 

~ Editorial [ 

$ 
$ 
$ l'(wordCount) 
t 
i 

Letters. column wor  o"nt", 

I I  ?(+[wordCount]) II 
II 
II 

Letter 

Fig. 19. Inheri tance of  wordCount. 
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Fig. 20, Inheritance of weight. 

its parts. In an expanded version of this schema, the property weigh t  at the different part classes might 
itself be inherited upwardly. 

To conclude the discussion of the theoretical aspects of the part relationship, we show the revised 
version of the editorial page schema in Fig. 21. It now includes specifications for the various 

I ,[,(date) 
I 

(2~t~ 2 '  I Editorial_page 1. (+;ordCount?) 

I : "w°"~°°°t) "- "----" Masthead I ,[,(date) ( wordeount ) 

('d~te")~.__.~ I ----__--~"(~w°rdC°u~t") I Letters_column [ 

iXl (3, 4) (+[wordCount]) 
i? i l"(+[wordCount]) II $(date) 1 . ,i 

I Edi::rial I I Busin~ss-ma~th~"a II Illustration I I Letter I 

(,..,date 5 

Fig. 21. Revised editorial page schema. 
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characteristic dimensions and derived attributes. Note that Illustration has a class-exclusive part 
relationship with Letters_column since the same illustration should not be part of more than one 
letters-column, but can be used as part of an article or in a contents announcement elsewhere in the 
newspaper. The part relationships between Masthead and Editorial_page and between Business_ 
masthead and Letters_column are shared because mastheads, which contain general information 
about a newspaper's editorial staff, change infrequently. Therefore, the same masthead may appear in 
a series of newspapers spanning months or years. 

5. Integration of the part relationship into an OODB system 

In this section, we describe an actual implementation of the part relationship in the context of an 
OODB system. The implementation was carried out using the metaclass facility of VML (VODAK 
Model Language) [37]. We will first give an overview of the VML data model and its notion of 
metaclass. Then, we go on to discuss the different aspects of our PartWhole metaclass. 

.5.1. The VML data model and metaclasses 

VML [37] is an open object-oriented data model which can be tailored to the needs of specific 
applications [36]. It employs a 'dual' model, i.e., it separates the notions of class and object type. 
Each class in a VML schema is associated with exactly one object type, called its instance t3'pe, which 
defines the structure and behavior of the class's instances. In Fig. 22, we have used a shading pattern 
to show the effect of the instance type l J on an instance. A single object type, on the other hand, may 
be associated with any number of classes. 

To maintain uniformity, classes themselves are objects in VML (cf. Smalltalk [19]). As such, they 
are instances of other classes referred to as metaclasses. However, the interaction between 
metaclasses, object types and (ordinary) classes is different from that between classes, object types 
and instances [36,37]. As with an ordinary class, a metaclass has an instance type that describes its 
instances, which are classes. Furthermore, a second object type may be associated with a metaclass to 
augment the structure and behavior of the instances of  its instances. This additional object type is 

instanceOf 

Fig. 22. The instance type's effect on a class's instances. 

" We represent the instance type as a parallelogram. 
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Fig. 23. The interaction between metaclasses, classes and instances. 

called an instance-instance type [36]. Thus, through its two associated object types, a metaclass 
influences both its own instances, which are classes, and the instances of those classes. This is 
illustrated in Fig. 23 where we have again employed shading to demonstrate the effect of the 
metaclass's instance type on a class. Fig. 23 also shows the effect of the metaclass's instance-instance 
type and the class's instance type on the class's own instances. 

The introduction of new metaclasses serves as the means for introducing semantic relationships, 
like the part relationship, into the VML data model. We have built the PartWhole metaclass that 
endows classes participating in a part hierarchy [i.e., PartWhole (PW) classes] and their instances with 
structure and behavior befitting the part relationship. Specifically, through its instance type and 
instance-instance type, our metaclass does the following: 

• It provides the means for defining a part relationship between a pair of PW classes, making one a 
whole class and the other a part class with respect to each other. It also allows PW classes to be 
queried regarding the characteristics of their part relationships. 

• It furnishes a PW class with the constructor method make and the destructor method destroy 
which, respectively, capture the creation and deletion semantics of the part relationship. 

• It provides a PW class's instances with methods that carry out the part transactions of 
establishing, dissolving, changing, and querying part-whole connections between themselves and 
other objects. These include addPart, removePart, changePart, getParts, and getWholes. 

• It provides the means by which the value propagation associated with part-whole inheritance may 
be carried out. 

In succeeding sections, we will discuss the details of the instance type and the instance-instance 
type of the PartWhole metaclass and describe the different functionality that each contributes. 
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5.2. PartWhole  instance type 

In this section, we describe the details of  the PartWhole instance type. We first present its actual 
public interface which represents its contribution to the behavior of  any PW class. After that, we 
discuss how these methods capture the semantics of  the part relationship. 

The public interface for the PartWhole instance type appears in the following, where OID denotes 
the built-in VML data type representing object identifiersJ 2 It shows that the PartWhole metaclass 

provides twelve new methods for all PW classes. (Remember  that a class is itself an object, and these 
methods augment the behavior of  a class, not the behavior of  its instances.) Make  and destroy are used 
to create and delete instances of  a PW class. As such, they are used to encode the creation and 
deletion semantics of  the part relationship (Section 5.2.2). The other methods are used to define and 
query the part relationships in which a PW class participates. Note that we store all information about 
the characteristic dimensions with the whole class. 

OBJECTTYPE PartWhole_InstType SUBTYPEOF Metaclass_InstType; 

INTERFACE 

METHODS 
/ 

/Constructor and Destructor for the instances of a PWclass. 

make(someParts: {OID}): OID; 

destroy(anObject : OID); 
/ 

/Used to define PW class's part relationships. 

defPartRelshps(someRelshps: {PartRelationshipType}); 

defWholeClasses(someClasses: {OID}); 
defGenDerivedAttrs(someDrvdAttrs: {AttributeSpecType}); 

/ 

/Used to obtain values of the characteristic dimensions of the specific part 

/relationships that a PWclass participates in. The formal parameter 

/'aPWClass' of each method represents (the OID of) the part class of the 

/part relationship of interest. 

exclusiveness(aPWClass: OID) : ExclusivenessType; 

minCardinality(aPWClass: OID): INT; 

maxCardinality(aPWClass: OID) : INT; 

dependency(aPWClass: OID): DependencyType; 

propertyUpwardInherited(propertyName: STRING, aPWClass: OID) : BOOL; 

propertyDownwardInherited(propertyName: STRING, aPWClass: OID): BOOL; 

phi(propertyName: STRING, aPWClass: OID) : STRING; 

END; 

12 For the sake of brevity, we have omitted some extraneous utility methods which are described in [26]. Note also that, as 
required by VML, this instance type is defined as a subtype of 'Metaclass_lnstType'; see [37] for details. 
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5.2.1. Creating and queo'ing a PW class 
To demonstrate the impact of introducing part relationships into classes, let us first consider the the 

task of creating an 'ordinary' class (i.e., one without any part relationships) in VML. In the following 
we show the declarations for the two classes Newspaper and Editorial_page (Fig. 21) without their 
part relationships. Because each class in VML has an associated instance type, a complete declaration 
is divided into two portions: (1) an instance type declaration and (2) the class declaration itself which 
contains a reference to the instance type via its 'INSTTYPE' clause. 

CLASS Newspaper 

INSTTYPE NewspaperType 

END; 

OBJECTTYPE NewspaperType; 

IMPLEMENTATION 

PROPERTIES 

name: String; 

publisher: String; 

date: dateType; 

END; 

CLASS Editorial_page 

INSTTYPE EPType 

END; 

OBJECTTYPE EPType; 

IMPLEMENTATION 

PROPERTIES 

editor: String; 

END; 

To add the part relationships to the schema, the declarations must be modified in two ways. First, each 
class must be made an instance of the PartWhole metaclass by including a METACLASS clause in its 
declaration [37]. If no such clause is included (as above), then the class is assumed to be an instance 
of an intrinsic default metaclass. 

The second modification is to add specifications for the part relationships, including their 
characteristic dimensions and any generalized derived attributes. This is done in the class's 'INIT' 
clause j3 using the two companion methods defWholeClasses and deJPartRelshps as well as the 
method defGenDerivedAttrs. The method defWholeClasses informs a newly created PW class (at the 
time it is instantiated) of all other PW classes that are whole classes with respect to it. Likewise, 
defPartRelshps notifies it of all related part classes. However, this latter method also provides all the 
information pertaining to the characteristic dimensions of the part relationships in which the new PW 
class is the whole class because, as we noted, that data is stored there. The method defGen- 
DerivedAttrs informs the class of any generalized derived attributes it may have and their 
transformations. To illustrate the above, we expand our code to include the part relationships that the 
two classes are involved in. (The object types have been omitted.) 

CLASS Newspaper METACLASS PartWhole 

INSTTYPE NewspaperType 

INIT Newspaper- > defPartRelshps( 

{ 

~3 The  IN1T clause is a characteristic of  all classes in V M L  [37]. It is used as a means for performing initialization 

procedures at the time the class is created. 
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[thePartClass:Editorial_page, 

exclusiveness:GLOBAL-EXCLUSIVE, 

multiplicity:[min: 0, max: i], 

dependency:NIL, 
upSet : { }, downSet : {'date'}, phi : { ['date', 'dateIdentity'] }] 

}) 
END; 
CLASS Editorial_page METACLASS PartWhole 

INSTTYPE EPType 
INIT Editorial_page -> defWholeClasses({Newspaper}) 

Editorial_page -> defPartRelshps( 
{ 

[thePartClass:Masthead, 
exclusiveness:SHARED, 

multiplicity:[min: 0, max: i], 

dependency:NIL, 
upSet:{},downSet:{},phi:{}], 

[thePartClass:Editorial column, 

exclusiveness:GLOBAL_EXCLUSIVE, 

multiplicity:[min: 0, max: i], 

dependency:NIL, 
upSet:{'wordCount'},downSet:{'date'}, 
phi:{['wordCount','intIdentity'], ['date','dateIdentity']}], 

[thePartClass:Letters column, 

exclusiveness:GLOBAL_EXCLUSIVE, 

multiplicity:[min: 0, max: i], 

dependency:NIL, 
upset : {'wordCount'}, downSet :{ }, phi :{ ['wordCount', 'int Identity'] }] 

}) 
Editorial_page -> defGenDerivedAttrs({['wordCount','add']}) 

END; 

In the INIT clause of Editorial_page, the invocation of defWholeClasses establishes the fact that 
Newspaper is Editorial_page's sole whole class. The method defWholeClasses does not appear in the 
declaration of Newspaper because that class is the root of the part hierarchy and therefore does not 
have any whole classes. 

The invocation of defPartRelshps in Newspaper's INIT clause notifies it that Editorial_page is its 
only related part class] 4 It is also given the following information: The part relationship is 
global-exclusive (as denoted by the symbolic constant GLOBAL_EXCLUSIVE); it is single-valued 
(i.e., the minimum cardinality is 0; the maximum is 1); it lacks any dependency (as specified by NIL); 
there is no upward inheritance (the upSet is empty); the property date is inherited invariantly by 

t4 As noted above, we have omitted the other parts of Newspaper in our example schema. 
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Editorial_page from Newspaper (the downSet contains 'date' and phi associates it with the dateType 
identity operator 'dateIdentity'). 

The class Editorial_page is informed of its three related part classes Masthead, Editorial_column, 
and Letters_column as well as the respective characteristic dimensions by defPartRelshps in its INIT 
clause. It is notified by defGenDerivedAttrs of the fact that it has a generalized derived attribute 
wordCount which is computed via summation ('add'). The property wordCount at each of the classes 
Editorial_column and Letters_column serves as the basis for the computation because it appears in 
the upSets of the two respective part relationships. 

The part relationships established in the class declarations can be queried at run-time via the last 
seven methods provided by the PartWhole instance type. These methods are invoked against the 
whole class (where characteristic dimensions are stored) with the part class of the desired part 
relationship as an argument. Is E.g., to retrieve the value of the exclusiveness dimension of the part 
relationship between Editorial_page and Newspaper, we query Newspaper as follows: 16 

x :: Newspaper --> exclusiveness(Editorial_page); 

Here, the variable x would get assigned the value GLOBAL_EXCLUSIVE, as specified in the 
declaration of Newspaper. 

5.2.2. Creating and deleting Parts and Wholes 
The method make is used to create instances of a PW class. In doing so, it enforces the creation 

semantics dictated by the part relationship's characteristic dimensions. To create an instance of 
Editorial_page, for example, we write: 

Editorial_page --> make({}); 

From its signature, we see that make takes as its argument a set of objects that are to be initially 
installed as parts of the new object. If one of the given objects is from a class other than a prescribed 
part class, then the creation of the new instance is aborted. In the above invocation, the argument is 
the empty set, so the new editorial page initially has no parts. 

The creation semantics encoded by make comprises two kinds of constraints. First, make must 
ensure that the bounds imposed by the multiplicity dimensions of any of the target class's part 
relationships are satisfied at the outset of the new object's lifetime. (The methods addPart and 
removePart, discussed below, carry this same responsibility for the remainder of an object's lifetime.) 
If make detects a violation of any such constraint (for example, there are too few or too many parts of 
some type), then it aborts the object creation. 

The second constraint, related to the first, involves exclusiveness. Even if make receives valid 
numbers of parts, it may still be the case that one (or more) of these cannot be installed because it is 
already owned exclusively by another whole. Such a situation leads to an abort. 

Instances of a PW class are deleted using destroy as follows: 

Editorial_page -> destroy(p); 

~s In VML, the name of  a class serves as its run-time identifier. 

~6 V M L ' s  method invocation is syntactically like that of  C + +  [56]. 
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The argument p is the OID of  the editorial page of interest. Whereas make encodes the part 
relationship's creation semantics, destroy encodes its deletion semantics. For example, it may be 
forbidden to delete some object because another object needs it as an essential part. The complete 
algorithm describing destroy's operation can be found in [22,26]. 

5.3. PartWhole instance-instance ~pe 

In this section, we describe the details of  the PartWhole instance-instance type which endows parts 
and wholes with correct behavior. Remember  that this object type determines the influence of  the 
metaclass on the instances (Fig. 23, brick pattern). Specifically, it gives such instances the ability to 
establish and break, as well as change and query, part-whole connections with other instances. 
Furthermore, through its N O M E T H O D  clause, it provides the means by which part-whole inheritance 
is accomplished. The public interface for the instance-instance type is as follows. 

OBJECTTYPE PartWhole_InstInstType SUBTYPEOF Metaclass_InstInstType; 

INTERFACE 

METHODS 

addPart(aPart: OID): BOOL; 

removePart(aPart: OID) : BOOL; 

changePart(oldPart: OID, newPart: OID) : BOOL; 

getParts() : {OID}; 

getWholes(): {OID}; 

END; 

In the following subsections, we discuss the details of  these methods. 

5.3.1. Establishing Part-Whole connections between instances 
Assume that there exists a part relationship P~.A" TO establish a part-whole connection between the 
instance b of  B and the instance a of  A, we invoke addPart as follows. ~7 

a->addPart(b); 

A Boolean value is returned by addPart to indicate the success or failure of the part installation. 
Failures can occur in two scenarios: (1) the argument b is not an instance of  an appropriate part 
class, ~ and (2) b ' s  attachment to a would be a violation of  either an exclusiveness or a multiplicity 
constraint. The details of  the algorithm for detecting such violations can be found in [22,26]. 

5.3.2. Dissolving Part-Whole connections between instances 
To dissolve an occurrence of  a part relationship between a pair of  instances, we use removePart. 

For example, to remove the part b from the whole a, we write: 

7 We have adopted, without loss of generality, a protocol that requires the establishment and dissolution of part connections 
at the whole only. AddPart is also responsible for informing the involved part about the transaction. 
~ Because addPart is defined generically in the instance-instance type for all possible application schemata, it is not possible 
to check for such an error statically. 
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a --> removePart (b) ; 

Like addPart, removePart returns a Boolean value to indicate its success or failure. 
Note that in the context of a part relationship with identical upper and lower multiplicity bounds, 

removePart is guaranteed to fail because the removal of the part is certain to violate the lower bound. 
Thus, in such circumstances, it is not possible, using the two methods described so far, to exchange 
one part for another. To rectify this, we provide the method changePart which in a single transaction 
replaces one part with another of the same type as follows: 

a->changePart(bl, b2) ; 

As with the other methods, changePart returns a Boolean value to indicate success or failure. The 
exchange fails if b 1 and b 2 are not of the same type, or if the attachment of b 2 to a violates an 
exclusiveness constraint. 

5.3.3. Querying a Part hierarchy 
Once part-whole connections have been established between instances, we can query these using the 
methods getParts and getWholes. The method getParts returns all the parts (i.e., the union of the part 
sets) of the target instance. For example, to get the parts of an instance a, we do the following: 

theParts ::a-->getParts(); 

If a has no parts, then the resultant set ( ' theParts ')  is empty. Note that this method only returns the 
direct parts of an instance, not the parts of the parts. To obtain all the wholes of an instance a (i.e., the 
union of its whole sets), we use the method getWholes as in: 

theWholes : : a -> getWholes ( ) ; 

Once again, if a is not part of any objects, then the resultant set ( ' theWholes ')  is empty. 
We note that both methods return a set of undifferentiated instances. That is, getParts returns all of 

an instance's parts, irrespective of their classes, and in the same fashion getWholes returns all its 
wholes. It is a straightforward matter to write a VODAK Query Language [37] selection query against 
the result of getParts to obtain the part set with respect to a particular part relationship. 

5.3.4. Part-Whole inheritance using the NOMETHOD clause 
VML uses a dynamic-binding strategy with respect to method invocations. As such, a method 

invocation on an object for which the method is not defined is not flagged at compile-time. For 
example, assume that we have an object a which is an instance of the class A. Assume also that A 
does not define the method m. Consider the following VML statement: 

a-->m( ) ; 

In most languages, that statement would produce a compile-time error. In VML, it is considered a 
run-time violation. By itself, the usefulness of this is not so apparent. However, VML provides an 
error-handling mechanism to deal with errant invocations. The run-time resolution coupled with this 
error-handling serves as the basis for part-whole inheritance. 

The VML error-handler comes in the form of the NOMETHOD clause (NOMETHOD, for short) 
[37] of a metaclass's instance-instance type. NOMETHOD is simply a VML code segment that is 
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added to objects whose classes are instances of the particular metaclass. It can be thought of as an 
additional method, but it cannot be invoked explicitly within a VML program. As its name implies, 
NOMETHOD is executed automatically any time a spurious method invocation is attempted against 
an object. 

In the context of the PartWhole metaclass, we have designed NOMETHOD such that it will trap an 
invalid invocation of a reader method for a property and then attempt to resolve it by determining if 
the requested property is inherited (either upwardly or downwardly). If it is, the prescribed value 
propagation is carried out. Otherwise, NOMETHOD signals a run-time error. (For a detailed 
description of our NOMETHOD algorithm, see [26].) 

As an illustration of part-whole inheritance, consider the following VML program. 

(I 

(2 

(3 

(4 

(5 

(6 

aNewspaper :: Newspaper--> make({}); 

aNewspaper-->setDate( [6, 22, 95]); 

datel ::aNewspaper->date(); 

anEditorialPage :: Editorial_page-> make({}); 

aNewspaper-> addPart(anEditorialPage); 

date2 :=anEditorialPage->date(); 

In line (1) a new instance of Newspaper is created, and in line (2) its date is set to 6/22/95. Line (3) 
is simply the assignment of that date to the variable 'datel '  via an invocation of the reader method 
'date.' Line (4) creates a new instance of Editorial_page, and in Line (5) it is made part of the 
newspaper. Finally, in line (6), the variable 'date2' gets assigned the value 6/22/95, which is the date 
of the newspaper 'aNewspaper' of which 'anEditorialPage' is a part. In other words, 'datel '  and 
'date2' have been assigned the exact same value! 

It should be noted that the method 'date' is not directly defined for Editorial_page. However, 
because the downSet of the part relationship between Editorial_page and Newspaper contains 'date,' 
NOMETHOD makes it available (i.e., executable) in the context of editorial pages. This provides the 
inheritance effect. Its value for any editorial page is identically the value of the method 'date' for the 
editorial page's newspaper. This provides the value propagation associated with the inheritance. 

6. Conclusions 

We have presented a comprehensive part model for object-oriented databases. At its foundation is a 
part relationship which captures the richness of the interaction between real-world parts and wholes. 
The part relationship is placed in a formal framework by defining four characteristic dimensions: (1) 
exclusiveness, (2) multiplicity, (3) dependency, and (4) inheritance. The first three of these impose 
constraints and functionalities that allow applications to exhibit proper part-whole semantics. 
Dimension (4) provides the basis for the inheritance of properties (either upward or downward) across 
the part relationship. Such inherited properties contribute to more precise and compact database 
schemata. The part model also supports the combination of identical properties inherited from 
multiple sources, thus allowing for the declarative specification of expressions like 'the weight of the 
car is the sum of the weights of its parts' in the schema. 
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The implementation of our part model was carried out using VML's powerful metaclass 
mechanism. Specifically, we built the PartWhole metaclass which serves to integrate our part 
relationship and its associated derived attributes into the VML data model. As we have shown, the 
metaclass allows a database designer to exploit all the expressiveness of the part model by declarative 
means; one simply adds a few lines to an ordinary class declaration. After that, all the proper behavior 
is enforced implicitly by the database system. Among the features provided by the PartWhole 
metaclass is the ability for parts and wholes to establish, dissolve, and modify part-whole connections 
between each other. Query capabilities with respect to part hierarchies are also included. 

A version of the PartWhole metaclass is currently implemented as part of the metaclass library 
provided with VML (which is available as a prototype from GMD-IPSI19). It has already been used 
for the development of a VML class library for a document versioning model at GMD-IPSI. 

To facilitate the process of building part-whole database schemata, we have introduced a graphical 
notation for our part model. Its constructs include symbols for the various guises of the part 
relationship and for derived attributes. The notation enhances a general OODB graphical schema 
language called OOdini that we have previously developed and around which we have built an X 
Windows graphical editor. We are using ObjectMaker (of Mark V Systems) to construct a new 
graphical schema editor OOdini II which incorporates the part-whole notation. 
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